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ABSTRACT: Interfacial nanobubbles can exist on various
hydrophobic and hydrophilic material interfaces. There are
diverse applications for oxygen nanobubbles, which are closely
related to their content and long-term stability. However, it
remains challenging to determine the amount of nanobubbles
loaded in a porous material. In this study, a novel method was
used to quantify the total amount of oxygen nanobubbles loaded
onto irregular particulate materials. Different materials were
evaluated and their oxygen-loading capacities were found to be
as follows: activated carbon (AC) > zeolite > biochar >
diatomite > coal ash > clay. Significant differences in oxygen-
loading capacities were mainly ascribed to differences in the
specific surface area and hydrophobic/hydrophilic properties of
the materials. The total oxygen loading on AC achieved using
the high pressure loading method was higher than that achieved by the temperature variation method. This new quantitative
method provides the possibility for the manipulation of oxygen nanobubble materials in practical applications and it is
anticipated to be an important supplement to the existing methods of characterizing interfacial oxygen nanobubbles. Our results
demonstrate that materials containing oxygen nanobubbles can significantly increase the dissolved oxygen and oxidation
reduction potential in anaerobic systems. With the addition of oxygen-loaded materials (such as AC), the survival time of
zebrafish was prolonged up to 20 h in a deoxygenated water system, and the germination rate of Vallisneria spiralis was also
increased from 27 to 73% in an anaerobic sediment.

1. INTRODUCTION

Nanobubbles are gas-filled bubbles that spontaneously form at
the interface of solid surfaces and aqueous solutions.1 The first
experimental evidence of the existence of nanobubbles on
various hydrophobic surfaces was provided in 2000 using
tapping-mode atomic force spectroscopy (AFM).2,3 During the
last decade, nanobubbles have already been widely used in the
fields of medicine,4 physiology,5 and water treatment.6

Various methods have been established for the preparation
of nanobubbles, such as solvent-exchange,7,8 temperature
gradient,9 microwave,10 pressure reduction, and electro-
chemical methods.11−14 Three types of nanoscale gas domains,
known as surface nanobubbles,15−17 nanopancakes,18−20 and
bulk nanobubbles,21,22 have been characterized by various
techniques, such as AFM, spectroscopic methods, rapid
cryofixation/freeze fracture, quartz crystal microbalance,
neutron reflectometry, and X-ray reflectivity. These techniques
can efficiently provide bubble images and relevant information,
but they are still limited to relatively flat substrates, such as

highly oriented pyrolytic graphite,23−25 mica,26 gold,27

polystyrene,28,29 and silicon surfaces hydrophobized by
silanization.30 Nanobubbles can also form and exist on porous
materials with irregular surface structures, but the previously
mentioned techniques are not suitable for nanobubble analysis.
In our previous study, we demonstrated that synchrotron-
based scanning transmission soft X-ray microscopy can be used
to detect oxygen nanobubbles formed on the diatomite
particle−water interface under ambient conditions.31 However,
this method is heavily dependent on the advanced synchrotron
facility. More importantly, it is challenging to obtain the
absolute loading or the total amount of nanobubbles formed
on the porous solid material surfaces in the suspension because
of the unknown density and inner pressure of the nanoscale gas
state.32,33 Thus, to comprehensively evaluate the nanobubbles
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at irregular surface interfaces, a quick and easy method of
quantifying nanobubbles is urgently needed.
Oxygen-filled nanobubbles (oxygen nanobubbles) have

potential applications in various research fields including
nanofluidics,34 nanochemistry,35,36 nanomechanics,37 nano-
medicine,38,39 and environmental treatment because of their
ability to produce free radicals. Oxygen nanobubbles have also
been employed for detoxification of water and degradation of
organic compounds in wastewater treatment.40−42 Moreover,
oxygen nanobubbles loaded on porous solid particles of natural
clay can be purposely delivered to eutrophic shallow lakes or
anoxic sediment and efficiently revive polluted lakes.43−48

Determining the highest possible loading of surface oxygen
nanobubbles in modified macroscopic particles is essential for
the application of nanobubbles in remediation of an anoxic
sediment and eutrophication in aquatic environments.
The aim of this study is to develop a quick and easy

absorption method to measure the total amount of oxygen
nanobubbles loaded in a solid suspension. Various particles,
including activated carbon (AC), biochar, diatomite, zeolite,
coal ash, and clay, were selected as the oxygen nanobubble
carrier using the temperature gradient and high-pressure
loading methods. The oxygen nanobubble loading capacities
and rates were quantified and compared by the proposed
method. Moreover, the potential anaerobic sediment-remediat-
ing abilities of the aforementioned materials were also
evaluated in lab-scale column experiments. The present study
will provide a great choice of loading materials and
manipulation methods for the use of oxygen nanobubbles in
the field of environmental remediation.

2. RESULTS AND DISCUSSION
2.1. Oxygen Nanobubble Loading in the AC

Suspension. In this study, nanobubbles were prepared by a
simple and efficient procedure, that is, the temperature
variation method.49,50 When the temperature in the oxygen
solution (25 mg/L) was increased from 5 to 60 °C, the
generated oxygen nanobubbles were analyzed using NanoSight
nanoparticle tracking analysis (NTA) technology. As presented
in Figure 1, nanobubbles were formed with a mean diameter of
182 nm, and the total number density of nanobubbles in the
water system was 3.10 × 108 particles/mL. Meanwhile,
nanobubbles were also formed in the suspension system with
AC (5 g/L) under the same initial oxygen concentration (25
mg/L) and temperature gradient. From the results in Figure 2,
the total number density of bulk nanobubbles in the liquid was
decreased dramatically to 1.85 × 108 particles/mL, and this
reduction may be due to the nanobubbles generated on the
surfaces of the porous structures of the AC. However, the
current known methods are unable to measure the total
loading amount of oxygen nanobubbles in particle suspensions,
which can be essential for practical applications and
manipulation of nanobubbles.
2.2. Quantification of Oxygen Nanobubble Loading

in the Solid Suspension. In this study, an experimental
apparatus was designed to measure the total amount of oxygen
nanobubbles in the solid suspensions. Therefore, the total
oxygen in the AC system was measured, which revealed that
AC could be loaded with 2.85 mg O2/g AC by the temperature
gradient method. The principles of the current method are as
follows: (1) by increasing the temperature and using
mechanical stirring, the release of oxygen from the porous
materials could be accelerated; (2) N2 gas was used as the

circulation gas between two connected sealed flasks and this
could also help to transfer oxygen released from the solid
suspension in flask A to absorption flask B with Na2SO3 as the
oxygen reductant. Online dissolved oxygen (DO) measure-
ments were used to determine the oxygen level in the two
flasks, and the reaction was allowed to continue until the
oxygen concentration reached zero in both flasks. It can be
assumed that the oxygen was totally consumed by Na2SO3.
Thus, the total oxygen in the suspensions can be obtained by
calculating the amount of Na2SO3 consumed in the whole
reaction process.
To improve the amount of oxygen loading in the porous

materials, the high-pressure method was used in this work.
Different materials were tested in this work, including AC,
zeolite, biochar, diatomite, coal ash, and clay. From the results

Figure 1. Determination of bulk nanobubbles in the water system; (a)
determination of the particle size/concentration, (b) sample video
frame, and (c) 3D graph (diameter vs intensity vs concentration).
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in Figure 3, an oxygen loading of 31.75 mg O2/g was achieved
for AC, which was higher than that obtained with other
materials. Also, the high-pressure method dramatically
improved the oxygen loading as compared with the temper-
ature variation method (2.85 mg/g). The oxygen-loading
capacities of zeolite, biochar, diatomite, coal ash, and clay were
found to be 21.17, 20.11, 13.23, 5.09, and 4.87 mg/g,
respectively. These differences were mainly attributed to
differences in the specific surface area and surface wettability.
As shown in Figure 3, the oxygen-loading capacity of a material
is correlated to its specific surface area. The formation of
surface nanobubbles was strongly dependent on the nature of
the substrates. Hydrophobic substrates experience long-range

attraction between hydrophobic surfaces immersed in water,
which is a much more suitable condition for nanobubble
formation than is found with hydrophilic substrates.51,52 AC is
a hydrophobic porous material with a large specific surface area
[Brunauer−Emmett−Teller (BET), 700 m2/g], which presents
the perfect conditions for nanobubble loading.

2.3. Potential Applications of Oxygen Nanobubble
Loading Materials. The oxygen-releasing abilities of these
samples were determined by testing the survival time of zebra
fish in the deoxygenated ultrapure water system with 7 wt %
oxygen-modified materials. The control system contained only
deoxygenated water. The zebra fish died after 1 h in the control
system, while the survival times of the fish increased with the
addition of oxygen-modified materials. As shown in Figure 4,
zebra fish were still alive in the zeolite and AC systems after 20
h, which agrees with the experimental results showing that
zeolite and AC have higher oxygen-loading capacities.
Experiments were also carried out in the presence of materials
without loading oxygen. The zebra fish has longer survival
times than that in the control system, while its effect is much
less than oxygen-modified materials, and all the zebra fish died
in 3 h (Figure S1).
Materials containing oxygen nanobubbles may have

potential applications in environmental remediation under
anaerobic/anoxic conditions. In order to evaluate the
anaerobic/anoxic remediation potential, another group of
experiments were carried out in columns containing an
anaerobic lake sediment and water. Oxygen-modified materials
were added to the system, and a 1 cm capping layer was placed
on the sediment−water interface. The system without any
capping layer was set as the control column. As shown in
Figure 5a, the DO in the column was significantly increased
with the addition of the oxygen-modified materials. Hence, the
DO could last longer in all the treated systems than in the
control system after 120 days of experiments. The oxidation
reduction potential (ORP) of the sediment was significantly
improved in the system with oxygen-modified materials and a
capping layer (Figure 5b). This improvement will be helpful
for remediation in anaerobic sediment environments, which
can have long-term effects on microorganisms and the
transformation of pollutants.53−57

In this work, the effect of oxygen-modified materials on the
anaerobic remediation of a hydrophyte was also tested.
Vallisneria spiralis seeds were used as the test model
hydrophyte. In systems with oxygen-loaded zeolite, AC, and

Figure 2. Nanobubbles generated by temperature variation in the
system with AC; (a) determination of the particle size/concentration,
(b) sample video frame, and (c) 3D graph (diameter vs intensity vs
concentration).

Figure 3. Oxygen-loading capacity vs specific surface area.
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coal ash, the seed germination rates of Vallisneria spiralis were
73, 67, and 67%, respectively (Figure 6), whereas the seed
germination rate was only 27% in the control column. This
implies that the presence of oxygen-modified diatomite and
clay also improved the germination rates compared with the
control system. However, the performance of these materials in
terms of improving the germination rate was less than the
other three materials because of their lower oxygen-loading
capacity. This work has confirmed that nanobubbles could
establish an important oxidative window for hydrophyte
germination in an anaerobic sediment.58 These results
corroborate previous findings where nanobubbles were
effectively used to accelerate the metabolism of living
organisms and seed germination by introducing reactive
oxygen species.59−61 Current findings are also in accordance
with reported studies wherein Brassica campestris and
cucumber plants showed a significant increase in leaf weight

and surface area in the presence of air-nanobubble solutions
with higher DO concentrations compared to that of normal
water.5,62

3. CONCLUSIONS
We have presented a simple and cost-effective method for
determining the total oxygen nanobubble loading in porous
materials, which can be an important supplement to the
existing methods of characterizing oxygen nanobubbles. The
total oxygen loadings on AC, zeolite, biochar, diatomite, coal
ash, and clay were found to be 31.75, 21.17, 20.11, 13.23, 5.09,
and 4.87 mg/g, respectively. This difference is ascribed to their
different properties, particularly the specific surface area and
the hydrophobic or hydrophilic nature of the surface. These
results will be useful for choosing among different possible
materials for practical applications. Applications of these
materials were assessed in anaerobic/anoxic conditions. The
oxygen-loaded materials can prolong the survival time of zebra
fish in a deoxygenated water system and improve the
germination rate of Vallisneria spiralis in an anaerobic
sediment. Our results have also demonstrated that a 1 cm
capping layer containing oxygen nanobubbles could signifi-
cantly improve the DO and ORP in an anaerobic aqueous
system. Porous materials loaded with oxygen nanobubbles may
have broad applications in environmental remediation.
Although our results have provided a powerful characterization
tool for oxygen nanobubbles in particulate matter, further
research is needed to optimize the various effective parameters.

4. METHODS
4.1. Materials. AC (particle size: 4−6 mm) and biochar

were obtained from Henan province, China. Zeolite (particle
size: 2−4 mm) was obtained from Hebei province. Coal ash
(Shanxi province, China) and clay (Beijing local soil) were
washed with deionized water, dried at 100 °C for 24 h, and
then sieved through 180 mesh before use (particle size < 90
μm). Na2SO3 and diatomite were purchased from Beijing
Chemical Works (Beijing, China). Pure oxygen (99.99%) was
used in this experiment. All chemicals were analytical grade
and used without further purification. Water was obtained
from a Milli-Q system (Millipore Corp., Boston, MA).

4.2. Setup of Oxygen Measurement. The oxygen
measurement setup was used as described in Figure 7 and
consisted of two connected sealed flasks. Flask A contained
experimental samples, such as solid suspensions, and flask B
contained the oxygen absorption system. Flask A was kept in a
water bath, which was used to manipulate the system

Figure 4. Effects of oxygen-modified materials on the survival time of zebra fish in the deoxygenated water. (a,b) Figures of the test.

Figure 5. Effects of various oxygen-modified capping layers on the (a)
DO and (b) ORP.
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temperature, and both flasks were continuously stirred during
the experiments. N2 gas was used as the circulation gas
between flasks A and B. Oxygen released from the solid
materials could be transferred into flask B. The total amount of
oxygen in the suspensions could be obtained by measuring the
amount of Na2SO3, which was used as the oxygen reductant in
the reaction process. The DO meter was connected to a
computer to record and measure the DO concentration in the
reaction system in real time.
4.3. Sample Preparation and Characterization. In this

work, nanobubbles were prepared by the temperature gradient
method and the high-pressure loading method.
4.3.1. Temperature Gradient Method. An oxygen-saturated

solution was obtained by purging pure oxygen into the
solution. DO was measured by the DO meter (JPSJ605,
Shanghai REX Instrument Factory). To prepare a sample, 2.5 g
of AC was added to 500 mL of the solution, while ultrapure
water was used as a control sample. All samples were placed in
an ice bath, and the temperature was gradually increased from
5 to 60 °C. The amount of free bulk nanobubbles was
determined using NanoSight NTA technology (NS500,
Bruker, Germany), and samples were filtrated by a 0.45 μm
membrane before measurement. The total amount of oxygen
nanobubbles on the particle surface was determined by the
absorbing method (Figure 7).
4.3.2. High-Pressure Method. The AC and zeolite particles

were washed by water to remove any dust, and all the solid

materials were dried at 100 °C for 24 h to remove water from
the pores. The BET specific surface areas of the particles were
determined using a surface area and porosity analyzer (ASAP
2020 HD88, Micromeritics). The obtained solid materials
were kept in a container at −0.075 MPa for 2 h to remove air
from the materials, and then the reactor was filled with pure
O2, and a pressure of up to 0.15 MPa was maintained for 0.5 h.
This step was repeated two times, and the pressure was then
kept at 0.15 MPa pressure for 12 h before the O2 pressure was
slowly reduced to atmospheric pressure. Subsequently, the
materials were removed, delivered into flask A, and the online
measurements were recorded.

4.4. Application of the Materials Containing Oxygen
Nanobubbles. The column tests were conducted in the
laboratory over a total duration of 120 days. The diameter and
height of the column were 10 and 50 cm, respectively. The
anaerobic sediments were obtained from a lake (Taihu,
China), and the height of the sediment was 5 cm at the
bottom of the column. Water was added into the system. After
2 days of stabilization, the prepared materials containing
oxygen nanobubbles were used to cap the sediment, and the
height of the capping layer was 1 cm. The DO in the system
and the ORP of the sediment were determined by the MI-
parameter Meter (Hach, USA). Meanwhile Vallisneria spiralis
seeds were sowed in each column. The germination rate of the
seeds in the anaerobic sediment was also tested. A column
without a capping layer was used as the control. The effects of

Figure 6. Effects of the oxygen-modified capping layer on the germination rate of Vallisneria spiralis. Oxygen-loaded materials include O-zeolite, O-
AC, O-coal ash, O-diatomite, and O-clay.

Figure 7. (a) Experimental setup and (b) schematic diagram of the equipment.
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the oxygen-modified materials on the survival time of zebra fish
were observed in a deoxygenated water system with 7 wt % of
modified materials. A timer was used to record the survival
time of each fish in each system, and all experiments were
repeated three times to obtain the mean survival time of the
fish.
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