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Abstract—A novel pricing and scheduling mechanism is
proposed here for Plug-in electric vehicles (PEVs) charg-
ing/discharging to track and synchronize with a renewable power
generation pattern. Moreover, the proposed mechanism can be
used in the demand-side management and ancillary service
applications, respectively for the peak shaving and frequency
regulation responding. We design a fully distributed stochastic
optimization mechanism using Bayesian pure strategic repeated
game by which the PEVs optimally schedule their demands. We
also use a mixed Bayesian-diffusion Kalman filtering strategy for
the customers to collaboratively estimate and track the stochastic
price and regulation signals for the upcoming scheduling window.
In the proposed paper all the characteristics of the PEVs,
as well as the uncertainty about their deriving patterns are
considered. As our framework converges to an equilibrium even
with incomplete information, is agent-based, and the agents share
the information only with their optional neighbors, it is scale-free,
robust, and secure.

Index Terms—Bayesian game scheduling, diffusion Kalman
filtering, plug-in electric vehicles, renewable energy resources.

I. INTRODUCTION

Today, there is an extensive public attention all over the
world for electrifying the transportation sector and integration
of the renewable energy resources (RERs) into the power grid.
In 2017, the global PEV sales until September were over 764
000 units (46% higher than that in the same period of 2016)
[1]. However, increasing the penetration of the RERs and
PEVs into the traditional power systems is a critical and can
put the reliability and stability of the power grid into danger
and degrade its performance and efficiency. This is due to
high intermittent nature of the RERs, their inconsistency with
energy usage, and high/uncertain power demand of the PEVs.
So, it is essential to provide an effective energy management
framework to schedule and control the time/amount of charge
and discharge of the PEVs and match them with the renewable
time/amount power generation.
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A. Related Work

Integration of the PEVs to a power system with high wind
power penetrations and the application of considering the
PEVs as a regulation services provider has been addressed in
[2]. The western Danish power system where the total share
of annual wind power production is more than 27% of the
electrical energy demand was chosen for study in this analysis.
Jin et al. in [3] formulated the energy consumption scheduling
(ECS) problem as a stochastic optimization problem based on
a queuing model which uses Lyapunov dynamic optimization
technique to minimize the time average cost of using non-
renewable energy sources. Zhang et al. [4] considered a delay-
optimal ECS of the PEVs with queue mapping to convert the
PEV queue to the charge demand queue at a charging station
equipped with renewable energy generation devices and mul-
tiple charge points. Further, an independent Markov decision
process (MDP) has been described in this investigation to take
into account uncertainty of the PEV arrival, the intermittence
of the RES, and the variation of the grid power price. Chen
and Duan [5] proposed a method for optimal integration of the
PEVs in the microgrids dealing which uncertainties associated
with the daily distance driven of the PEVs, load values, and
electricity market price and considered an optimal number
of parking numbers under optimal scheduling of the PEVs.
The problem of matching the stochastic wind power with
the PEVs charging schedule considering the optimality of
the expected charging cost has been studied by Huang et al.
[6]. This stochastic multi-stage matching problem has been
formulated as an MDP by aggregating the PEVs according to
their remaining parking time, and was solved by simulation-
based policy improvement method. A real-time load elasticity
tracking and pricing for the ECS problem using predicting
PEV charging behavior of the consumers at different prices
has been investigated by Soltani et al. [7]. The dependencies
on price responsiveness among consumers are captured by a
conditional random field (CRF) model in this work. Lee et al.
[8] perused the price competition among the PEV charging
stations equipped with renewable power generators where each
station sets its electricity price to maximize its revenue by
competing with its neighbors. The proposed model in this work
is a game theoretic model in which some relevant physical
constraints such as the transmission line capacity, the distance
between the PEV and charging station, and the number of
charging outlets at the charging station are taken into account.
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A two layer hierarchical control scheme for the coordination
of PEVs and wind turbines in a microgrid has been modeled
in [9]. The main feature of this scheme is that it incorporates
the non-Gaussian uncertainty and partially dispatchability of
wind power, as well as the PEV uncertainty. A two-stage
(day-ahead/real-time) mechanism was established in [10] for
integrating the massive PEVs into the power grid, tackling
the RESs’ uncertainties, and coordinating them to reduce the
energy cost and peak to average ratio (PAR) of the system.
At the first stage, based on the prediction of future energy
requests and considering the elastic charging property of
the PEVs, an offline day-ahead optimal energy generation
scheduling problem was formulated to determine the energy
generation. Then at the second stage, based on the planned
energy generation, an adaptive real-time charging strategy is
developed to determine the charging rate of each vehicle in
a dynamic manner. A charging rate compression algorithm
which tremendously reduces the complexity of the problem
solving has been also developed in this paper. In [11], the
ECS problem has been formulated using MDP and solved
using a distributed simulation-based policy improvement. The
proposed method takes into account the uncertain wind power
sources and can be improved from heuristic and experience
based policies. A case study in Beijing (China) was developed
to explore the potential of wind power of high-rise buildings
in supporting the PEVs charging. Yang et at. [12] considered a
grid-connected microgrid model which consists of a logistics
distribution system, where the PEVs depart from the depot,
deliver the goods to multiple demand loads, and then return
to the depot.

A coordinated dispatch strategies of the PEVs to smooth re-
newable energy and load fluctuations of the microgrid has been
developed, while ensuring the quality of logistics services.
They established an ECS method using a self-adaptive im-
perialist competitive algorithm to optimize the driving routes,
fast-charging time and regular-charging/discharging strategies
of multiple PEVs. Luo et al. [13] studied the problem of
stochastic dynamic pricing and energy management policy
for the PEV charging service providers in the presence of
the energy storage system and multiple uncertainty sources.
They offered guidelines for charging service providers to the
determine proper charging prices and manage the electricity
to balance the competing objectives of improving profitabil-
ity, enhancing customer satisfaction, and reducing impact on
power grid in spite of these uncertainties. Moreover, a new
metric to assess the impact on power grid, without completely
solving the power flow equations has been proposed in this
paper.

B. Our Contributions
Based on the drawbacks in previous works, we are moti-

vated to contribute to:
Designing a robust and scalable game mechanism: The

availability of some forms of information to all the customers
and to the utility company is fundamental to coordinate their
actions to result in a socially fair solution. However, this raises
some challenges such as requiring a two-way data communica-
tion network with high communication/computation capability,

preserving the customers’ privacy, and ensuring the power grid
security and reliability. As in our framework the customers
communicate and share information only with their optional
neighbors and the proposed Bayesian game converges to an
equilibrium even with incomplete information, the mechanism
is scale-free, requires low communication/computation, and is
more secure and reliable. Further, as long as the topology and
information sharing rule of the communication network satisfy
some conditions as described in Section IV of this paper, the
power grid is robust to noise, link failures, and incomplete
information.

Providing a universal real-time ECS: As there are several
uncertainty sources (market price, power generation, power
consumption, etc.) in the power grid, the time-ahead ECS
methods usually lead to sub-optimal or even non-optimal solu-
tions. So, we develop a real-time mechanism using the rolling
horizon technique and online adaptive Bayesian-diffusion
strategy to optimize the solution. The proposed method is
universal in the sense that it can be used for both demand-
side management (DSM) and ancillary service necessities.

Considering the customer’s attribution: The works in
the literature are mostly focusing on using the flexibility of
the battery of the PEVs for DSM and frequency regulation
objectives without explicitly addressing the PEV’s energy
demand limitation at the end of each scheduling window. We
proceed in this matter by formulating a pure strategic game
and involving the PEV’s characteristics in detail. We develop
a binary Markov chain model updated using Bayesian method
to predict the PEVs plug-in and departure times. Moreover,
we provide a robust model by which the total energy demand
of each PEV for its next trip is estimated.

Mitigating the adverse effect of the PEV and RER:
By designing a novel real-time behavioral price policy, the
customers in the considered model try to match their PEVs’
charging/discharging pattern with the stochastic highly fluctu-
ating power generated from the RERs by tracking its variation.
This results in making the balance between supply and demand
sides and jointly smoothing out the total power generation and
consumption curves.

The remainder of this paper is outlined as follows. We
demonstrate the system model in Section II. Section III
introduces the agent-based game theoretic PEV scheduling
problem. The Bayesian-diffusion-Kalman filtering solution is
developed in Section IV. The simulation results are presented
and assessed in Section V, and Section VI provides the
concluding remarks.

Notation: lower- (upper-) case boldface letters denote col-
umn vectors (matrices), and calligraphic letters stand for sets.
The notation E[·] denotes expectation operator, | · | denotes
the cardinality operation of a set, Tr(·) denotes the matrix
trace operation, Pr(·) denotes the probability operation, ×Nn=1

denotes the Cartesian product over N elements, ⊗Nn=1 denotes
the σ-algebra [14] product on the Cartesian product, and ã
implies that a is a random variable. We denote the σ-algebra
of Borel [15] subsets of a by B(a) and its transpose by a>.
Further, A1∆A2 = (A1/A2)

⋃
(A2/A1) and Nn/j is the set

of player n’s neighbors including itself and excluding neighbor
j. The subscript at stands for value of variable a for a period
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t, while, to denote its value at a time slot h within period t
we use ah instead of ah,t for simplicity.

II. SYSTEM MODEL

We consider a smart micro-grid system (network) compris-
ing of one utility company which procures energy from the
wholesale market and its own renewable farm, and serves
a set N , {1, · · · , N} of N = |N | PEVs of residen-
tial/commercial/industrial owners (called the customers) as
in Fig. 1. Each customer’s site is equipped with an energy
consumption manager (ECM) device responsible for schedul-
ing of its PEV power consumption, i.e., determining the
optimal PEV charging/discharging rate/time. The customers
participate in the ECS program for a long time divided into set
T , {1, · · · , T} of equal length periods, while their actions
have a periodic pattern within each t ∈ T (e.g., 1 year with |T |
= T = 365 and each period t ∈ T as one day). We divide each
period t ∈ T into a set Ht of Ht equal time slots (e.g., one
day as |Ht| = Ht = 96 with a slot duration of 15 minutes).
It is assumed that each ECM1 n ∈ N is connected to the
utility company and its neighbors2 m ∈ Nn ⊆ N with some
proper two-way communication protocol. At each period t,
each customer n tries to cooperatively manage its PEV en-
ergy consumption throughout its feasible scheduling window
Htn , {αtn, · · · , βtn} (with |Htn| = Ht

n = βtn−αtn+1), where
αtn is the PEV plug-in time and βtn is the last time slot at
which the PEV had to reach to a desirable charge level Ed,tn .
Further, we denote the remained time slots from slot τ to the
end of scheduling window Htn at period t with Hτn ⊆ Htn. We
consider three modes for the PEV status, namely, off mode
when the PEV is unplugged or finished its task, asleep mode
when is plugged-in but does not charge/discharge, and awake
mode when is charging/discharging. For PEV n, we define its
operation state at time slot h ∈ Htn in period t as a couple
shn(rhn, d

h
n), where rhn is the number of remaining time slots to

complete the current task and dhn is the number of time slots for
which the current task can be delayed. As an insight, the state
of PEV n in period t throughout its scheduling window |Htn|
= 9 hours with rhn = 4 and dhn = Ht

n−rhn = 5 is denoted in Fig.
1. As is depicted, the PEV is in off mode when is unplugged
(out of scheduling window Htn) or when has finished its work,
and does not consume more power.

A. PEV characterization

Let us denote PEV n operation mode in time
slot h ∈ Htn with binary decision variables
xhn,c ∈ {0 (asleep),+1 (awake-charge)} and
xhn,d ∈ {0 (asleep),−1 (awake-discharge)}. In an optimal

1Throughout the paper, we use ECM, customer, and PEV interchangeably.
2Set of customers who customer n can or would like to interact with them,

including itself is called neighborhood of n and denoted by Nn.

Communication Link
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Fig. 1. The considered power grid block-diagram model.

scheduling of the PEV n’s operation at each t, the ECM
faces the following constraints:

βtn∑
h=τ≥αtn

(
ηn,c · xhn,c +

xhn,d
ηn,d

)
· xratn = Ed,tn − (Eτ−1n + E0

n),

Ehn = Eh−1n +
(
ηn,c · xhn,c +

xhn,d
ηn,d

)
· xratn ,

Eminn ≤ Ehn ≤ Bcapn , ∀h ∈ Hn, Elbn ≤ Ed,tn ≤ Eubn ,
xhn,c · xhn,d = 0, ∀h ∈ Hn,
xhn,c + xhn,d = 0, ∀h /∈ Hn

(1)
where Ehn , E0

n, Eminn , and Bcapn are the energy level at
the end of slot h, initial energy level, minimum acceptable
energy level, and the battery capacity, respectively. Coeffi-
cients ηn,c, ηn,d ∈ (0, 1] denote charging and discharging
efficiency and xratn is the rated power at which the PEV
is charged/discharged. The first dynamic term of (1) is for
providing the required energy level for the next trip before
the departure time of the PEV. The second line denotes the
evolution of the energy level of the battery of the PEV.
The constraints in the third line bound the energy level and
denote the tolerable deviation from Ed,tn , respectively. The
fourth line of equation (1) implies that the PEV cannot be
charged and discharged at the same time and the fifth line
ensures that the PEV cannot be charged/discharged when it
is unplugged. Each ECM n ∈ N can infer the posterior state
sh+1
n (rhn−xh+1

n,c +xh+1
n,d , d

h
n+xh+1

n,c −xh+1
n,d −1) of its PEV in

the next time slot h+1 from the prior state shn(rhn, d
h
n) and the

current action xhn = [xhn,c ·xratn , xhn,d ·xratn ]>. Accordingly, the
ECM updates its feasible set X hn := {xhn | constraints in (1)}
at each h ∈ Ht and resets them at each new t ∈ T .

B. Energy source model

We assume that the renewable power is produced by a wind
farm comprising of a set K , {1, · · · ,K} of |K| = K
turbines. The power P̃hk,r drawn from each turbine k ∈ K
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at each slot h ∈ Ht is calculated as [16]:

P̃hk,r :=


1
4
πR2

k$
h
k

(
vhk
)3(

1 +
vhk,d

vh
k

)(
1−

( vhk,d
vh
k

)2)
, vink ≤ v

h
k ≤ v

rat
k

P ratk , vratk < vhk ≤ v
out
k

0, vhk < vink or vhk > voutk
(2)

where Rk [m] is the rotor radius of turbine k, and $h
k

[kg/m3], vhk [m/s], and vhk,d [m/s] are air density, wind
speed, and downstream wind speed at the site of turbine k,
respectively. Further, P ratk [MW ] is the rated power output
of wind turbine k, and vink , voutk , and vratk [m/s] are cut-in,
cut-out, and rated wind speeds of wind turbine k, respectively.
The variation in wind velocity vhk is best to follow by the
Weibull probability distribution function (PDF) with shape ωhk
and scale chk parameters. So, the probability of wind speed vhk
at the site of turbine k during the time slot h is given by [17]:

πtw(vhk ) =
ωhk
chk

(vhk
chk

)ωhk−1e−( vhkchk )ω
h
k

(3)

where, mostly, the wind speed is considered to have Weibull
distribution with ωhk = 2, which is specifically known as the
Rayleigh distribution. Moreover, the higher the chk is, the
greater the number of days/hours that have high winds (see
[18] for details). The utility company needs to know the
total power drawn from the renewable farm

∑
k∈K P̃

h
k,r and

the aggregate non-PEV load demand
∑
n∈N l

h
n for each time

slot h ∈ Ht before the scheduling window. Accordingly, the
utility company makes a contract with the wholesale market
for buying the total base-power Phb required for making the
balance between the supply and demand sides. However, there
is always inaccuracy in determining Phb ahead of time which
must be compensated in real-time by some regulation power
w̃h. The required regulation power w̃h to make the real-time
balance is calculated as follows:

w̃h = (Phb +
∑
k∈K

P̃hk,r)−
∑
n∈N

lhn (4)

It is rational to assume that the utility company determines
Phb properly at each slot so that w̃h follows a normal distri-
bution N (0, σ2

r)3 as:

πtr(w
h) =

1√
2πσ2

r

e
− (wh)2

2σ2r (5)

C. Price design

In the utility company view, the most suitable tool to encour-
age the customers for following a specific energy consumption
pattern is establishing an effective price policy. As in the
pricing policy the customers’ payment depends on the time
and amount of consumed energy, the customers try to consume
more energy at low-price times and vice versa. So, it is

3The PDF of w̃h is assumed to be Gaussian N (m,σ2
r) when the PEV

penetration to the power grid is large enough to support some base loads as
well as tracking the wind power production.

rational to assume that the utility company determines its price
parameter at slot h ∈ Ht in period t based on:

p̃h = p̃hb + γhp̃hsh, p̃
h
sh =

( ∑
n∈N

(xhn,c + xhn,d)− w̃h
)2

(6)

where random variable p̃hb is the real-time baseline price which
is unknown to the customers a priori. When total non-PEV
load demand

∑
n∈N l

h
n is greater (lower) than total procured

power Phb +
∑
k∈K P̃

h
k,r, e.g., w̃ht < 0 (> 0), the customers

are encouraged to discharge (charge) their PEVs to reduce
their payments through minimizing p̃hsh (called the shadow
price). This procedure leads to track random variable w̃h

which results in the power balance.

III. PROBLEM FORMULATION

A. Sources of Uncertainty

The deriving patterns of the PEVs are stochastic in nature.
So, to provide an efficient charging/discharging schedule at
each period t, the plug-in time (i.e., αtn), the plug-out time
(i.e., βtn), and the total energy demand (i.e., Ed,tn ) of each
PEV n during the connection time Htn need to be estimated
accurately. To estimate the stochastic parameters αtn and βtn,
one can model the available time (i.e., the length of Htn) of
PEV n as a binary Markov chain with state = 1 denoting that
the PEV is available to the ECM (e.g., is in the parking lot) and
state = 0 denoting that the PEV is unavailable. Staring from an
initial state, we can infer the feasible scheduling window Htn
using the transition probabilities of the corresponding Markov
chain.

Let’s denote the status of PEV n within the pe-
riod t by the homogenous and stationary Markov chain
M t

n = {M0
n, · · · ,MH

n } with transition probabilities ρn,ij =
Pr(Mh+1

n = j|Mh
n = i), i, j ∈ {0, 1}. The probability of

the length of time at which the PEV may be available (i.e.,
remains in state 1) is computed by ρtn = ρn,01/(ρn,01+ρn,10),
represents the long-run proportion of time when the Markov
chain is in state 1 [19]. LettingMt

n = {m0
n, · · · ,mH

n } denote
a fully observed realization of M t

n, conditionally to M0
n = 1,

the distribution of the observed sequence is then [20]:

f(M t
n|m0

n, ζ
t
n) = (1− ρn,01)h00ρh01

n,01ρ
h10
n,10(1− ρn,10)h11 (7)

where hij is the number of one-step transition from state
i to state j until time-slot h and the unknown probability
parameter ζtn = (ρn,01, ρn,10) ∈ [0, 1] can be inferred using a
proper estimation technique, such as the maximum likelihood
estimates. However, as we aim to provide a real-time adaptive
PEV charging strategy, Bayesian inference, which incorporate
a certain type of dependence between the components of the
parameters in diferent periods t ∈ T , seems to be the most
suitable choice.

Proposition 1. Considering Jeffreys’ prior distribution π(ζtn)
on parameters ρn,01 and ρn,10, the conditional posterior
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density becomes:

π(ζtn|Mt
n) ∝

[
h(ρn,01 + ρn,10)− 1 + (1− ρn,01 − ρn,10)h

]1/2×[
hρn,01(ρn,01 + ρn,10) + ρn,10(1− ρn,01 − ρn,10)h

]1/2 × ρh01−1/2
n,01

(1− ρn,01)h00−1/2ρh10
n,10(1− ρn,10)h11−1/2(ρn,01 + ρn,10)−2

(8)

Proof. See Section 2 of [21].

Accordingly, the Bayesian estimator becomes E[ζtn|Mt
n] =∫

ζtnπ(ζtn|Mt
n)dζtn, which its integral is difficult to calculate

in practice. One can approximate the Bayesian estimator by
means of Markov chain Monte Carlo techniques [22].

To infer Ed,tn , we propose the use of a deterministic set to
model the uncertainty, which results in a robust decision about
the desired energy demand at each period t. Inspired by the
work in [23], we consider the following uncertainty set of the
desired energy demand at each time period t in the planning
horizon T :

Etn(Ed,t
n , Éd,t

n ,∆t
n) :=

{
Êd,t
n ∈ RNn :

∑
i∈Nn

|Êd,ti − E
d,t
i |

Éd,ti
≤ ∆t

n

Êd,ti ∈ [Ed,ti − É
d,t
i , Ed,ti + Éd,ti ],∀i ∈ Nn, t ∈ T

}
(9)

whereNn is the set of PEVs managed by the ECM of customer
n with cardinality |Nn| = Nn and Ed,t

n = (Ed,ti ,∀i ∈ Nn),
Êd,t
n = (Êd,ti ,∀i ∈ Nn), and Éd,t

n = |Ed,t
n − Êd,t

n | are the
true vector, the estimated vector, and the deviation vector of
the uncertain energy demands for the PEVs under control
of customer n, respectively. Further, the parameter ∆t

n is
the budget of uncertainty (confidence level parameter), taking
values between 0 and Nn, and determined by the customer
according to its attribution. As ∆t

n increases from 0 to Nn,
the size of the uncertainty set enlarges, and the resulting robust
decision is more conservative and the system is protected
against a higher degree of uncertainty.

B. The Optimization Problem

Assuming the grid’s customers are selfish, their participation
in any ECS program is to minimize their payments. In this
way, the social objective function of the customers is defined
as follows:

min
Xt

1,··· ,Xt
N

∑
t∈T

∑
n∈N

∑
h∈H

E[p̃h] ·
(
lhn + (xhn,c + xhn,d) · xratn

)
s.t.Xt

n ∈ Xhn , ∀ n ∈ N , h ∈ Ht, Êd,t
n ∈ Etn, and t ∈ T

(10)

where Xt
n , [x1

n, · · · ,xHn ]> is the operation matrix of PEV
n throughout the scheduling window Ht. Further, X hn is the
feasible set updated at slot h in period t comprises of the
set of profiles satisfying constraints in (1). Centrally Solving
problem (10) imposes a very high communication/computation
burden on the central controller, put into danger the privacy of
the customer as their information must be sent to the central
controller, and is not reliable as any failure in the central
controller would take down the whole system. Although the
semi-decentralized solutions (such as the classical Nash game
method) can alleviate some drawbacks of the centralized

solutions, however, they still need each customer to send
some parts of its information to all other customers. So, these
methods are not fully scalable, reliable, or secure. Due to
the drawbacks of centralized and semi-decentralized solutions,
problem (10) must be solved in a fully distributed manner
with only local cooperation and partially available information.
However, this problem is stochastic and spatially-temporally
coupled (due to the price parameters p̃h and constraints in (1))
which complicates providing an optimal distributed solution.
To solve this problem, we suggest developing a stochastic
Bayesian game with private and incomplete information
mechanism defined as G =

(
X hn , (Shn ,S h

n ), U tn, π
t
n

)N
n=1

with
the following components [24]:

Players: Set N of a finite N number of PEVs.
Action space X hn : Is a nonempty compact set (metric space)

of feasible operation modes over strategy Xt
n of PEV n.

Information space (Shn ,S h
n ): Is a measurable space de-

fined on X hn , where Shn is player n’s nonempty type set with
state (shn(rhn, d

h
n), ∀h ∈ Ht), and measurable space S h

n is
σ-algebras on Shn .

Payoffs U tn: Represents player n’s objective function U tn :
St × X t → R to be maximized, defined on the set of
action spaces X t =: [×Nn=1X hn = X hn × X h−n]h∈Ht and
bounded/finite types St =: [×Nn=1Shn = Shn × Sh−n]h∈Ht with(
[⊗Nn=1S

h
n ]⊗[⊗Nn=1B(X hn )],B(R)

)
-measurable, where X h−n

and Sh−n are the set of action and type spaces of all the
players except for player n with strategy Xh

−n at slot h of
period t, respectively. This payoff function is dual in negative
direction of problem (10) comminuted corresponding to PEV
n throughout one scheduling window as:

max
Xh
n∈Xhn

U tn(Xh
n ,X

h
−n)

= −
∑
h∈H

(
E[p̃hb ] + γh

( ∑
n∈N

(xhn,c + xhn,d) · xratn − E[w̃h]
)2)

·
(
lhn + (xhn,c + xhn,d) · xratn

)
(11)

Information structure πt: Is a probability distribution mea-
sure on the measurable space [(⊗Nn=1Shn ,⊗Nn=1S

h
n )]h∈Ht

denoting the common prior over type profiles, with πtn the
marginal probability measure induced by πt on Shn , i.e.,
the probability measure on (Shn ,S h

n ) defined by πtn(Shn) :=
πt(Shn × Sh−n), for every Shn ∈ S h

n .

Definition 1. A pure strategy Xτ
n for player n in Bayesian

stochastic game G is a (S τ
n ,B(X τn ))-measurable map Xτ

n :
Sτn 7−→ X τn with the interpretation that, upon learning his type
Sτn(sτn, p̃

τ
b , w̃

τ , Sτ−n) ∈ Sτn , player n selects strategy Xτ
n(Sτn)

from the set X τn for the entire scheduling horizon Hτn.

In deploying the proposed game in real-time, each player
in the Bayesian game adopts a behavioral or mixed infinite
strategy according to its prior πtn(Shn). The existence proof of
a Bayes-Nash equilibrium in this situation is straightforward
(e.g., see [25], [26] for detailed analysis and examples).
However, satisfying the temporally-coupled energy demand
constraint (i.e., the first term of (1)) and determining an
optimal schedule need developing a pure strategic game. So,
we must convert the behavioral/mixed strategy into a pure
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strategy for each sub-scheduling window Hτn using some
purification technique4. In the proposed game G , at each slot,
the customers update their beliefs according to Bayes theory
(14). So, the best choice for the purification is matching the
rolling horizon theory [28] with updating procedure to ensure
that at any individual condition and preference, the constraints
in (1) are not violated and the solution is optimal.

Theorem 1. The behavioral/mixed strategy of game G has
an equivalent pure strategy, and there exists a pure strategy
Nash equilibrium (PSNE) for considered game G caused by
applying the rolling horizon technique on set of pure strategies
Xh := ×Nn=1X

h
n for all h ∈ Ht in each t ∈ T so that:

U tn(X∗hn ,X∗h−n) ≥ U tn(Xh
n ,X

∗h
−n)

where X∗hn and X∗h−n denote the equilibrium strategies of
player n and all other players decided at slot h for the rest
of the slots Ht − h+ 1, respectively.

Proof. See Appendix A.

In the next section, we provide a fully distributed
Bayesian mechanism for each customer n to learn his type
Sn(shn, p̃

h
b , w̃

h,S−n) and calculate his equilibrium strategy
X∗hn (Shn).

IV. BAYESIAN REAL-TIME SOLUTION

To construct a pure strategy for each customer n ∈ N
we need to provide an agent based method by which each
customer can sequentially estimate the baseline price signal
vector p̃hb = [p̃hb , · · · , p̃Hb ]> and regulation parameter vector
w̃h = [w̃h, · · · , w̃H ]> at each slot h. To do this and to increase
the accuracy and robustness of the estimation process, we
develop a method in which each customer sequentially updates
its belief on the upcoming price and regulation signals and
share his information with his neighbors. At each slot h ∈ Ht,
we need to determine and update the PDFs πtp and πtw of
p̃hb and w̃h to compute p̂hb = Eπtp [p̃hb ] and ŵh = Eπtw [w̃h].
At the end of each slot h the retailer announces true prices
p̃hb and γhp̃hsh of (6), regulation signal w̃h, and probably
some explanatory variables. Accordingly, we model the ob-
servation of customer n as yhn = [yhn,b, y

h
n,sh]> determined

by an unknown stochastic parameter Θ̃h = [p̃b, w̃], where
yhn,b and yhn,sh are his expected payment at the end of the
scheduling window determined at slot h based on the most
recent information about the baseline price, shadow prices, and
other explanatory variables. We model any explanatory data
(weather condition, fossil fuel price, price in previous days,
etc.) available to customer n at slot h by zhn. Accordingly,
customer n’s parameter estimation problem within each period
t ∈ T at slot h takes the following form:

Θ̂h = arg min
Θ̃∈O

Fn(Θ̃h,yhn, z
h
n) (12)

where O is a compact set which captures possible prior
information of slot h − 1. Local function measure Fn(·) of

4A pure strategy profile is said to be a purification of a behavioral/mixed
strategy profile if the expected payoffs/distributions of these two strategy
profiles are the same for all the players [27].

customer n is a convex function of Θ̃h. A popular optimal
choice for Fn(·), often advocated in Bayesian theory, is the
Kullback-Leibler divergence (KLD) measure. This function is
defined as follows:

D
(
π̂tn(Θ̃h|·)||πt(Θ̃t|·)

)
= Eπ̂tn

[
log

π̂tn(Θ̃h|·)
πt(Θ̃t|·)

]
(13)

where determining density π̂tn(Θ̃h|·) is the goal of customer
n. The probability distribution of observation yhn is pre-
sented with a density f tn(yhn|zhn, Θ̃h). In the provided sequen-
tial Bayesian-diffusion estimation mechanism, each customer
n ∈ N simultaneously estimates parameter Θ̃t at slot h
by exploiting a prior distribution πtn(Θ̃h−1|y0:h−1

n , z0:h−1n )
which quantifies the accumulated knowledge about Θ̃t from
past observations y0:h−1

n = {y0
n, · · · ,yh−1n } and regressors

z0:h−1n = {z0n, · · · , zh−1n } up to slot h. According to Bayes’
theorem, the observation yhn and the regressor zhn revealed at
the end of slot h, are sequentially incorporated as:

πtn(Θ̃h|y0:h
n , z0:hn ) ∝ f tn(yhn|zhn, Θ̃h)πtn(Θ̃h−1|y0:h−1

n , z0:h−1n )
(14)

Common model to describe f tn(yhn|zhn, Θ̃h) and
πtn(Θ̃h|y0:h

n , z0:hn ) is the exponential family of distributions
as [29]:

f(y|z,Θ) = h(y, z)g(Θ)eδ
>T (y,z),

π(Θ) = q(ξ, ν)g(Θ)νeδ
>ξ

(15)

where δ ≡ δ(Θ) is the natural parameter, T (y, z) is a
sufficient statistic of a fixed size, h(y, z) is a known function,
and g(Θ) is a known normalizing function. Further, ξ is a
hyperparameter of the same size as T (y, z), ν ∈ R+ is a
scalar hyperparameter, and q(ξ, ν) is a known function. Taking
advantage of this distribution under conjugacy, the Bayesian
update (14) takes the form [30]:

ξhn = ξh−1n + T (yhn, z
h
n), νhn = νh−1n + 1 (16)

For sharing the information in a neighborhood Nn, we
use a powerful and robust technique called diffusion strategy
[31]. One interesting estimation scenario by diffusion strategy
run by first exchanging the measurements between the cus-
tomers during an adaptation phase, and after that, exchanging
the estimates during a combination phase called adapt-then-
combine (ATC). The aim of the adaptation phase is to enrich
the statistical knowledge of each customer by incorporation
of the neighbors’ observations. Let us fix other customers’
actions and consider customer n turn with its prior density
πtn(Θ̃h−1|ξh−1n ), where ξh−1n represents all the information
available to customer n by time h − 1, which includes its
own past observations and those of its neighbors, as well as
the parameters of all previous posteriors of the neighbors.
Accordingly, the adaptation phase of the diffusion update takes
the form:

πtn(Θ̃h|ξhn) = πtn(Θ̃h|ξh−1n , ȳhn, z̄
h
n)

∝ πtn(Θ̃h−1|ξh−1n )
∏

m∈Nn

[f tm(yhm|zhm, Θ̃h−1)]a
h
nm

(17)
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where ȳhn and z̄hn are all the new observations and explanatory
variables available to customer n at time h, ahnm ∈ {0, 1} is
the adaptation weight assigned by customer n to its neighbor
m ∈ Nn for adaptation in slot h. If the observation yhm is
not an outlier, then ahnm = 1; otherwise, ahnm = 0. The hyper-
parameters of the conjugate prior densities in the adaptation
phase of the diffusion protocol are updated as follows:

ξhn = ξh−1n +
∑
m∈Nn

ahnmT (yhm, z
h
m), νhn = νh−1n +

∑
m∈Nn

ahnm

(18)
consequently, the purpose of the combination phase is to
collaboratively improve the estimates of the customers with
some proper combination protocols. As we use the KLD
function and the customers try to minimize the cumulative
loss

∑
m∈Nn c

h
nmD

(
π̂tn(Θ̃h|·)||πtm(Θ̃h|·)

)
, the combination

step to achieve a non-negative minimal KLD takes the form
[30]:

π̂tn(Θ̃h|·) ∝
∏

m∈Nn

[
πtm(Θ̃h|·)

]chnm (19)

where coefficients {cnm,i,∀m ∈ Nn} are unit |Nn|-simplex
weights expressing the degree of belief of customer n in
customer {m ∈ Nn}’s information. So, we can formulate the
combination phase as:

ξ̂hn =
∑
m∈Nn

chnmξ
h
m, ν̂

h
n =

∑
m∈Nn

chnmν
h
m (20)

To compute the combination weights, if we arrange the
weights into vector chn, it has a categorical distribution pa-
rameterized by a probability vector qhn with the probability
mass function and expected values as [30]:

ρcn(chn|qhn) =
∏

m∈Nn

qhnm
chnm , Eρcn [chnm|qhn] = qhnm (21)

where weight chnm is determined according to the knowledge
about qhnm. Bayesian estimation of qhnm with the conjugate
Dirichlet prior distribution has the probability density and
expectation as follows:

ρqn(qhn|ψh−1n ) =
1

B(ψh−1n )

∏
m∈Nn

qhnm
ψh−1
nm −1,

Eρqn [qhnm|ψh−1n ] =
ψh−1nm∑

m∈Nn ψ
h−1
nm

(22)

where B(·) is the multivariate beta function and hyperparam-
eters {ψh−1nm ,∀m ∈ Nn} are arranged into vector ψh−1n to
aggregate the knowledge about qhn. The Bayesian-diffusion
update of prior distribution (22) by observations from (21)
becomes:

ρqn(qhn|ψh−1n ) ∝
∏

m∈Nn

qhnm
chnm

∏
m∈Nn

qhnm
ψh−1
nm −1

=
∏

m∈Nn

qhnm
chnm+ψh−1

nm −1
(23)

However, customer n does not know which neighbor has
the best knowledge about Θ̃t. So, the customer measures how
well neighbor m fits the observations using the predictive
performance as follows:

ϑhnm =

∫
πtm(Θ̃h−1|ξh−1m )

∏
j∈Nn

f tj (y
h
j |zhj , Θ̃h)dΘ̃h (24)

and then, according to the quasi-Bayesian approach uses
measure ϑhnm in place of chnm in (23) [32]. Inspired by the
diffusion-Kalman filtering concept [33], one can model the
variation of the unknown parameter Θ̃t and the customer n’s
observation as the following state space model:

Θ̃h = AtnΘ̃h−1 +Btnz
h
n + εhn,

yhn = Ht
nΘ̃h + υhn

(25)

where Atn, Btn, and Ht
n are matrices of compatible dimen-

sions, and both εh and υh are independent and identically
distributed Gaussian noises. Let us modify this method under
the Bayesian-Kalman filtering approach as follows [34]:

Θ̃h|Θ̃h−1, zhn ∼ N (AtnΘ̃h−1 +Btnz
h, Qhn),

yhn|Θ̃h ∼ N (Ht
nΘ̃h, Rhn)

(26)

where Qhn and Rhn are state and observation covariance matri-
ces of customer n. At customer n’s side, we denote mean and
covariance matrices of the Gaussian prior probability density
function πtn(Θ̃h−1|y0:h−1

n , z0:h−1n ) by Θ̄−hn and Σ̄−hn and the
posterior probability density function πtn(Θ̃h|y0:h

n , z0:hn ) by
Θ̄+h
n and Σ̄+h

n , respectively. At slot h, the customer can predict
the value of Θ̃h from Θ̃h−1 using the state evolution model
(26) and Chapman-Kolmogorov equation [34]:

πtn(Θ̃h|y0:h−1
n , z0:hn ) =∫
πtn(Θ̃h|Θ̃h−1, zhn)πtn(Θ̃h−1|y0:h−1

n , z0:h−1n )dΘ̃h−1

where, the filtering distribution πtn(Θ̃h−1|y0:h−1
n , z0:h−1n ) has

mean Θ̄+h−1
n and covariance Σ̄+h−1

n . The properties of normal
distribution ensure that the predicted prior probability density
function πtn(Θ̃h|y0:h−1

n , z0:hn ) is also a normal distribution
N (Θ̄−hn , Σ̄−hn ) with hyperparameters:

Θ̄−hn = AtnΘ̄+h−1
n +Btnz

h
n,

Σ̄−hn = AtnΣ̄+h−1
n (Atn)> +Qhn

(27)

Subsequently, Bayes’ theorem suggests updating the prior of
Θ̃h with the information about Θ̃h in the observed yhn and
zhn as follows:

πtn(Θ̃h|y0:h
n , z0:hn ) =

πtn(Θ̃h|y0:h−1
n , z0:hn )f tn(yhn|Θ̃h)∫

πtn(Θ̃h|y0:h−1
n , z0:hn )f tn(yhn|Θ̃h)dΘ̃h

(28)
where, from (26) we can write the observation model as:

f(yhn|Θ̃h) ∝

exp{−1

2
(yhn −Ht

nΘ̃
h)>(Rhn)−1(yhn −Ht

nΘ̃
h)} =

exp
{

Tr
(
−1

2

[
−1

Θ̃h

][
−1

Θ̃h

]>
︸ ︷︷ ︸

δ

[
(yhn)>

(Ht
n)>

]
(Rhn)−1

[
(yhn)>

(Ht
n)>

]>
︸ ︷︷ ︸

T (yhn)

)}
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with compilable form of conjugate normal distribution as:

πtn(Θ̃h|y0:h−1
n ,z0:h

n ) ∝

exp{−1

2
(Θ̃h − Θ̄−hn )>(Σ̄−hn )−1(Θ̃h − Θ̄−hn )} =

exp
{

Tr
(
−1

2

[
−1

Θ̃h

] [
−1

Θ̃h

]>
︸ ︷︷ ︸

δ

[
(Θ̄−hn )>

I

]
(Σ̄−hn )−1

[
(Θ̄−hn )>

I

]>
︸ ︷︷ ︸

ξhn

)}

So, we can replace Bayesian update (28) by updating the
hyperparameters (16) as:

ξhn = ξh−1n + T (yhn, z
h
n) =

[
ξ11n ξ12n
ξ21n ξ22n

]
(29)

ξ11n = (Θ̄−hn )>(Σ̄−hn )−1Θ̄−hn + (yhn)>(Rhn)−1yhn, (30)

ξ12n = (Θ̄−hn )>(Σ̄−hn )−1 + (yhn)>(Rhn)−1Ht
n, (31)

ξ21n = (Σ̄−hn )−1(Θ̄−hn )> + (Ht
n)>(Rhn)−1yhn, (32)

ξ22n = (Σ̄−hn )−1 + (Ht
n)>(Rhn)−1Ht

n (33)

Now, applying the adaptation phase (18) leads to [34]:

ξhn = ξh−1n +
∑
m∈Nn

ahnm

[
yhm
Ht
m

]
(Rhm)−1

[
yhm
Ht
m

]>
(34)

νhn = νh−1n + |Nn| (35)

and the classical Kalman filter update equations are drown
using the least-squares estimator, exploiting the blocks of the
matrix ξhn in (29) and applying the adaptation phase (similar
to (34)) on this matrix [30], [34]:

Σ̄+h
n =

∑
m∈Nn

ahnm
[
ξ22n
]−1

=

[
(Σ̄−hn )−1 +

( ∑
m∈Nn

ahnm(Ht
m)>(Rhm)−1Ht

m

)]−1

,

Θ̄+h
n =

∑
m∈Nn

ahnm
[
ξ22n
]−1

ξ21n =

∑
m∈Nn

ahnmΣ̄+h
n

[
(Σ̄−hn )−1(Θ̄−hn )> + (Ht

m)>(Rhm)−1yhm

]
=

Θ̄−hn + Σ̄+h
n

[ ∑
m∈Nn

ahnm(Ht
m)>(Rhm)−1(yhm −Ht

mΘ̄−hn )

]

Applying the combination phase (20) to the above equation
results in the desired parameters:

Σ̂hn =

[ ∑
m∈Nn

chnm(Σ̃+h
m )−1

]−1
Θ̂h
n = Σ̂hn

( ∑
m∈Nn

chnm(Σ̄+h
m )−1Θ̄+h

m

) (36)

where mean Θ̂h
n and covariance Σ̂hn are used to estimate Θ̃h.

Finally, we present our Bayesian-diffusion-Kalman filtering
ECS mechanism (BdiffKF-ECS) in Algorithm 1 which is
executed by each PEV n.

Theorem 2. The proposed mechanism in Algorithm 1 con-
verges to a unique PSNE with a finite number of iterations if
the power grid topology satisfies the following conditions:

Condition P: For each player n ∈ N , each neighbor
j ∈ Nn, any strategies Xh

j , X́
h
j ∈ X hj , Xh

n ∈ X hn and

Algorithm 1 BdiffKF-ECS Mechanism
1: I. Initialization: Set X0

n, [ϑ0nm]m∈Nn ,Θ̂0
n, the convergence criteria ε,

and Σ̂0
n.

2: II. Repeat for t = 1, 2, · · · :
3: Take parameters of previous period t− 1 as initial values and get Ht

m
of neighbors m ∈ Nn.

4: Repeat for h = 1, · · · , Ht:
5: Let Θ̄−hn = Θ̂h−1

n and Σ̄−hn = Σ̂h−1
n .

6: Estimation Phase:
7: Prediction Step: Run iterations (27).
8: Adaptation Step: Get yhm and Rhm of neighbors and run iterations

(36).
9: Combination Step: Get Θ̄+h

m and Σ̄+h
m of neighbors, update the

Dirichlet prior hyperparameters ψhn of (23) and determine [chnm]m∈Nn
from (24), and run iterations (36)

10: Action Phase:
11: Repeat for i = 1, 2, · · · according to some order:
12: Receive last update Xh

m,i and lhm,i of neighbors.
13: Solve (11) and determine Xh

n,i+1.
14: If |Xh

n,i+1−Xh
n,i| ≥ ε (i.e., the new schedule changes compared

to the current schedule), Then set Xh
n,i+1 as the new solution and

broadcast it to the neighbors.
15: Until convergence (i.e., none of the customers broadcast their

schedules)
16: Customer n applies element xhn of Xh

n and discards the others
according to the rolling horizon (e.g., [37]).

Xh
Nn/j ∈ X

h
Nn/j , we must have Un(Xh

n ,X
h
j ,X

h
Nn/j) 6=

Un(Xh
n , X́

h
j ,X

h
Nn/j).

Condition N: For each player n ∈ N , for any neighbors
j, i ∈ Nn such that j 6= i, there exists ` ∈ Nj/i ∆ Ni/j, such
that there is a path from ` to n which passes neither through
j nor i.

Proof. See Appendix B.

Condition P implies that the action of a players always
affects his neighbors’ payoffs, so, its behavior is learnable
(deviation is detectable). A 3-connected5 network in which
players have different neighbors, i.e., for any pair (j, i) ∈
N2,Nj/i 6= Ni/j, satisfies Condition N (see [35] for detailed
information and proof about Conditions P and N). To guaran-
tee the power grid topology satisfies Condition N, one can let
the customers decide their neighbors. Then the utility company
check if the graph is connected (has the Laplacian matrix with
positive second smallest eigenvalue [36]) and each customer
has at least 3 customers (the degree of the graph is at least 3).
Otherwise, with some manipulation, the utility company can
fix the system topology.

V. NUMERICAL RESULTS

A. Simulation Setup

For the simulation scenario, it is assumed that there is one
utility company procuring electricity from both conventional
and renewable resources and serving 50-2000 customers of dif-
ferent types (e.g., residential, commercial, educational, orga-
nizational, and industrial). Each day t ∈ T is divided into Ht

= 96 slots each with 15 min duration. The baseline day-ahead

5Graph G with vertex V is called n-connected if |V | ≥ n and G−X is
connected for every set X ⊆ V with |X| < n, where G−X represents the
graph where all nodes in X (and the corresponding links) have been removed.
Simply, a graph is n-connected if any two of its nodes can be joined by n
independent paths.
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electricity price data is drawn randomly from Pennsylvania-
New Jersey-Maryland Interconnection (PJM) electricity mar-
ket [38]. It is assumed that each customer has one PEV
with charge/discharge power rate 2 ≤ xratn ≤ 4, efficiency
ηn,c, ηn,d = 1, and desire energy demand randomly within
Elbn = 6 and Eubn = 12. The battey capacity of the PEVs are
chosen randomly between [15-20] with uniform distribution.
The customers’ base loads for each hour are adopted randomly
between 3 and 10 kW with some correlation with the baseline
price signal. For each customer additive noise power εhn and
υhn are randomly added between (23-69) dB and (69-92) dB,
respectively. The aggregate power output of the renewable
resources is randomly selected with Gaussian distribution
P̃hk,r ∼ N (P̄hk,r, σ

2
k,r) and the regulation signal is considered

as w̃h = P̃hk,r − P̄hk,r.
The system topology (graph) for the simulations are gen-

erated by putting randomly customers in the square region
[0,4]×[0,4] km2 in a way to satisfies the conditions in Theo-
rem 2. Customers that are within a certain radius (e.g., within
radius = 0.5 km) from each other are declared neighbors
and connected to each other. To guarantee this, we repeat
generating random topologies with increasing search radius
until the degree of each vertex in the acquired topology is
no less than 3 and the second smallest eigenvalue of the
Laplacian matrix is positive. The combination weights chnm
are initialized according to the Metropolis rule introduced in
[39], and then replaced by weights ϑhnm updated according to
(24) at each slot h. The simulations are done in PC Laptop 64-
bit Intel(R) Core(TM) i7-4510U CPU @ 2.00-2.60GHz RAM
8.00GB with MATLAB R2017b and its CVX toolbox working
with Gurobi.

B. Performance Results

The performance of the estimation part in Algorithm 1 is
shown in Fig. 2. As a measure of estimation performance
between Non-Cooperative mode (in which there is not any
information sharing) and Diffusion mode (in which the cus-
tomers cooperate and share information with each other),
Fig. 2(a) denotes the average mean square deviation (MSD)
from the true value. Clearly, in the non-cooperative case the
estimation performance is much worse and more unreliable.
The learning and tracking abilities of the proposed method are
demonstrated in Figs. 2(b) and (c) for estimating the baseline
and regulation signals, respectively. As an insight, we can
see that after a few iterations the estimated values match the
true value with acceptable accuracy. The convergence of the
proposed method in solving problem (10) is analyzed in Fig. 3.
As shown by the results of Figs. 3(a) and (b), only one iteration
per customer (total of 50 iterations per 50 customers) suffices
for convergence. So, we can consider the proposed mechanism
as a one-shot infinitely repeated Bayesian game. Further, both
figures show that the customers’ payment depends on the
parameters γh in (6). So, the utility company can change the
customers’ consumption pattern as his wish by properly tuning
γh.

For better presenting the impact of γh on the customers’
behavior, Figs. 4(a) and (b) are provided. In Fig. 4(a), the
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(MSD), (b) price estimation and tracking performance, (c) estimation and
tracking of the regulation signal.
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parameters of the system are demonstrated. The behavior of
aggregated charge/discharge of the PEVs is denoted in Fig.
4(b). As depicted, when the shadow price is much higher than
the baseline price, the customers attempt to track the regulation
signal as much as possible to reduce the total payment.
However, while γh reduces, the impact of the baseline price on
the total payment is increased. So, the customers try to charge
their PEVs in slots with low baseline prices and discharge
them at slots with high prices.

The applications of the proposed framework in terms of
the two important aspects of power systems, namely, ancillary
service and load curve shaping (e.g., valley filling and pick
clipping), are analyzed and the results are denoted in Figs. 5(a)
and (b). Fig. 5(a) shows the ancillary service result in which
the total consumption of the PEVs tracks the regulation signal
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to mitigate the destructive effects of power fluctuations of the
renewable resources. The result of the proposed mechanism
in Algorithm. 1 under the DSM protocol is depicted in Fig.
5(b). We can see that at slots with low demand the PEVs are
in charge mode (to fill the valley) and at the slots with high
(peak)-demand are in discharge mode (to curtail the peak).
However, as shown, the discharge time of the PEVs are not
effectively coincided with the true peak, because the baseline
price is not appropriately determined by the utility company.
This shows the importance of adjusting the baseline price
signal to having the highest value in the highest demand time.

As we formulated our problem as an infinitely repeated
Bayesian game, it is necessary to evaluate its the long-term
performance. The signal tracking ability of Algorithm 1 is
denoted in Fig. 6. Clearly, the performance of the algorithm
in tracking the frequency regulation signal coming from the
utility company is acceptable. We must note that none of the
customer’s constraints in (1) is violated in this result and
all the PEVs have reached to their desirable charge level
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Fig. 6. The long-terms performance of the proposed mechanism over 30 days;
this is in terms of the frequency regulation application.
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Fig. 7. The long-terms performance of the proposed mechanism over 30 days;
this is in terms of the DSM application.

Ed,tn at the end of each day. In another scenario, the long-
term performance of the DSM application is analyzed over
30 days. The results are denoted in Fig. 7, which show that
the proposed repeated game works well and fills/curtails the
aggregate demand valleys/peaks.

In modeling the interactions between the customers, the
game theoretic methods turns out to be the state of the art
dominant strategy in the DSM and PEV charge/discharge
scheduling literature [7], [8], [13], [40], [41]. To guarantee
the convergence of these methods to an equilibrium (e.g.,
Nash equilibrium), it is essential for each customers to know
the consumption pattern of all other customers in the system
(either directly or through a third party entity). Further, to
achieve a global optimal solution, it is necessary for the system
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to determine a proper price signal and broadcast it to the
customers step-by-step. In our real-time scheduling program,
with growing the system, this procedure would impose high
communication and computational burden to the system as
denoted in Fig. 8(a). From this results we can find out that
for a wide system with 2000 customer, it took about 41
min for the game theoretic mechanism with a centralized
price determining mechanism (Nash Game (Centralized)) to
converge to an optimal solution, which is not acceptable.
Estimating the price signal with our diffusion framework
would reduced the computation/communication time of the
game theoretic mechanism (Nash Game (Diffusion)) to almost
33, which is still long time for the real-time application.
However, Fig. 8(a) shows that our BdiffKF-ECS mechanism
has very low computation/communication time, specially for
the BdiffKF-ECS (Diffusion) scenario which takes 8 min.

The most important thing is that even with such a low
computation/communication between the customer, the opti-
mal solution of the proposed framework is almost the same
as optimal solution of the Nash games. The results of Fig.
8(b) asserts our claim. From this figure we can see that the
centralized solution achieves the minimum aggregate cost.
However, the centralized solutions imposes a huge compu-
tational burden to such a with system and is not applicable
in real world. Beside, as in centralized solutions all the
data are gathered in the central controller, the privacy of
the customers is always in danger. Another drawback of the
centralized solutions is that any lack of proper operation in
the central control (either deliberately because of the cyber-
attacks or unintentionally because of communication failures
and inaccuracies) have high destructive effect on the system
efficiency. In the stochastic problems with too many stochastic
parameters like ours, these drawbacks put down the viability of
the solution mechanism as denoted in Fig. 9(a). As we can see
in this figure, inaccuracy (noise) in determining the stochastic
parameters p̃h and Ed,tn as well as random link failure between
some of the customers make the “Nash Game (Centralized)”
mechanism unstable and non-optimal. However, when the
price signal p̃h is estimated through our Bayesian-diffusion
framework “Nash Game (Diffusion)”, the mechanism becomes
more stable and the aggregate cost reduces. The most effective
case is when both the scheduling part and price estimation part
are implemented according to our mechanism “BdiffKF-ECS
(Diffusion)”. In this case, the proposed mechanism is robust
to link failure and noise (as the communications between the
customers are done locally) and works well in the presence
of the uncertainty resources (tanks to our real-time adaptive
stochastic mechanism).

The DSM performance comparison results of the proposed
framework under uncertainty is demonstrated in Fig. 9(b).
Considering the uncertainty nature of customers deriving
pattern (i.e., parameters αtn, βtn, and Ed,tn ) results in lower
peak demand (case “Load Curve(Our Mechanism)”) and better
utilizing the potential flexibility of the PEVs (case “PEV(Our
Mechanism)”). In the case “PEV(No Learning)” in which
the classical game is implemented instead of the Bayesian
repeated game, the high charging(discharging) power is not
properly coincided with the low(high) price value. This can
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increase the customers payment and the total system peak
demand compared to our mechanism.

VI. CONCLUSIONS

In this paper, we proposed a universal real-time distributed
DSM-ancillary service framework applied to the PEVs using
the Bayesian repeated game, the diffusion strategy, and the
Kalman filtering theory. We characterized the PEVs specifi-
cation and provided a pure strategic game using the rolling
horizon theory to achieve an optimal solution and to fully take
the customers’ attribution into account. Further, we formulated
a novel real-time pricing policy by which the utility company
can control and modify the consumption pattern of the PEVs
to mitigate the adverse effect of fluctuation of the RERs and
charge of the PEVs. The simulation results demonstrated that
by appropriately determining the price and regulation signals,
the utility company can increase the reliability of the power
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system by making the balance between the generated and
consumed power.

APPENDIX

A. Proof of Theorem 1

?1 : Let C h
n be a sub-σ-algebra of S h

n . Clearly, for each h ∈
Ht, the local objective function U tn in (11) is B(X h)⊗ C h

n -
measurable on X h ×Shn , is continuous on X h for all feasible
charging profiles Xn ∈ X hn , and is integrably bounded6.
?2 : The private information Shn of each player n ∈ N in

the proposed game model is independent7 of all other players’
private information.
?3 : For each customer n ∈ N , S h

n is atomless8 and C h
n is

setwise coarser9 than S h
n .

Proposition 2. From ?1, ?2, and ?3 we can claim that
every C h = ⊗Nn=1C

h
n -measurable behavioral strategy profile

of our Bayesian game has a S h = ⊗Nn=1S
h
n -measurable

undistinguishable purification (see Theorem 2 of [42] for
proof).

Proposition 3. Features ?1, ?2, and ?3 provide the necessary
and sufficient conditions (i.e., they guarantee a saturated
probability space for each customer10) for the existence of
a PSNE in our model (see Theorem 1 of [42] for proof).

Using the backward induction, the rolling horizon theory
implies that the problem at hand at each slot h has an
equivalent pure strategy and sub-sequentially a PSNE [28].

B. Proof of Theorem 2

The proposed mechanism in Algorithm 1 is comprised of
infinite sub-games repeated at each slot h ∈ H of each period
t ∈ T . The convergence analysis must be done using backward
induction denoting that each sub-game in h ∈ Ht ⊂ T results
in a subgame perfect equilibrium. However, we analyze one
sub-game and the extension to the infinitely repeated game is
straightforward using backward induction [44]. The algorithm
convergence comprises of three aspects:
?1 Convergence of the Bayesian-diffusion estimation

procedure: In [45], it has been proved that by adopting
appropriate adaptation and combination weights, the diffusion
estimation process converges with good accuracy and the
benefit of this cooperation is examined in detail in [46].
Similarly, the convergence of the Bayesian version of diffusion
strategy has been proved in [30]. By adopting proper outlier

6If there is a real-valued integrable function φn on Shn ,C hn , πtn, such that
|Utn(a, xn)| ≤ φtn(xn) for all (a, xn) ∈ Xh × Shn , then Utn is integrably
bounded

7This assumption can be weakened and correlations are allowed.
8Given measurable space (Shn ,S h

n ) and a measure µ on this space, a set
A ⊂ Shn in S h

n is called an atom if µ(A) > 0 and for any measurable
subset B ⊂ A with µ(B) < µ(A), set B has measure zero. A space which
has no atom is called atomless (non-atomic) [15].

9C hn is setwise coarser than S h
n if for every A ∈ S h

n with positive
measure πn, there exists a S h

n -measurable subset A1 ⊆ A such that
πtn(A1∆A2) > 0 for any A2 ∈ CAn , where CAn is the σ-algebra
{A
⋂
Á : Á ∈ C hn }.

10In [43] it has been proved that for non-saturated (but atomless) probability
spaces, there may not be any PSNE.

analysis for choosing ahnm according to work in [47], and
proper approach for choosing ahnm, such as the quasi-Bayesian
[48] or adaptive combination weights [49], the convergence of
the estimation stage is guaranteed.
?2 Convergence of the optimization procedure: At each

iteration i customer n solves the optimization problem (11).
We solved this problem using mixed-integer disciplined con-
vex programming methods, such as branch and bound and
sequential quadratic programming, for which the convergence
to a unique optimal/sub-optimal solution has been proved [50].
?3 Convergence of the game-theoretic framework: The

payoff function in (11) is strictly monotone with respect
to its arguments and satisfies condition P. Considering an
appropriate topology satisfying condition N each sub-game at
slot τ in scheduling window Hτn ⊆ H converges to a unique
Nash-Folk equilibrium according to Theorem 2.12 of [35],
which is the subgame perfect equilibrium of our Bayesian
repeated game.

The objective function of each customer n proposed in
(11) is strictly concave. So, the proposed sub-game at each
slot becomes a strictly concave N -person game with unique
subgame perfect equilibrium according to Theorem 2 of [51].
This unique Nash equilibrium of considered game is the
optimal solution of the global minimization problem (10)
according to Theorem 2 of [40]. Finally, using ?1, ?2, ?3,
backward induction theory, and the results of Theorem 1 we
can conclude that our game converges to a unique PSNE.
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