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Abstract 

To evaluate and identify new candidate cancer drug targets, there is an 

ongoing need for a reliable, sensitive and quantitative assay that enables 

the analysis of larger numbers of compounds in preclinical research. This 

thesis has developed, and optimized a sensitive enzyme-release assay 

for monitoring natural cytotoxicity. It measures the release of the 

intracellular enzyme adenylate kinase into the culture supernatant after 

membrane rupture and is evaluated as an indicator of cell death. This 

assay was proven to correlate and compete with currently used 

methodologies for the assessment of cytotoxicity and with its superior 

sensitivity; convenience and in expense, it should be applicable to the 

study of other cytotoxicity reactions. The resulting ToxiLight® kit is now 

being sold world-wide and rapidly became the top selling product for 

Lonza Bio Science with many references to its use in publications.  

It was proven from this investigation that to truly comprehend the effect a 

cytotoxic drug has on cells, two assays are required in combination; one 

to measure cytotoxicity and a second to measure viability. The two most 

sensitive kits tested in this study, the ViaLight® Plus assay and the newly 

designed ToxiLight® assay were used in combination to monitor the 

effect of commonly used cytotoxicity drugs on melanoma cells. It was 

hoped to find both a sensitive and resistant cell line for further analysis by 

MALDI-MS. The study revealed how cells of the same histological and 

tissue type can respond differently to the same anticancer drug with one 

cell line revealing cell death after treatment and another remaining 

unaffected. This is representative of how individual patients may respond 

differently to the treatments given in vitro and explains the vast 

biochemical heterogeneity of tumour cells and the complexity involved in 

developing anticancer drugs that will specifically kill tumours arising from 

a given cell. The primary melanoma cells used for the research were 

representative of the clinical situation and were a kind gift from the 
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XX 

OYSTER (Outcome and Impact of Specific Treatment in European 

Research in melanoma) tissue bank; with the established cell lines 

obtained from ESTDAB. A selection of three of these cell lines (Ma Mel 

28, Ma Mel 26a and MEWO) were chosen after investigating their 

sensitive/resistant nature to certain chemotherapeutic drugs and were 

further investigated with a novel agent currently in its early stages of drug 

trials, the histone deacetylase inhibitor, trichostatin A.  

To investigate this resistance further, MALDI-MS was performed on the 

chosen melanoma cell lysates. The results demonstrated that good 

quality proteomic data could be achieved from cell lines and that it is 

possible to generate discriminatory protein profiles that correlate with the 

cytotoxicity assays when analysed using artificial neural networks 

(ANNs). Through the analysis of the proteome the ANNs was able to train 

itself using the raw dataset from the MALDI-MS analysis and distinguish 

differences between those samples that were drug-treated and those that 

were left untreated. The differences between the two classes of treated 

and untreated cells revealed biomarkers that may correlate to cell death 

and thus the effect of the drug trichostatin A. These findings could lead to 

the discovery of proteins that are up regulated when a patient is 

responding to therapy. This could be of prognostic and therapeutic benefit 

to patients enabling them to find out in the early stages of treatment if 

they are responding to a given treatment; the long term outcome leading 

to personalised treatments for individuals in which a decision can be 

made on the best suited treatment.   
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Chapter 1 – Introduction 

 
1.1  Cancer Development and Progression 

Cancer is one of the most intractable diseases to man and comprises 

over 200 different forms. Together, they account for approximately one 

fifth of all deaths in the industrialized countries of the Western World 

(Schulz, 2007). Cancer is an extremely complex disease resulting from 

changes in gene expression of previously normal cells, where 

‘checkpoints’ control cell cycle progression. The cell cycle consists of four 

distinct phases: G1, S (synthesis), G2 (collectively known as interphase) 

and M phase (mitosis; figure 1.01). M phase is composed of two tightly 

coupled processes: mitosis, in which the cell’s chromosomes are divided 

between the two daughter cells, and cytokinesis, where the cell’s 

cytoplasm divides forming distinct daughter cells (Weinberg, 1994). The 

activation of each phase is dependent on the correct progression and 

completion of the previous phase. Cells that have temporarily or 

reversibly stopped dividing are said to have entered a state of quiescence 

called Go phase. 

 

 
 

Figure 1.01: Cell Cycle adapted from Kiaris, 2006 
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As the cell progresses from one phase to another, cell cycle checkpoints 

take place to ensure that damaged or incomplete DNA is not passed on 

to daughter cells. If damage is detected the cycle is halted, allowing for 

either repair or for programming the cell to die (apoptosis).  There are two 

main checkpoints in the cycle: the G1/S checkpoint and the G2/M 

checkpoint (figure 1.01). The tumour suppressor gene, p53 plays an 

important role in triggering the control mechanisms at both G1/S and G2/M 

checkpoints, halting further progression if damage is detected (Klatt and 

Kumar, 2009). If the cells are not halted when damage occurs or fail to 

repair any DNA damage, it may result in continued growth of ‘faulty’ DNA 

which continues to proliferate ‘unchecked’, resulting in the potential for 

unrestricted growth and tumour formation (Fenech, 2002).  

 

Although in theory three mutations could lead to cancer, it is thought that 

most common adult cancers result from five or more mutations. More 

than 100 cancer genes have been found, but many more are thought to 

yet be discovered (Weinberg, 2007). Most of the 100 known genes have 

been found in the relatively rare leukaemias and lymphomas, which 

account for less than 10 % of all human cancers. For the common adult 

epithelial cancers of the breast, colon, prostate, lung and ovary, which 

account for 80 % of the cancer burden, over 100 oncogenes are known 

(Richards, 2007).  

 

The key difference between cancerous and normal cells is that despite 

the abnormalities formed within the cancer cell, it continues to reproduce 

in an unrestricted manner. In addition to this continued growth, when cells 

become confluent, they continue to replicate, thus contradicting the 

normal laws of contact inhibition. Without contact inhibition to stop their 

progress, cancer cells are free to grow and although signs of 

differentiation may be observed, the cancer cells are not governed by the 

normal rules of cell or tissue growth. There are six main changes, 

http://www.ehow.com/how-does_4563980_cancer-start.html�
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considered which are considered to be the ‘hallmarks of cancer’ 

(Hanahan and Weinberg, 2000) which include: 

 

• self-sufficiency in growth signals 

• insensitivity to anti-growth signals 

• evasion of apoptosis 

• limitless replicative potential 

• sustained angiogenesis 

• tissue invasion and metastasis 

 

1.1.1 Oncogenes and Tumour Suppressor Genes 
 

In the last forty years, two classes of genes now known to play a key role 

in cancer formation were discovered: the oncogenes and tumour 

suppressor genes. The first oncogene (the src gene: for sarcoma) was 

discovered as an oncogene in a chicken retrovirus induced tumour 

(Gonda et al., 1982). Since then, more than one hundred oncogenes 

have been discovered (Richards, 2008). An oncogene, upon mutation, 

may increase protein production or biological activity resulting in the 

transformation of a normal cell to a cancerous cell. It was demonstrated in 

1976, (Bishop and Varmus) that oncogenes were in fact defective proto 

oncogenes; caused by relatively small modifications of their original 

function, which could be either quantitative or qualitative changes. Proto 

oncogenes promote growth but they function under tight genetic control 

where tumour suppressor genes may function to restrict cell division 

(Weinberg, 1994). Any changes in either one or both of these sets of 

genes will result in uncontrolled growth and potentially cancer (Hodgson, 

2008). Quantitative changes in the proto-oncogenes result from point 

mutations that cause a modification in the protein structure leading to an 

increase in the activity of the protein and reduced regulation. In addition, 

an increase in the stability of a protein can prolong its existence and 
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therefore its activity. Qualitative changes result from a conversion from 

proto oncogene to a transforming gene (or cellular oncogene (c-onc)) with 

altered nucleotide sequence (Weinberg, 1994). An activated oncogene 

can cause a cell that would normally undergo a programmed form of cell 

death to survive and proliferate. Examples of oncogenes involved in 

breast cancer formation are shown in table 1.01. 
 
 
Myc (table 1.01) is among the most, if not the most potent human 

oncogene in terms of its ability to elicit tumourigenesis. The original 

implication of myc in carcinogenesis was suggested following its 

identification as a target of translocation in primary Burkitt’s lymphomas 

that results in over expression. Subsequently, it became clear that over 

expression of myc is common in human tumours, by mechanisms that 

involve its transcriptional activation, with the majority not being 

accompanied by amplification. Virtually all signalling pathways activated 

in carcinogenesis result in the direct induction of myc expression. Ras 

oncogenes (table 1.01) are among the most prominent oncogenes and 

are widely used as transforming proteins. They control divergent 

processes such as proliferation, angiogenesis and malignant 

transformation. 
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   Table 1.01: Oncogenes, their functions, and targeted therapies in breast cancer  
(Osbourne et al., 2004) 

 

ONCOGENE 

 

 

FUNCTION 

 

TARGETED THERAPY 

(2004) 

 

 

HER-2 

 

 

Tyrosine kinase receptor 

 

Anti HER-2 antibodies 

(trastuzumab, pertuzumab) 

Kinase inhibitors (Cl-1003, 

EKB-569, Lapatinib) 

E1A adenoviral gene therapy 

 

Ras 

 

 

G-protein 

 

Farnesyl transferase 

inhibitors (tipifarnib) 

 

PI3K 

 

Kinase 

Rapamycin/rapamycin 

analogues (CCI-779, RAD 

001, AP23573) 

 

Akt 

 

Kinase 

Rapamycin/rapamycin 

analogues (CCI-779, RAD 

001, AP23573) 

 

ElF-4E 

 

Initiator of protein 

translation 

 

No therapy 

 

Cyclin D1 

 

 

Cell-cycle mediator 

 

Flavopiridol, UCN-01 (7-

OH staurosporine), 

 
 

Cyclin E 
 

 

Cell-cycle mediator 

 

Ro 31-7453, specific CDK 

inhibitors 

 
 

c-myc 
 

 

Transcription factor 

 

Antisense 

 
c-fos 

 

 

Transcription factor 

 

Antisense 
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The second class of genes involved in carcinogenesis is tumour 

suppressor genes (anti-oncogenes) which play a role in inhibiting both 

growth and tumour formation. If a cell divides excessively, inhibiting 

factors act directly to prevent further cell cycle events (Weinberg, 1994). 

Unlike the dominant oncogenic changes, tumour suppressor genes are 

usually recessive requiring mutation to occur on both alleles, or loss of 

heterozygosity plus a mutation in a second allele which alter cell surface 

receptors involved in cell signalling (Schulz, 2007). They can also disable 

proteins, for example the tumour suppressor protein p53, a transcription 

factor encoded by the TP53 gene. This gene is known to trigger the cell to 

commit suicide (undergo apoptosis) if DNA damage occurs, or when 

signalling cascades are altered. Mutated p53 is found in 70% of colon 

cancers, over 30% of breast cancers and 50% of lung cancers and is also 

involved in leukemia, lymphomas, sarcomas and neurogenic tumours. 

Examples of tumour suppressor genes involved in breast cancer are 

illustrated in table 1.02.  

 
Two nuclear proteins known to be the most important regulators of the 

cell cycle are Rb and the previously mentioned p53 (table 1.02). Rb is 

responsible for G1 arrest and prevents entrance to the S phase of the cell 

cycle by inactivating E2F transcription factors (Ginsberg et al., 2002). 

Inactivation of Rb by phosphorylation is mediated by specific CDKs 

(cyclin dependent kinases), especially CDK4 and CDK6 that are under 

negative regulation (inhibition) of the p16 tumour suppressor gene (Jiao 

et al., 2008). P53 is the fundamental protein for encoding for a 53 kDa 

transcription factor that is considered the main mediator of the response 

of the cell to stress triggered by DNA-damaging agents, hypoxia, 

activated oncogenes and other genotoxic stress inducing factors (Rieber 

et al., 2001). Its activation results in cell cycle arrest or apoptosis by 

binding onto specific regulatory regions in the promoters of target genes, 

causing induction or suppression of their activity. 
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TUMOUR 

SUPPRESSOR GENE 

 
FUNCTION 

 
TARGETED THERAPY 

(2004) 
 

 
p53 

 
Induces cell-cycle arrest, 

cell-cycle checkpoint 
activation 

 
Triggers/facilitates 

apoptosis 
 

 
Phase II p53 peptide 

vaccine with or without 
interleukin. 

 
p27 

 
Inhibit cyclin-dependent 

protein kinases; arrest cell 
cycle in G1 phase 

 

 
Phase II trials with CCI-

779 and RAD 001 

 
BRCA-1 

 

 
Regulates DNA 

transcription; acts to repair 
damaged DNA 

 

 
Phase II clinical trial with 

carboplatin 

 
BRCA-2 

 

 
Repairs damaged DNA 

 

 
No therapy 

 
CHK2 

 
Cell cycle checkpoint 

kinase, activates p53 after 
DNA damage 

 

 
No therapy 

 
ATM 

 
Checkpoint kinase, 

activates CHK2 
 

 
No therapy 

 
PTEN 

 

 
Phosphatase, negative 
regulator of Akt kinase 

 

 
No therapy 

 
Rb 

 
Retinoblastoma gene, 

repressor of cell cycle and 
protein translation 

 

 
No therapy 

c-fos 
 

Transcription factor No therapy 

 
 

Table 1.02: Tumour suppressor genes, their functions, and targeted therapies in breast 
cancer (Suter and Marcum, 2007; Osbourne et al., 2004). 
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1.1.2 Regulation of p53 

P53 normally exists bound to a protein called MDM2 or HDM2 in humans 

(Alacon-Vargas and Ronai, 2002). Under normal circumstances, p53 is 

under tight control through its partnership with mouse double minute-2 

(Mdm2). The Mdm2 oncogene not only binds and blocks the N terminus 

of p53 but also targets p53 degradation via the ubiquitin-proteasome 

pathway (figure 1.02 (b)), by acting as an E3 ligase (Kiaris, 2006; Alacon-

Vargas and Ronai, 2002).  Both p53 and Mdm2 (together with other key 

components of the network) are controlled through a series of regulatory 

post-translational modifications, for example changed by phosphorylation 

and dephosphorylation. Phosphorylation reactions are carried out in the 

cell by a family of enzymes called protein kinases (figure 1.02 (d)) and are 

dephosphorylated by protein phosphatases (Alacon-Vargas, D. and 

Ronai, 2002). Any change in MDM2 phosphorylation status consequently 

affects the activity of p53.  

 

 
 

Figure 1.02: Regulation of p53 adapted from Hainaut and Wiman, 2007 

 

(a) Mdm2 is 
activated by p53 

(b) Binding of p53 by Mdm2 
can trigger the degradation of 
p53 via the ubiquitin system 
(c) Phosphorylation of p53 
will disrupt its binding with 
Mdm2. 

(d) DNA damage may 
activate protein kinase to 
phosphorylate p53 thereby 
increasing p53 level and 
subsequently Mdm2  

 
After the DNA damage is 
repaired, the ATM kinase is no 
longer active.  P53 will be quickly 
dephosphorylated and destroyed 
by the accumulated Mdm2.   
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In normal replicating cells p53 remains dormant. Active p53 is induced 

after the effects of various cancer-causing agents such as UV radiation, 

oncogenes and some DNA-damaging drugs (figure 1.02). DNA damage is 

sensed by 'checkpoints' in a cell's cycle, and causes proteins such as 

ATM (Westphal et al., 1997), CHK1 and CHK2 (Gottifredi et al., 2001) to 

phosphorylate p53 at sites that are close to or within the MDM2-binding 

region of the protein. Oncogenes also stimulate p53 activation, mediated 

by the protein p14ARF. Some oncogenes can also bring about the 

transcription of proteins which bind to MDM2 and inhibit its activity. Once 

activated, p53 initiates the expression of several genes including one 

encoding for p21 which binds to molecules important for the G1/S 

transition in the cell cycle inhibiting their activity as shown in figure 1.03  

(Gottifredi et al., 2001).  

 

 
 

Figure 1.05 Regulation of p53 

 

 

 

 

Figure 1.03: Regulation of p53 

 
In its mutated form, p53 can no longer bind DNA in an effective way, and as a 

consequence the p21 protein is not made available to act as the 'stop signal' 

for cell division. Thus cells divide uncontrollably, and form tumours. The 

progression into the M phase requires Cdc2 which can be inhibited by p21, 

GADD45 or 14-3-3s (see figure 1.03). 

 

Growth Arrest 

http://en.wikipedia.org/wiki/UV_radiation�
http://en.wikipedia.org/wiki/Ataxia_telangiectasia_mutated�
http://en.wikipedia.org/wiki/Chk1�
http://en.wikipedia.org/wiki/Chk2�
http://en.wikipedia.org/wiki/P21�
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1.1.3 Angiogenesis and metastasis 

 

Other genes that play a role in carcinogenesis include angiogenic and 

metastatic genes (Aalinkeel et al., 2004). As the cancer cells become 

confluent and proliferation continues the daughter cells produce a mass. 

As this mass expands, an increase in the supply of oxygen and nutrients 

is required to maintain continued growth. Without extra nutrients, the cells 

will be unable to continue to grow and remain at a steady-state size 

where the number of new cells is balanced by the number of dying cells. 

These small carcinomas can remain in the body for months or years 

without gaining size, but upon further gene mutations in regulating 

angiogenesis, an increased supply of nutrients re-establishes cell and 

mass expansion. Angiogenesis is a normal process involved in the growth 

and development of new blood vessels (DeWitt, 2005) as well as being 

involved in wound healing. However, it is also a fundamental step in the 

transition of tumours from a dormant to a malignant state. When this 

occurs, new capillaries are formed around the tumour, allowing it to gain 

the supplies it needs to grow in size (Pecorino, 2005). Whereas normal 

cells are generally restricted to a certain tissue and stop proliferating and 

die if they become detached; a cancer cell can acquire mutations in 

genes involved in metastasis that enable the cell to undergo tissue and 

basement membrane invasion and spread to other parts of the body. 
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1.1.4 Carcinogenesis 

The possibility of developing cancer is, in the main, unpredictable; 

however, certain risk-factors can increase the chance of cell 

transformation due to: 

• Chemical carcinogens 

• Age and decrease in immununosurviellance 

• Lifestyle factors 

• Radiation 

• Oncogenic viral infection 

• Genetic pre-disposition 

(Pecorino, 2005) 

 

It is estimated that viral infections contribute to over 15% of all human 

cancers (Esteller et al., 2007; McLaughlin-Drubin et al., 2007). Three 

DNA viruses’ have been linked to tumours in humans; the human 

papillomaviruses (HPV), the Epstein-Barr virus (EBV) and the hepatitis B 

virus. Throughout the world the majority of the population are infected 

with these diseases; some develop into the disease and a few eventually 

obtain a viral-related cancer (e.g. lymphoma, liver cancer, cervical 

cancer). It is important to understand the molecular mechanisms of these 

infections and their ability to cause some cancers so new methods can be 

developed in attacking the virus and consequently preventing 

malignancies. There are many types of HPV which are known to be a 

high risk including types 16, 18, 31 and 45. These can lead to cervical, 

anal, vulvar and penile cancer (Parkin, 2006). HPV type 16 in particular 

has been shown to be linked with oropharyngeal squamous-cell 

carcinoma or head and neck cancer (D’Souza et al., 2007). HPV causing 

cancers generally have viral sequences integrated into the cellular DNA. 
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The protein products of genes E6 and E7 (known as early genes of HPV), 

bind to the protein products of two tumour suppressor genes that are 

crucial in cell apoptosis. E6 binds to the protein product of p53 and E7 to 

RB, resulting in their loss of action allowing the cell to grow and divide 

(Horner et al., 2004). 

 

The first virus to be identified as cancer causing is the Epstein-Barr virus, 

also called the human herpes virus 4 (HHV-4). It is widespread in all 

human populations, occurring generally during childhood but can be seen 

during adolescence resulting in infectious mononucleosis or glandular 

fever (Baumforth et al., 1999). The virus has been implicated in four 

human tumours: the African form of Burkitt lymphoma, B-cell lymphomas 

in individuals whose immune systems are blighted due to human 

immunodeficiency virus (HIV) or the use of immunosuppressant drugs in 

organ transplantation, nasopharyngeal carcinoma, and some kinds of 

Hodgkins disease (Thompson and Kurzrock, 2004; Carbone et al., 2008). 

It has been detected in approximately 10% of gastric tumours (Young and 

Rickinson, 2004; Truong et al., 2009). In addition, the virus has been 

shown to infect B lymphocytes, which play a key role in infection-fighting 

(white blood cells) by transforming the cells into lymphoblasts which have 

an indefinite life span rendering these cells immortal. 

 

Southeast Asia and sub-Saharan Africa have the highest occurrence of 

hepatocellular carcinoma (HCC) and liver cancer in the world. This is 

linked to the hepatitis B virus which is endemic throughout these 

countries (Seeff and Hoofnagle, 2006). Both hepatitis B and C viruses 

(HCV) are global health problems; they can lead to cirrhosis and liver 

cancer and cause millions of deaths each year (Sagnelli et al., 2009). The 

role hepatitis B and C play in developing liver cancer is not yet 

understood, with the virus carrying no known oncogenes. There is 

evidence to suggest that the presence of multiple integrated viral genes 

http://www.britannica.com/EBchecked/topic/283636/immune-system�
http://www.britannica.com/EBchecked/topic/337728/leukocyte�
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create genomic instability in the host and may lead to loss of 

heterozygosity for tumor suppressor genes. Curing these infections has 

proved very difficult with the focus more on prevention than treatment 

(Lindenbach et al., 2005). A vaccine against HBV has been available 

since 1982, and early childhood vaccination programs have been the 

most effective strategy for reducing the prevalence of infection in high-risk 

populations. Prevention of hepatitis C (HCV) infection is more challenging 

due to HCV eliciting a weak immune response; however progress is being 

made (Kaplan and Chang, 2006). Universal precautions against exposure 

to blood borne infectious agents are the primary means of prevention. 

 

One key area of current research involves epigenetic properties of 

genomes. Epigenetics (greek for over/above (epi) genetics) refers to 

changes that occur in the phenotype (appearance) or gene expression as 

a result of mechanisms other than those occurring in the DNA sequence. 

The viral genome can be exposed to chemical modification revealing 

variations in different tissues of the same individual, between identical 

twins and in disease states. Dr. Manel Esteller of the Bellvitge Institute for 

Biomedical Research in Barcelona has determined the complete map of 

DNA methylation, a specific type of chemical modification, for the entire 

genome of the Epstein-Barr virus, the human papilloma virus, and the 

hepatitis B virus. Importantly, the researchers compared the DNA 

"methylomes" of asymptomatic carriers of each virus, patients with active 

infections, and patients harbouring cancerous tumors. When they looked 

at asymptomatic carriers of the virus compared to intermediate stages of 

the disease and established associated cancer, the genome of the virus 

did not change that much but its epigenome was completely different. It 

was discovered that the genomes of the virus become progressively 

methylated in patients who had developed cancer (Esteller et al., 2007). 
 

 



                                                                                                         Chapter 1                                                                                                                               
 

14 
Susan Catherine Gill 
PhD Thesis, 2009 

1.2 Cell Death 

 

In the recent literature, cell death is said to occur by two alternative 

pathways: apoptosis, a programmed, managed form of cell death, and 

necrosis, an unordered and accidental form of cell death. Cells may die 

by either of these two mechanisms depending on the cellular context, or 

stimulus (Fiers et al., 1999; Tsujimoto et al., 1997). Apoptosis, is a 

multistep and highly organised process which avoids an immune 

inflammatory reaction by the activation of phagocytic cells (McCarthy, 

2002), autophagy which involves bulk degradation of cellular proteins, a 

process essential during both the growth and development of the 

organism, oncosis, an accidental form of cell death caused by the failure 

of the ionic pumps of the plasma membrane resulting in swelling. In 

comparison, necrosis is a violent form of cell death producing cellular 

debris and the induction of an immune response within the organism 

(McCarthy and Bennet, 2002). Apoptosis is characterized by membrane 

blebbing, shrinking and condensing of the cell and its organelles and 

internucleosomal DNA degradation. The cell finally disintegrates, and 

apoptotic bodies are consumed by phagocytes or neighbouring cells 

(Wyllie, 1980; figure 1.04).   

 

 

Figure 1.04: Cytospin preparations of HL60 cells stained and examined by light 
microscopy. The slide shows a cell with normal appearance progressing into apoptosis. 
The picture is taken from Techniques in Apoptosis; a user’s guide (Gorman et al., 1994). 

 

Both apoptotic and necrotic cell death have been observed within the 

same cell culture population. The severity of the initial insult or damage to 
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the cell is usually the deciding factor between necrosis and apoptosis 

(Hirsch et al., 1998). This would imply that there is a common pathway 

between these two modes of death until they are eventually triggered 

towards either necrosis or apoptotic demise. It has been proposed that 

cells exposed to the same stimulus undergo a necrotic death as opposed 

to an apoptotic death when ATP stores are depleted (Leist et al., 1997), 

Tsujimoto et al., 1997). The necrotic morphology does not involve DNA 

and protein degradation and is accompanied by swelling of the entire 

cytoplasm and mitochondrial matrix, which occurs shortly before the cell 

membrane ruptures (Kroemer et al., 1998); this process is not genetically 

controlled and results from injury or infection (Cooper, 1997).  The 

fundamental differences are summarised in table 1.03 below:  

 
APOPTOSIS NECROSIS SECONDARY 

NECROSIS 

Physiological or Pathological 

 

No mitochondrial swelling 

Accidental; always 

pathological 

Mitochondrial swelling 

Cytolysis secondary to 

apoptosis (when dying 

cells fail to be removed 

by heterophagy). 

Susceptibility tightly 

regulated 

Unregulated or poorly 

regulated 

 

Plasma membranes near-to-

intact until late 

Plasma membrane 

destroyed early 

 

No leakage of cell content; 

little or no inflammation. 

Leakage of cell content; 

inflammation. 

 

Chromatin condensation 

Cell shrinkage 

Swelling of the entire 

cytoplasm 

 

Nuclear fragmentation   

DNA fragmentation   

Selective protein degradation   

Subtle changes in plasma 

membrane 

  

 
Table 1.03: The fundamental differences between apoptosis and necrosis 
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Visual examples of the morphology of cells during apoptosis and necrosis 

are shown in figure 1.05. Jurkat cells were stained with acridine orange 

(which will fluoresce green when bound to DNA) and ethidium bromide 

(which will fluoresce red when bound to DNA). Acridine orange is 

permeable to the cell membrane whereas ethidium bromide is excluded 

from cells with intact membrane. Using the two fluorochromes combined it 

is possible to distinguish between viable cells (green fluorescence with 

intact nucleus), early apoptotic (green fluorescence with chromatin 

condensation) and necrotic cells (orange fluorescence with an intact 

nucleus (Gorman et al., 1996)).  
Apoptotic cell 
Secondary Necrosis 
Secondary Necrosis 
Apoptotic cell 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 1.05: The above image was taken as part of the work in this thesis and shows 
Jurkat cells treated with vincristine; a mitotic inhibitor; stained with acridine orange and 
ethidium bromide and observed by confocal microscope (x 63 magnification). 
 

 

 

 
Viable cell 

Apoptotic cell 

Secondary Necrosis 
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Two principal pathways of apoptotic cell death have been described; 

(McCarthy and Bennett, 2002) the ‘extrinsic pathway’ which is initiated by 

specific death receptors that are activated by their ligands (tumour 

necrosis factor or TNF family) and the ‘intrinsic pathway’ involving the 

mitochondrion. Both pathways are shown in figure 1.06 which 

demonstrates the implementation of the apoptotic response in both 

intrinsic and extrinsic pathways involving the activation of specific 

proteases, termed caspases (Lamkanfi et al., 2003; Finucane et al., 

1999). Caspases are indispensable as initiators and effectors of 

apoptotic cell death and are involved in many of the morphological 

and biochemical features of apoptosis.  

 

 
 
Figure 1.06: To illustrate the two principal pathways of apoptotic cell death: intrinsic and 
extrinsic where IAP proteins are shown to be inhibiting by binding to activated caspases 
(taken from IMGENEX). 
 

http://www.copewithcytokines.de/cope.cgi?key=cell%20death�
http://www.copewithcytokines.de/cope.cgi?key=cell%20death�
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The name ‘caspase’ comes from the 'c' denoting a cysteine protease and 

the 'aspase' referring to the ability of these enzymes to cleave after an 

aspartic (Asp) acid residue (Nicholson, 1999). Cells contain inactive 

zymogen forms of pro-caspase that become activated following cleavage 

at aspartic acid residues.  
 

 
Figure 1.07: Structure of a procaspase (Nicholson, 1999). 

 

There are two major subfamilies of the caspase proteins; the ICE 

subfamily and the ced-3 subfamily (Nicholson, 1999), and further 

divisions can be made depending upon the length of their pro-domain 

(figure 1.07).  The ICE family contains the group I caspases which are 

involved in inflammation: caspase 1, 4, 5 and 13 (Nicholson, 1999). The 

ced-3 family contains both group II; caspase 2, 3 and 7 (effector 

caspases) and group III; caspase 6, 8, 9 and 10 (initiator caspases) both 

involved in apoptosis (Roy and Cardone, 2002). Caspases form an 

enzyme cascade with initiator caspases which instigate the processes 

(initiator caspases, activator caspases, upstream caspases), and others 

acting as downstream caspases involved in the execution of cell death 

(executioner caspases, effector caspases) (Taylor et al., 2008).  

 

In vitro studies of cell death in cell lines have revealed that inhibition 

of the classical caspase-dependent apoptotic pathway leads, in 

several cases to necrotic cell death. Thus, the same cell death 

Prodomain 
(3-24 kDa) 

Small subunit 
(10-13 kDa) 

Large subunit 
(17-21 kDa) 

N   C 

32-53 kDa 

Asp-X Asp-X 

Active site of 
caspase 

Cleavage point to produce 
active caspase 
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stimulus can result either in apoptotic or necrotic cell death, 

depending on the availability of activated caspase. Therefore, death 

domain receptors may initiate an active caspase-independent 

necrotic signalling pathway (Chautan et al., 1999).  

 
1.3 Cancer Therapy 

The majority of patients with cancer will require treatment with therapeutic 

agents at some point in the course of their disease. In principle, a range 

of different therapies can be employed but the choice depends strongly 

on the classification of the cancer by certain criteria (Wittig et al., 2002) 

including the patient's age, history and lifestyle. Currently clinical studies 

carried out on large patient populations provide an individual patient with 

a probability for effective recovery based on clinically observed response 

rates. There are currently many different ways to treat cancer by.  

• Surgery  

• Radiotherapy  

• Chemotherapy  

• Hormone therapy  

• Immunotherapy  

• Chemo immunotherapy 

• Gene therapy  

The objectives of cancer therapies are to prevent proliferation (cytostatic 

effect) and to kill the cancer cells (cytotoxic effect). Surgery or radiation is 

the treatment choice for localised cancers, in contrast, leukaemias and 

metastatic or locally advanced carcinomas require drug therapy, which in 

some cases is supplemented by surgery or radiotherapy (Pecorino, 

2005). Conventional chemotherapy, used in most cancer treatments, 

uses chemicals that target DNA, RNA and protein to disrupt the cell cycle 

in rapidly dividing cancer cells. Although conventional chemotherapies 

http://info.cancerresearchuk.org/cancerandresearch/learnaboutcancer/treatment/surgery/�
http://info.cancerresearchuk.org/cancerandresearch/learnaboutcancer/treatment/radiotherapy/�
http://info.cancerresearchuk.org/cancerandresearch/learnaboutcancer/treatment/chemotherapy/�
http://info.cancerresearchuk.org/cancerandresearch/learnaboutcancer/treatment/hormonetherapy/�
http://info.cancerresearchuk.org/cancerandresearch/learnaboutcancer/treatment/immunotherapy/�
http://info.cancerresearchuk.org/cancerandresearch/learnaboutcancer/treatment/genetherapy/�
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have resulted in treating cancers and continue to extend lives, at the 

same time their efficiency remains low with debilitating side effects.  

 

Hormone therapy is being used for some cancer treatment including 

cortisone, used to treat some leukemia’s and lymphomas, and 'androgen-

ablation therapy' (which uses drugs to lower the amount of the male sex 

hormone testosterone) to treat prostate cancer (Mostaghel et al., 2009). 

In addition, immunotherapy treatment is currently underway with many 

clinical trials being conducted.  Antibodies specific for cancer cell-surface 

antigens can be useful in different ways; they can stop the cancer from 

growing by stopping other essential 'growth factors' from sticking to it and 

they can 'tag' the cancer for destruction by the immune system. The 

cancer drugs or radioactive particles are attached to the antibody; it can 

deliver them directly to the cancer cell without harming the rest of the 

body. An enzyme (a type of protein that can promote chemical reactions) 

can be attached to an antibody, and then given to a patient along with a 

chemical that can be turned into a powerful drug by the enzyme. This 

directs the drug to the cancer, and minimizes side effects. This process is 

known as Antibody-directed Enzyme/Pro-drug Therapy (ADEPT). Several 

antibody-based therapies are available, including the breast cancer drug 

Herceptin (Subramanian and Mokbel, 2008).  

 

In addition to immunotherapy, gene transfer approaches have found 

many applications at preclinical and clinical levels, in particular for the 

study and treatment of tumors, cardiovascular diseases and 

angiogenesis, infectious and other acquired diseases (AIDS, viral 

hepatitis), genetic disorders (e.g. cystic fibrosis) and various 

degenerative, chronic, inflammatory, and age-related diseases 

(Alzheimer’s, Parkinson’s, and Huntington’s diseases).  Vectors based on 

a new class of virus, the adeno-associated virus (AAV), have emerged as 

favoured gene vehicles (Shih et al., 2009). AAV is non-pathogenic, 

http://info.cancerresearchuk.org/utilities/glossary/?letter=C#cortisone�
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replication-defective small human parvovirus (25 nm in diameter). In gene 

therapy the retrovirus is modified so that it is no longer capable of causing 

disease, but is able to insert new genes into a patient's chromosomes. 

However, there are many concerns over the safety of modifying a 

patients' DNA. To date, no successful gene-based treatment has been 

approved for routine use on cancer patients, but a large amount of 

research is being carried out in this area. Even where the full range of 

modern cancer therapies is available, many cancers still cannot be cured 

today (Dolken, 2001). In the majority of patients with malignant disease, 

state of the art therapies are at best palliative. Part of the explanation is 

believed to be tumour heterogeneity arising through genetic diversity as 

responsiveness to individual chemotherapeutic agents varies widely 

between tumours of the same histological type. This heterogeneity is 

present at the molecular, cellular, histological and clinical level and makes 

the choice of patients’ treatment extremely difficult since a given drug 

may work extremely well only for a subset of patients (Alexandrova, 

2001). Remarkable progress is being made in the development of 

therapeutic agents; however, an enormous amount of time and money 

must be invested before an agent is approved for clinical use (Kawada et 

al., 2002). 
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 1.4 Malignant Melanoma 
 

Melanoma is the rarest and most aggressive form of skin cancer and has 

been the focus of the majority of the research in this thesis. It was chosen 

due to the current lack of available treatments in metastatic melanoma 

and an opportunity arose to look into primary melanoma samples through 

collaboration with OYSTER (Outcome and Impact of Specific Treatment 

in European Research in melanoma) tissue bank. There are 3 types of 

skin cancer based in the epidermis of the skin; melanoma (the most 

aggressive form), basal cell skin cancer and squamous cell skin cancer. 

Melanoma has become increasingly prevalent over the last few decades 

with around 160,000 new cases diagnosed worldwide each year; mainly 

among caucasians (Ries et al., 2003). The median age of melanoma 

diagnosis is 45 years, almost twenty years prior to most other tumours 

(O’Day et al., 2001). The occurrence of the majority of melanoma cases is 

in normal skin; with a small percentage diagnosed in the eye (intraocular 

or ocular melanoma) or rectum (mucosal melanoma).  

 

The development of melanoma occurs from the pigment producing 

(melanin) cells of the skin (melanocytes), which upon transformation 

begin to grow and divide more quickly than usual spreading into the 

surrounding surface layers of the skin (Meyskens et al., 1999). Melanin, in 

humans is the primary determinant of skin, hair colour, and the pigmented 

tissue underlying the iris. Melanocytes insert granules of melanin into 

specialized cellular vesicles called melanosomes that are incorporated 

into dendrites and transferred by phagocytosis into the other skin cells 

(keratinocytes) of the human epidermis (Burns et al., 2004). The 

melanosomes in each recipient cell accumulate above the cell nucleus to 

protect the nuclear DNA from mutations caused by the ionising radiation 

of the sun's ultraviolet rays. There are two major forms of melanin 

produced in the epidermis and hair follicles - eumelanin and pheomelanin. 

http://en.wikipedia.org/wiki/Hair�
http://en.wikipedia.org/wiki/Iris_(anatomy)�
http://en.wikipedia.org/wiki/DNA�
http://en.wikipedia.org/wiki/Ultraviolet�
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Eumelanin is brown to black in colour while pheomelanin is yellow to red. 

People whose ancestors lived for long periods in the regions of the globe 

near the equator generally have larger quantities of eumelanin in their 

skins (Berwick et al., 2004), affording protection against high levels of 

exposure to the sun, which more frequently results in melanomas in 

lighter skinned people. The four most common types of skin melanoma 

are: 

• superficial spreading melanoma (SSM) - the most common form 

(approximately 70%) of cutaneous melanoma (Forman et al., 2008) 

• nodular melanoma - most aggressive form of melanoma 

(approximately 15%) which grows quickly in a vertical direction from 

the outset. 

• lentigo maligna melanoma - usually found on chronically sun 

damaged skin such as the face and the forearms of the elderly 

(approximately 10%).  

• acral lentiginous melanoma - observed on the palms, soles and 

under the nails. It is the most common form of melanoma 

diagnosed amongst Asian and Black ethnic groups but constitutes 

less than 5% of overall cases (Krementz et al., 1982).  

(Reed and Martin, 1997) 

As melanoma is the most aggressive form of skin cancer due to its high 

resistance to currently available therapy early detection remains the best 

treatment (Peltonen et al., 2005). The ABCD rules illustrated in figure 

1.08 are the key changes to monitor during regular skin self-

examinations. 

 

http://en.wikipedia.org/wiki/Equator�
http://en.wikipedia.org/wiki/Asian_people�
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Figure 1.08: To show the “ABCD” method for remembering the signs and symptoms of 
melanoma adapted from the National Cancer Institute.  

 

The contributing factor bringing about the onset of basal and squamous 

skin cancer is exposure to ultra violet (UV) light, through natural sunlight 

or artificially from sun beds or lamps resulting in damage to the DNA 

(genetic material) in  skin cells (Zanetti et al.., 1992; Harrison et al., 

1994). UV light can directly induce melanocytic lesions and melanoma in 

human skin grafts (Sauter et al.., 1998; Berking et al.., 2002; Wolnicka-

Glubisz and Noonan, 2006). The mechanism, however, whereby UV light 

induces melanoma has not been determined, causing debate over 

whether melanoma is actually caused by UV light. Despite many reports 

that UV light damages the DNA in our skin cells causing melanoma, a 

recent report by Sam Shuster (2008) claims that there is insufficient 

evidence linking UV exposure to melanoma with 75% of melanomas 

occurring on relatively unexposed sites, especially the feet of dark 

skinned Africans. Previous reports have also reported this fact 

(Ragnarsson-Olding, 2004). 

 

• Diameter: moles greater than 
6 mm are more likely to be 
melanomas than smaller 
moles. 

  

 

 

.  

• Asymmetrical skin lesion.  

 

• Border of the lesion is 
irregular.  

  
    

   

 

 

• Colour: melanomas usually 
have multiple colours 
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The detection of melanoma is mainly visible using the ABCD 

methodology shown in figure 1.08. The diagnosis of melanoma requires 

experience, especially in its early stages when it may look identical to 

harmless moles or not have any colour at all. Confirmation of its 

malignant potential is carried out with a skin biopsy performed under local 

anesthesia and assists in defining the severity of the melanoma.  

Currently researched biomarkers including lactate dehydrogenase (LDH), 

S100B and melanoma-inhibitory activity (MIA) are being looked at but 

lack sensitivity (Matharoo-Ball et al., 2008). No blood test is available for 

detection, although an increase in LDH has been observed in metastatic 

disease often indicating spread of the disease to the liver (Agarwala et al., 

2009). It is used to follow-up cancer (especially lymphoma) patients, as 

cancer cells have a high rate of turnover with destroyed cells leading to 

an elevated LDH activity. However, many patients with metastases (even 

end-stage) have normal LDH levels.  

 

One of the main problems in detecting the progression of melanoma is its 

vertical growth through the skin. It is this “unseen” spread and growth that 

affects prognosis. Diagnostic and staging criteria includes tumour 

thickness in millimeters (Breslow's depth), depth related to skin structures 

(Clark level), type of melanoma, presence of ulceration, presence of 

lymphatic/perineural invasion, presence of tumour infiltrating lymphocytes 

(if present, prognosis is better), location of lesion, presence of satellite 

lesions, and presence of regional or distant metastasis (Berger et al., 

2003).  

 

 

 

 

 

http://en.wikipedia.org/wiki/Cancer�
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From this information melanoma can be staged: 

Stage 0: Melanoma in Situ (Clark Level I), 99.9% Survival 
Stage I/II: Invasive Melanoma, 85-95% Survival 

• T1a: Less than 1.00 mm primary, no ulceration, Clark Level II-III  
• T1b: Less than 1.00 mm primary, ulceration or Clark Level IV-V  
• T2a: 1.00-2.00 mm primary, no ulceration  

Stage II: High Risk Melanoma, 40-85% Survival 

• T2b: 1.00-2.00 mm primary, ulceration  
• T3a: 2.00-4.00 mm primary, no ulceration  
• T3b: 2.00-4.00 mm primary, ulceration  
• T4a: 4.00 mm or greater primary, no ulceration  
• T4b: 4.00 mm or greater primary, ulceration  

Stage III: Regional Metastasis, 25-60% Survival 

• N1: Single positive lymph node  
• N2: 2-3 positive lymph nodes or regional skin/in-transit metastasis  
• N3: 4 positive lymph nodes or lymph node and regional skin/in 

transit metastases  

Stage IV: Distant Metastasis, 9-15% Survival 

• M1a: Distant skin metastasis, normal LDH LDH  
• M1b: Lung metastasis, normal LDH  
• M1c: Other distant metastasis or any distant metastasis with 

elevated LDH.  

(Balch et al., 2001) 

 

Upon diagnosis, a treatment plan can be devised. For primary melanoma, 

the main treatment is complete surgical excision of the tumour resulting in 

>95% complete remission (O’Day et al., 2002; Soengas and Lowe, 2003)  

For regional and distant metastases, chemotherapy, radiotherapy and 

biological therapy is given to patients.  

 

 

http://en.wikipedia.org/wiki/Lactate_dehydrogenase�
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1.4.1   Melanoma Treatment 

 

Treatment of melanoma can involve: 

• Initial Surgical Treatment (Wide-excision). The surgical removal of 

additional surrounding skin is necessary to reduce the risk of 

tumor regrowth, which is called "wide-excision." 

• Sentinel Lymph Node Biopsy – test to determine which lymph node 

may be involved with tumour  

• Surgical Treatment of Lymph Nodes 

• Chemotherapy 

• Radiation therapy 

• Biologic therapy 

• Chemoimmunotherapy 

Many clinical trials have and are still being carried out to determine the 

effects of drugs in single and combination therapy. Dacarbazine is the 

only one single-entity drug which has been approved in the UK for 

treatment of late-stage melanoma, but provides complete remission in 

only 2% of patients. The disappointing results of single-agent therapy led 

to the development of combination therapy in the 1980’s. Two published 

regimes have been trialled, the Dartmouth regimen (carmustine, cisplatin, 

vinblastine and dacarbazine) and CVD (cisplatin, vinblastine and 

dacarbazine) used for metastatic disease with some encouraging results 

but durable remissions remained very rare (O’Day et al., 2002).  The 

F.D.A. (federal agency charged with overseeing the safety of drugs, 

medical devices, food, cosmetics and many other health-related products) 

has approved both dacarbazine and Interleukin 2 (IL-2) for clinical use. IL-

2 was approved in the US based on a 6% complete response rate in a 

270-patient phase II study data set (O’Day et al., 2002). The absence of 

any phase III data demonstrating the benefit of any dose of IL-2 in 
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metastatic melanoma prevented approval in Europe, and it is unlikely that 

IL-2 would be approved at present as it is difficult to predict which patients 

will respond.  

 

Combination therapy with IL-2 has been an active area of research, with a 

recently completed phase I clinical trial funded by the Cancer Vaccine 

Institution (CVI). This was to determine the efficacy of Aldara and IL-2 

injections into lesions of melanoma. Aldara Cream activates the immune 

system and clinical results revealed that Aldara treatment was effective in 

controlling the growth of approximately 50% of cutaneous melanoma 

lesions (Green et al., 2007).  In addition, a recent trial has currently ended 

for the investigation of stage IV melanoma patients, who have failed 

chemotherapy, using a dendritic cell vaccine approach. This was 

developed by the Baylor Institute for Immunology Research (BIIR). 

Dendritic cells were loaded with melanoma cells from a cell line treated 

with heat prior to loading. This methodology of killing the cells initially has 

been shown be more efficient in priming the melanoma specific CD8+ 

cells. Results demonstrated that patients with low volume disease 

demonstrated longer survival compared with other therapies (Cancer 

Vaccine Institute, 2009). A variety of other agents have been used (e.g. 

carmustine (BCNU), vinblastine, cisplatin), including drug trials combined 

with hormonal based therapy, tamoxifen, but with no significant increase 

in patient response observed (O’Day et al., 2002).  Another 

chemotherapy drug, temozolomide (Temodal), taken in capsule form, has 

been used in trials for melanoma (Plummer et al., 2005) and was thought 

to have benefits over dacarbazine (Darkes et al., 2002), offering better 

protection from the development of brain metastases and with the 

advantage of being orally administered. It is not however currently 

licensed for metastatic melanoma and continues to be investigated both 

as a single and combined agent in therapy (Plummer et al., 2005). With 

the exception of the above mentioned trials, the actual treatment for 
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melanoma has remained unchanged for many years. No agent has been 

shown to have a significant impact on survival with stage IV melanoma 

which remains a very poor prognosis; a median survival of only 6-9 

months (Dothager et al., 2005).  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1.04: An example of treatment for melanoma 

(Adapted from Logovic et al., 2005; Kim et al., 2002) 

 

 

 

THERAPY FOR PRIMARY 

MELANOMA 

 

THERAPY FOR 

REGIONAL METASTASES 

 

THERAPY FOR DISTANT 

METASTASES 

 

Complete surgical excision 

of primary tumour 

 

 

Surgery 

 

 

Surgery 

 

Elective lymph node 

dissection 

 

Isolated limb perfusion 

 
Radiotherapy 

 

Sentinel lymph node biopsy Adjuvent therapy 

(radiotherapy, 

chemotherapy, regional 

limb perfusion. IFN-alpha) 

 

Chemotherapy (single 

agent or combination 

including Dacarbazine 

(DTIC), Carmustine 

(BCNU), Loustine (CCNU), 

Trichostatin-A, Vindesine, 

taxanes, platinum 

compounds. 

Chemoimmunotherapy 

(IFN-alpha + 

chemotherapy) 

 
  Biologic therapy (IFN-

alpha, IL-2, monoclonal 

antibodies, melanoma 

vaccines. 
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1.4.2  Melanoma Tumourigenesis 

 

Several genes have been shown to be involved in malignant melanoma 

including germline mutations in cdkn2A, Arf, cdk4 and somatic mutations 

in Pten and BRAF but many are currently being researched (Dahl and 

Guldberg, 2007). As already mentioned UV light is specifically 

carcinogenic and can damage skin cells which then need to be eliminated 

by apoptosis (when the skin peels). The tumour suppressor p53 protein 

(previously mentioned and discussed earlier in this chapter) is an 

important regulator of apoptosis. However mutations to p53 have not 

been linked to melanoma but only to squamous and basal cell carcinoma 

(Pecorino, 2005). Inactivation of the INK4a/ARF (or CDKN2a) locus is a 

common and critical genetic event in the development of human and 

mouse melanoma. This locus engages the Rb and p53 tumor suppressor 

pathways through its capacity to encode two distinct gene products, 

p16INK4a and p14ARF. These two pathways are of potential importance in 

mediating UV-induced melanoma (Sharpless et al., 2003).  
 

Intermittently sun-exposed skin accounts for the majority of this cancer 

in caucasians and has been associated with BRAF mutations. Chronic 

sun damaged skin (lentigo maligna melanoma) seems to have 

significantly fewer chromosomal aberrations compared to acral and 

mucosal melanomas, with an absence in BRAF mutations but frequent 

gains in CCND1 and regions of chromosome 22, and losses from 

chromosome 4q. Acral ad mucosal melanomas occur in sun protected 

areas and have infrequent BRAF mutations and show greater numbers 

of chromosomal aberrations (Nouri, 2007). 
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There is also growing evidence suggesting that certain histone 

modifications and associated altered chromatin remodeling activities can 

play a key role in melanoma tumour progression. These epigenetic 

events are involved in different aspects of tumorigenesis including cell 

cycle control, apoptotic pathways (figure 1.09), cell signaling, tumor cell 

invasion and metastasis, drug resistance, and immune recognition. These 

findings suggest a promising future for the utility of drugs such as histone 

deacetylase (HDAC) inhibitors, in treating patients with evidence of 

histone deacetylation. 

 

 

 
 

 

Figure 1.09 Simplified schematic of apoptotic pathways in mammalian cells of both 
extrinsic (death receptor-mediated) and intrinsic (mitochondrial) apoptosis pathways. 
Examples of up regulated and down regulated apoptotic factors in melanoma are 
indicated on the right panel (Soengas and Lowe, 2003).   
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1.5 Chemo Sensitivity Assays 

Upon the development of chemotherapeutic agents reaching the clinical 

trial stage, rapid tests of drug sensitivity are of utmost importance for 

selecting the most promising agents for cancer treatments. A high 

percentage of patients with leukaemia, lymphoma and solid tumours 

achieve complete remission after initial treatment, but the majority of 

these patients will finally relapse due to the presence of residual tumour 

cells detectable in clinical remission only by the most sensitive methods 

(Cree 1998; Campana and Coustan-Smith, 2004; Kurth, 1997). These 

residual cells need to be detected and eradicated for the treatment to be 

successful. 

 

Assays of chemo-sensitivity are of the utmost importance to 

pharmaceutical companies as part of their strategy to discover new 

chemotherapeutics. Commercially, cytotoxicity assays are used to detect 

the killing of tumour cell lines by newly discovered or existing cytotoxic 

drugs. An important feature required for these assays is the ability of the 

assays to detect 100% cell death of a tumour population. If the results of 

an assay reveal all cells have been killed by a potential cytotoxic agent 

when in actual fact there are residual viable cells still present that the 

assay has been unable to detect, then these cells will eventually reform 

into a new tumour within a patient. Current assays used to demonstrate 

chemo sensitivity, have not been able to evaluate whether a given drug 

successfully targets 100% of a tumour cell population (Dworzak, 2001). 

The methods currently utilised to detect cell killing lack sensitivity, often 

as a result of high background readings and an unacceptable signal; 

noise ratio; it is therefore difficult to confirm the complete (100%) killing of 

tumour cells (Collie-Duguid et al., 2007; Motoko and Akihiro, 2004). There 

are several assays currently employed that can potentially be used for 

prediction of patient responses to single agent and combination therapy.  
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These include: 

 

1. Measurements of cellular necrosis: 

• Chromium-51 release 

• Propidium Iodide uptake    

• Lactate dehydrogenase (LDH) assessment 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Table 1.05:  Advantages and disadvantages of necrotic assays. 

Assay Advantages Disadvantages 

 

Chromium-51 

Stable 

Sensitive 

Radioactive 

High spontaneous 

release 

Time consuming 

 

Propidium Iodide uptake 

 

Very sensitive 

User friendly 

 

Requires specialist 

training 

Can be time consuming 

 

LDH 

 

User friendly 

Sensitive 

Rapid 

 

High signal:noise levels 

Affected by culture 

reagents containing 

pyruvate 

Stability of only 9 hours 
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2.  Measurements of cell viability: 
 

• AlamarBlue 

• 3-(4,5-dimethylthiazol-2-yl)-2,5- 

• diphenyltetrazolium bromide, a tetrazole); MTT    

• 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy- 

methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium); MTS   

• 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5- 

[(phenylamino) carbonyl]-2H-tetrazolium hydroxide); XTT   

• 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl] 

-2H tetrazolium monosodium salt; WST-1 

• Adenosine triphophate; ATP 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1.06:  Advantages and disadvantages of viability assays. 

 

Assay Advantages Disadvantages 

 

Alamar Blue 

 

User friendly 

 

 

Lacks sensitivity 

Time consuming 

 

MTT/MTS User friendly 

 

Lacks sensitivity 

Time consuming 

 

XTT User friendly 

 

Lacks sensitivity 

Time consuming 

 

WST-1 User friendly 

 

Lacks sensitivity 

Time consuming 

 

ATP Sensitive 

Fast 

User friendly 

Rapid 

No substantial evidence of 

cell death 

http://en.wikipedia.org/wiki/Methyl�
http://en.wikipedia.org/wiki/Methyl�
http://en.wikipedia.org/wiki/Phenyl�
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Chromium-51(Cr51), a radioactive element, has the ability to be taken up 

by healthy cells as an internal label. Target cells are pre-labelled with Cr51 

which is released for detection when cells are induced to lyse by effector 

cells (i.e. cytotoxic T cells, NK cells or activated macrophages). Upon 

lysis of the cell, the chromium is released and this can then be measured 

using a gamma scintillation counter (Bachy et al., 1999).  

 

The specific lysis was determined according to the formula:  

 
 

Total Lysis (%) = 100 × (Exp – Spo) 

                         (Max – Spo) 

Where:   

Exp = experimental release; Spo = spontaneous release; Max = maximum release. 

 
Figure 1.10: Formula for chromium51 detection     
 

 

Fluorescent dyes are a safe and convenient alternative to radioactive 

labels such as chromium for monitoring the fate of cells in vivo. The 

number of dead cells in a suspension is often estimated by counting the 

cells which take up an acidic dye, such as trypan blue. Assessment of cell 

viability by flow cytometry, using propidium iodide (PI) can also be used 

(Ormerod, 1999). PI is excluded by viable cells and when taken up by 

dead or dying cells, binds to nucleic acids and fluoresces red. Flow 

cytometry is a well established, multi-disciplinary technique in standard 

use in biological and clinical research. A typical flow cytometer will consist 

of an optical, electronic and fluidic system, which provides a visual picture 

of their relative size, granularity and fluorescent properties on a computer 

screen (Ormerod, 1999). The fluidic system contains an air pump, 

pressure regulator, sheath fluid reservoir, sample regulator, flow cell and 

a waste reservoir, where the speed at which the cells pass the laser can 
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be controlled by either increasing or decreasing the pressure (Becton 

Dickinson, 1997). This technology has been used to measure many 

processes during apoptosis and necrosis and measurements are 

recorded for each individual cell to obtain the percentages of necrotic or 

apoptotic cells within a population (Ormerod, 1998). The size, granularity 

and fluorescent properties of a cell can be investigated by the analysis of 

their forward scatter (FSC-H) indicating cell size, side scatter (SSC-H) 

showing granularity of the cell and different fluorescent parameters (FL-1, 

FL-2, FL-3) (Ormerod, 1998; Becton Dickinson 1997). Figure 1.11 is 

representative of the forward scatter and side scatter dot plot for a typical 

healthy population of cells when analysing for plasma membrane integrity 

(red; FL-2) (Becton Dickinson, 1997). 
 

Figure 1.11: Forward scatter (size) and side scatter (granularity) dot plot and FL-1 
(green) and FL-2 (red) dot plot showing a typical picture of healthy Jurkat cells stained 
with propidium iodide (red fluorescence) detecting loss of plasma membrane integrity, 
where each dot represents a single cell. 
 

The properties of the cell are clarified by the way in which the cells scatter 

the incident light (as demonstrated in figure 1.12) and emit fluorescence. 

Side scatter is proportional to granularity and is measured when the light 

is reflected at high angles (at 90o to the incident light axis (Becton 

Dickinson, 1997)). As cells become apoptotic they become increasingly 

granular as their chromatin becomes more condensed thereby showing 

an increase in side scatter (McCarthy, 2002). Low angle forward scatter is 
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roughly proportional to the diameter of the cell and is detected when light 

is diffracted at angles of between 1 and 10 degrees measured across the 

axis of the incident light (Becton Dickinson, 1997).  

 

 

 

 

 

 

 

 
 
Figure 1.12: Diagram to illustrate how cells scatter light and emit fluorescence in flow 

cytometry. 

 

FL-1 and FL-2 are detected through the absorbance of energy from the 

laser by fluorochromes added to the cell sample. This absorbance of 

energy elevates the fluorochrome to a higher energy level when the cell 

has passed by the laser this energy is released in the form of a photon of 

light emitting in the red or green spectra (Becton Dickinson, 1997). 

 

In addition to these methodologies, the LDH (CytoTox OneTM, Promega) 

fluorescent assay measures necrosis by the release of the enzyme 

lactate dehydrogenase into the culture medium. LDH is a stable enzyme 

normally found in the cytosol of all cells, converting lactic acid to pyruvic 

acid (figure 1.13) in the electron transport chain (Ewaschuk et al., 2005; 

Herrera et al., 2008). This assay measures the released LDH from cells 

with damaged membranes. Released LDH is measured directly in the cell 

culture wells with a coupled enzymatic assay that results in the 

conversion of a non-fluorescent compound (resazurin) to a fluorescent 

compound (resorufin), which can be detected by fluorometry 

(Korzeniewski and Callewaert, 1983; Decker and Lohmann-Mathes, 

Laser Light 
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Forward Scatter 
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1988; Sasaki et al., 1992).  

 
 

       LDH 

         

 

 

NAD+   NADH+ H+ 

 
   Resorufin                            Resazurin 

          

    Diaphorase 

 
Figure 1.13: Detection of LDH demonstrated by the conversion of resazurin to a 
fluorescent compound, resorufin. 
 

Many assays utilise the electron transport chain illustrated in figure 1.14 

to measure changes within cells. ATP, the energy source of all cells is 

produced from the donation of H+ ions from the reduction of NADH and 

FADH2. It is this reaction that the LDH assay is monitoring converting the 

resazurin to resorufin. The electron transport chain consists of four 

complexes: 

 

• NADH dehydrogenase complex 

• cytochrome reductase complex 

• cytochrome oxidase complex 

• ATP synthetase complex 

(Alberts et al., 1989) 

 

During electron transport, the enzymes of the electron transport chain 

(e.g. NADH, FADH2) create a proton gradient across the inner 

mitochondrial membrane. This proton gradient is subsequently used by 

the enzyme ATP synthase to produce ATP (Alberts et al., 1989). 

Pyruvic 

acid 

 

Lactic 

acid 
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Figure 1.14: Illustration of the Electron Transport Chain (taken from HOPES website: 
Huntingdon’s outreach project for education at Stanford). 
 

Another fluorescence assay, alamarBlue, along with the absorbance 

assays WST-1, MTT and MTS also utilise the natural reducing power of 

living cells to measure cell viability. Unlike the LDH assay which 

measures cell permeability, these are viability assays. AlamarBlue is a 

non-toxic metabolic indicator of viable cells that becomes fluorescent 

upon mitochondrial reduction (Nociari et al., 1998). The alamarBlue 

indicator detects changes in oxidation as a result of the electron transport 

chain (figure 1.14) by monitoring the change of a blue and non-

fluorescent dye resazurin, to a pink and fluorescent dye resorufin in 

response to chemical reduction of growth medium resulting from cell 

growth. Continuous cell growth maintains a reduced environment while 

inhibition of growth maintains an oxidised environment. Reduction related 

to growth causes the REDOX indicator to change from the oxidized blue 

form to the reduced pink form.  

 

 

 

    mitochondria 
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The colorimetric or absorbance assays (MTT, XTT, WST-1) measure the 

intracellular reduction of a soluble yellow tetrazolium dye to a purple 

product, based on the cleavage of a tetrazolium salt by mitochondrial 

dehydrogenases in viable cells (Marshall, 1995). Upon reduction by 

electrons flowing through the electron transport system and by 

superoxide radicals produced, this change of colour can be detected. The 

formazan dyes derived from each tetrazolium salt are completely different 

in terms of solubility. The MTT assay contains insoluble crystals and must 

be solubilised with surfactants or organic reagents. The XTT and MTS 

assays are soluble but the most water-soluble and stable of the salts is 

WST-1 (Clontech, 2007). 

 

All living cells contain ATP produced by the electron transport chain 

(Krebs, 1970), making it a good presumptive marker for cell number and 

cell condition (Crouch et al., 1993). Assessment of ATP, using 

established methods, enables the measurement of the effects of cytotoxic 

agents on cell lines and tumours to determine the cellular outcome after 

treatment. These effects could be apoptotic, growth inhibiting or no effect 

at all therefore resulting in continued proliferation (Cree, 1995). When 

cells are subjected to stress; the process of oxidative phosphorylation 

breaks down, so that ATP is no longer produced. It has been observed 

that apoptotic and necrotic cells give out different ATP relative light units 

(RLUs) when measured by bioluminescence. These changes in the ATP 

levels brought about by programmed cell death may be early indicators of 

apoptotic or necrotic changes within the cells (Crouch et al., 1993; 

Bradbury et al., 2000; Tsujimoto, 1997). Bioluminescence is the 

production of light by living organisms. Bioluminescence is used by 

fireflies to attract mates, anglerfish to lure prey, railroad worms to scare 

predators and pelagic squid as camouflage (Pazzagli et al., 1988). 

Probably the best known example of bioluminescence is in the North 

America Firefly (Photinus pyralis, shown in figure 1.15), whose 
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development of a highly efficient bioluminescent system is employed 

when attracting a mate (Lundin, 1982 and Lundin, 1993). 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 1.15: The male species of the north-American firefly Photinus pyralis is shown 
emitting the familiar yellow-green light.  
 

Luciferase is a generic term for an enzyme that can generate light as a 

product in luminous organisms. These luminous organisms have over 700 

genera representing 17 phyla including plants, fish, bacteria, worms and 

beetles (Hastings, 1983). The first applications using luciferase were 

based upon biomass measurement in the food industry for microbial 

contamination in food products such as milk, (Bossuyt, 1982) carbonated 

drinks, (Little and LaRocco, 1986) and meat (Stannard and Wood, 1983).  

 

A typical detection system for the measurement of ATP using 

bioluminescence is the luminometer.  This consists of a sample chamber, 

a photomultiplier tube (PMT) for the detection of the light produced and a 

means of recording the amount of light released. The sample chamber is 

responsible for receiving and presenting the microplate to the detector. It 

is important that this is completely sealed to minimise interference from 

ambient light. In order to produce precise, rapid measurements the 

sample chamber must be positioned as close to the detector as possible 
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as this positioning gives the optimal signal to noise ratio. The detection 

system of the luminometer consists of a photomultiplier tube (PMT) where 

a single photon of light triggers a rapid amplified cascade of electrons. 

The resulting electrical current created when the photons strike the PMT 

is measured by the luminometer and expresses this information as 

arbitrary light units, referred to as relative light units (RLUs). 

Luminometers can detect an even collection of light from the smallest of 

samples, obtained by either positioning the PMT side on or end on within 

the machine. The bioluminescent ATP assay, ViaLight HS (Lonza 

Bioscience Inc.), was developed to detect ATP released from cells as an 

indication of viable cell number in the following reaction: 

 

 
                          Luciferase 

     ATP + Luciferin + O2                Oxyluciferin + AMP + PPi + CO2 + Light 
 

                             Mg++ 

 

 

Figure 1.16: The reaction resulting in conversion of ATP to light 
 

Samples of cells are treated with a lysis reagent (detergent based) and a 

formulation of luciferase, luciferin and magnesium is then added to the 

lysate to measure the light emitted. The light produced is directly 

proportional to the amount of ATP, which in turn is proportional to the 

number of viable cells. If all factors in the above reaction mechanism are 

saturated it can be deduced that the light emission is linearly related to 

the concentration of ATP present within the sample. The emitted light is 

then detected by a luminometer and expressed as the relative light units 

(RLUs). 
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1.6 Analysis of the Cancer Proteome 

 

The cancer proteome is now becoming a significant area of research for 

many researchers, with early detection remaining the most promising 

approach to improve long term survival for patients with cancer 

(Diamandis, 2004; Zhang et al., 2004). Wilkins and colleagues in the 

early 1990’s used the terms ‘proteomics’ and the ‘proteome’, reflecting 

the area of ‘genomics’ and the ‘genome’ (Liebler, 2002; Baak et al., 

2003). Genomics (the study of the human genome) and proteomics (the 

analysis of the protein complement of the genome) now play a major 

role in advancing scientific understanding, diagnosis, prognosis and 

potentially also the treatment of cancer (Baak et al., 2003). 

Methodologies in proteomics are being enhanced year on year for the 

analysis of the serum proteome in identifying signature biomarker 

patterns that may be symptomatic of cancer. Blood contains many 

proteins which could represent potential biomarkers for a particular 

cancer type or stage (i.e. primary or metastatic cancer).  

Overexpression of carcinoembryonic antigen or CEA was first reported 

by Gold and Freedman in 1975 (Fuks et al., 1975). It is a protein 

molecule that can be found in many different cells of the body, but is 

typically associated with certain tumours mainly of the gastro intestine. 

Another example is the isolation and purification of prostate specific 

antigen or PSA which is currently the only biomarker for prostate cancer 

(Leman and Getzenberg, 2009). Blood and urine is routinely analysed 

for potential or known biomarkers that could reflect the state of an 

individual. From blood samples serum, plasma and peripheral blood 

mononuclear cells (PBMCs) can be extracted and routinely monitored 

for undefined or renowned biomarkers for diagnostic and therapeutic 

purposes (Mian et al., 2005).   
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1.61 Mass Spectrometry 

One of the main reasons proteomics has become an extremely active 

area of research for biomarker discovery in recent years is the 

development of mass spectrometer technologies. Conventionally two-

dimensional polyacrylamide gel electrophoresis (2D-PAGE) is used in 

the discovery of proteins associated with disease (Petricoin and Liotta, 

2003; Li et al., 2002)). The negative side to this methodology, despite 

its ability to identify thousands of proteins, is that it is labour-intensive 

and necessitates considerable amounts of protein. Recent progress 

made in mass spectrometry is beginning to offer an alternative to 2D-

PAGE (Li et al., 2002). Mass spectrometers represent an analytical tool 

used for measuring the molecular mass/weight (MW) of a sample and 

are able to measure bio molecules to within an accuracy of 0.01% of 

the total MW of the molecule (Ashcroft, 2005). There are many different 

mass spectrometers currently employed in the analysis of the human 

cancer proteome that are used for early detection, therapeutic targeting 

and patient-tailored (personalised) therapy (Petricoin and Liotta, 2003). 

Identification of a protein biomarker may not only enable the 

development of assays for the early detection of cancer, but its physical 

properties and function may be used as a target for therapy or to predict 

a patient’s likely response to a particular drug or treatment. The majority 

of studies carrying out this research use Matrix Assisted or Surface 

Enhanced Laser Desorption Ionisation Time of Flight Mass 

Spectrometry (MALDI-TOF-MS or SELDI-TOF-MS) (Cazares et al., 

2008).  

 

The term matrix-assisted laser desorption ionization (MALDI) was first 

utilised in 1985 by Franz Hillenkamp, Michael Karas and colleagues 

(Karas et al., 1987). The sample preparation of MALDI includes the 

mixing of the protein or peptide sample with a matrix in solution. This 

mixture is then spotted in small amounts onto a specialised 384 target 
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plate and allowed to dry. The sample and matrix co-crystallise as the 

solvent evaporates (Mann et al., 2001). The main purpose of a matrix is 

to stabilise the proteins in the sample on the plate which would 

otherwise be destroyed by the laser upon analysis. The target plate is 

then inserted into the mass spectrometer which is sealed and a vacuum 

created. The research team at the Nottingham Trent University has 

employed a combination of automated robotic chromatographic ZipTip 

format and MALDI-ToF-MS producing a powerful and sensitive analysis 

of pre-fractionated samples, a whole protein based top-down separation 

strategy for the identification of markers (Matharoo-Ball et al., 2007). 

The originality of this method is the ability to be able to measure the 

samples at the protein level for screening biomarkers, followed by 

tryptic digestion of the same sample (bottom-up) as shown in figure 

1.17. This methodology helps identification of biomarkers by measuring 

tryptic peptides which can be separated out better due to their smaller 

size by MALDI-MS (reflectron mode) than whole protein based studies.  

  

 
  
Figure 1.17: A flow diagram to illustrate the procedure of mass spectrometry 

 

In comparison, SELDI technology, developed by William T. Hutchens at 

Baylor College of Medicine later in 1993 uses a target modified to 

achieve biochemical affinity with the analyte compound. This is carried 

out by preparing a specialised chip that contains different chemical 

http://en.wikipedia.org/wiki/Dissociation_constant#protein-ligand_binding�
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functional groups individually spotted onto the chip and then mixed with 

the protein sample to be analysed (Hutchens and Yip, 1993). Chip 

surfaces that are available include; hydrophobic ProteinChip, weak 

cation exchange ProteinChip, strong anion exchange ProteinChip, 

immobilised metal affinity ProteinChip (IMAC) and an immobilized 

copper ProteinChip (IMAC3). 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.18: A SELDI ProteinChip 

 

The proteins contained within the sample will bind to the different 

surfaces on the chip, depending on their specialised structures. Some 

proteins in the sample will bind to the surface, while others are removed 

through washing (Li et al., 2002). Only proteins complementary to the 

chip surface are retained and analysed (figure 1.18). As with the MALDI 

methodology, matrix is applied to the surface after washing and allowed 

to crystallise with the sample peptides. Binding to the SELDI surface 

acts as a separation step and the subset of proteins that bind to the 

surface are easier to analyse. An overview of the processes involved in 

both MALDI and SELDI mass spectrometry are illustrated in figure 1.19. 
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Figure 1.19: A flow diagram to outline SELDI and MALDI mass spectrometry edited 
from Sidawi and Derra, 2009. 
 

The ‘high throughput robotic sample processing’, illustrated in figure 

1.19 is used to standardise procedures prior to sample analysis. These 

robotic systems can precisely pipette, mix and spot samples, reducing 

the amount of time, improving the dimensionality of the data and the 

reproducibility of experiments. 

 

Mass spectrometry (MS) is an analytical technique for determining the 

composition of a sample or molecule and consists of three modules; the 

ion source, mass analyzer and the detector. Initially, the sample is 

ionised and vaporised by a laser in the ion source, which converts it into 

electrically charged particles. These particles then enter a mass 

analyser, which contains electric and magnetic fields. By Newton’s 

second law of motion, lighter ions are deflected more and travel faster 

then the heavier ions. Both the speed and direction of the charged 

particle can be increased or decreased while passing through the 

electric field but the magnitude of the deflection is dependent on the 

ions mass-to-charge (m/z) ratio. It is this ratio that identifies individual 

proteins or peptides (Henrickson and Pandey, 2001). The streams of 

     Serum samples 

http://en.wikipedia.org/wiki/Molecule�
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sorted ions pass from the analyser to the detector (figure 1.19), where 

the results are recorded and illustrated as peaks grouped together in a 

‘spectrum’ representing the protein or peptide fingerprints. A typical 

spectrum obtained from mass spectrometry is shown in figure 1.20 

below where the m/z ratios of the prominent ions are labeled. 

 
Figure 1.20: Example of spectrum seen after mass spectrometry analysis. 

 

The sample can be measured directly by the mass spectrometer or it 

can be fractionated to make sample identification more sensitive. This 

usually involves the mass spectrometer being coupled directly to a high 

pressure liquid chromatography (HPLC), gas chromatography (GC) or 

capillary electrophoresis (CE) separation column, separating the 

sample into a series of components which are measured by the mass 

spectrometer sequentially for individual analysis (Petricoin and Liotta, 

2003; Diamandis, 2004).   

 

MALDI has been used as a high throughput and extremely sensitive 

tool to generate proteomic patterns from a variety of biological samples 

ranging from serum, plasma, cerebrospinal fluid and urine to tissue in 

order to detect biomarkers of disease (Veenstra et al., 2005). Many 
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biomarkers have been identified in prostate (Adam et al., 2003), 

polycystic ovary syndrome (Matharoo-Ball et al., 2007), breast (Mian et 

al., 2003; Traub et al., 2005), ovarian (Petricoin et al., 2002), colorectal 

(de Noo et al., 2006) and melanoma (Matharoo-Ball et al., 2007; 

Hutchens and Yip, 1993). MALDI-MS is an ideal methodology for 

analysing simple peptide mixtures but for more complex samples, 

especially for protein identity, liquid chromatography-electrospray 

ionisation combined with mass spectrometry (LC-ESI-MS) may be 

required (Huang et al., 2002; Karas and Hillenkamp, 1988). One of the 

major limitations of the MALDI-based technique is its relative poor 

reproducibility in measuring m/z abundances (peak intensity), which 

may be essential in biomarker discovery. In addition, LC-MALDI-

TOF/TOF analysis generally takes a long time, which is hardly practical 

when analysing large numbers of samples. However, this technique is 

recognized for its high mass accuracy (typically in the range of 5 ppm to 

20 ppm routinely). Another area of contention is the tools used to 

analyse the complex data in MALDI. Re-analysis of the raw data from 

Petricoin’s study in 2002 with different bioinformatics tools failed to 

validate the initial findings causing much dispute over techniques and 

validation used on data sets (Baggerly et al., 2004; Sorace et al., 2003).  

 

The development of electrospray ionisation for the analysis of biological 

macromolecules was awarded the Nobel Prize in Chemistry to John 

Bennett Fenn in 2002. There are a wide range of basic electrospray 

techniques primarily microspray and nanospray but they all involve the 

transfer of ions from solution to a gas phase (Kebarle, 2000). There are 

many variations on the basic electrospray technique. Microspray and 

nanospray have better sensitivity due to the reduction in the flow rate of 

the analyte containing liquid. The main process involves applying an 

electric field to the tip of a capillary which contains a solution of 

electrolyte with the substance or analyte to be studied (Karas and 

http://en.wikipedia.org/wiki/John_Bennett_Fenn�
http://en.wikipedia.org/wiki/John_Bennett_Fenn�
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Hillenkamp, 1988). The solvent used is normally much more volatile 

than the analyte which exists as an ion in solution (either an anion or a 

cation). Volatile acids, bases or buffers are added to this solution and 

due to forces of charge repulsion, the liquid pushes itself out of the 

capillary and forms a ‘mist’ of droplets approximately 10 µm across. 

This forces the molecules together which are continually trying to repel 

each other as they evaporate, thus breaking up the droplets. This is 

known as Coulombic fission because it is driven by repulsive Coulombic 

forces between charged molecules (Kebarle, 2000). This continues until 

the analyte is free of solvent and enters the mass analyser to be 

measured, and shown on spectra containing peaks as previously 

demonstrated in figure 1.20. 

http://en.wikipedia.org/wiki/Volatility_(chemistry)�
http://en.wikipedia.org/wiki/Micrometer_(unit)�


                                                                                                         Chapter 1                                                                                                                               
 

51 
Susan Catherine Gill 
PhD Thesis, 2009 

1.62 Bioinformatics approaches for data analysis 

With the introduction of mass spectrometers and the vast amounts of 

data produced; analysing the data became a minefield, introducing a 

high degree of complexity into the results (Lancashire et al., 2005). 

However, recent advances in computer algorithms and informatics, 

combined with biological knowledge are enabling this data to be 

analysed (Ball et al., 2002; Diamandis, 2004).  This requires the use of 

highly sophisticated statistical methods with high computational power 

such as Bayesian analyses, fuzzy logic and artificial neural networks or 

ANNs (Matharoo-Ball et al., 2007). There are many proteomics tools 

that can be employed providing a wealth of information and rapid 

interpretation of the large quantities of data analyzed (Bensmail et al., 

2005). There has to be an accurate interpretation of the ‘curse of 

dimensionality’ (Ball et al, 2002) which refers to the asymmetry seen 

between the number of input features (e.g. peaks) and the number of 

exemplary features (e.g. samples). Overcoming this problem is 

challenging but necessary and some of the bioinformatics tools 

developed to successfully analyse complex data sets include: 

 

1. Artificial neural Networks (ANNs) – identifies peaks that are 

statistically different between two groups. Links are used within 

the computer model which are strengthened or weakened 

depending on their frequency of use (Lancashire et al., 2005).  

2. Principle Component Analysis or PCA – used to sort data by 

finding the fewest dimensions. Data is sorted into axes that best 

represent the differences between groups and represented 

visually on 2D or 3D scatter-plot graph (Lesk, 2005). 

3. Cluster Analysis – involves placing data into distinct groups 

based on the similar characteristics shared between individuals. 
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4. Support Vector Machines (SVM) – correctly separates into 

classes but can also identify classifications not supported by the 

data. 

5. Decision Trees – can be applied to problems such as protein 

function. 

 

Generally data mining approaches fall into two categories: 

unsupervised and supervised. Unsupervised data (e.g. PCA and cluster 

analysis) do not take into account class labels, while supervised (e.g. 

ANNs, SVMs) approaches do. For initial assessment of the quality of 

data unsupervised approaches can be carried out to visualize the 

overall distribution of the data (Fung et al., 2005). They can also 

provide a qualitative assessment of the data by superimposing the 

sample labels. All of these tools have the capability to aid the 

researcher in accurately identifying biomarkers from data retrieved from 

mass spectrometry (Fogel, 2004). Prior to analysis of the data by 

informatics, data are manipulated or preprocessed by removing any 

unwanted and inconsistent data as shown in figure 1.21. This involves 

selecting peaks and removing any m/z ratios that are outside the 

targeted range (Fung et al., 2005). The data are smoothed to allow 

comparisons between spectra and baseline corrected to eradicate 

insignificant datasets. 
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Figure 1.21: Mass spectra analysis work flow taken from Norris et al., 2007. 

 

Analysis of MALDI data can be separated into two distinct steps: pre-

processing and processing or statistical analysis. Pre-processing has 

been the focus of much variance within a data set. This procedure plays a 

key role in reducing experimental variance, and preparing the subsequent 

data for statistical analysis. The spectra obtained are conditioned through 

the removal of background, normalization of intensity, and alignment. The 

analytical goals of profiling experiments can be two-fold: the classification 

of samples into two or more classes such as diseased/non-diseased, and 

the identification of biomarkers characteristic to each class (Yanagisawa 

et al., 2003). Identification of disease specific proteins could reveal much 

information from protein mechanisms to potential diagnostic markers or 

drug targets. Recognising this importance is highlighted in comparative 

analyses of profile spectra (Markey et al., 2003), whereby varied 

biostatisticians all reported an accuracy >90% in classifying the same 

profile spectra from either tumour or non-tumour samples. The 

controversy however lies in identifying which ions are the most significant 
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to determine the classifications in which there was little to no agreement. 

These inconsistencies cause much consternation particularly since these 

same ions are prime candidates for further identification and study as 

disease biomarkers. This debate over data interpretation limits mass 

spectrometry as a powerful technique which needs to be taken into 

account when analysing data (Westhead and Twyman, 2002) 

  

Upon finding important peaks using computer algorithms, that have 

significant differences between cancer and control groups, the next step 

is to characterise and identify the proteins that they represent. There are 

several web-based databases e.g. Mascot, ProFound or MOWSE 

(Matharoo-Ball et al, 2007) that provide complete listings of all known 

proteins’ sequences. Intact proteins are incompatible with these 

databases; therefore a digest of the protein is carried out using a specific 

protease such as trypsin. The mass measurements of the digested 

fragments are more precise, whereas the various forms of proteins that 

exist due to post-translational modifications make identification by this 

method unclear (Wu et al., 2002). Where such modifications are known, 

exact mass differences between unmodified and modified amino acids 

can be predicted. Algorithms such as SEQUEST have built-in parameters 

for detecting such modifications. The presence of a modified residue 

should always be confirmed experimentally (Westhead and Twyman, 

2002). Imperfect matches can also result because the actual protein does 

not exist on the database but a close homolog from the same species 

does exist. This is often the case if a protein contains a single nucleotide 

polymorphism leading to two or more variants. Another technique often 

used for identity is electrospray ionisation tandem mass spectrometry 

(EITMS) which produces amino acid sequences of each peptide fragment 

based on its net charge, which can be entered into the online data bases 

and compared to all known proteins. 
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1.7  Aims and Objectives  

Cancer is a complex disease that presents many challenges to clinicians 

and cancer researchers who are constantly searching for more effective 

ways to combat its often devastating effects. The majority of patients with 

cancer will require treatment with chemotherapeutic agents at some point 

in the course of their disease. A significant percentage of these patients 

can achieve a complete remission after initial treatment but a high 

proportion of these will finally relapse due to the presence of residual 

tumour cells that resist drug treatment (Dolken, 2001). The methods used 

to detect cell killing, lack sensitivity, often as a result of high background 

readings and the unacceptable signal: noise ratio. This means it is often 

difficult to confirm the complete (100%) killing of tumour cells. 

 

The initial aim of this research was to produce a novel assay that would 

be a quick, safe and highly sensitive alternative to traditional assays such 

as MTT or chromium-51 that is historically used to measure cell viability. 

With the increase in the use of ATP as a detection system for viable cells 

(due to ease of use and the speed and accuracy of the detection) an 

investigation was conducted into an extension of this technology. A paper 

was found by Squirrel and Murphy (1997) which looked into the use of 

adenylate kinase (AK) for hygiene monitoring in the food and beverage 

industry. One molecule of AK could turn over 1000 molecules of ATP. As 

ATP had already been shown to be sensitive in detecting cell viability, the 

measurement of AK leakage from cells could result in a more sensitive 

assay for measuring cell death. It was therefore decided to produce a 

novel assay using AK and if successful, compare its sensitivity against 

the well-established methodologies. AK belongs to the class of enzymes 

known as phosphotransferases, specifically those that use a phosphate 

group as an acceptor (Rosenfelt and Hubler, 1999). It is a ubiquitous 

protein present in all eukaryotic cells. The principle behind the assay is 

based on the leakage of the enzyme into the culture supernatant through 
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lysis of the cell membrane (Squirrel and Murphy, 1997). Due to its small 

size (36 KDa), measurement of this enzyme should be more accurate and 

sensitive for the determination of cytotoxicity and cytolysis, than those 

presently available (i.e. LDH is 140 KDa). An AK detection reagent 

(named ‘ToxiLight’ in this thesis), would be designed to be added to a cell 

culture and allow for the detection of AK leakage from damaged cells by 

bioluminescence.  The detection limits of this assay will be investigated 

and compared to the commonly used cytotoxicity assays.  

 

The second part of the research was to utilise the most responsive 

assays tested in the initial investigation to establish sensitive and 

resistant melanoma cell lines. The cell lines will be chosen based on their 

responses to various well-known chemotherapeutic drugs using the 

chosen assays. When a resistant and sensitive cell line has been chosen, 

the investigation will be continued to test the effects of the drug 

trichostatin A (a reversible inhibitor of the histone deacetylase (HD)) upon 

these cells. The effects of trichostatin A has been researched widely on 

melanoma cells including its investigation into the role of p53 (Halaban et 

al, 2009) and p21 (Boyle et al, 2005) with evidence suggesting that it may 

play an important role in carcinogenesis. Trichostatin A has been shown 

to induce differentiation in acute myeloid leukemia and displays potent 

antitumor activity against prostate and breast cancer cells in vitro and in 

vivo. This experiment would involve treating the chosen melanoma cells 

with trichostatin A, testing them with the cytotoxicity assays with further 

confirmation by using PI uptake, light microscopy and trypan blue. The 

cell lysates from these drug-treated and untreated melanoma cell lines 

would be frozen down and utilised for further research. 

  

The final part of this study was to utilise the frozen lysates obtained from 

the cytotoxicity experiments to assess the molecular effects of trichostatin 

A on the melanoma cells by MALDI-TOF-MS. By identifying patterns in 
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proteomic profiles it may be possible to identify possible biomarkers 

reflecting differences between sensitive and resistant drug-treated cell 

lines. The spectra obtained from the MALDI-MS analysis will then be 

analysed using ANNs to determine if patterns can be found within the 

data that can classify blind samples according to drug-treated and 

untreated cells. The MALDI spectra will be analysed using the same 

ANNs parameters and the results of the analyses with the MALDI 

methods compared to the previous cytotoxicity assays. 
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Chapter 2 – Materials and methods 
 
2.1  Materials  

 
 
Material 
 
 

 
Supplier 
 

 
FACS Flow 
FACScan tubes 

 
BD BioSciences 
Between Towns Road 
Oxford 

  
5,5’,6,6’-tetrachloro-1,1’,3,3’-
tetraethylbenzimidazolylcarbocyanine iodide 
(JC-1) 

Cambridge BioScience 
Newmarket Road 
Cambridge 

  
Dimethyl sulphoxide (DMSO) 
Foetal Bovine Serum (FBS) 

Harlan Sera Labs 
Loughborough 
Leicestershire 

  
Acetonitrile (ACN):HPLC grade 
Trifluoroacetic acid (TFA): HPLC grade 

Fisher Scientific 
Bishop Meadow Road 
Leicestershire 

  
α-cyano-4-hydroxycinnamic acid (CHCA) 
Peptide calibration mix 
Protein calibration mix 2 
Sinapinic acid 

Laser Bio Labs 
Cedex 
France 

  
ATP 
ToxiLight 
ViaLight HS 

Lonza BioScience 
Wokingham 
Berkshire 

  
ADP 
Camptothecin 
Dexamethasone 
Vindesine 

Merck BioSciences Ltd 
Beeston 
Nottingham 

  
Zip Tip pipette tips Millipore UK Ltd 

Units 3 and 5 
The Courtyards 
Hatters Lane 
Watford 

  
Bovine Serum Albumin (BSA) 
 

MP Biomedicals 
Wellington House 
Cambridge 

  
96 well cell culture plates 
96 well luminometer plates 

Porvair Sciences Ltd 
Govett Avenue 
Sheperton 
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Material 
 
 

 
Supplier 
 
 

 
Cytotox One 
MTS 

 
Promega UK 
Chilworth Science Park 
Southampton 

  
WST-1 
XTT 

Roche 
Switzerland 

  
Cell culture flasks (T25 and T75) 
Sterile universal tubes (25ml and 50ml) 
10ml pipettes 

Sarstedt Ltd 
Beaumont Leys 
Leicestershire 

  
12 well tissue culture plates Scientific Laboratory Supplies 

Wilford Industrial Estate 
Nottingham 

  
Acridine orange 
Cisplatin 
Dacarbazine 
Dimethylsulfoxide (DMSO) 
Dithiothreitol (DTT) 
Doxorubicin 
Ethidium bromide 
L-Glutamine 
Myokinase Standards 
n-octyl-beta-D-gluco-pyranoside (OGP) 
PBS tablets 
Penicillin and Streptomycin 
Propidium Iodide 
RPMI-1640 
Trichostatin A 
Trypan Blue 

Sigma-Aldrich 
Poole 
Dorset 

  
Axima CFR+ MALDI TOF mass 
spectrometer 
384 MALDI target plate 

Shimadzu 
Manchester 

  
Statistica 7.0 software StatSoft Inc. 

Tulsa 
OK 

  
 
 

Table 2.01: List of materials used within this study and their supplier. 
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2.2 Preparation of buffers, stains and kits 
 
 
2.2.1 Preparation of phosphate buffered saline (PBS) 
 
1 tablet was dissolved in 200 mL of dH2O to give 0.01 M phosphate 

buffer, 0.0027 M potassium chloride and 0.137 M sodium chloride at pH 

7.4 (25oC). 

 
2.2.2 Preparation of Acridine Orange/Ethidium bromide and 
fluorescent microscopy 

 

Preparation of stock solution. 

The stock included: 15 mg Acridine orange, 50 mg Ethidium bromide 

which was dissolved in 1 mL of 95% (v/v) ethanol. 49 ml of d.H2O were 

added. 

Preparation of working solution. 

The stock solution was diluted 1:100 with PBS to give a final working 

concentration of 3 μg.ml-1 Acridine orange and 10 μg.ml-1 Ethidium 

bromide. 

 

2.2.3 Preparation of JC-1 Staining  (5,5',6,6'-tetrachloro-1,1',3,3'-
tetraethylbenzimidazolocarbocyanide iodide) 
 

Preparation of stock solution. 

 JC-1 was dissolved in DMSO to give a 1mg.ml-1 solution. 

Preparation of working solution. 

The stock solution was diluted 1:50 in PBS and filtered using a 0.45 μm 

filter.  

250 µl of the filtered JC-1 was added to 125 µl of the cell suspension and 

incubated for 30 minutes at 37oC in a 5% (v/v) CO2, humidified incubator. 
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2.2.4 Preparation of Propidium iodide (PI) – PI was reconstituted in 

DMSO to give a stock of 1mg.ml-1 which was diluted 1:20 in PBS to give a 

working concentration of 50 μg.ml-1. 

 

2.2.5 Preparation of Trypan Blue – Trypan Blue was obtained ready to 

use at a 0.4% (w/v) solution (0.81% (w/v) sodium chloride and 0.06% 

(w/v) potassium phosphate). 

 

2.2.6 Preparation of ViaLight® Plus kit 

 

• Nucleotide Releasing Reagent – Provided ready to use. 

• Tris Acetate Buffer – Provided ready to use. 

• ATP Monitoring Reagent (AMR) – AMR was reconstituted by the 

addition of 50 mL of Assay Buffer to the bottle. This was 

equilibrated for 15 min at room temperature to ensure complete 

rehydration, as to the manufacturers’ specifications. 

 
2.2.7 Preparation of ToxiLight® kit 
 

• AK Assay Buffer – Proprietary information.  

 Provided ready to use. 

• Adenylate Kinase Detection Reagent (AK-DR) - Proprietary 

information. 

AK-DR was reconstituted by the addition of 10 mL of AK Assay 

Buffer to the bottle.  

This equilibrated for 15 min at room temperature to ensure complete 

rehydration, as to the manufacturer’s specifications. 
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2.2.8 Preparation of CytoTox-ONE kit 
 

• CytoTox-ONE assay buffer – Provided ready to use. 

• CytoTox-ONE Reagent – CytoTox-ONE was reconstituted by the 

addition of 10 mL of CytoTox-ONE assay buffer to the bottle. This 

was then allowed to equilibrate for 15 min, as to the manufacturers 

specifications. 

• Stop solution – Provided ready to use. 

 

2.2.9 Preparation of MycoAlert kit 
 

• MycoAlert Assay Buffer – Provided ready to use. 

• MycoAlert Substrate - substrate was reconstituted by the addition of 

6000 µL of MycoAlert Assay Buffer to the bottle.  

This equilibrated for 15 min at room temperature to ensure complete 

rehydration, as to the manufacturer’s specifications. 
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2.3 Cell lines 
 

The cell lines used in this study were all obtained from ECACC apart from 

the melanoma cell lines, which were a kind gift from Professor Rees at 

Nottingham Trent University.   

 

2.3.1 Freezing and thawing of cells 
 
The cells were frozen in 1ml aliquots at concentrations between 2 - 5 x 

107cells.ml-1 in the appropriate media, containing 10% (v/v) foetal calf 

serum (FCS) and 10% (v/v) dimethyl sulphoxide (DMSO). The cells were 

thawed in a 37oC water bath and washed in warmed media and 

centrifuged for 5 minutes at 400 x g to remove any excess DMSO. The 

cells were then placed in 10 mL of fresh media and then into a T25 tissue 

culture flask.  

 
2.3.2 Cell culturing Suspension Cells 
 

All cells were cultured in a humidified, 5%(v/v) CO2 incubator at 37oC in 

the appropriate complete media containing 10% (v/v) FCS, 2 mM L-

Glutamine, 50 units mL -1  penicillin and 50 µg.ml-1  streptomycin. The cell 

lines were sub cultured twice weekly or when they had reached an 

approximate cell density of 1 x106 mL1. 
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2.3.3 Cell lines Used 
 

Cells Cell Type Culture 

Media 

Suspension/Adherent Source 

Jurkat Acute human T cell 

lymphoblast 

RPMI Suspension ECCAC 

U937 Human histiocytic 

lymphoma 

RPMI Suspension ECCAC 

K562 Human chronic 

myelogenous 

leukaemia 

RPMI Suspension ECCAC 

CEM-7 Human acute T cell 

lymphoblast 

RPMI Suspension ECCAC 

HL60 Human 

promyelocytic 

leukaemia 

RPMI Suspension ECCAC 

FM-3 Human breast 

mammary cells 

 Adherent ECCAC 

A549 Human small cell 

lung cancer cells 

DMEM Adherent ECCAC 

Hep G2 Hepatocellular 

carcinoma 

 

DMEM Adherent ECCAC 

Ma Mel 26a 

Ma Mel 28 

Melanoma (human) 

Melanoma (human) 

RPMI Adherent Nottingham 

Trent 

University 

(OYSTER) 

 

MEWO 

COLD 794 

ESTDAB-

105 

WM 1205 

Melanoma (human) 

Melanoma (human) 

Melanoma (human) 

 

Melanoma (human) 

RPMI 

RPMI 

RPMI 

 

RPMI 

Adherent 

Adherent 

Adherent 

 

Adherent 

Nottingham 

Trent 

University 

(ESTDAB) 

     

 
Table 2.02: Cell Lines Used 
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2.3.4 Culturing Adherent Cells 

 

With the exception of the melanoma cell lines which were cultured in the 

same media as the suspension cells above, all of the adherent cell lines 

were cultured in 75 cm2 cell culture treated flasks in Dulbecco’s Modified 

Eagles Medium (DMEM) media supplemented with 10% (v/v) heat 

inactivated foetal bovine serum, 1% (v/v) L-Glutamine (2 mM), 1% (v/v) 

penicillin (50 U.ml-1) / streptomycin (50 μg.ml-1).  The culture supernatant 

was carefully poured off and discarded. Enough trypsin EDTA solution 

(100 mg porcine trypsin, 40 mg EDTA) was added to cover the bottom of 

the flask in use. The flask was then placed at 37oC in 5% (v/v) CO2 in a 

humidified atmosphere until the cells became detached from the bottom. 

The detached cells were transferred to a sterile universal tube (25 cm2), 

media added to wash off the trypsin and centrifuged for 5 minutes at 400 

x g. The supernatant was removed from the tube and the cell pellet re-

suspended in fresh media. The cells were sub cultured from this into a 

fresh flask containing media. Generally a 1:10 dilution is carried out.  

 

2.3.5 Counting cells 
 

50 μl of cells were diluted with 50 μl of 0.4% (w/v) trypan blue and the 

cells were counted on a haemocytometer. This 1:2 dilution factor was 

incorporated into the calculation below. The cells with damaged 

membranes take up trypan blue and appear violet in colour. Normal cells 

do not take up trypan blue and appear colourless when viewed with the 

aid of a light microscope. Cell counts were taken both of viable and non-

viable cells by: 

 

Average of number of cells x dilution factor x 104 = cell count per mL.  

 
Figure 2.01:  Calculation for the counting of cells (Sigma). 
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2.3.6 Mycoplasma Testing 
 

Mycoplasma species can be found in many research laboratories. A cell 

culture with mycoplasma occurs due to contamination from individuals or 

contaminated cell culture medium ingredients. As they are physically 

small (< 1 µm) and cause no visible changes to the cell culture media, 

they are very difficult to detect with only a conventional microscope. 

Eventually severe mycoplasma contamination will destroy the cell line. 

MycoAlert® has been designed to detect cellular contamination by 

bioluminescence within 15 min.  

 

All reagents were initially brought up to room temperature prior to 

reconstituting the MycoAlert® substrate in 600 µl of MycoAlert® assay 

buffer. After 15 min of rehydration, 2 mL of cell culture was transferred 

into a centrifuge tube and the cells spun at 200 g for 5 min. 100 µL of 

supernatant was then transferred into a luminometer cuvette and the 

luminometer programmed to take a 1-second integrated reading. 100 µL 

of MycoAlert® Reagent was added to each sample and after 5 min a 

reading taken (reading A). 100 µL of MycoAlert® substrate was added to 

the same tube and after 10 min a second reading is taken (reading B). 

The ratio of reading B to A is used to determine whether a cell culture is 

contaminated by mycoplasma. The test is designed to give a ratio of less 

than 1 with uninfected cultures and a ratio of greater than 1 for cells 

infected with mycoplasma. 
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2.4 The structure, mechanism and preparation of the Apoptosis 
inducing agent 
 
The following apoptosis inducing agents were well known cytotoxic 

agents used by Lonza Bio Science. The required cytotoxic concentrations 

of the drugs with the majority of cell lines assayed in this project had 

already been researched and were reliable cell models that could be used 

in the wok-up of the ToxiLightTM assay. 

 
2.4.1 Structure and mechanism of apoptotic agents 
 
   

 
Figure 2.02:  Structure of Camptothecin 

 

Camptothecin is a pale yellow solid and a DNA topoisomerase I 

inhibitor. The unique mode of action for this potent cytotoxic compound 

was found to be the inhibition of an enzyme known as DNA 

topoisomerase I. Camptothecin traps this enzyme, inhibiting DNA 

replication and killing the cancer cells. (Calbiochem, 1999) 
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Figure 2.03:  Structure of Vindesine 

Vindesine is a vinca alkaloid, which is a synthetic derivative of 

vinblastine. It binds to the microtubular proteins of the mitotic spindle, 

leading to crystallisation of the molecule and mitotic arrest or cell death 

in metaphase. The vinca alkaloids are considered to be cell cycle 

phase-specific.  

 

Doxorubicin 

 
 
Figure 2.04:  Structure of Doxorubicin 

 

Doxorubicin is an anthracycline antibiotic produced by the fungus 

streptomyces peucetius. Doxorubicin damages DNA by intercalation of 

the anthracycline portion, metal ion chelation, or by generation of free 

radicals. It has also been shown to inhibit DNA topoisomerase II which 

is critical to DNA function. Cytotoxic activity is cell cycle phase-

nonspecific. (Thakkar and Potten, 1993). 
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Cisplatin 
 

 
 
Figure 2.05:  Structure of Cisplatin 

 

Cisplatin was first synthesised in 1845, but its cytotoxic properties were 

not described until 1965. Cisplatin is an inorganic complex formed by 

an atom of platinum surrounded by chlorine and ammonia atoms. 

Intracellularly, water displaces the chloride to form highly reactive 

charged platinum complexes. These complexes inhibit DNA through 

covalent binding leading to intrastrand, interstrand, and protein cross-

linking of DNA. Experimental and clinical data suggest that cisplatin 

enhances radiation therapy effects. Early studies suggested that 

cisplatin was cell cycle phase-nonspecific, while more recent studies 

have shown complex and variable effects on the cell cycle. 
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Dexamethasone 
 
 

 
 
Figure 2.06:  Structure of Dexamethasone 

 

This white solid is an active and highly stable glucocorticoid. It inhibits 

the expression of inducible but not constitutive nitric oxide synthase in 

vascular endothelial cells. Dexamethasone is also known to enhance 

active cation transport in aortic smooth muscle cells by stimulating the 

sodium-potassium pump. It is a drug used to induce apoptosis in 

human thymocytes.  

 

 

Trichostatin A 
 
 

 
 
 
Figure 2.07 Structure of Trichostatin A 
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Trichostatin A is a potent reversible inhibitor of histone deacetylase 

(HD) and selectively inhibits the removal of acetyl groups from the 

amino-terminal lysine residues of core histones, which modulates the 

access of transcription factors to the underlying genomic DNA. 

Trichostatin A mediates the activation of O6-methylguanine-DNA 

methyltransferase (MGMT). It may be involved in cell cycle progression 

of several cell types, inducing cell growth arrest at both G1 and G2/M 

phases. In some cases it can induce apoptosis. 

 

2.4.2 Preparation of the apoptosis inducing agents 

 

All the cytotoxic agents below were reconstituted in DMSO to produce the 

stock concentrations listed:  

 

 

 

 

 

 

 

 
Table 2.03: Table to illustrate the cytotoxic drugs used. 

 

 
2.4.3 Preparation of apoptotic models 

 

The cells were seeded at 5 x 105 cells.ml-1. 1 ml of the cell suspension 

was transferred into 8 wells of a 12 well plate and the cells were dosed 

with the following concentrations of cytotoxic drug depending upon the 

model being prepared. 

 

Cytotoxic Agent Stock Concentration 

Camptothecin 5 mM 

Cisplatin 1 mg. ml-1 

Dacarbazine 20 mM 

Dexamethasone 25 mM 

Doxorubicin 10 mg.ml-1 

Trichostatin A 1 mM 

Vindesine 1 mg. ml-1 
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Following dosing, the cells were incubated at 37oC in a humidified 

atmosphere of 5% (v/v) CO2, 95% (v/v) air for the required incubation 

time indicated in table 2.04. 

 
Cytotoxic Drug Incubation Time (h) Dosing Range (μM) 

Camptothecin 24 0, 0.5, 0.1, 1, 2, 5, 10 

Cisplatin 24, 48, 72 0, 0.1, 0.2, 0.5, 0.8, 1 

Dacarbazine 24, 48, 72 0, 0.03, 0.06, 0.13, 0.25, 0.5, 1, 2 

Dexamethasone 72 0, 10, 25, 50, 75, 100, 150, 200 

Doxorubicin 24, 48, 72 0, 0.1, 0.2, 0.5, 0.6, 0.8, 0.9, 1 

Trichostatin A 24, 48, 72 0, 0.2, 0.4, 0.6, 0.8, 1, 2, 5 

Vindesine 24, 48, 72 0, 0.2, 0.5, 1.0, 2, 5 

 
Table 2.04:   Table to show the cytotoxic cell models used to induce cell death. 

 

2.4.4 Preparation of Necrotic model 
 

2.4.4.1 Freeze-thaw Method 
 

2mls of suspension (1 x 106 cells.ml-1) were placed into two cryotubes. 

Another 2 mL was placed in a 25 ml universal tube and left at room 

temperature to give healthy control cells. The cryotubes were placed in 

liquid nitrogen until frozen and then immediately immersed in a water bath 

at 370C. This was repeated six times until all the cells had burst open. 

Using trypan blue exclusion the viability of the cells was checked. When 

100% cell death had occurred the healthy and necrotic cells were mixed 

as shown in table 2.05 to make up 1 ml samples and 100 μl placed in 

triplicate into a 96 well white walled plate. 

 

The cells were then mixed as per the following table (for a total 1 ml 

volume). A 100 μl volume was taken and placed in triplicate into a 96 well 

white walled plate for analysis. 
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% 

Necrosis 
0 10 30 50 60 80 90 100 

Volume 
necrotic 
cells (μl) 

0 100 300 500 600 800 900 1000 

Volume 
healthy 
cells (μl) 

1000 900 700 500 400 200 100 0 

 
Table 2.05:  Table to show the volumes required for differing percentage necrosis 
samples. 
 

2.5 Cell Number Dilutions 
 

Cells were diluted 1:10 in complete media as per the table below. A 100 

μl sample was placed in triplicate into a 96 well white walled plate for 

analysis.  

 

Cell Number (mL.-1) Volume of cell suspension 

(μl) 

Volume of complete media 

(μl) 

1 x 106 1000 0 

1 x 105 100 (of above) 900 

1 x 104 100 (of above) 900 

1 x 103 100 (of above) 900 

1 x 102 100 (of above) 900 

1 x 101 100 (of above) 900 

0 0 1000 

 
Table 2.06 Table to show the volumes required for a cell number curve. 
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2.6 Effect of measuring the ToxiLight® assay with / without 
cells present in the test sample. 

 
Two tubes containing K562 cells seeded at 5 x 105 cells.ml-1 were spun 

down to eradicate any cells present in the media. One tube was sampled 

for the supernatant in 100 µl volumes in triplicate into a 96 well plate. The 

second tube was vortexed to re-suspend the cells, then sampled in 100 µl 

volumes in triplicate as per the first tube. The samples in the 96 well plate 

were then analysed by ToxiLight® as described in section 2.8.3.3.  

 

2.7 Preparation of Standards 
 

2.7.1 ATP Standards 

 

From a stock concentration of 10 μmol.ml-1, ATP was diluted 1:10 in Tris 

Acetate Buffer or complete media as shown in the table below to produce 

the required concentrations of ATP. A control was set up consisting of 

Tris Acetate Buffer or complete media alone. 

  

 

ATP Standard (nmol.ml-1) Volume of ATP 

(nmol.ml-1) (μl) 

Volume of complete media 

or Tris acetate buffer  (μl) 

10,000 1000 0 

1000 100 (of above) 900 

100 100 (of above) 900 

10 100 (of above) 900 

1 100 (of above) 900 

0.1 100 (of above) 900 

0 0 1000 

 
Table 2.07: Table to show the dilutions and volumes required for ATP standards. 
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The standards were left on ice throughout the procedure until required 

when 100 μl was placed in triplicate into a 96 well white-walled 

bioluminescent plate. 

 
2.7.2 Myokinase standards 
 

AK standards from a stock concentration of 1 M were diluted down 1:2 

from 1 x 10-3 U.μl -1 in Tris Acetate Buffer as shown in table 2.08 to 

produce the following concentrations of AK with a blank consisting of Tris 

Acetate Buffer. The standards were left on ice throughout the procedure 

until required when 100 μl was placed in triplicate into a 96 well white-

walled plate. 

 

 

 

 

 

 

 

 

 

 
Table 2.08:  Table showing the dilutions and volumes required for differing AK 
standards 

AK Standard (U.μl-1) Volume of AK (U.μl-1) 

(μl) 

Volume of  Tris acetate 

buffer  (μl) 

1x10-2U.μl 1000 0 

1x10-3U.μl 400 (of above) 3600 

5x10-4U.μl 2000 (of above) 2000 

2.5x10-4U.μl 2000 (of above) 2000 

1.25x10-4U.μl 2000 (of above) 2000 

6.25x10-5U.μl 2000 (of above) 2000 

0 0 2000 
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Methods 
 

2.8 Measurement of cell viability 

 

The ability of the cell to exclude various dyes indicates the maintenance 

of the cell membrane integrity and hence the viability of the cell. 

 

2.8.1 Measuring Cell Permeability with PI 
 
PI is also used to assess plasma membrane integrity and cell viability. 

200 µl of cell suspension was placed into a round bottom FACscan tube 

and 200 μl of PI (50 μg.mL-1) added, mixed and incubated for 10 min at 

room temperature. The cells were analysed to assess PI uptake with a 

Becton Dickinson FACScanTM Flow Cytometer where 5,000 events were 

counted. The compensation settings were not required due to only one 

fluorescent dye being monitored in this project (Darzynkiewicz et al., 

1992). 

 

2.8.2 Uptake of Trypan Blue 
 

Cells were mixed with Trypan blue as detailed in section 2.3.5. The cells 

were counted and analysed under a light microscope. Membrane integrity 

was assessed by the number of cells that could take up the dye 

(appearing blue under the microscope (Gorman et al., 1996)). 
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2.8.3  Assays used to measure cytotoxicity 

 

2.8.3.1 Measurement of ATP (ViaLight HS, Lonza BioSciences) 

 

ATP was measured using bioluminescence based on the luciferin-

luciferase reaction: 

 
                                  Mg++ 

ATP + Luciferin + O2                Oxyluciferin + AMP + PPi + CO2 + LIGHT 
                               Luciferase 

 

ATP was measured using the ViaLight BioAssay Kit (Lonza BioScience) 

according to the manufacturer’s instructions. Briefly, 100 μl of Nucleotide 

Releasing Reagent (NRR) were added manually to 100 μl of cells and 

incubated at RT for 5 minutes. If cells had been grown up in volumes 

greater than 100 μl, an equal volume (to the culture volume) of NRR were 

added and the sample incubated for 5 minutes at RT. 180 μl of the cell 

lysate was subsequently transferred to a luminometer compatible plate. 

The plate was read in a luminometer, programmed to inject 20 μl of 

reconstituted ATP Monitoring Reagent (AMR) to each well and an 

immediate 1-second integrated reading was taken and expressed as 

relative light units (RLUs). Data were expressed as mean +/- SD of 

triplicates.  

 

2.8.3.2 Measurement of ATP (ViaLight Plus, Lonza BioSciences) 

 

This method was used as an alternative to the original ViaLight Plus in 

the latter parts of the study. The ideology is the same but the 

methodology slightly different. It was used due to its good stable readings 

in comparison to ViaLight Plus, making it more flexible.  
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Briefly, 100 μl of cells to be measured were added manually into a cell 

culture plate. If an experiment is already set up then a total well volume of 

100 μl is required. 50 μl of cell lysis reagent is added to the wells and 

incubated at RT for 10 minutes. 100 μl of the reconstituted ViaLight Plus 

reagent is then added manually to the wells and after 5 min incubation at 

RT the amount of ATP in the cell was measured on a luminometer, using 

a 1 second integral reading and expressed as relative light units (RLUs). 

Data were expressed as mean +/- SD of triplicates. 

 

2.8.3.3 Measurement of Adenylate Kinase (AK) (ToxiLight, 
Lonza BioScience) 

 

The adenylate kinase assay was developed over an initial period of two 

years as part of my PhD research and was undertaken by myself. The 

optimisation of the assay was carried out using various concentrations of 

luciferin, luciferase, ADP, and magnesium (proprietary information) with a 

preliminary release of the assay (ToxilightTM) at the end of 2002. The 

second phase of the assay included the optimisation of the assay buffer 

to improve the signal stability along with the introduction of a 100% cell 

lysis reagent prior to a second launch in 2004. Due to confidentiality with 

respect to the product formulation, the initial work-up and concentrations 

tested are not shown in this thesis but the assay performance and steps 

undertaken at each level is shown at each point of assay development.  

 

The basis of the novel AK assay was to measure the release of the 

enzyme adenylate kinase (AK) from cytolytic cells using bioluminescence 

based on the conversion of ADP to ATP. This is detected by the luciferin-

luciferase reaction and measured as light: 
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                   AK 

Mg++ATP + AMP    Mg++ADP + ADP 

 

 

This was measured using the Toxilight BioAssay Kit (Lonza Bio Science) 

according to the manufacturer’s instructions. Briefly, 100 µl of 

reconstituted AK Detection Reagent (AKDR) were added manually to 

triplicate samples of 100 µl or 20 µl of experimental cell supernatant in a 

96 well plate. After a 5-min incubation period, the amount of AK released 

from the cell was measured on the luminometer, using a 1 s integral 

reading and expressed as relative light units (RLUs). Data were 

expressed as mean +/- SD of triplicates. 

 

 

2.8.3.4 CytoTox-OneTM Homogenous Membrane Integrity Assay 
(LDH) 

 

LDH released from cytolytic cells was measured using CytoTox-OneTM 

Homogenous Membrane Integrity Assay (Promega) according to the 

manufacturer’s instructions. The experiments were either set up in 

triplicate in 96 well clear bottom plates in the case of adherent cells or 12 

well or 6 well clear, tissue culture plates when using suspension cell 

cultures. The suspension cultures were pipetted into 96 well plates after 

treatment.  

 

To each well of the 96 well plate containing 100 μl of cell suspension 100 

μl of CytoTox-OneTM. Reagent were added and incubated at room 

temperature for 10 min. At the end of 10 min, 50 μl of stop solution were 

added and the fluorescence was measured at an excitation wavelength of 
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590 nm. The amount of LDH release was measured using the Wallac 

Victor2 1640 work station and expressed as fluorescent light units (FLUs). 

 

2.8.3.5 Cell Proliferation Reagent WST-1 assay (4-[3-(4-

iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) 

 
The ability of viable cells to metabolise a formazan dye to induce a colour 

change was measured using WST-1 (Roche) according to their 

instructions. Cells were cultured in 100 µl volumes in clear-bottomed 96 

well plates. 

After the incubation period, 10μl of cell proliferation reagent WST-1 was 

added to each well and the cells were incubated for a further 30 min to 4 

h in a humidified atmosphere. 

The plate was then shaken for 30 s and read on a spectrophotometer at 

an absorbance of 470 nm. The cell viability was measured and expressed 

as the absorbance (Abs.) Data were expressed as mean +/- SD of 

triplicates. 

 

2.8.3.6 Cell Proliferation assay XTT (sodium 3’-[1-phenylamino)-

carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene-sulfonic acid 

hydrate 
 

The ability of viable cells to metabolise a formazan dye to induce a colour 

change was measured using XTT, a colourimetric assay available from 

Roche according to their instructions. The experiments were either set up 

in triplicate in 96 well clear bottom plates or 12 well or 6 well clear, tissue 

culture plates. If in 12 or 6 well plates, the suspension cultures were then 

pipetted into 96 well plates.  
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XTT labelling reagent and electron coupling reagent were prepared by 

adding 0.1 mL of electron coupling reagent to a test tube containing 5mls 

of XTT labelling reagent and swirling to mix thoroughly. 

 

To each well containing 100 μL of cells 50 μL of XTT labelling mixture 

was added. The plate was incubated for 4 to 24 h in a humidified 5% CO2 

(v/v) atmosphere. Readings were taken using a spectrophotometer at a 

wavelength between 450 to 500 nm. The cell viability was expressed as 

the absorbance (Abs.). Data were expressed as mean +/- SD of 

triplicates. 

 

2.8.3.7 Cell Titer 96 AQueous Non-Radioactive Cell Proliferation 
Assay  

 

The ability of viable cells to metabolise a formazan dye to induce a colour 

change was measured using the Cell Titer 96 assay. It works by utilising 

the tetrazolium compound, MTS ([3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt; 

MTS) (Promega) and the electron coupling reagent phenazine 

methosulfate (PMS).  MTS is chemically reduced by cells into formazan, 

which is souble in tissue culture medium. The assay measures 

dehydrogenase enzymes found in metabolically active cells.  

 

The assay was carried out according to the manufacturer’s instructions. 

The experiments were either set up in triplicate in 96 well clear bottom 

plates or 12 well or 6 well clear, tissue culture plates. The suspension 

cultures were then pipetted into 96 well plates. If in 12 or 6 well plates, the 

suspension cultures were then pipetted into 96 well plates.  

 

100 μl of the PMS solution were added to the test tube containing 2 mL of 

MTS solution and swirled to completely mix the MTS and PMS solution. 
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To each well containing 100 μl of cells 20 μl of combined MTS/PMS 

solution were added. The plates were incubated for 1 – 4 h at 37oC in a 

humidified, 5% CO2 (v/v) atmosphere. Following this, the absorbance was 

measured at 490 nm using an ELISA plate reader. 

 

 
2.8.3.8 Inducing Necrotic Cell Death  

 

To obtain 100% cell death by primary necrosis several methods were 

employed: 

 

• Freeze-thaw fracture - the cells were frozen in a 1ml cryotube and 

immersed in the container containing liquid nitrogen for 5 min, 

followed by thawing in a water bath at 56oC. This process was 

repeated five to six times to ensure that all the cells are lysed. This 

was checked using Trypan Blue exclusion, which can rapidly 

assess cell viability and thus confirm whether or not 100% necrosis 

had occurred. (Necrotic cells are stained blue by this dye). 

• Heating at 56oC (in a water bath) for an hour assessed by Trypan 

Blue exclusion  

• Lysis with detergent – to the wells containing culture sample, 100 µl 

of detergent (nucleotide releasing reagent) was added and left for 

at least 10 min at room temperature. 
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2.8.3.9 Fluorescent Microscopy Assessment 

2.8.3.9.1 Acridine Orange/Ethidium bromide and fluorescence 
microscopy 
 
Staining of suspension culture cells. 

The cell suspension was spun at 400 x g for 5 min and the supernatant 

carefully removed. 100 μl of the working solution (3 μg.mL Acridine 

orange and 10 μg.mL Ethidium bromide) was added. Approximately 50 μl 

of stained cell suspension was placed onto a slide and covered with a 

cover slip. The edges of the cover slip were sealed with clear nail varnish 

and examined using a fluorescent microscope.  

 

Staining of adherent cells. 

The adherent cells were cultured on chamber slides. The culture medium 

was removed and replaced with just enough working solution (3 μg.mL 

Acridine orange and 10 μg.mL Ethidium bromide) to cover the slides. It 

was mounted with a cover slip and sealed round the edges with nail 

varnish. The slide was examined as soon as possible using a 

fluorescence microscope. 

 

2.8.3.9.2 JC-1 Staining  

 

Staining cells.  

250 μl of the filtered JC-1 were added to 120 μl of the experimental cells 

to be analysed prior to incubating for 30 min at 37oC in a 5% (v/v) CO2, 

95% (v/v) air humidified incubator.  

 

The percentage of red and green fluorescence was estimated by flow 

cytometry or by fluorescence microscopy.   
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2.8.4  Preparation of Chromium51 release Cytotoxicity Assay  

 

This assay was carried out by Murrium Ahmad as part of her PhD work at 

the Nottingham Trent University under Home Office approval. No 

radioactive suite was available at Lonza Bio Science. 

The project licence number was 40/2414. 

 

2.8.4.1 Tumour Therapy Procedure 

 

CT26 tumour cells were cultured until they reached 75-80% confluence in 

a T75 tissue culture flask. The cells were harvested and used to inject the 

mice by shaving the site of injection. Subcutaneous CT26 tumours were 

induced by injection of 8 x 104 cells into the shaved right hand side flank 

of the animal. The tumours were allowed to develop for approximately 7 

days prior to the initiation of immunotherapy. 

 

2.8.4.2 Immunotherapy with DISC/mGM-CSF 

 

At the time of therapy (day 7-10), the tumours were approximately 0.04-

0.36 cm in diameter. The animals were injected intratumourally with 

approximately 2.5 x 107 PFU (plaque forming units) of DISC/mGM-CSF. 

A second injection was administered 3 days later. The animals were 

monitored for tumour growth and general health twice weekly. 

 

2.8.4.3 Chromium Release Cytotoxicity Assay 
 

Splenocytes were harvested, washed twice in serum-free medium, 

counted, re-suspended in CTL media at the appropriate concentration 

and used as the effector cells. The target cells were harvested by 

trypsinisation (for adherent cells), washed and labelled with chromium-51 

(Amersham, UK) for 1 hour in a 37oC water bath. The cells were washed 
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twice in serum-free media and centrifuged at 400 x g for 3 minutes to 

yield a cell pellet. The cells were re-suspended in CTL media to the 

appropriate concentration and used as the target population. The effector 

and target cells were co-cultured in a 96 well plate for 4 hours in a 

humidified lead container. Following the standard 4 hour Chromium 

release assay at 37oC, approximately 50µl of supernatant was transferred 

to a lumaplate (Packard, UK) and dried overnight in a drying cabinet prior 

to being counted on a Top-Count scintillation counter (Packard). 

 

The percentage cytotoxicity was determined using the following formulae: 

 

Percentage Cytotoxicity =  

 

(Experimental release – Spontaneous release) 

   (Maximum release – Spontaneous release) x 100% 
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2.9     Proteomic Samples 

 
2.9.1 Sample Preparation 

 

The cell samples obtained from the experiments were lysed and frozen at 

-80oC for MALDI-MS analysis. The cells were lysed in a lysis buffer 

containing 9.5 M urea, 2% (w/v) DTT (dithiothreitol) and 1% (w/v) OGP 

(n-octyl-beta-D-gluco-pyranoside). This enabled all the required proteins 

to be released from the cells ready for measurement. 

 

Prior to MALDI-MS analysis, the cells were thawed out, sonicated and put 

on ice. Repetitive freezing and thawing of the samples were prevented by 

aliquoting the samples in the required volumes for each experiment and 

thawing just prior to analysis on ice. 

 

2.9.2 Protein Micro assay 

A Bio-Rad protein micro assay was used to determine the protein 

concentration of all of the samples used in this study, aside from the 

serum samples. This assay proved to be the most appropriate to use as 

most other kits available were not compatible with the 9.5M urea present 

in the lysis buffer. 

 

A BSA protein standard was made up to concentrations of 0, 2, 4, 6, 8, 

10, 12, 14, 16, 18, 20 µg in water to a total volume of 800 µl. Two 

eppendorf tubes were set up for every sample with 795 µl of water and 5 

µl of sample. 5 µl of cell lysis buffer and 795 µl of water were used as the 

negative control. 200 µl of undiluted Bio-Rad protein assay dye 

concentrate was added to each eppendorf and left to incubate for 15 min 

at room temperature.100 µl of sample from each eppendorf was then 

aliquoted into a 96 well plate and the absorbance determined using a 

spectrophotometer at 595nm. 
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2.9.3   Control samples used in MALDI analysis 

 

2.9.3.1 QC samples 

 

QC samples were required on all MALDI test plates to ensure the good 

quality of the data. The samples used were obtained from human blood 

where serum was extracted, a well studied and recognised QC 

methodology used at the Nottingham Trent University. To obtain the 

serum, healthy donor blood samples were collected. After clotting at RT 

for 30 min, the collected blood was centrifuged at 2500 g for 15 min. The 

separated serum was aliquoted and stored at -80oC.  

 

An aliquot of a QC sample was diluted in 0.1% (v/v) TFA at a ratio of 1:20 

and processed along with other samples. After data acquisition by 

MALDI-MS, the spectra were checked visually.  

 

The profiles of these QC controls could be checked on each run to check 

for any potential sample processing errors both on the MALDI-MS and the 

Xcise.  For every 50 samples in an experiment, five QC samples were 

included in the run.  

 
2.9.3.2 BSA samples 

BSA samples were fundamental controls on the MALDI plate. These 

ensured the trypsin was in good working order for the tryptic digest and 

therefore peptide analysis.  Five BSA samples were included for every 

fifty samples run. The BSA was made at a concentration of 0.1 mg.ml-1 in 

water and stored at -80°C. 
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2.9.3.3  Blanks 

Blanks, which consisted of 0.1% (v/v) TFA, were used to detect any 

contamination on the MALDI plate. As all the samples had been diluted in 

0.1% TFA, analysing these blanks played a vital role in investigating the 

peaks obtained in the sample profiles. Ten blanks were included for every 

50 samples, in each run.  

 

Contamination can also occur due to unclean MALDI plates. The MALDI 

target plates are repeatedly used, and therefore the control blanks will 

reveal any contamination on the plate (i.e. from the previous samples).  

 

2.9.4      Sample processing on the Xcise robotic system 
 

An automated sample processor Xcise robotic system was utilised for 

sample preparation and processing prior to MALDI-TOF analysis. The cell 

samples from control and treated melanoma samples were diluted to 0.1 

μg.ml -1 in 0.1% (v/v) trifluoroacetic acid (TFA) for the Ma Mel 26a cells. A 

more concentrated amount was used for Ma Mel 28 and MEWO cells 

where the cells were diluted to 0.5 μg.ml-1 in 0.1% (v/v) trifluoroacetic acid 

(TFA).  

 

2.9.4.1 ZipTip Method 

 

25 µl volumes of the samples were placed into a 96 well plate. The 

positions of the samples in the 96 well plates were randomly selected 

using a Microsoft Excel computer program. They were then processed on 

the Xcise robotic system and the ZipTipping procedure was carried out. 

The samples were bound to the ZipTip with 25 cycles of binding, followed 

by two washes in 0.1% TFA, where the washes were discarded. The 

samples were eluted off of the ZipTip in 4 µl of 80% ACN + 0.1% TFA. At 

the end of the Xcise run, 1 µl of eluted samples had been spotted onto 
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the MALDI target plate followed by 1µl of sinapinic (SA) matrix solution 

containing 12 mg of sinapinic acid (SA) in 1 ml of 50% (w/v) ACN, 50% 

(w/v) TFA. In the case of tryptic peptides, 1 µl of the eluted sample 

contained 1 µl of matrix solution of 12 mg α-cyano-4-hydroxycinnamic 

acid (CHCA) in 1 mL of 50% (w/v) ACN. The samples were randomly 

spotted in duplicate on the MALDI target and then analysed by MALDI-

TOF MS. 

 

2.9.4.2 Preparation of the control calibration mixtures for MALDI-
MS 

 

Calibration mixtures were used in the study to calibrate the instrument for 

accurate mass measurements of the proteins. Every 4 spots of samples 

were calibrated according to one calibration spot in the middle.  

 

Two separate calibration mixtures were used. For proteins, protein 

calibration mix 2 (Laser Bio Labs, Cedex France), which contained 

Cytochrome C (horse heart) m/z 12361.12, Myoglobin, (horse) m/z 

16181.06, Trypsinogen m/z 23981.98 and Insulin beta chain m/z 3494.65 

(5 µl of 5mM). In the analysis of tryptic peptide samples, peptide 

calibration mix 4 (Laser Bio Labs, Cedex France) was used. This mixture 

is based on monoisotopic masses and contains Bradykinin fragment 1-5 

m/z 573.31, Angiotensin ΙΙ m/z 1046.54, Neurotensin m/z 1672.91, ACTH 

clip (18-39) m/z 2465.19 and Insulin B-chain oxidized m/z 3494.65.  

 

To spot the calibration mixtures onto the MALDI plate, equal volumes of 

the appropriate calibration solution was mixed with the relevant matrix (10 

mg.ml-1 Sinapinic acid (SA) in 50% (w/v) Acetyl nitrate (ACN)  and 

50%(w/v) Trifluoroacetic acid (TFA) for protein and 10 mg.ml-1 α-cyano-4-

hydroxycinnamic acid (CHCA) in 50%(w/v) ACN/50/%(w/v) TFA for 

peptide calibration mix). Subsequently, 1 µl of this solution was spotted 
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manually on the plate in the middle of every 4 sample spots. The 

calibration mixture was made-up fresh, spotted on the plate and dried 

overnight at room temperature prior to MALDI-MS analysis. 

 

2.9.4.3  MALDI-MS set-up and analysis 

The samples were analyzed using Axima CFR+ MALDI-TOF mass 

spectrometer (Shimadzu, Manchester UK) operated in linear mode for 

protein analysis with a mass range of 1000-20000 Da and reflectron mode 

for peptides analysis with a mass range of 800-3500 Da. The instrument 

was externally calibrated using a standard mixture of proteins or peptides 

in which 1 calibration spot was allocated for every 4 sample spots. Mass 

spectra acquisition was performed using autoquality mode for the 

peptides. 

Cell samples (lysed) diluted in
0.1%TFA to a final concentration

of 0.1mg ml or 0.5mg ml
of protein

C18 zip tip spotted on MALDI plate 
with SA and run in linear mode

(PROTEINS)

Tryptically digest sample and 
C18 zip tip spotted on MALDI plate 

with CHCA and run in reflectron
mode

(PEPTIDES)

BIOINFORMATICS

Cell samples (lysed) diluted in
0.1%TFA to a final concentration

of 0.1mg ml or 0.5mg ml
of protein

C18 zip tip spotted on MALDI plate 
with SA and run in linear mode

(PROTEINS)

Tryptically digest sample and 
C18 zip tip spotted on MALDI plate 

with CHCA and run in reflectron
mode

(PEPTIDES)

BIOINFORMATICS

 
Figure 2.08: Summary workflow for cell sample processing and analysis using Xcise 
sample processor and MALDI-MS for mass analysis.   
 
 
2.9.4.4  Identification using MALDI MS-MS 
 
The original samples containing the ions of interest were manually zip-

tipped using a C18 column. The column was conditioned twice with 200 µl 

of 80% ACN and 200 µl of 0.1% TFA. The sample was then bound to the 

column at 1mg/ml and eluted off with increasing concentrations of ACN 
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diluted in 0.1% TFA. Concentrations used for elution were 5%, 10%, 20%, 

30%, 35%, 40%, 43%, 45%, 48%, 50%, 60%, 70%, 80% and 90% of 

ACN. Each of the eluted samples were analysed by MALDI MS- MS. 

 
 

2.9.5        Bioinformatics analysis 

 

The spectra obtained from the samples were visually checked and the 

m/z values for the peptides from 800 to 3500 Da were used. The 

approved spectra were imported to a format called ASCCI files and the 

data was smoothed and merged to reduce the dimensionality using 

SpecAlign software which is available online. The data was also baseline 

corrected to remove any background noise from the spectra. Using an in-

house programme designed by Nottingham Trent University, the data was 

investigated using stepwise analysis. This determines minimum inputs for 

correct classification of data and provides ion interaction.  

MALDI-MS data

Using in-house 
programme, 

stepwise analysis 
was carried 

out

Baseline 
correction

Smoothing

Merging

Exporting peaks 
from MALDI data

as ASCCI files

 
Figure 2.09: Summary workflow of Bioinformatics analysis   
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2.9.5.1 ANN analysis – step wise approach 

The inputs into the ANNs consisted of 23001 variables specifying the 

intensity at given binned m/z values for every sample analysed by MALDI. 

The samples were split into training (60%), test (20%) and validation or 

blind (20%) data sets. The ANNs were trained using the training set and 

the network error with regards to the predictive performance was 

monitored with the test data set, which was unseen during training. Once 

this error failed to improve for a pre-determined number of training events 

(epochs), training was terminated and the model validated on the blind 

data set. A linear regression output function was used to map the output 

variables, where the sum-squared error function was used. The training 

was performed using a back-propagation (BP) algorithm until the error no 

longer improved for 10,000 epochs, followed by a conjugate gradient 

descent (CGD) algorithm for 3000 epochs at a learning rate of 0.1 and a 

momentum of 0.5. Once this error failed to improve for a pre-determined 

number of training events, training was terminated and the model 

validated on the blind data set. This process was repeated 50 times so 

that each sample was treated as truly blind a number of times, enabling 

confidence intervals to be calculated for the network predictions on blind 

data. The inputs were ranked in ascending order based on the mean 

squared error values for the test data and the input which was performed 

with the lowest error was selected for inclusion into the subsequent step. 

Next, each of the remaining inputs were then sequentially added to the 

previous best input, creating n-1 models each containing two inputs. 

Training was repeated and performance evaluated. The model which 

showed the best capabilities to model the data was then selected and the 

process repeated, creating n-2 models each containing three inputs. This 

continued until no significant improvement was gained from the addition 

of further inputs resulting in a final model containing the proteomic pattern 

which most accurately predicted between the two outcomes. 
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Chapter 3: A novel bioluminescent assay for necrotic cell 
death 

 
 
3.1 Introduction 
 
There are several assays currently employed that can potentially be used 

for prediction of patient responses to single agent and combination 

cancer therapy. Current treatment recommendations depend on carefully 

designed clinical studies in large patient populations and provide an 

individual patient with a probability for response based on clinically 

observed response rates. Complete remission does not mean that cancer 

cells are totally eradicated from the body but that their level is beyond the 

sensitivity of the assays used to detect them (Cree, 1998; Dawson and 

Whitfield, 1996; Kurth, 1997).  These assays measure cell death in two 

different ways. There are those which are based on the detection of 

viable cells left in a population, the assumption being that any remaining 

cells have died, which may not be the case in all instances. ATP, MTS 

and resazurin measurements in figure 3.11 reveal detection only in viable 

cells, and in the early stages of apoptosis. Alternatively, there are assays 

which are based on the detection of enzymes ‘leaked’ from cells or the 

ability of dyes to pass into cells when the cell membrane has been 

compromised (necrotic). LDH release is illustrated in figure 3.01 with 

detection only seen when the cell is permeabilised. The latter, are true 

assays of cell death as once the cell membrane is permeabilised the cell 

cannot recover.  
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Figure 3.01: To show how the mechanisms of cell death can be determined by 
measuring different markers of cell viability and apoptosis in vitro.  
 

 

The assays commonly used are the necrotic endpoint measurements of 

cell death including chromium-51 release (Bachy et al., 1999); Propidium 

Iodide uptake by cells (Ormerod, 1998); or measurement of lactate 

dehydrogenase (LDH) release from cells (Korzeniewski and Callwaert, 

1983; Decker and Lohmann-Mathes 1988; Sasaki et al., 1992). 

Alternatively, the assays which are based on the detection of viable cells 

left in a population include the fluorometric assay known as Alamar Blue 

(or resazurin); the colorimetric assays, WST-1, XTT and MTS (Petty et 

al., 1995; Marshall et al., 1995) and the bioluminescent measurement of 

ATP (table 3.01).  
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There are many cytotoxicity assays but the principle techniques are listed 

below in table 3.01. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3.01: To illustrate the fundamental cytotoxicity assays. 
 

There are several drawbacks to these assays. Chromium-51 (Cr51) 

involves the labeling of the target cells with radioactive material which is 

released upon the lysis of the cell and the resultant radioactivity 

measured. Apart from the major disadvantages associated with the 

handling of radioactive elements (Bachy et al., 1999), it also assumes that 

there has been 100% efficient loading of the target cells with the label. In 

addition, there is a great deal of spontaneous chromium51 release by 

cells, whether alive or dead, occasionally exceeding 50% over a three 

hour period. Thus, it is difficult to determine with precision how much 

chromium release is due to the drug and how much is caused by damage 

to tumor cells as opposed to non-tumor cells. Finally, because of the rapid 

spontaneous release, the duration of the assay is constrained to a period 

of only several hours. This means that long incubations with a cytotoxic 

drug is more problematic and when carrying out cell mediated cytotoxicity 

assays with target and effector cells large concentrations of the immune 

effectors is a necessity for a quick kill. 

 

Viability Assays Necrotic Assays 

Alamar Blue Chromium51 

WST-1 Propidium Iodide 

XTT LDH 

MTS  

ATP  
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Flow cytometry is the conventional method for measuring cell death 

(Omerod, 1998). Propidium Iodide (P.I), a fluorochrome that fluoresces 

red when it binds to DNA or double-stranded RNA, can be used to 

measure percentage apoptosis in fixed cells and cell viability and 

membrane permeability on unfixed cells. The size, granularity and 

fluorescent properties of a cell can be investigated by the analysis of their 

forward scatter (FSC-H) indicating cell size, side scatter (SSC-H) showing 

granularity of the cell and green (FL-1) and red fluorescent (FL-2) 

markers after staining with either one or two fluorometric dyes (Ormerod, 

1998; Becton Dickinson, 1997). 

 

Flow cytometry technology has been used to measure many of the 

processes during apoptosis and necrosis as it measures cells on a per 

cell basis (Ormerod, 1998). The cells of interest can be further analysed 

by the use of cell analysing technology using, for example the 

FACScaliber. Many of the proteins involved in apoptosis, such as the anti 

apoptotic protein Bcl-2 (Steck et al., 1996), have been detected and 

quantified. The correlation between the expression of Bcl-2 to Bax has 

also been successfully investigated where peripheral blood lymphocytes 

from a chronic lymphocytic leukaemia patient were stained with 

antibodies to Bcl-2, Bax and the general B-cell marker CD19. This data 

showed the tumour cells to have higher expression of the anti apoptotic 

protein Bcl-2 (Ormerod et al., 1998). In addition, lactate dehydrogenase 

(LDH) release is commonly used as a marker for necrotic cell death 

(Valentovic and Ball, 1998; Lash et al., 1995). Most cells contain LDH and 

when these cells are lethally injured, loss of membrane integrity can be 

assessed by monitoring activity of LDH in the incubation medium.  It is 

measured by an enzymatic assay that results in the conversion of 

resazurin into resorufin and can be measured on a fluorometer. This LDH 

reaction is illustrated in figure 3.02 below: 
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Figure 3.02: A schematic diagram to show the LDH reaction 

 

The addition of LDH assay reagent directly to cells in culture eliminates 

the need to transfer an aliquot of medium to a separate plate. The 

simplified procedure reduces errors introduced by multiple pipetting steps 

and conserves the time and expense of an extra assay plate. LDH 

(140kD) is relatively stable in culture medium once it is released from 

cells with compromised membranes. However, its half-life is still only 9-10 

h, making the interpretation of data over a prolonged period difficult when 

measuring precise quantitative measurements of cytotoxicity.  In addition 

to measuring cell death, it is also possible to measure total cell numbers 

of a cell population. The procedure requires the addition of a lysis solution 

to rupture the cell membranes, followed by measuring the total amount of 

LDH present: 

 

 
% Cytotoxicity = Experimental LDH (OD490) – Background values (OD490) 

                         Maximum LDH release (OD490) + Background values (OD490) 
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Another disadvantage of the LDH assay is that culture media 

supplemented with pyruvate will slow the rate of appearance of the 

fluorescent signal because it slows the conversion of lactate to pyruvate 

by LDH. An assay containing pyruvate may require up to 30 min 

incubation to reach its optimal signal compared to the normal 10 min.  

 

As illustrated in table 3.02 below, the amount of cell killing over a given 

period of time can be determined using dyes that are reduced or oxidised 

by the electron transport chain. These assays are measured by 

evaluating the remaining viable cells in a population after their exposure 

to these dyes. AlamarBlue® is a proven cell viability indicator that uses 

the natural reducing power of living cells to convert resazurin to the 

fluorescent molecule, resorufin. The active ingredient of alamarBlue® 

(resazurin) is a nontoxic, cell permeable compound that is blue in colour 

and virtually non-fluorescent.  Upon entering cells, resazurin is reduced to 

resorufin, which produces very bright red fluorescence. Viable cells 

continuously convert resazurin to resorufin, thereby generating a 

quantitative measure of viability and cytotoxicity.  

 

 

 

 

Table 3.02: Oxidation reduction potentials in the electron transport system and 
alamarBlue®. The midpoint redox potential (Eo’) values determined at pH 7.0, at 25°C. 
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The alamarBlue® indicator is ideally set up to detect oxidation by the 

whole of the electron transport chain. As can be seen from table 3.02, the 

midpoint potential of alamarBlue® is greater than that of any of the other 

components of the electron transport chain. alamarBlue® will be reduced 

by FMNH2, FADH2, NADH, NADPH and cytochromes, since their 

midpoint potentials are lower than that for alamarBlue®. Therefore, 

alamarBlue® is an excellent detector of reduction of all the elements of 

the electron transport chain (chapter 1). Given that alamarBlue® has a 

midpoint potential greater than the midpoint potential of the cytochromes, 

it can detect oxidation by all the components of the electron transport 

chain and it does not interfere with any of the redox reactions of the 

electron transport chain. 

An alternative redox indicator is tetrazolium salt (MTT, MTS or WST-1). 

MTT has a midpoint potential of -110 mV (table 3.02), which enables MTT 

to be reduced by the electron donors FMNH2, FADH2, NADH and 

NADPH. However, since the midpoint potential of MTT is intermediate 

between that of the electron donors and cytochromes, MTT will not be 

reduced by cytochromes. Furthermore, if MTT is reduced by FMNH2, 

FADH2, NADH or NADPH and the electrons released by these donors 

will not be passed to the cytochromes as would normally happen in the 

electron transport chain. This shuts down the respiratory chain. These 

assays detect cell proliferation and cell viability in a cell population, based 

either on the red colour change resulting from cleavage of a tetrazolium 

salt by mitochondrial dehydrogenases in viable cells (Kawada et al., 

2002; Marshall et al., 1995) or the reduction of the Alamar Blue to 

produce a bright fluorescent red colour. As well as the above assays for 

measuring viability, measurement of ATP, using the luciferase-luciferin 

reaction, is an established method to assess chemotoxicity in cell lines 

and tumours and to determine tumour growth inhibition by cytotoxic 

agents. ATP is essential for all cells to carry out their specific activities 
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including programmed cell death, as it serves as the primary donor of free 

energy.  

Apoptosis is an energy driven process that requires ATP to carry out its 

specialized functions (Cree, 1998). Reports have indicated the 

requirement for ATP during Fas mediated apoptosis for active nuclear 

exchange of large molecules across the membrane (Yasuhara et al., 

1997) it has also been suggested that whilst programmed cell death 

requires ATP, it is not necessary during necrosis (Tsujimoto et al., 1997). 

Depletion in cellular ATP levels is therefore an accurate indicator of the 

viability of a cell, as all cells have an absolute requirement for ATP 

(Crouch et al., 1993).  

 

The acknowledgement in 1947 by McElroy that the luciferase reaction in 

the Firefly (Photinus pyralis) required ATP led to an extensive 

investigation into the use of bioluminescence as a measure of ATP within 

cells. It was not until the 1980’s however that bioluminescence became 

more widely used within laboratories. Up until this time only crude 

luciferase / luciferin reagents were available to the researcher; this, 

combined with the poor methods of extraction of ATP and the lack of 

commercially available luminometers, led to extensive analytical problems 

(Lundin, 1993) and halted progress within this field. The development of a 

purified luciferase with a stable light emission in the late 1970’s however 

led to bioluminescence becoming the most widely used method of 

measuring ATP due to its ease, reproducibility and sensitivity over other 

assays. 
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                                             Luciferase 
ATP + Luciferin + O2                        Oxyluciferin + AMP + Ppi + CO2 + Light 

 
                                                    Mg++ 

 

Figure 3.03:  The luciferase reaction resulting in conversion of ATP to light 
 
 

The basic luciferin-luciferase reaction involves the presence of ATP 

(released by a detergent which renders cells permeable), luciferin, 

luciferase and magnesium as illustrated in figure 3.03. If all the factors in 

the reaction mechanism are constant it can be deduced that the light 

emission is linearly related to the concentration of ATP present within the 

sample. The emitted light is then detected by a luminometer and 

expressed as the relative light units (RLUs). 

 

It became apparent from the literature that all of the assays referred to 

above have their limitations either in the sensitivity of their detection 

limits, in the actual assay procedure requiring specialist knowledge and 

making them unsuitable for all users or indeed by the fact they required 

certain assumptions to be made in advance. The aim of the current 

research was to produce a novel assay involving the measurement of the 

enzyme adenylate kinase (AK) by bioluminescence. It is a ubiquitous 

enzyme and is integral to cellular function, being found in a diverse 

number of organisms. It is present in both eukaryotes and prokaryotes 

and has a low molecular weight of 20-25 kDa. It is most abundant in the 

mitochondria of tissues such as liver and muscle in which there is 

considerable energy turnover (Squirrell and Murphy, 1997).  It catalyses 

the equilibrium reaction: 
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           AK 

Mg++ATP + AMP    Mg++ADP + ADP 

 

Figure 3.04:  The adenylate kinase reaction resulting in conversion of ADP to ATP 

 

 

Squirrell and Murphy (1995) proposed the use of the intracellular enzyme 

AK as a bacterial marker in place of ATP. They used ADP as the 

substrate to drive the reaction in the direction of ATP synthesis (figure 

3.04). In addition, Squirrell and Murphy showed that AK can act as an 

alternative to ATP as a cell marker for bacteria providing a 10-fold 

increase in detection of sensitivity. A micron-sized bacterial cell contains 

about 10-21 moles of AK compared to 10-18 moles of ATP, so there are 

approximately 1,000 molecules of ATP for every molecule of AK. The 

small size of the AK would suggest that it may offer advantages in early 

detection and assay sensitivity of cytolysis compared to the current 

available assays which detect the leakage of much larger enzymes e.g. 

LDH (140kD). The assay sensitivity and suitability would be compared 

against the currently used assays. 

 

The aim of the research in this chapter was to use AK as a cell marker 

with ATP bioluminescence as the end detection point for cytotoxicity. As 

AK was revealed to be a very promising marker in the paper by Squirrell 

and Murphy (1995) it was discovered that this enzyme could be used in 

conjunction with the luciferase assay that Lonza Bio Science had already 

designed for detecting ATP in cells and had good sensitivity. If this novel 

assay had the potential to be even more sensitive than ATP, then its 

potential use as a cytotoxicity assay could be enormous. Due to 

proprietary information the specifics of the assay work-up cannot be 

shown in this thesis but the experimental processes and assay 

performance is demonstrated with various known cell lines used by 
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pharmaceutical companies in drug discovery. An AK detection reagent 

(named ‘ToxiLight®’ in this thesis), would be designed so it could be 

added to a cell culture and allow for the detection of AK leakage from 

damaged cells. The ToxiLight® assay would be based on bioluminescent 

detection using the reaction shown in figure 3.05. The light emitted would 

then be detected by a luminometer or Beta Counter and expressed as 

relative light units (RLUs).  

 
           AK 

Mg++ATP + AMP    Mg++ADP + ADP 

 
 

 

 

Luciferase + O2 + ATP  oxyluciferin +AMP + Ppi + CO2 + LIGHT 

Figure 3.05: The adenylate kinase reaction resulting in conversion of ATP to light 
 

The sensitivity of the developed ToxiLight® reagent would be investigated 

using enzyme standards (AK; myokinase from chicken muscle) followed 

by its suitability in cell-based assays. These cell models are standard 

cytotoxicity models used by Lonza Bio Science and the cells are those 

used by many drug discovery companies. The comparison of this novel 

bioluminescent measurement of cell death to currently used 

methodologies will be investigated and the sensitivity and informative 

value of all of these assays assessed.  

 

Therefore the initial aims of my research would be to: 

 

• Develop and optimise the assay. 

• Miniaturize the assay for high throughput screening. 

• Compare its suitability for use in cytotoxicity screening. 
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3.2 Results 

 

3.2.1 Formulation and Measurement of AK  
 
 
Initial experiments were carried out to determine the optimal 

concentrations of ADP, magnesium, luciferase and luciferin in the AK 

Detection Reagent using myokinase standards (as demonstrated in figure 

3.06). Initial experiments did not show a good linear response and the 

reagent had to be optimised by altering the concentrations of both ADP 

and magnesium substrates.  Eventually it was discovered that the ADP 

was causing the stability problems due to contamination of ATP within it. 

The ADP therefore had to be purified and then re-analysed within the 

reagent. In addition, the AK assay buffer had to be optimised and tested 

using various buffers until a stable signal was produced. This work was 

carried out over an 18 month period using both myokinase standards and 

cells. The assay was later optimised further to obtain improved signal 

stability by altering the AK assay buffer. The results in this chapter show 

the optimised reagent named ToxiLight® after formulation (which cannot 

be shown due to company confidentiality).  

 

The linearity of the ToxiLight® assay was verified by performing AK 

standard curves using the enzyme ‘myokinase’, a pure AK isolated from 

chicken muscle from a starting concentration of 25 µmole-1ml-1. The 

standards were serially diluted 1:1 in distilled water and plated into a 96 

well white luminometer plate in 100 µl aliquots in at least triplicates. The 

plate was measured using a Berthold MPL3 Luminometer, following 5 min 

of incubation at room temperature. The results from the serial dilutions 

(figure 3.06) show a linear detection response (R2=0.999). As the 

concentration of myokinase standard increased, the amount of AK 

measured by the assay also increased (shown by an increase in Relative 

Light Units (RLUs) detected).  
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Figure 3.06:  Myokinase standard (chicken muscle) was serially diluted 1:1 from 25 
µmole-1ml-1, in dH20. A 100 µl volume of detection reagent was then added to a 20 µl 
sample of myokinase and the sensitivity observed. The resulting RLUs were measured 
using bioluminescence on an MPL-2 luminometer to obtain an ATP/RLU +/- the standard 
error of the mean (n=7). 
 
N = number of experiments 
 

3.2.2 Measuring AK within cells 

 

As the ToxiLight® assay had shown excellent sensitivity with myokinase 

standards, the assay testing was extended to its use with cell lines and 

also to assess if sensitivity could be affected by different volumes of a test 

sample. Experiments were conducted using known cytotoxicity models 

routinely used by Lonza BioScience, Nottingham. The main cell lines 

used are revealed in table 3.03. 
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Table 3.03: Cell lines tested for assay optimisation. 

 

Cells were either dosed with the topoisomerase I inhibitor, camptothecin 

or with the alkylating agent mitomycin-C. Suspension cells were seeded 

at 5 x 105 cells.ml-1 whereas adherent cells had an initial cell density of 1 

x 105 cells.ml-1. Various concentrations of the drugs were added to the 

cells (See Chapter 2 for details) and after incubation for the required 

period the culture medium was sampled and measured for the release of 

the enzyme AK. For the initial testing on cell lines, U937 cells were used 

and dosed with camptothecin over a 20-h incubation period. U937 cells 

are small and therefore contain less AK than other cells. If AK can be 

detected in these cells then the assay sensitivity in other cells would be 

very good. After incubation a 100 μl volume sample of the cell culture 

medium was transferred into a 96 well luminometer plate. In conjunction 

with this a 20 μl sample was transferred into a 384 well plate to assess 

potential miniaturization.     

 

 

Suspension cell lines Adherent cell lines 

Human Histiocytic Lymophoma, 

U937 

Human breast cancer cell line FM-3 

Human acute T-Lymphoblastic 

leukaemic, Jurkat 

Human Hepatocyte Carcinoma cells 

HepG2 

Human Chronic Myeloid Leukaemic, 

K562 

 



                                                                                                                             Chapter 3 
 

 
Susan Catherine Gill 
PhD Thesis, 2009 

107 

0

50000

100000

150000

200000

250000

300000

350000

400000

0 50 100 500
CAM [nM]

R
LU

s 
(1

00
 u

l s
am

pl
es

)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

R
LU

s 
(2

0 
ul

 s
am

pl
es

)

96 well plate

384 well plate

 
Figure 3.07:  U937 cells dosed with camptothecin and incubated for 20 h. Samples of the culture 
supernatant containing cells were removed into fresh luminometer plates and were measured 
using the ToxiLight® assay on the TECAN ULTRA luminometer.  The y-axis on the left represents 
the RLUs for the 100 µl samples whereas the y-axis on the right hand side has the 20 µl samples. 
ATP/RLU +/- the standard error of the mean (n=4) 
 
Correlation between 96 and 384 well plate: R2 = 0.9963  
N = number of experiments 
 

Figure 3.07 shows a concentration dependent effect with a rise in the 

RLUs with increasing dosage of the drug. This means the RLUs 

generated denotes leakage of the enzyme AK from drug induced 

damaged cells showing the validity of this assay to detect necrotic cell 

death. In addition, these results revealed that the reaction had the 

potential for miniaturization. The correlation between the 96 and 384 well 

plate was >0.99. The 20 μl sample volumes in the 384 wells (shown on 

the right hand axis) produced less light than the 100 μl culture volumes 

(shown on the left axis) in the 96 well plates but this was predicted. The 

difference seen is due to the ratio of AK present in the samples tested. 

There is more AK present to turn over the reaction in the 100 µl sample 

than the 20 µl sample; hence you see a higher level of RLUs.  
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3.2.3 Effect of measuring the ToxiLight® assay with / without cells 
present in the test sample. 
 

The addition of the ToxiLight® assay reagent directly to cells grown in 

culture plates would eliminate the need to transfer an aliquot of medium 

to a separate plate. This simplified procedure reduces errors introduced 

by multiple pipetting steps and saves the time and expense of an extra 

assay plate. However, some cells are naturally suspended in the media 

and would be present in the assay wells tested as in figure 3.07. Does the 

presence of these cells affect the results of the assay or would the media 

have to be spun down to eradicate these cells? K562 cells were the 

chosen cell lines in this experiment due to their large size and therefore 

large quantities of intracellular AK. If the presence of viable cells in media 

did have an affect on the background levels of the assay, it would be 

seen in K562 cells.  

 

To determine whether the presence of cells did have an adverse effect on 

any results obtained in figure 3.07, K562 cells were seeded at 5 x 105 

cells.ml-1 and spun down to eradicate any cells present in the media 

(chapter 2.6 for methodology).The results were compared to samples 

from another tube treated in the same manner i.e. were spun down and 

then the cells re suspended back into the media, to ensure that spinning 

down the cells had no effect, on producing a false result. Both of these 

tubes were sampled in 100 µl volumes in triplicate. The results in figure 

3.08 show no significant difference in the RLUs when measuring the 

ToxiLight® assay with or without cells present in the test sample.  
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Figure 3.08: K562 cells sampled both with and without cells present in the media. 100µl samples 
were tested in triplicate using the ToxiLight® assay on the MPL-2 luminometer. The data is 
expressed as RLUs +/- the SEM (n=5).  
 
N= number of experiments 
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3.2.4 Suitability of the ToxiLight® assay compared to           
traditional assays 

  

There is no gold standard assay used in pharmaceutical companies for 

drug screening but assays that are chosen have to be suitable for high 

through-put (HTS) use. Pharmaceutical companies test thousands of 

potential drug therapies on a weekly basis and cannot therefore use 

assays that are time-consuming, inefficient and lack sensitivity. At the 

moment for cell-based HTS, the lactate dehydrogenase (LDH) assay is 

one of the most widely used in monitoring cytotoxicity. 

 

3.2.4.1 Measuring LDH release from necrotic cells 
 

Traditionally LDH, an enzyme leaked from dying cells when their cell 

membrane loses its integrity has been used as a measure of necrotic cell 

death. The enzyme can be detected by either a colorimetric or fluorescent 

detection mechanism requiring either a spectrophotometer or a 

fluorimeter. As ToxiLight® also detects an enzyme released from dying 

cells (AK), but by means of bioluminescence, it was considered important 

to assess this new methodology against the measurement of LDH 

release. Both adherent and suspension cell models were tested in both 

methods to compare and contrast the results obtained.  



                                                                                                                             Chapter 3 
 

 
Susan Catherine Gill 
PhD Thesis, 2009 

111 

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 500 1000 2000

CAM nM

R
LU

s

0

5000

10000

15000

20000

25000

30000

35000

40000

FL
U

s

ToxiLight
LDH

 
 
LDH:   EC50 = 196 nM   ToxiLight: EC50 = 179 nM 

 
 
Figure 3.09:  Jurkat cells in suspension were dosed for 48 h with the topoisomerase I inhibitor, 
camptothecin. The release of AK from the cell due to cytolysis was measured using the ToxiLight® 
assay on the MPL-2 luminometer. The data is expressed as RLUs +/- the SEM (n=4). It is directly 
compared to the LDH assay, data expressed as FLUs +/- the SEM (n=4) measured using the 
Victor 2 fluorometer. 
 
N = number of experiments 
 

Figure 3.09 illustrates four cytotoxicity experiments (n=4) using Jurkat 

cells dosed with camptothecin. Jurkat cells were chosen due to their small 

size like U937 cells. They are small cells in comparison to many used and 

are known to be problematic with the LDH assay. This model would 

reveal whether or not the assays could detect small releases of cellular 

enzyme after drug treatment and was deemed as a good test for the 

ToxiLight® assay. The results in figure 3.09 revealed that the signal to 

noise ratio was better in the ToxiLight® assay with a background of 3000 

RLUs and the sensitivity levels showed detection of AK release down to 

the lowest 50 nM drug dosage. This was a promising result when 

compared to the LDH assay which had a background level of 160,000 

FLUs and did not appear to indicate any cytolysis in the cells at 50 nM. 

LDH EC50 

AK EC50 
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This improved sensitivity of the ToxiLight® assay would prove to play an 

important role in measuring the EC50 of the drug. As can be seen in figure 

3.09, the EC50 of camptothecin was shown to be only 179 nM with the 

ToxiLight® assay but 196 nM when measuring LDH release due to the 

lack of detecting cell death in small numbers of cells within the population. 

The EC50 is defined as the concentration of cytotoxic agent that provokes 

a response halfway between the baseline (bottom) and maximum 

response (top). The EC50 in the LDH assay was therefore misleading and 

inaccurate. Further experiments were carried out on adherent cells to 

back up this data and to ensure the ToxiLight® assay was still as 

sensitive with these cells. Hep G2 cells were chosen due to their frequent 

use in biotechnology and pharmaceutical companies. As revealed by 

figures 3.09 and 3.10, the results shown were reproducible. 
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LDH:   EC50 = 1865nM   ToxiLight: EC50 = 1610nM 
 
 
Figure 3.10: HepG2 cells were dosed for 48 h with the topoisomerase I inhibitor, camptothecin. 
The release of AK from the cell due to cytolysis was measured using the ToxiLight® assay on the 
MPL-2 luminometer. The data is expressed as RLUs +/- the SEM (n=4). It is directly compared to 
the LDH assay, data expressed as FLUs +/- the SEM (n=4) measured using the Victor 2 
fluorometer.  Correlation between ToxiLight® and LDH: R2 = 0.99 
 
N = number of experiments 

AK EC50 
LDH EC50 
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Figure 3.10 illustrates the results obtained with adherent Hep G2 cells 

dosed with camptothecin over a 48 h period assessed using ToxiLight® 

and the LDH assays. Results validate the correlation between the two 

assays which was shown to be 0.99. Yet again, the signal to noise ratio 

was better in the ToxiLight® assay with consistently lower background 

levels in each experiment (7,000 RLUs) compared to 18,000 FLUs). In 

addition, the ToxiLight® assay revealed a larger dynamic range between 

concentrations of drug. This was illustrated by the ToxiLight® RLUs which 

increased 5 times above the control, whereas the FLUs from the LDH 

assay were less than 3 times greater than the background levels. 

Additionally, as can be noted in figure 3.09, the EC50 of camptothecin was 

shown to be lower with the ToxiLight® assay than the LDH assay. It can 

also be observed from this data that the EC50 varied significantly between 

the suspension and adherent cell model. The adherent cells showed an 

immense increase in the EC50 of camptothecin when compared to 

suspension cells showing how the same drug can have different effects 

depending on the cells being tested. 

 

The sensitivity of the ToxiLight® assay was investigated further to 

determine how many necrotic cells could be detected. Human histiocytic 

lymphoma U937 cells were lysed by freeze-thaw fracture, and cell viability 

determined with trypan blue. After showing 100% necrosis, the cells were 

diluted down from 10,000 cells to only 5 cells with a media background. 

The samples were assessed using both ToxiLight® and the CytoTox 

OneTM Assay. 
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Figure 3.11: U937 cells were lysed by freeze-thaw fracture. The cells were then serially diluted 
1:2 and then analysed by both the LDH and ToxiLight® assays. The release of AK from the cell 
due to cytolysis was measured using the ToxiLight® assay on the Wallac Betajet luminometer. 
The data is expressed as RLUs +/- the SEM (n=4). It is directly compared to the LDH assay, data 
expressed as FLUs +/- the SEM (n=4) measured using the Victor 2 fluorometer. 
 
N = number of experiments 
 
 

Figure 3.11, illustrates the how the LDH assay could no longer detect any 

significant differences above background below 313 cells per well i.e. 

from 313 cells per well down to 5 cells per well the fluorescent reading 

remains constant. The ToxiLight® assay showed significant differences 

between each cell number down to 5 necrotic cells per well above the 

background level. The reported detection limit of LDH routinely is 500 

cells per well (Promega, 2004) but at best, detection was observed down 

to 50 cells per well in this research. The sensitivity of the ToxiLight® 

assay routinely observed was 10 cells per well; this would indicate that on 

average it is 50 times more sensitive than measuring LDH release.  
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3.2.4.2 Enzyme Stability 
 

As LDH and AK are released into cell culture media it was important to 

assess the stability of the released enzymes. The reported half life of LDH 

is approximately 9 h in culture (Promega, 2004). This would indicate that 

any LDH released from dead cells more than 9 h before the assay point 

will have been degraded to some extent. To assess the stability of 

released AK and LDH, the adherent HepG2 cells were dosed with 

camptothecin and monitored for the release of the enzymes over a period 

of 4 days.  
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Figure 3.12: Hep G2 cells were dosed with the topoisomerase I inhibitor, camptothecin. 
The release of AK from the cell due to cytolysis was measured over 4 days using the 
ToxiLight® assay on the MPL-2 luminometer (n=1). The data is expressed as RLUs +/- 
the SD.   

 
N = number of experiments 
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Figure 3.13: Hep G2 cells were dosed with the topoisomerase I inhibitor, camptothecin. 
The release of LDH from the cell due to cytolysis was measured over 4 days using the 
CytoTox OneTM assay on the Victor 2 fluorometer, data expressed as FLUs +/- the SD 
(n=1). 
 
N = number of experiments 

 

Figure 3.12, shows AK release over 4 days. 100 µl volumes were 

sampled in triplicate to assess the enzyme stability. As observed from the 

results, a good concentration dependent effect can be seen with an 

increase in AK release as the dose of camptothecin becomes more 

concentrated. Over the 4 day period the AK continued to increase 

insinuating that no AK had been degraded in the culture media which was 

still being measured effectively. These results proved AK to be very 

stable in culture with no drop in concentration observed at any of the data 

points. This was promising for experiments where prolonged exposure to 

drugs would be required. In comparison figure 3.13 represents the 

release of LDH. As seen with the ToxiLight® assay there was a good 

concentration dependent increase in FLUs as the drug concentration 

increased within each experiment on days 1 to 3. As in previous 
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experiments the 100 nM drug concentration did not detect any cell death 

above background on day 1 unlike the ToxiLight® assay. By day 2 and 3, 

there was a significant difference between all concentrations of drug both 

within each experiment and over the 2 days. However, a drop in FLUs 

was noted by day 3 in the higher concentration of drug (2000 nM) when 

compared back to the previous day. This could be due to degradation. By 

day 4, the results become non-interpretable with a fluctuation in FLUs in 

all concentrations when compared to the control cells. These control cells 

were also shown to have become necrotic by day 4 due to a lack of space 

and nutrients to grow. This meant the experiment could not be monitored 

for more than 4 days.  

 
 

3.2.4.3 Measuring Propidium Iodide uptake by necrotic cells 
 

As Propidium Iodide or P.I. uptake is a recognised method for observing 

the state of cells the efficiency of the ToxiLight® assay could only be 

verified by comparison with this methodology. Visualization of the cells 

can be carried out by P.I. on a FACScan machine, thereby obtaining 

percentages of viable and necrotic cells.  Jurkat cells were lysed through 

freeze-thaw fracture, checked by trypan blue uptake for necrosis and 

mixed with a healthy population of Jurkat cells to make 100%, 90%, 80%, 

60%, 50%, 30%, 10% and 0% necrotic mixtures. These cells were then 

sampled in both 100 µl and 20 µl volumes for the ToxiLight® assay and 

P.I. uptake was measured in correlation on a FACScan machine.  

 

 

 

 

 

 

 



                                                                                                                             Chapter 3 
 

 
Susan Catherine Gill 
PhD Thesis, 2009 

118 

 

0 10 20 30 40 50 60 70 80 90 100 110
0

10000

20000

30000

40000

50000

60000

0

20

40

60

80

100100µl sample

20µl sample

PI

% F/T Cells

R
LU

s

%
 P.I. U

ptake

 
 

 
Figure 3.14: Jurkat cells were lysed by freeze-thaw fracture and mixed with various 
percentages of healthy cells. The release of AK due to cytolysis from 100 µl and 20 µl 
sample volumes were taken and measured using the ToxiLight® assay on the MPL-2 
luminometer. The data is expressed as RLUs +/- the SEM (n=4). It is directly compared 
to the Propidium Iodide assay where % P.I. uptake was obtained from the FACScan 
machine. 
 
Correlation between 100 µl sample (ToxiLight®) and P.I. Staining: R2 = 0.92 
Correlation between 20 µl sample (ToxiLight®) and P.I. Staining: R2 = 0.92 
 

 

As can be seen in figure 3.14, the uptake of P.I. by FACScan analysis 

showed a close correlation with ToxiLight® (R2 = 0.92). 20 μl and 100 μl 

volumes of culture medium were sampled for the ToxiLight® showing 

identical changes in RLUs as the AK levels increased and the percentage 

of freeze-thaw cells increased. The RLUs were slightly lower when 

measuring the 20 μl sample as expected due to less AK being presented 

to the assay in the well.  
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3.2.4.4 Measuring Chromium-51 release from necrotic cells 

 

Historically the “gold standard” for cell mediated cytotoxicity studies has 

been the chromium51 release assay. It was thought it may be possible to 

utilise the ToxiLight® assay for cell-mediated cytotoxicity assays. As 

there were no radioactive laboratories available at ;Lonza Bio Science, 

the assay was carried out in conjunction with a PhD student Murriam 

Ahmad at Nottingham Trent University. The project was looking at 

immune-mediated cytotoxicity and resulted in incorporating the 

experiments in monitoring Toxilight® assay. Target cells are prelabelled 

with Cr51 which is released for detection when the cells are induced to 

lyse by effector cells. In collaboration with Nottingham Trent University, 

splenocytes were harvested from a mouse immunized against CT26, 

washed twice in serum-free medium, counted and resuspended in CTL 

medium and used as effector cells. Target cells used were the 

CT26+SPS (relevant peptide for kill) and CT26 TPH (irrelevant peptide for 

kill). SPS is a known murine leukaemic virus gp70-derived H2-Ld 

restricted peptide AH-1 (SPSYVYHQF). It is an immunodominant peptide 

for CT26 cells. TPH or TPHPARIGL is a control β-galactosidase H2-Ld 

peptide. (The chromium experiment was prepared in collaboration with Dr 

Murriam Ahmad, Nottingham Trent University). 
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Figure 3.15: The CT26 SPS pulsed CTLs were used as the effector cells in the assay. 
The targets were the CT26+ SPS (relevant peptide). The release of AK from the cell due 
to cytolysis was measured using the ToxiLight® assay on the MPL-2 luminometer. The 
data is expressed as percentage of cells lysed +/- the SEM. It is directly compared to the 
chromium release assay, data expressed as percentage lysed cells +/- the SEM and 
measured on a beta counter (n=3).  
 

N = number of experiments 

Correlation between ToxiLight® and chromium (SPS); R2 = 0.98 

 

Figure 3.15 compares the ToxiLight® assay with the well-established 

chromium51 assay. The results are plotted as percentage release of either 

chromium or AK into the culture. As seen in the figure 3.15, it was 

revealed that the ToxiLight® data correlated with the chromium very 

reliably with R2 values > 0.98 with the CT26 SPS. The TPH results also 

correlated showing little increase in RLUs and absorbance readings 

(Chromium) with the irrelevant peptide and thus meant no cell death 

occurred. 



                                                                                                                             Chapter 3 
 

 
Susan Catherine Gill 
PhD Thesis, 2009 

121 

 3.2.4.5       Measuring Cell Viability  
 

Other well-known assays were tested to determine their sensitivity 

compared to the ToxiLight® assay. These included the MTS, WST-1, 

XTT and the alamarBlue® colorimetric assays. As these assays measure 

viability rather than cell death the ToxiLight® assay cannot be compared 

directly. All of these assays were tested for their sensitivity to observe 

how many viable cells could actually be measured. Jurkat cells were 

diluted 1:2 in complete media from 1 x 106 cells.ml-1 down to background 

levels.      
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Figure 3.16: Jurkat cells were diluted 1:2 in complete media from 1 x 106 cells.ml-1. The 
absorbance assays WST-1, XTT and MTS were measured on an ELISA plate reader at 
450nM wavelength to obtain absorbance values +/- the SEM where n=5.  
 
 

N = number of experiments 
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Figure 3.17: Jurkat cells were diluted 1:2 in complete media from 1 x 106cells.ml-1. The 
above figure represents only the lower values from 25,000 cells.mL-1 to background 
levels. The alamarBlue® assay was carried out and measured using the Victor 2 
fluorometer. The data is expressed as FLUs +/- the SEM (n=3).  
 

N = number of experiments 
 
 

The results in figure 3.16 revealed a lack of sensitivity for all of these 3 

assays. The MTS and WST-1 assays could not detect below 10,000 cells 

per well when compared against background levels. The XTT assay was 

slightly better but still only had sensitivity down to 5,000 cells per well. 

After this point, the assay was only reading background levels. These 

three methods would not therefore be suitable indicators of cytotoxicity, 

as many viable cancer cells would be left undetected. Figure 3.17 shows 

the results from the alamarBlue® assay which proved to be much better 

than the colorimetric assays. Although still not sensitive enough, detection 

was much improved, measuring down to 3000 cells per well.  
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As the alamarBlue® assay proved to be the best of these viability assays, 

it was tested in a mixed cell population with a mixture of both necrotic and 

viable cells. Jurkat cells (at 10,000 cells/well) were lysed through freeze-

thaw fracture, checked by trypan blue uptake for necrosis and mixed with 

a healthy population of Jurkat cells to make 100%, 90%, 80%, 60%, 50%, 

30%, 10% and 0% necrotic mixtures. The alamarBlue® assay was 

monitored for its detection of viable cells and the ToxiLight® assay tested 

in comparison for detecting cell death.  
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Figure 3.18: Jurkat cells were lysed by freeze-thaw fracture and mixed with various 
percentages of healthy cells. The release of AK due to cytolysis from different sample 
volumes were taken and measured using the ToxiLight® assay on the MPL-2 
luminometer. The data is expressed as RLUs +/- the SEM (n=4). It is directly compared 
to the alamarBlue® assay where viable cells were measured using the Victor 2 
fluorometer. The data is expressed as FLUs +/- the SEM (n=4). 
 

N = number of experiments 
 
As the results in figure 3.18 reveal, the alamarBlue® assay proved to 

detect 40% of the viable cells (or 60% F/T on the graph) in the mixed cell 

population. As the number of viable cells had decreased considerably by 

this point this assay could no longer detect anymore in the 80 and 90% 

F/T population.  The assay therefore proved it could detect cell death but 
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only down to a limited number of cells, which would result in these viable 

cells being left undetected. 
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3.2.4.6     Measuring ATP as a Viability Cell Marker 
 

In this study, the ViaLight® Plus kit was used by adding a Nucleotide 

Releasing Reagent (NRR). NRR contains a non ionic detergent that 

permeabilises the cell membrane and allows for the release of the 

nucleotides within the cells. The cells used in this investigation were a 

human leukaemic cell line K562 (in suspension) diluted 1:2 from a 

seeding density of 5 x 103 cells.ml-1 in complete media (CM). The amount 

of ATP was then measured using the ViaLight® Plus kit in the following 

luciferin: luciferase reaction: 

 
                                      Mg++ 

       ATP + Luciferin + O2      Oxyluciferin + AMP + PPi + CO2 + LIGHT 
                                Luciferase 
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Figure 3.19: K562 cells were lysed with detergent and serially diluted 1:2 in complete 
medium. The release of AK from the cell due to cytolysis was measured using the 
ToxiLight® assay on the Wallac Betajet luminometer. The data is expressed as RLUs +/- 
the SEM (n=3). It is directly compared to the ViaLight® Plus assay on the Wallac Betajet 
luminometer, data expressed as RLUs +/- the SEM (n=3). 
 

N = number of experiments 
Correlation between ViaLight® and ToxiLight®: R2 = 0.96 
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Results from the ViaLight® Plus assay, showed an excellent correlation 

with the ToxiLight® assay >0.96 (figure 3.19). K562 cells were diluted 

down from 5,000 to 5 cells per well. The ViaLight® assay showed 

sensitivity down to 10 cells per well (60 RLUs above background). The 

ToxiLight® assay detected 5 cells per well (120 RLUs above background 

levels). These results proved the ViaLight® Plus assay to be the best 

viable assay with the extreme sensitivity required for chemotoxicity 

studies.  

 

After carrying out experiments comparing the ToxiLight® assay with 

available assays on the market, the results were encouraging. The 

ToxiLight® assay was able to directly compete with all other assays and 

had the ability to be more sensitive than any assay currently used; the 

only method giving comparable results was the ViaLight® Plus assay. In 

addition to measuring cell death, the reagents needed optimising to 

measure total cell numbers of a cell population. This would require the 

production of a lysis reagent that would be compatible with the ToxiLight® 

assay, measuring the total amount of AK present. 
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3.2.5   Optimisation of ToxiLight® assay 
 

To complete the optimisation of the ToxiLight® assay it was necessary to 

obtain a control (100%) lysis solution that all values could be referenced 

to in order to express them as percentage cytolysis. The formulation of 

this reagent is proprietary information and therefore not shown in the 

chapter. The effect of the newly designed lysis buffer was tested on cells 

and compared to a control population of cells that had been lysed by 

freeze thaw.  The human chronic myeloid leukaemic K562 cells were 

lysed and checked by trypan blue uptake for viability.  A volume 

correction reagent was added to the freeze-thaw samples to ensure the 

volumes were the same in both test wells. 

 

0 2500 5000 7500 10000 12500
0

10000

20000

30000 ToxiLight Lysis Reagent
F/T

Cells/well

R
LU

s

 
 

 
 
Figure 3.20: K562 cells were lysed through ‘freeze-thaw fracture’ (F/T) or ‘ToxiLight® 
Lysis Reagent.’ The release of AK from the cell due to cytolysis was measured using the 
ToxiLight® assay on the MPL-2 luminometer. The data is expressed as RLUs +/- the 
SEM (n=7). 
 
N = number of experiments 
Correlation between F/T and 100% lysis control (ToxiLight®): R2 = 0.99 
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As figure 3.20 demonstrated, the ToxiLight® Lysis Reagent was able to 

successfully lyse the cells. In addition to this, it proved to match the 

results seen in the freeze-thaw cell population representing in 100% lysis 

of the cells. The correlation was shown to be > 0.99. The lysis reagent 

was tested on all in-house cell lines at Lonza Bio Science using both 

adherent and suspension cells and trialed at a separate site prior to 

launch. No cell line has yet to be found to be incompatible. The testing of 

all cell lines used in this project, the results all showed >0.99 correlation 

with the freeze-thaw control. To illustrate its use, the lysis reagent was to 

be tested in a cell model whereby U937 cells were dosed with 

camptothecin. Prior to measurement, a control well was lysed with the 

ToxiLight® Lysis Reagent and to back-up the data, a second control 

sample was freeze-thawed.  
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Figure 3.21: U937 cells dosed for 24 h with the topoisomerase I inhibitor, camptothecin. 
The release of AK from the cell due to cytolysis was measured using the ToxiLight® 
assay on the MPL-2 luminometer. The data is expressed as RLUs +/- the SEM (n=4). 
The ToxiLight® lysis control is compared to F/T cells which were measured at the same 
time point. 
 
N = number of experiments 
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Figure 3.21 demonstrated how well the ToxiLight® Lysis Reagent worked 

and therefore could be used as a 100% control for measuring total 

populations of cells. The results were nearly identical to the freeze-thaw 

control. This meant that a drug can be tested on a cell population and its 

effectiveness can be recorded as ‘percentage kill’ of the cells.  

 

The ToxiLight® Lysis Reagent was finally compared to the LDH assay 

which also utilised a 100% control data point for total LDH release. A 

U937 and camptothecin model was incubated for 24 h before measuring 

using both the LDH and the ToxiLight® assay, including the appropriate 

lysis controls.  
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Figure 3.22: U937 were dosed for 24 h with the topoisomerase I inhibitor, camptothecin. 
The release of LDH from the cell due to cytolysis was measured using the LDH assay on 
the Victor 2 fluorometer, data expressed as percentage lysed cells. It is directly 
compared to the ToxiLight® assay on the MPL-2, data expressed as percentage lysed 
cells (n=3). 
 
N = number of experiments 
Correlation between ToxiLight® and LDH: R2 = 0.9 
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The ToxiLight® assay proved to be a good competitor for the LDH assay 

in measuring the percentage of cell death. The results correlated 

exceptionally well with an R2 value of 0.9. Figure 3.22 also showed the 

ToxiLight® assay to have a greater dynamic range than the LDH assay. 

This was seen in the percentage lysis which increased from 6% (control 

population) up to 48% necrosis with 10,000 nM camptothecin in the 

ToxiLight® assay. The LDH assay showed 28% necrosis in the control to 

60% necrosis at 10,000 nM. The control was high in the LDH assay 

making the results questionable. Both trypan blue and propidium iodide 

staining showed the control cells to be no more than 12% necrotic. 
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3.2.6       Response of ToxiLight® and ViaLight® Plus Assay to   
                     Cytostatic cells 

 

As the ToxiLight® assay measures only necrotic cells; it was decided to 

establish a model that would result in growth arrest from previous work 

carried out at Lonza Bio Science. Melanoma cells were seeded at 1 x 105 

cells.ml-1 and dosed with the alkylating agent dacarbazine. As the 

ViaLight® Plus proved to be the most sensitive viable assay tested, this 

was to be used in conjunction with the ToxiLight® assay. 

 

 

 

  
 
 
Figure 3.23: Ma Mel 28 cells were dosed for 72 h with the alkylating agent dacarbazine. 
The release of AK from the cell due to cytolysis was measured using the ToxiLight® 
assay on the MPL-2 luminometer, data expressed as RLUs +/- the SEM (n=4). It is 
directly compared to the ViaLight® Plus assay on the MPL-2 luminometer, data 
expressed as RLUs +/- the SEM (n=4). 
 
N = number of experiments 
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The results in figure 3.23 show the ViaLight® Plus assay to measure a 

reduction in ATP levels with increased dacarbazine concentrations. This 

could imply that the cells are undergoing cell death. However, the 

ToxiLight® results revealed that no cell death was occurring. The 

ToxiLight® assay results alone would suggest that the drug was having 

no effect on the cells at all. The ViaLight® Plus assay results however 

revealed the opposite i.e. the drug ‘was’ having an affect on the cells and 

cell death was occurring. If the cells were not dying but then it became 

difficult to determine what a drop in ATP actually meant. After measuring 

these cells by a FACScan to assess the cells growth cycle, it was 

revealed that the cells were in fact in growth arrest.  

 

In conclusion, through the above work performed on these melanoma 

cells, it became clear that one assay alone was insufficient to divulge the 

effect any drug has on a cell population. The use of only one assay can 

be misleading; and ideally both a viable and necrotic assay should be 

used. 

 

 
Table 3.04:  Summary of the results drawn from the study. 

 

Table 3.04 summarises the use of the ToxiLight® and ViaLight® assays, 

and represents the best necrotic and viable assays established by this 

research. The table highlights the responsiveness of these assays when 

exposed to defined conditions and demonstrates the ideology of how two 

assays would work better in combination than one assay alone. 
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3.3  Discussion  
 
The work included in this chapter has examined the potential of using a 

novel bioluminescent assay with view to solving the lack of sensitivity in 

detecting low cell numbers associated with cytotoxicity assays.  

 

3.3.1 Optimisation of ToxiLight® assay 
 

The main focus of this study was to develop a novel assay based on AK 

release that could improve on the current assays already used. The 

ToxiLight® assay developed was shown to efficiently detect the release 

of AK both in a cell free system by myokinase standards (AK, chicken 

muscle) and from cell lines. All cell lines and cytotoxic agents used by 

Lonza BioScience, Nottingham UK were analysed successfully with the 

ToxiLight® assay and subsequently backed up by either P.I. uptake or 

the CytoTox OneTM (LDH) assay. The assay demonstrated how it can be 

easily miniaturized down to 384 well plates for high throughput screening 

with equally effective results. In addition, the assay is simple to run; taking 

in total 5 min to obtain the required data, and potentially can be used in 

any situation where cytotoxicity is suspected. A 100% control lysis 

reagent was also effectively produced which compared significantly to AK 

released from freeze-thawed cells (R2 = 0.99). 

 

3.3.2 ToxiLight® assay compared to traditional assays 
 
The study so far has incorporated data from well-established assays and 

techniques used for proliferation and cytotoxicity studies. Over the last 

decade colorimetric assays based on the reduction of tetrazolium salts 

have been promoted in the form of several commercial kits aimed at 

measuring cell proliferation (Petty et al., 1995; Kawada et al., 2002; 

Marshall et al., 1995). This is a high-throughput method and is proposed 

as a preferable alternative to techniques such as those based upon the 
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uptake of 3H-thymide or chromium release, both of which are radioactive. 

This study however, has shown that even the colorimetric assays are 

insufficient in detecting very low cell numbers. Their detection at best was 

only 10,000 cells per well, and represents a significant number of cells 

that would proliferate into a new tumour population, thus providing 

misleading results suggesting that the treatment successfully killed all of 

the cells. 

The alamarBlue® assay proved to be the most sensitive after the 

colorimetric assays, detecting 3000 cells above the background levels. As 

shown in table 3.02, the midpoint potential of alamarBlue® is greater than 

that of any of the other components of the electron transport chain. This 

explains its superiority over the colorimetric assays as it will be reduced 

much better. The midpoint potential of MTT is intermediate between that 

of the electron donors and cytochromes meaning that MTT will not be 

reduced by cytochromes. Even though the alamarBlue® assay proved 

superior, it still lacked sufficient sensitivity and as with the colorimetric 

assays, it also proved to be time consuming. 

The developed ToxiLight® assay was monitored alongside other well-

established methods. This study revealed that the best assays on the 

market were the LDH, ViaLightTM Plus®, and the ToxiLight®TM assays, in 

terms of ease of use, speed and sensitivity. When ToxiLight® was 

compared to each of these assays, the correlation was >0.9 for all 

experiments performed. This revealed the assay to be very reproducible. 

LDH is relatively stable but for prolonged periods of incubation in culture 

media can result in unreliable results due to its degradation after 9 h 

(Promega, 2004). It is a cytosolic enzyme that is present in animal cells. 

Moreover, it is a rapid method and reagent kits for clinical screening are 

commercially available and relatively inexpensive (Sasaki et al., 1991). 

However, the LDH assay was not as responsive as the new ToxiLight® 

assay; low concentrations of drugs showed little toxicity in comparison 
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and the cell number detection was 50 cells per well compared to the 5 

cells per well of the ToxiLight® assay. Although LDH detection proved to 

be fast and efficient, the sensitivity was not comparable to AK release 

with the LDH enzyme being less stable in culture. 

 

Propidium Iodide (P.I.) uptake is a widely used technique for measuring 

both hypodiploid peaks for cell cycle analysis and in monitoring cell 

permeability (Ormerod, 1998). It is much smaller in size (668 Da) than AK 

(36 kD) and thus measurement should be more sensitive. The 

disadvantage however, is that measuring P.I. uptake is time consuming 

and requires specialist knowledge. The results showed the ToxiLight® 

assay to be as sensitive as P.I. uptake (figure 3.14) in this research 

detecting down to as few as 5 cells per well (figure 3.11) and identifying 

cell death in very low concentrations of drug.  

 

ViaLight® Plus offers many benefits over the conventional assays by 

avoiding the use of radioisotopes and showing greater sensitivity and 

reproducibility (Crouch et al., 1993; Bradbury et al., 2000; Tsujimoto, 

1997).  Due to the speed and ease of use of this method it lends itself 

particularly well to high throughput assays and drug screening like the 

ToxiLight® assay. When compared to the ToxiLight® assay, the 

sensitivity of both these assays was excellent. Figure 3.19 demonstrated 

with lysed K562 cells how both assays could measure small amounts of 

ATP (10 cells per well) or AK (5 cells per well) released above 

background. Although both assays measured different forms of cell death 

they shared the sensitivity required in detecting changes within a cell. 

 

The data presented in this study suggests that ToxiLight® can be used as 

an indicator of necrotic cell death and is very sensitive compared to the 

conventional assays. An interesting finding was that when melanoma 

cells were dosed with dacarbazine, neither the ToxiLight® assay nor the 
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ViaLight® Plus assays on their own could identify the effects of the drug 

on the cells.  It was only when the two assays were used in conjunction 

with each other that a conclusion could be drawn from the experiment 

(figure 3.23). The ToxiLight® assay implied no cell death was present. 

However, the ViaLight® Plus assay revealed a dramatic change with a 

large reduction in ATP levels leading to the assumption that cell death 

was in fact occurring. FACScan analysis revealed that the drug had a 

cytostatic effect on the cells which proved both assays to be correct. The 

ViaLight® Plus assay was merely showing fewer cells in culture due to 

growth arrest thus the lower levels of ATP with increasing drug and the 

two assays performed together would provide a definitive answer.  

 

In conclusion, this study revealed that although the ToxiLight assay 

proved to be very sensitive, it should not be used alone unless purely 

looking for cell membrane damage or necrosis. Both a viability assay and 

an assay to detect necrosis is the best combination to use when 

analyzing the effects of a cytotoxic drug on a cell population. Ideally a 

cytolysis assay such as ToxiLight® and a proliferation assay such as 

ViaLight® Plus would be a desirable combination. As these assays are 

highly sensitive, slight changes within the cell population would be 

revealed. They would show both cell lysis, proliferation and any cytostatic 

effects over time. Detecting cytostatic effects are just as important in 

studies as the detection of toxicity and cell death.  

 

Convenient methods for the quantification of cell numbers in culture have 

proven very difficult in the past. For example, the simple and direct 

techniques such as cell counting with haemocytometer chambers or 

electronic particle counters are unsuitable for the processing of large 

numbers of samples (Marshall et al., 1995). All published reports describe 

assays utilised for the detection of either cell death or proliferation that 

are not sensitive enough in detecting any remaining resistant populations 
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of cells that are living in small cell numbers within a tumour population. It 

is this lack of sensitivity that results in cells being left undetected and 

allows them to proliferate into a new tumour population over time. 

 

Resistance is known to occur with many chemotherapy drugs. 

Experimentally, acquired resistance developed to various compounds has 

been demonstrated (Kerbal et al., 2001). Goldie and Coldman (1979) 

suggest that spontaneous mutations during tumour evolution are 

responsible for the presence of intrinsically resistant cells before 

exposure of a tumour to a cytotoxic drug. This could present itself by cell 

cytostasis or continued proliferation. Assays detecting this effect are 

crucial to clinicians before the commencement of treatment to prevent the 

patient being exposed to a drug that will not be beneficial. The ToxiLight® 

and ViaLight® Plus assays may help in studying these areas of cancer 

research. 

 

The next stage of this study was to use both the ToxiLight® and 

ViaLight® Plus assays on both primary and continuous melanoma cell 

lines. These cells would be exposed to a number of known 

chemotherapeutic drugs and monitored with various doses over time. The 

assays would be used to assess the affects of these drugs and sensitive 

and resistant cell lines were identified using the ViaLight® Plus and 

ToxiLight® assays and selected for further research. 
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Chapter 4: Utilising bioluminescent assays to assess cell 
death in melanoma cells. 

 
4.1 Introduction 
 

The incidence of melanoma has more than doubled over the last decade 

and early detection is vital to reduce mortality in these patients; surgery 

curing 95% of early stage disease (Testori et al., 2009). Balch et al. 

(1997) reported the survival rate for patients with loco regional disease to 

be 24 months and for patients with metastatic disease to be 6 months. 

This statistic has not improved today due to ineffective treatment for 

advanced melanoma. Anticancer agents commonly used in the treatment 

of melanoma do not result in clinically meaningful responses in most 

patients (Garbe, 1993), suggesting a high drug resistance for unknown 

reasons. Resistance to antineoplastic agents is a major obstacle in 

successfully treating metastatic malignant melanoma (Viatcheslav et al., 

1999; Wittig et al., 2002; Dong et al., 2002; Amiri et al., 2004) and 

common anti-cancer drugs such as taxol, cisplatin (Sersa et al., 2000; 

Leonetti et al., 1999), etoposide (Wittig et al., 2002; Lage et al., 2001), 

doxorubicin (Panneerselvam et al., 1987) and vindesine have shown no 

efficacy in large randomised trials (Soengas et al., 2003). This lack of 

selectivity of chemotherapeutic agents has raised the call for the 

development of new drug delivery systems, such as enhanced delivery of 

drugs to tumour cells by electroporation (electrochemotherapy). This 

mode of delivery has been shown to be more effective for drugs such as 

cisplatin and bleomycin and increases drug delivery to the cells, with 

insignificant side effects due to the low cisplatin doses. However 

resistance has been observed after four cycles of chemotherapy (Sersa 

et al., 2000).  
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Multidrug resistance (MDR) is a major obstacle for cancer therapy; the 

cancer may be either inherently untreatable (intrinsic resistance) or have 

progressed to develop resistance to a wide variety of anticancer agents 

over the course of treatment (acquired resistance) (La Porta, 2007). In 

general, the vast majority of anticancer drugs operate through induction of 

cell cycle arrest and cell death in either the DNA synthesis (S) or mitosis 

(M) phase of the cell cycle (Shabbits et al., 2003). Table 4.01 illustrates 

how many of the resistant drugs tested target melanoma cells. 

As previously mentioned in the introduction (chapter 1), it is well 

established that cancer is not caused by a mutation in a single gene, but 

requires genetic alterations affecting several pathways (Hanahan and 

Weinberg, 2000). P53 is one of the most commonly mutated genes in 

human cancers (>50%) and its role in malignant melanoma has been the 

subject of intense investigation (Rieber et al., 2001). An increased p53 

level due to decreased degradation of the mutant protein has been 

observed (Le et al., 2003) in metastatic melanomas but not primary 

melanomas. In 1998, Li and his research team compared the responses 

of four melanoma cell lines containing the wild-type p53 and four cell lines 

carrying the mutant p53 when exposed to cisplatin, vincristine and 

camptothecin. Results revealed low percentages (<18%) of cell survival 

with wild-type p53 compared with a greater than 55% survival of the cells 

with mutant p53 (Li et al., 1998).  
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Agents Mode of Action Specific cellular effects 
 

Nitrosoureas   
Carmustine Alkylation of nucleic acids and 

proteins 
ssDNA breaks 

Lomustine  DNA crosslinking 
Semustine  Carbamoylation of proteins 

   
Nitrogen mustard   
Cyclophosphamide Alkylation of nucleic acids DNA crosslinking 

   
Triazenes   

Dacarbazine Alkylation and methylation of 
nucleic acids 

Inhibition of nucleic acid and 
protein synthesis 

Temozolomide   
   

Antibiotics   
Anthracyclines DNA intercalating agent ssDNA breaks 

Doxorubicin 
(adriamycin) 

Free radicals DNA crosslinking 

  Inhibition of DNA and RNA 
replication 

   
Plant-derived 

products 
  

Vinca alkaloids   
Vincristine Microtubule disruption (prevent 

assembly) 
Altered cell division, motility 

Vinblastine  Intracellular transport 
   

Epipodophyllotoxins   
Etoposide Inhibition of topoisomerase II DNA breaks 

   
Taxanes Microtubule disruption (prevent 

depolymerisation) 
Altered cell division, motility 

Taxol  Intracellular transport 
Paclitaxel   
Docetaxel   

   
Hormonal analogs   

Antiestrogen Competitive inhibitor of 
endogenous estrogens 

Altered estrogen signaling 

Tamoxifen   
   

Platinum drugs   
Cisplatin DNA and protein crosslink ssDNA and dsDNA breaks 

Carboplatin  Changes in DNA structure 
  Inhibition of DNA and RNA 

synthesis 
 

Table 4.01 To illustrate treatments used and how they target melanoma 
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Recent research has looked into epigenetic events that affect cell 

transformation (Schwabe and Ubbert, 2007), which refers to changes in 

phenotype (appearance) or gene expression caused by mechanisms 

other than changes in the underlying DNA sequence. There is no 

alteration in the underlying DNA sequence of the organism; instead, non-

genetic factors cause the organism's genes to behave (or "express 

themselves") differently. The irreversible changes that occur within the 

human DNA sequence, including chromosomal deletions, amplifications, 

and gene mutations, have all been implicated in the development and 

progression of melanoma (La Porta, 2007). The most common epigenetic 

phenomenon in malignancy appears to involve histone modification and 

DNA methylation. On the whole, epigenetic profiling of melanoma is still in 

its infancy, posing an enormous challenge for researchers and clinicians. 

Histone deacetylase (HDAC) inhibitors are a promising group of 

compounds inducing differentiation, growth arrest and apoptosis in 

tumour cells in preclinical studies (Peltonen et al., 2005). The cellular 

effects of trichostatin A have been monitored in many studies (La Porta, 

2007). It is an organic compound that serves as an antifungal antibiotic 

and selectively inhibits the class I and II mammalian HDAC families of 

enzymes, preventing progression of the eukaryotic cell cycle during the 

beginning of the growth stage (Kim et al., 2000). Histone acetylation is 

carried out by HATs, while HDACs remove acetyl groups. Inhibitors of 

HDAC, such as trichostatin A (TSA) push the equilibrium towards the 

acetylated, transcriptionally active state as shown in figure 4.01. 

Increased histone acetylation leads to reversible decondensation of 

dense chromatin subcompartments (Toth et al., 2004). 

http://en.wikipedia.org/wiki/Gene_expression�
http://en.wikipedia.org/wiki/DNA�
http://en.wikipedia.org/wiki/DNA�
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Figure 4.01 To illustrate how the HDAC inhibitor trichostatin A interacts (Scotto, 2003) 

The relationship of trichostatin A with p53 (Halaban et al., 2009; Peltonen 

et al., 2005), p21WAF1/Cip1 (Boyle et al., 2005), p27Kip1, Fas/FasL (Kramer, 

2007; Klisovic, et al., 2003), E2F (Katsura, 2008), MHC class I and II 

(Bazhin, 2007) has been researched and shows much promise in 

melanoma treatment. Accumulating evidence has suggested that the 

histone deacetylases play a very important role in carcinogenesis, and 

histone deacetylase inhibitors (HDACIs) are being extensively studied for 

the treatment of various cancers (Muscolini et al., 2008; Habold et al., 

2008; Katsura et al., 2008). HDACIs cannot only induce growth inhibition, 

cell cycle arrest and apoptosis in cancer cells, but also increase the 

sensitivity to chemotherapy and ionizing radiation (Munshi et al., 2005). 
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The aim of the research in this chapter was to use the most sensitive 

assays available for testing tumour chemo sensitivity assays. The assays 

to be used were determined in chapter 3 of this thesis; the ToxiLight® 

and ViaLight® Plus kits. These will be used in parallel for a study 

involving primary and immortalised melanoma cells cultured in vitro. The 

cells were obtained by Nottingham Trent University as part of the OISTER 

(Outcome and Impact of Specific Treatment in European Research in 

melanoma project (EU number QLKS-CT-2000-40643) involving seven 

partners across Europe and were designed to collect tissue, serum 

samples and culture cell lines from melanoma patients with known clinical 

outcome for analysis. The remaining cell lines were obtained from 

ESTDAB (european searchable tumour cell line database; EU number 

QLRT-2000-01325). The ToxiLight® and the ViaLight® Plus kits would be 

used to acquire sensitive and resistant cell lines to various cytotoxic 

drugs. These selected cell lines will then be tested with the histone 

deacetylase drug trichostatin A for further proteomics studies undertaken 

(chapter 5). The results will be analysed by FACScan analysis, light 

microscopy and trypan blue uptake to ensure the validity of the assays. 

 

Therefore the aims of this chapter will be to: 

 

• Test the library of melanoma cell lines with the ToxiLight® and 

ViaLight® Plus kits with some known chemotoxic drugs used in 

previous melanoma studies. 

• Select sensitive and resistant cell lines to trial the histone 

deacetylase inhibitor, trichostain-A, for its potential use in 

melanoma treatment. 

• Validate the data by FACScan analysis, trypan blue uptake and 

light microscopy. 
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4.2  Results 
 

The primary melanoma cells selected for this aspect of the research were 

obtained from the OYSTER (Outcome and Impact of Specific Treatment 

in European Research in melanoma) tissue bank; the established cells 

were obtained from ESTDAB. All of the cell lines were dosed with a range 

of chemo toxic drugs; known agents that have been investigated in many 

melanoma studies over the years. Table 4.02 summarises the cells and 

the drugs used: 

 
Melanoma Cells Used Chemo Toxic Drugs Used and their mechanism 

of action 
 

ESTDAB 005 
(established) 

 
Vindesine 

 
Plant alkaloid that inhibits microtubule assembly. 

 
COLD 794 

(established) 
 

Cisplatin  
 

Alkylating agent which interferes with DNA replication. 
 

WM 1205 
(established) 

 
Doxorubicin 

 
Anti-tumour antibiotic. Binds to DNA and inhibits reverse 

transcriptase and RNA polymerase. 
 

MEWO 
(established) 

 

 
MA MEL 28 

(primary) 
 

 
MA MEL 26A 

(primary) 

 

 

 
Table 4.02:  A summary of the six melanoma cell lines chosen and the three cytotoxic drugs used 

on them. 

 

Cell cultures freshly initiated from tissues or organ pieces are called 

primary cell cultures. Cell lines may be obtained from the primary culture 

by renewed disruption of the cell layers with trypsin or any other suitable 

agent and fresh inoculation of a limited number of cells containing fresh 

medium. This process, which is repeated normally every three to four 

http://www.copewithcytokines.de/cope.cgi?key=Cell%20lines%20in%20Cytokine%20Research�
http://www.copewithcytokines.de/cope.cgi?key=cell%20types�


                                                                                                                              Chapter 4 
 

 
Susan Catherine Gill 
PhD Thesis, 2009 

145 

days, is called cell passage or subcultivation and yields secondary cells. 

After approximately 70 sub cultivation steps the cell line is called an 

established cell line. Primary cells with an extended capacity to replicate 

are called immortalised cells. Such immortalised cells frequently arise 

spontaneously after adaptation to tissue culture conditions. These cells 

possess an extended proliferative capacity in vitro, but usually possess 

an unstable genotype and may not express the same phenotypic markers 

as those observed in primary cells, having lost some or many of the 

features observed in primary cells. 

Initial experiments were carried out to ensure that all the melanoma cell 

lines were clear from mycoplasma contamination. This can result in 

possible cellular changes, including chromosome abberations, changes in 

metabolism and cell growth which then affects any research data 

obtained on the cell lines (Lonza Ltd, 2006). All cell lines used were 

screened for mycoplasma and found to be negative (materials and 

methods – chapter 2.3.6).  

http://www.copewithcytokines.de/cope.cgi?key=Cell%20passage�
http://www.copewithcytokines.de/cope.cgi?key=subcultivation�
http://www.copewithcytokines.de/cope.cgi?key=cell%20types�
http://www.copewithcytokines.de/cope.cgi?key=established%20cell%20line�
http://www.copewithcytokines.de/cope.cgi?key=primary%20cells�
http://www.copewithcytokines.de/cope.cgi?key=cell%20types�
http://www.copewithcytokines.de/cope.cgi?key=primary%20cells�
http://www.copewithcytokines.de/cope.cgi?key=primary%20cells�
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4.2.1 Measuring ATP and AK as a Cell Marker in melanoma cells. 

The most effective assays for measuring cell death/viability which were 

determined in chapter 3 (the ToxiLight® and ViaLight® Plus assays), 

were further utilised in experiments conducted on both primary and 

established melanoma cell lines. The cells were exposed to a number of 

known chemotherapeutic drugs to assess their effects on melanoma 

cells, in order to identify drug-sensitive and drug-resistant cell lines for 

further analysis.  

 

4.2.1.1 Effect of chemotoxic drugs on the ToxiLight® and ViaLight® 
Plus assays. 

 

Initial studies were conducted using both the Vialight® Plus and 

ToxiLight® assays to ensure there would be no interference from the 

chemotherapeutic agents on the assay themselves. ATP and AK 

(myokinase) standards were diluted in complete media: 0.1 µM ATP for 

the ViaLight Plus assay; and 25 µM AK for the ToxiLight® assay. 10 

µg.mL-1 of vindesine; cisplatin or doxorubicin (the highest drug 

concentration used in the experiments) was added to the prepared 

standards; with control standards retained containing no drugs. 100 μL 

volumes of standards with and without the drug were sampled for both 

the ToxiLight® and ViaLight® Plus assays. From the results obtained in 

figure 4.02, it is clearly shown that none of these drugs had any adverse 

effect on either the ToxiLight® or the ViaLight® Plus kits. The RLUs for 

the control standards (labelled ‘0’) in figures 4.02 A, B and C was not 

significantly different to the RLUs where the drugs were present (labelled 

‘10’). 
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Figure 4.02: The effects of vindesine (A); cisplatin (B) and doxorubicin (C) on the 
ToxiLight® and ViaLight® Plus kits. ATP standards were used at 0.1 µM for the 
ViaLight® Plus assay and myokinase standards (AK) at 25 µM used to test the 
ToxiLight® assay. Both drugs were diluted in the standards and compared against 
control standards only. The resulting RLUs were measured using bioluminescence on a 
Berthold MPL-2 luminometer to obtain an ATP/RLU (VL RLUs) and an AK/RLU (TL 
RLUs) +/- the standard error of the mean (n=3).  
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4.2.1.2 Effect of the chemo toxic agents on melanoma cells 

 

The primary Ma Mel 28 and Ma Mel 26a cells and the four established 

melanoma cell lines (COLD 794, ESTDAB 005, WM 1205 and MEWO) 

were dosed with the anti-tumour antibiotic, doxorubicin. All cells were 

prepared in 100 µl volumes in a 96 well culture plate with an initial cell 

density of 1 x 105 cells.ml-1. Doxorubicin was used at 0, 1, 5 and 10µg.ml-1 

and the effect of the drug monitored with both the ToxiLight® and 

ViaLight® Plus kits at 24, 48 and 72 h. Doxorubicin has been shown to 

have no efficacy in melanoma patients in large randomised trials, but it 

was hoped that using these two detection assays in conjunction with each 

other, the ex-vivo effect of doxorubicin could be determined. 

 

The results obtained in figure 4.03 with the immortalised cells dosed with 

the doxorubicin agent revealed that cell lines were sensitive to 

doxorubicin even in the lowest dose of the drug (1µg.ml-1).  The ATP 

RLUs dropped significantly in all the cells tested after 48 h in culture. The 

ToxiLight® assay also revealed the RLUs to increase significantly after 48 

hours, indicating that doxorubicin was inducing cell death. The most toxic 

effects were seen with MEWO cells (figure 4.03; D) where the increases 

in RLUs at 72 hours increased from 225 in the control to 3761 RLUs with 

10 µM doxorubicin approaching sixteen times the control value. COLD 

794 cells (figure 4.03; A) proved to be the least drug sensitive line only 

1331 RLUs in the control and 2684 RLUs with 10 µM doxorubicin; only 

twice the increase of the control. 
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Figure 4.03: The effects of doxorubicin on COLD 794 cells (A), ESTDAB 005 cells (B), 
WM 1205 cells (C) and MEWO cells (D) tested using the ToxiLight® and ViaLight® Plus 
kits. The resulting RLUs were measured using bioluminescence on a MPL-2 
luminometer to obtain an ATP/RLU (VL RLUs) and an AK/RLU (TL RLUs) +/- the 
standard error of the mean (n=3).  N = number of experiments. 
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Figure 4.04: The effects of doxorubicin on Ma Mel 28 cells (A), and Ma Mel 26a cells 
(B), tested using the ToxiLight® and ViaLight® Plus kits. The resulting RLUs were 
measured using bioluminescence on a Berthold MPL-2 luminometer to obtain an 
ATP/RLU (VL RLUs) and an AK/RLU (TL RLUs) +/- the standard error of the mean 
(n=3).  

N = number of experiments. 

The Ma Mel 26a cells (figure 4.04; B) dosed with doxorubicin showed a 

similar effect, as previously seen in figure 4.04 with a reduction in ATP 

values after 24 hours. The ToxiLight® assay demonstrated cell death due 

to the increase in RLUs (four times above the control after 72 h) showing 

AK release from the necrotic cells. In comparison, the Ma Mel 28 cells 

(figure 4.04; A) demonstrated a reduction in ATP values; however the 

ToxiLight® RLUs showed no significant change when compared to the 

control throughout the experiment. As the plasma membrane was still 
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intact in these cells this result implied that the cells were in growth arrest 

(cytostasis) without direct cytotoxicity.   

Due to the varying results obtained with doxorubicin dosing, it was 

decided to repeat these experiments on all the melanoma cells with two 

additional drugs; the alkylating agent, cisplatin and plant alkaloid, 

vindesine. As in the previous experiment, all cells were prepared in 100 µl 

volumes in 96 well culture plates with an initial cell density of 1 x 105 

cells.ml-1. Cisplatin and vindesine at 0, 1, 5 and 10 µg ml-1 were used and 

tested with the ToxiLight® and ViaLight® Plus kits at 24, 48 and 72 h.  
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Figure 4.05: The effects of cisplatin (A) and vindesine (B) on ESTDAB 005 cells tested 
using the ToxiLight® and ViaLight® Plus kits. The resulting RLUs were measured using 
bioluminescence on the Berthold MPL-2 luminometer to obtain an ATP/RLU (VL RLUs) 
and an AK/RLU (TL RLUs) +/- the standard error of the mean (n=3). 

N = number of experiments. 
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Figure 4.06: The effects of cisplatin (A) and vindesine (B) on COLD 794 cells tested 
using the ToxiLight® and ViaLight® Plus kits. The resulting RLUs were measured using 
bioluminescence on the Berthold MPL-2 luminometer to obtain an ATP/RLU (VL RLUs) 
and an AK/RLU (TL RLUs) +/- the standard error of the mean (n=3). 

N = number of experiments. 
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Figure 4.07: The effects of cisplatin (A) and vindesine (B) on WM1205 cells tested using 
the ToxiLight® and ViaLight® Plus kits. The resulting RLUs were measured using 
bioluminescence on the Berthold MPL-2 luminometer to obtain an ATP/RLU (VL RLUs) 
and an AK/RLU (TL RLUs) +/- the standard error of the mean (n=3). 

N = number of experiments. 

The results in figures 4.05 represent the ESTDAB 005 cells, figure 4.06 

the COLD 794 cells and figure 4.07 the WM 1205 cells. All three cell lines 

revealed a concentration dependent effect with cisplatin when tested with 

the ViaLight® Plus assay. The ATP RLUs reduced in correlation with 

increasing drug exposure with a drop in RLUs at 24, 48 and 72 h after 

drug treatment. In addition, the resulting data with vindesine 

demonstrated a concentration dependent effect using the ViaLight® Plus 
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assay with all three cell lines revealing the same cellular effects regarding 

ATP reduction. However, the overall reduction in ATP RLUs after 72 h 

with vindesine was not as great as that observed with cisplatin. 

Results obtained from the ToxiLight® assay (figures 4.05, 4.06 and 4.07) 

demonstrates the importance of having both ToxiLight® and ViaLight® 

Plus assays carried out in parallel. The ViaLight® Plus assay measuring 

viable cells and changes in ATP levels. If there is a reduction in RLUs, 

there are fewer cells present and the normal assumption is that they have 

been killed. By combining ToxiLight® and ViaLight® Plus assays, you can 

establish if this is an accurate assessment. If there is no increase in 

ToxiLight® there has been no compromise of the plasma membrane and 

the cells remain intact, but not proliferating. Therefore compared to 

healthy control cells which proliferated over the time course of the 

experiment, there are less cells per well. The previous ViaLight® Plus 

results with ESTDAB 005 cells (figure 4.05) implied the cisplatin and 

vindesine to induce cell death with the reduction in ATP. However, results 

from the ToxiLight® assay demonstrated that the RLUs were not 

increasing but actually reducing, inferring that no cell death was occurring 

in the cells. Again, the results of the two assays combined demonstrate 

cytostasis; the reduction in AK release with increasing doses being due to 

reduced background AK as fewer cells are present within the well.  

The data obtained with COLD 794 cells and the drug cisplatin (figure 

4.06; A) did not show significant cell death. Small increases in RLUs 

could be seen with the ToxiLight® assay after 72 h, revealing some cell 

death had occurred, but the majority of cells appeared to be cytostatic. In 

comparison, the results obtained with COLD 794 and vindesine (in figure 

4.06; B) revealed that cell death had occurred with a significant increase 

in RLUs and therefore AK was released from the cells. WM 1205 cells 

were the only cell line to show significant amounts of cell killing with the 

drug cisplatin (in figure 4.07; A), with the RLUs doubling after 24 h 



                                                                                                                              Chapter 4 
 

 
Susan Catherine Gill 
PhD Thesis, 2009 

155 

although no further cell death appeared to occur after this time (assayed 

at 48 and 72 h) with the RLUs remaining double that of the control 

throughout the experiment. This could be due to a mixed population of 

sensitive and resistant cells within the population. With vindesine 

exposure (in figure 4.07; B), WM 1205 cells were affected to the same 

extent as with cisplatin, with only a small increase in ToxiLight® RLUs 

and thus cell death at 24 h. After 48 h, the RLUs were double that of the 

control however, no further cytotoxic effects were observed from 48 to 72 

h, which could imply the presence of a mixed population of sensitive and 

resistant cells as observed with cisplatin dosing.   
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Figure 4.08: The effects of cisplatin (A) and vindesine (B) on MEWO cells tested using 
the ToxiLight® and ViaLight® Plus kits. The resulting RLUs were measured using 
bioluminescence on the Berthold MPL-2 luminometer to obtain an ATP/RLU (VL RLUs) 
and an AK/RLU (TL RLUs) +/- the standard error of the mean (n=3). 
 
N = number of experiments. 
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Figure 4.09: The effects of cisplatin (A) and vindesine (B) on Ma Mel 28 cells tested 
using the ToxiLight® and ViaLight® Plus kits. The resulting RLUs were measured using 
bioluminescence on the Berthold MPL-2 luminometer to obtain an ATP/RLU (VL RLUs) 
and an AK/RLU (TL RLUs) +/- the standard error of the mean (n=3). 
 
N = number of experiments. 
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Figure 4.10: The effects of cisplatin (A) and vindesine (B) on Ma Mel 26a cells tested 
using the ToxiLight® and ViaLight® Plus kits. The resulting RLUs were measured using 
bioluminescence on the Berthold MPL-2 luminometer to obtain an ATP/RLU (VL RLUs) 
and an AK/RLU (TL RLUs) +/- the standard error of the mean (n=3). 
 
N = number of experiments. 

The three remaining cell lines, MEWO (figure 4.08), Ma Mel 28 (figure 

4.09) and Ma Mel 26a (figure 4.10) were tested with cisplatin and 

vindesine. All three cell lines revealed a concentration dependent effect 

with a drop in ATP RLUs observed with the ViaLight® Plus assay as the 

cisplatin dose increased.  As seen previously with the first three cell lines 

tested, the cytotoxic effects with cisplatin was more severe than with 

vindesine using the ViaLight® Plus assay, with Ma Mel 28 cells (in figure 
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4.09; B) revealing little change in RLUs with vindesine exposure. The 

effects of the drug cisplatin were noticeable after only 24 h with the RLUs 

at 50% of that in the control in all the cell lines. After 72 h, the RLUs 

further decreased to a much lower level than seen with vindesine. 

The results obtained from the ToxiLight® assay in figure 4.09 (A & B) 

mirror the results previously seen with the Ma Mel 28 cells exposed to 

doxorubicin, revealing no killing with either cisplatin or vindesine. The 

RLUs decrease slightly with increasing concentration of drug, illustrating 

cell cytostasis with fewer cells present in the culture. MEWO and Ma Mel 

26a cells showed a slight increase in RLUs, suggesting some cell death 

had occurred after 48 and 72 h with cisplatin, but the RLUs nearly 

doubled 72 h after treatment with vindesine. This was an unexpected 

result as the ViaLight® Plus data revealed a more severe drop in RLUs 

with cisplatin than vindesine. Comparing all six cell lines, most cell death 

was observed with COLD 794 cells treated with vindesine; however, 

comparison of the two drugs overall revealed variable results, with some 

cells responding better to cisplatin (WM 1205 cells) and others to 

vindesine (COLD 794 and MEWO cells). Comparing the vindesine and 

cisplatin results with the initial data obtained with doxorubicin, less cell 

death was observed overall with cisplatin and vindesine. The Ma Mel 28 

cells remained consistent, showing no cell death (cytotoxicity) with either 

doxorubicin or vindesine and very little effect with cisplatin (cytostasis). 

The Ma Mel 28 cells were therefore considered resistant to all 3 of the 

drugs used. 

From all the chemo sensitivity assays carried out, it was decided to 

choose 3 cell lines for further investigation. The Ma Mel 28 cells appeared 

resistant to the chemotherapeutic agents and were the prime choice. In 

contrast, the Ma Mel 26a cells appeared to be more sensitive and could 

be used as a direct comparison to the resistant Ma Mel 28 cells. The cell 

lines Ma Mel 26a and 28 had known clinical history and patient outcome 
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which could be used in further data interpretation. To confirm this 

difference in drug effect, both cell lines were exposed to a further three in-

house drugs (Lonza Ltd) to assess their effects with both the ToxiLight® 

and ViaLight® Plus assays. Dexamethasone is a glucocorticoid anti-

inflammatory agent, camptothecin is a DNA topoisomerase I inhibitor and 

arabinosylcytosine (Ara-C) is a selective inhibitor of DNA synthesis. Cells 

were prepared in 100 µl volumes in 96 well culture plates with an initial 

cell density of 1 x 105 cells.ml-1. Three drugs were tested at 0, 5 and 10 

µM.ml-1 with an exposure time of 72 h prior to testing with ToxiLight® and 

ViaLight® Plus assays. The vehicle control shown in figures 4.11 is 

DMSO into which all three of the drugs had been reconstituted. Although 

no interference had been seen on the ToxiLight® and ViaLight® Plus 

assays previously with DMSO, it was decided to confirm this by including 

a control to ensure no interference was seen with the assays. Complete 

media containing 0.1% DMSO (i.e. highest concentration used in the 

experiments) was added to a 96 well plate in 100 µl volumes and tested 

with both assays. A 100% lysis control was included to obtain a 

percentage of AK release figure 4.11. 
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Figure 4.11: The effects of ara-C, dexamethasone and camptothecin on the primary Ma 
Mel 28 cells (A), and Ma Mel 26a cells (B), tested using the ToxiLight® and ViaLight® 
Plus kits. The resulting RLUs were measured using bioluminescence on a Berthold 
MPL-2 luminometer to obtain an ATP/RLU (VL RLUs) and an AK/RLU (TL RLUs) +/- the 
standard deviation.  

N = number of experiments. 
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The results in figure 4.11 confirmed that the Ma Mel 28 cell line (A) was 

resistant to drug therapy with dexamethasone, with no drop in ATP 

observed at all with the ViaLight® Plus assay and consequently no killing 

was detected with the ToxiLight® assay. The drug did not even produce a 

cytostatic effect. In the presence of ara-C and camptothecin, there was an 

observable drop in ATP RLUs with the ViaLight® Plus assay but the 

ToxiLight® assay revealed little change and therefore no significant cell 

death. This result showed that some of the cell population were in growth 

arrest. In comparison, Ma Mel 26a cells did show an effect with 

camptothecin and ara-C. However as seen with Ma Mel 28, no change in 

RLUs was observed with dexamethasone with either of the assays. Ara-C 

revealed a small reduction in RLUs with the ViaLight® assay and a small 

increase in RLUs with the ToxiLight® assay, concluding that some cell 

death had occurred. Ma Mel 26a cells treated with camptothecin on the 

other hand revealed that 25% of cells had been killed after 72 h when 

compared to the 100% lysed control using the ToxiLight® assay. In 

addition, the ViaLight® RLUs dropped significantly confirming this cell 

killing within the culture. These results confirmed the choice of Ma Mel 28 

and Ma Mel 26a cells for further investigations. In addition, to these 

results, it was concluded that the vehicle control (DMSO), did not have 

any adverse effects on either the ToxiLight® or ViaLight® Plus assays 

with no significant change in RLUs observed with either assay. As the 

results did not reveal any of the remaining cell lines to be conclusively 

resistant or sensitive throughout the experiments, MEWO cells were 

selected as a third cell line for further investigation, due to current 

research which investigated it’s sensitive and resistant nature to various 

drugs (Kissel, 2006).  
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4.2.2 Investigation into the effects of trichostatin A on melanoma 
cells. 
 

Trichostatin A (a reversible inhibitor of histone deacetylase; HD) is 

thought to be a possible drug for future melanoma therapy either alone or 

used in combination (La Porta, 2007). It inhibits cell proliferation, thereby 

allowing a possible second drug to target the cells in growth arrest 

resulting in apoptosis. The effect of melanoma cell growth of this drug 

was assessed using a combination of the ToxiLight® and ViaLight® Plus 

assays to monitor cell death. The three selected cell lines Ma Mel 28, Ma 

Mel 26a cells and MEWO cells were assessed after 24, 48 and 72 h of 

exposure to trichostatin A. The results obtained were verified with 

FACScan analysis, trypan blue uptake and visually using a light 

microscope.  

 

The number of replicate samples taken at each time point was n=18 for 

MEWO, n=10 for Ma Mel 28 and n=14 for Ma Mel 26a cells. All cell based 

experiments were completed within 5 passages to ensure as few cellular 

changes within the populations as possible.  All cells were prepared either 

in 100 µl volumes in 96 well culture plates with an initial cell density of 1 x 

105 cells.ml-1 or in T25 cell culture flasks in 10 ml volumes at 1 x 105 

cells.ml-1. The ToxiLight® assay incorporated a 100% lysis control to 

quantify the amount of cell killing. Trichostatin A was added to the cells at 

0, 1 and 5 µM with an exposure time of 24, 48 and 72 h prior to testing 

with ToxiLight® and ViaLight® Plus assays. The cells prepared in flasks 

were scraped, lysed and frozen for further proteomics analysis (see 

chapter 5). 
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4.2.2.1 Effect of trichostatin A on MEWO cells 
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Figure 4.12 MEWO cells were treated with trichostatin A, incubated at 37oC for up to 72 
hours and tested every 24 hours for the effects of the drug. A represents the ViaLight® 
Plus assay; B contains the ToxiLight® data. The resulting RLUs were read on a Berthold 
MPL-2 luminometer showing ATP/RLUs +/- standard error of the mean where n=18.  
 
N = number of experiments. 

Figure 4.12 summarises the effects of trichostatin A on MEWO cells over 

72 h. The ViaLight® data reveals a concentration dependent effect with a 

dramatic reduction in RLUs with increasing drug concentration at 72 h; no 
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noticeable effect was observed after 24 h in either assay. In addition, the 

ToxiLight® assay demonstrated that the drug resulted in cell death in 22% 

of cells after 48 h and 41% of cells after 72 h of incubation. This is 

represented by the increase in ToxiLight® RLUs which indicates necrosis 

and therefore irreversible cell death. Although cells had been killed it 

appeared that the majority could be in growth arrest or remain unaffected 

by the drug.  

Microscope examination of the MEWO cells was performed at 72 h as a 

visual aid in monitoring the state of the cells: 

A    B              C 

     

      Control MEWO cells     MEWO cells, 1 µM     MEWO cells, 5 µM 

Figure 4.13 Microscopy of MEWO cells dosed with trichostatin A after 72 hours and 
taken with a light microscope (x10 lens).  
 

 
The results in figure 4.13, taken at 72 h (1 and 5 µM trichostatin A) clearly 

show that there are fewer cells present (figure 4.13, B and C). Some dead 

cells can be seen suspended in the culture media which may account for 

the 41% increase in RLUs (cell death) with the ToxiLight® assay after 72 

h. The remainder of the cells; although in fewer number, remain adherent 

and healthy confirming the ViaLight® and ToxiLight® data which implies 

cytostasis.  

 

To correlate the ToxiLight® data, propidium iodide (PI) FACScan staining 

was carried out.  The ability of the cells to exclude various dyes indicates 
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the maintenance of cell membrane integrity and hence the viability of the 

cell. PI fluoresces red when it binds to DNA but is excluded from cells 

with intact plasma membranes. 200 µl of cell culture were sampled and 

mixed with 200 μl of PI (50 μg.ml-1) and incubated for 10 min at room 

temperature. The cells were analysed to assess PI uptake with a Becton 

Dickinson FACScanTM Flow Cytometer and the results are illustrated in 

table 4.03 at 24, 48 and then 72 h; each experiment consisting of control 

cells, and cells treated with 1 and 5 µM of trichostatin A. 
  

% PI Uptake 

 

 

% Trypan Blue Uptake 

Control Cells  

Time (h) 

  

24 2.24 3 

48 4.62 2 

72 5.62 4 

1 µM TRICHOSTATIN 
A 

Time (h) 

  

24 9.20 4 

48 18.56 9 

72 31.90 18 

5 µM TRICHOSTATIN 

A 

Time (h) 

  

24 9.56 6 

48 39.46 24 

72 47.22 32 

 

Table 4.03: MEWO cells treated with trichostatin A (0, 1 and 5 µM) for 24, 48 and 72 h 
and stained with propidium iodide and compared with trypan blue uptake. The resulting 
PI uptake was measured by FACS, scanning a population of 5000 cells.   

The above data is representative of one experiment (n=1) 
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Table 4.03 shows a composite of the data produced after monitoring the 

effects of trichostatin A on MEWO cells for 24, 48 and 72 h. As can be 

seen in the controls, the MEWO cells appear healthy at 24, 48 and 72 h. 

After 24 h only 2.24% of the cell population have taken up the propidium 

iodide dye increasing to only 5.26% after 72 h. MEWO cells dosed with 1 

µM trichostatin A after 24 h reveal the percentage of cells taking up the 

dye to have increased significantly from 2.24% to 9.20% and the highest 

concentration (5 µM) of trichostatin A concludes that there has been no 

further increase in cell death with this increase in drug exposure when 

compared to the 1 µM dose of trichostatin A. 

 
The effect after a 48 h incubation with 1 µM trichostatin A; reveals a shift 

in the MEWO cell population with 18.56% of the overall population of cells 

becoming more permeable over time, taking up the dye into the cell 

membrane. Trypan blue uptake also increased from the control although 

only 9% uptake. With an increase in trichostatin A concentration to 5 µM, 

over a 48 h period of exposure, 39.46% of the cells have taken up the dye 

signifying a further increase in cell death over time, with the trypan blue 

count also increasing. MEWO cells treated with 1 µM trichostatin A after 

72 h reveal a substantial increase in cell death with prolonged drug 

exposure. The percentage of cells that have taken up the PI has 

increased to 31.90% and 18% with trypan blue. An even higher number of 

necrotic cells were recorded after prolonged treatment with 5 µM 

trichostatin A (72 h) demonstrating that 47.22% of the cells are necrotic 

with PI staining and 32% with trypan blue uptake. As the FACS data 

shows in table 4.03, a concentration dependent increase was observed 

with cells treated with trichostatin A for 48 and 72 h. After 24 h, only a few 

cells were necrotic, whereas this increased to nearly 50% after 72 h with 

5 µM trichostatin A. 
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Figure 4.14 Summary comparing the PI uptake data (A) with the ToxiLight data (B). 
MEWO cells treated with trichostatin A (0, 1 and 5 µM) for 24, 48 and 72 h.  

 

The percentages obtained by FACS analysis, although slightly higher with 

PI uptake, show similar results to that observed with the ToxiLight® assay 

(figure 4.14). Trypan blue uptake did correlate with both PI uptake and the 

ToxiLight® data although the results remained lower throughout all the 

experiments due to cells disintegrating; therefore not visible by trypan 

blue exclusion. 
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4.2.2.2 Effect of trichostatin A on Ma Mel 28 cells 
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Figure 4.15 Ma Mel 28 cells were treated with trichostatin A and incubated at 37oC for 
up to 72 h and tested every 24 h for the effects of the drug. Figure A represents the 
ViaLight® Plus assay; (B) contains the ToxiLight® data. The resulting RLUs read on an 
MPL-2 luminometer, show ATP/RLUs +/- standard error of the mean where n=10.  
 
N = number of experiments. 
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The results in figure 4.15 summarise the effects of dosing Ma Mel 28 cells 

with trichostatin A over 72 h. The ViaLight® data reveals only a slight 

drop in RLUs with 1 and 5 µM trichostatin A at 24 h, but a concentration 

dependent effect with increasing drug concentration observed at 48 and 

72 h. In contrast to the MEWO cells however, the ToxiLight® assay did 

not demonstrate any significant cell death at 24 or 48 h. After 72 h, there 

was a significant difference with the percentage of lysed cells increasing 

from 13% in the control, to 23% after 48 h, and 31% after a 72 h 

incubation time. This data combined with the ViaLight® Plus assay, which 

showed a dramatic drop in RLUs at 72 h, suggest that the majority of the 

cells were in growth arrest.  

Microscopic examination of the Ma Mel 28 cells was performed at 72 h as 

a visual aid in monitoring the state of the cells. 

A           B                   C 

    

 Control Ma Mel 28 cells        Ma Mel 28 cells dosed with 1 µM   Ma Mel 28 cells dosed with 5 µM 
 
 
Figure 4.16 Microscopy of Ma Mel 28 cells dosed with trichostatin A after 72 h and 
taken with a light microscope (x10 lens). 
 

 

Figure 4.16 shows the effect of trichostatin A at 72 h demonstrating that 

there are fewer cells present at 1 and 5 µM doses (figure 4.16, B and C) 

compared with the control. Although the pictures do not represent this 

clearly due to a lack of picture quality, there were many cells observed 

suspended in the culture media (4.16, C), accounting for the 31% 
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increase in RLUs with the ToxiLight® assay after 72 h and many of the 

cells seen lack the cellular junction that connects adherent cells with their 

adjacent neighbours. The remaining cells are shown to be adherent and 

appear healthy, although fewer in number compared to the control; this 

correlates with the ViaLight® and ToxiLight® data, indicating cytostasis. 

To further confirm the data, propidium iodide (PI) staining and trypan blue 

exclusion was carried out.  

. 

  

% PI Uptake 

 

 

% Trypan Blue Uptake 

Control Cells  

Time (h) 

  

24 7.06 4 

48 8.97 4 

72 10.43 7 

1 µM TRICHOSTATIN 
A 

Time (h) 

  

24 7.56 3 

48 12.34 6 

72 17.49 11 

5 µM TRICHOSTATIN 

A 

Time (h) 

  

24 9.95 5 

48 14.08 9 

72 27.41 16 

Table 4.04: Ma Mel 28 cells treated with trichostatin A (0, 1 and 5 µM) for 24, 48 and 72 
h and stained with propidium iodide and compared with trypan blue exclusion. 

The above data is representative of one experiment (n=1) 
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As observed with the ToxiLight® assay (figure 4.15; B), there was little 

change in PI uptake over a 24 h period. The percentage obtained with PI 

uptake after 48 h (5 µM trichostatin A) revealed a 14% increase and at 72 

h (5 µM trichostatin A), a 27% increase in PI uptake (table 4.04). This 

confirmed the ToxiLight® data, demonstrating that very few cells were 

undergoing cell death as a result of trichostatin A exposure (figure 4.17). 

Despite this, the ViaLight® Plus assay had RLUs which reduced 

considerably after 72 h, revealing the drug is having some effect on the 

cells, albeit a cytostatic effect. The results with trypan blue uptake, 

although lower, correlated with PI uptake and the ToxiLight® data, which 

showed a slight increase in necrotic cells with an increase in drug 

exposure over time. 
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Figure 4.17: Summary comparing the PI uptake data (A) with the ToxiLight data (B). Ma 
Mel 28 cells treated with trichostatin A (0, 1 and 5 µM) for 24, 48 and 72 h.  
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4.2.2.3 Effect of trichostatin A on Ma Mel 26a cells 
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Figure 4.18 Ma Mel 26a cells were treated with trichostatin A and incubated at 37oC for 
up to 72 h and tested every 24 h for the effects of the drug. Figure A represents the 
ViaLight® Plus assay, figure B contains the ToxiLight® data. The resulting RLUs were 
read on an MPL-2 luminometer, show ATP/RLUs +/- standard error of the mean where 
n=14.  
 
N = number of experiments. 
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The Ma Mel 26a cells were the final cell line to be tested with trichostatin 

A. The results summarised in figure 4.18, B revealed this cell line to have 

the highest observed cell death with the ToxiLight® assay. A 

concentration dependent increase in AK release could be seen at 24, 48 

and 72 h. After 24 hours the % lysed cells had increased from 9% in the 

control, to 18% and 23% with 1 µM and 5 µM trichostatin A respectively. 

By 72 h this had further increased to nearly 60% cell death with 5 µM of 

trichostatin A. Although this still was not 100% cell death, it was a 

significant change to the previous results observed with MEWO and Ma 

Mel 28 cells. The ViaLight® Plus data correlated with the ToxiLight®, with 

a slight decrease in RLUs after 24 h, continuing to drop at 48 and 72 h 

until the RLUs had fallen to a very low level following treatment with 5 µM 

trichostatin A.  

A            B                             C 

    

      Control Ma Mel 26a cells           Ma Mel 26a cells dosed with 1 µM    Ma Mel 26a cells dosed with 5 µM 
 

 
Figure 4.19: Microscopy assessments of Ma Mel 26a cells treated with trichostatin A 
after 72 h and taken with a light microscope (x10 lens). 

 
 
The cell morphology in figure 4.19 after 72 h of treatment with 1 and 5 µM 

trichostatin A clearly shows that there has been a large amount of cell 

death occurring within the cell population. Although the above pictures 

are not of good quality, it could be seen that the adherent junctions are no 

longer visible with 1 µM trichostatin A (B) with very few cells seeming to 

be adherent with 5 µM trichostatin A (C). This was a very promising result 

correlating with the large increase in cell death observed with the 
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ToxiLight® assay. It can be seen clearly from in figure 4.19 that cell 

morphology had deteriorated more than previously seen with the MEWO 

and Ma Mel 28 cells. To correlate the ToxiLight® data, propidium iodide 

(PI) staining and trypan blue exclusion assays were carried out.  

 
  

% PI Uptake 

 

 

% Trypan Blue Uptake 

Control Cells 

Time (h) 

  

24 3.75 2 

48 5.79 4 

72 10.76 7 

1 µM TRICHOSTATIN 
A 

Time (h) 

  

24 15.82 8 

48 20.72 28 

72 47.82 39 

5 µM TRICHOSTATIN 
A 

Time (h) 

  

24 27.49 19 

48 39.95 42 

72 67.82 82 

Table 4.05: Ma Mel 26a cells dosed with trichostatin A (0, 1 and 5 µM) at 24, 48 and 72 
h of incubation and stained with propidium iodide and compared with trypan blue 
exclusion. 

The above data is representative of one experiment (n=1) 

The data obtained with Ma Mel 26a cells treated with trichostatin A and 

stained with PI is shown in table 4.05, revealing a large proportion of the 

cell population to be necrotic. The percentage cell death assessed with PI 

uptake and trypan blue staining was greater than that in the ToxiLight® 

assay (60%) with nearly 70% stain with PI and 82% with trypan blue after 

72 h (5 µM trichostatin A). After 24 h a significant difference was 
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observed, even with 1 µM trichostatin A. The results with PI, although 

slightly higher correlated with the ToxiLight® assay (figure 4.20). The 

results with trypan blue uptake produced significantly higher results than 

both the ToxiLight® and PI staining. It appeared that nearly all of the cells 

were necrotic after 72 h of treatment with very few viable cells remaining.  
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Figure 4.20: Summary comparing the PI uptake data (A) with the ToxiLight data (B). Ma 
Mel 26a cells treated with trichostatin A (0, 1 and 5 µM) for 24, 48 and 72 h.  
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Below is a summary table of all experimental results carried out in this 

chapter: 

 

Cells Tested Drug Treatment Published Result Result from this 
research 

MEWO Cisplatin 
Vindesine 

Doxorubicin 
Trichostatin A 

Sensitive/resistant 
Sensitive/resistant 
Sensitive/resistant 

Used in 
combination 

therapy 
(sensitive) 

 

Cytostatic 
Cell death 
Cell death 
Cell death 

ESTDAB 105 Cisplatin 
Vindesine 

Doxorubicin 

Not published 
Not published 
Not published 

Resistant 
Resistant 
Cell Death 

 
WM 1205 Cisplatin 

Vindesine 
Doxorubicin 

Not published 
Not published 
Not published 

Cell death 
Cell death 
Cell death 

 
COLD 794 Cisplatin 

Vindesine 
Doxorubicin 

Not published 
Not published 
Not published 

Cytostatic 
Cell death 
Cell death 

 
Ma Mel 26a Cisplatin 

Vindesine 
Doxorubicin 

Camptothecin 
Dexamethasone 

Ara-C 
Trichostatin A 

Not published 
Not published 
Not published 
Not published 
Not published 
Not published 
Not published 

Cell death 
Cell death 
Cell death 
Cell death 
Resistant 
Cytostatic 
Cell death 

 
Ma Mel 28 Cisplatin 

Vindesine 
Doxorubicin 

Camptothecin 
Dexamethasone 

Ara-C 
Trichostatin A 

Not published 
Not published 
Not published 
Not published 
Not published 
Not published 
Not published 

Cytostatic 
Cytostatic 
Cytostatic 
Cell Death 
Resistant 
Resistant 
Cell death 

Table 4.06: Summary of the results found in this research 
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4.3 Discussion 

The work included in this chapter has examined the potential of using the 

novel bioluminescent assay ToxiLight®; and the ViaLight® Plus assays in 

parallel with a view to investigating the susceptibility of cells to various 

known chemotherapeutic agents. The study incorporated six melanoma 

cell lines, to analyse the effects chemotherapy agents have on cell 

survival using the ToxiLight®, ViaLight® Plus assay and subsequently 

P.I. uptake, trypan blue staining and light microscopy to confirm the assay 

data. 

 

The main objective of this chapter was to obtain further understanding of 

tumour chemo-sensitivity assays. The response of patients to 

chemotherapy varies immensely within the same histological tumour type 

(tumour heterogeneity). Human malignant melanoma, a tumour with a 

high potential to metastasise, is well known for its resistance to various 

anti-cancer agents (Nessling et al., 1999). The role of p53 and drug 

resistance in melanoma has been extensively studied; however, a full 

understanding of the molecular mechanisms occurring within these cells 

has not been obtained (Li et al., 1998). An investigation was undertaken 

to discover sensitive and resistant cell lines to various toxic chemotherapy 

agents; the selected cells can then be further investigated at the 

molecular level to ascertain the mechanism(s) of resistance (chapter 5).  

 

Assessment for mycoplasma contamination on all the melanoma cells 

gave a negative result, and all the drugs (doxorubicin, vindesine and 

cisplatin) were screened at their working concentrations with both the 

ToxiLight® and ViaLight® Plus assays to ensure there was no 

interference with either assay.  The standards for both AK and ATP, with 

and without the drugs showed no significant difference.  
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4.3.1 Effect of doxorubicin on melanoma cells 
 

The four cell lines, COLD 794, ESTDAB 005, WM 1205 and MEWO and 

the recently established Ma Mel 28 and Ma Mel 26a were all exposed to 

the anti-tumour antibiotic doxorubicin, with a view to establishing their 

drug sensitivity / resistance. It was concluded that the most sensitive cell 

line to doxorubicin was MEWO. The data with doxorubicin treatment is 

new and has not been found in published data. All of the cell lines 

showed a concentration dependent effect with the drug, revealing that 

doxorubicin had prevented replication of the cells. Doxorubicin is known 

to interact with DNA by intercalation and inhibition of macromolecular 

biosynthesis (Momparler et al., 1976). It inhibits the progression of the 

enzyme topoisomerase II, which “unwinds” DNA for transcription. 

Doxorubicin stabilises the topoisomerase II complex after it has broken 

the DNA chain in readiness for replication, preventing the DNA double 

helix from being resealed and thereby inhibiting the process of replication. 

Due to the consistent effects of this drug on the melanoma lines tested, it 

was difficult to differentiate sensitive from resistant cell lines.   

 

In contrast, the data produced from dosing the cells with doxorubicin, 

revealed two varying results. Doxorubicin had a cytotoxic effect on the Ma 

Mel 26a cells assessed by the ViaLight® Plus assay but no change was 

observed in the ToxiLight® assay, concluding that the drug was cytostatic 

for cell growth. The cells had been prevented from proliferating but no cell 

death was occurring. The Ma Mel 28 cell line proved to be the most 

resistant of the six lines tested and was used in subsequent experiments.  

 

 

 

 

 

http://en.wikipedia.org/wiki/Biosynthesis�
http://en.wikipedia.org/wiki/Topoisomerase_II�
http://en.wikipedia.org/wiki/Transcription_(genetics)�
http://en.wikipedia.org/wiki/DNA_replication�
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4.3.2 Effect of cisplatin and vindesine on melanoma cells 

 

Subsequent data with cisplatin and vindesine on all six cell lines 

demonstrated cell death in COLD 794 and WM 1205 and Ma Mel 26a 

cells by the ToxiLight® assay. WM 1205, Ma Mel 26a and MEWO cells 

were consistently sensitive to doxorubicin, cisplatin and vindesine with an 

increase in AK release in all experiments compared to the other cell lines. 

As previously mentioned MEWO cells had been previously published with 

cisplatin and vindesine (Nessling et al., 1999) revealing the sensitive 

nature of the cells to these drugs. In comparison however, no cell death 

was seen in either the ESTDAB 005 or Ma Mel 28 cells, which were 

resistant to both cisplatin and vindesine. This is new data that has not 

been published. The Ma Mel 28 cells revealed resistance to all three 

drugs tested, while ESTDAB 005 cells were only sensitive to one drug; 

doxorubicin. This led to the belief that apoptosis and cell death within 

melanoma cells could be drug specific as shown previously by Kissel 

(2006) who investigated sensitive and resistant strains of MEWO cells to 

etoposide and cisplatin.  

 

The data presented in this study suggests that the Ma Mel 28 cells could 

be used as a resistant cell line, at least in the context of cisplatin, 

doxorubicin and vindesine. Ma Mel 26a cells were sensitive to all three 

drugs and were chosen as a sensitive cell line. Both these cell lines were 

obtained from known patients with no previously published data. The 

history of the individual patients in respect to their individual therapy was 

available although the research was conducted blindly. To confirm this 

hypothesis of drug sensitive and resistant cells, three in-house drugs 

(camptothecin, ara-C and dexamethasone) were used against Ma Mel 

26a and 28 cell lines. Ma Mel 28 cells demonstrated resistance to all 

drugs except camptothecin used in the study and in addition there was no 

concentration dependent reduction in ATP with increasing exposure to 
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dexamethasone, implying the cells were also resistant to cytostasis. Ma 

Mel 26a cells were also resistant to dexamethasone, an effect not 

previously reported with these cells. With ara-C a slight drop in ATP was 

observed with both cell lines with an increase in drug exposure but no 

cytolysis observed. Camptothecin on the other hand, caused cell death in 

Ma Mel 26a cells with a drop in ATP and a significant increase in RLUs 

with the ToxiLight® assay. The conclusion from these results was that 

melanoma cells respond differently to various chemotherapeutic agents. 

One cell line may respond positively to one toxic agent but not another, 

and demonstrates that individual patients may respond differently to the 

agents used for treatment. The basis for drug resistance in melanoma is 

most likely dysregulation of apoptosis, although other mechanisms 

including drug transport, detoxification, and enhanced DNA repair may 

also play a role (Grossman and Altieri, 2004). 

 

4.3.3 An investigation into the effects of trichostatin A on melanoma 
cells. 

Histone deacetylase inhibitors (HDACIs) are a promising group of 

compounds inducing differentiation, growth arrest and apoptosis in 

tumour cells. The latter part of this study uses a combination of the 

ToxiLight® and ViaLight® Plus assays to monitor the effectiveness of the 

HDACI, trichostatin A on three melanoma cell lines. Previous studies 

concluded that the two cell lines Ma Mel 26a and Ma Mel 28 would be 

suitable for these experiments. These cells originate from patients with 

melanoma and no published has been found using them. The patient 

history is accessible for this study which was carried out blindly. A third 

cell line, MEWO, was selected for its sensitivity and its reported drug 

sensitivity in previous research (Kiesel, 2006). From the data it can be 

seen that trichostatin A does have an effect on MEWO cells, resulting in 

50% necrosis upon exposure to 5 μM; this result correlated with the 
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FACSCaliburTM and trypan blue exclusion data demonstrating although 

trypan blue uptake remained much lower than both PI and the ToxiLight® 

data, throughout the experiment, probably due to many of the dead cells 

degrading to form apoptotic bodies, not being accountable in this 

methodology. ToxiLight® on the other hand measures a stable enzyme in 

culture and should therefore be more sensitive and accurate.  

The most sensitive cell line was Ma Mel 26a, resulting in nearly 60% 

necrosis, again correlating with the data gained from the FACSCaliburTM 

analysis and trypan blue uptake. Ma Mel 28 cells proved to be resistant to 

trichostatin-A, although cytostasis was achieved with a reduction in ATP 

being observed. This was an encouraging result and suggests that 

histone deacetylase inhibitors (HDACIs) could be used in future research 

with melanoma cells. Histone acetylation is the subject of both research 

and clinical investigation (Haggarty et al., 2003). Response to HDACIs 

has also been observed by Peltonen et al., (2005), in studying the cellular 

effects of trichostatin A (TSA), on a panel of melanoma cell lines and its 

mechanism of action in relation to p53. While growth arrest was induced 

in all cell lines studied and apoptosis in the majority, these cellular effects 

were independent of the p53 status of the cells. The results from Peltonen 

et al. indicated that trichostatin A activated the apoptotic pathway in two 

out of the three cell lines tested; this could therefore provide alternative 

therapeutic approaches for melanoma treatment, whether alone or in 

combination therapy. 
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The next phase of this study was to use frozen samples of all the cell 

lines treated with and without trichostatin A and analyse changes in the 

cell proteome correlating with cytotoxicity/viability. MALDI-TOF MS 

analysis will be used to derive protein/peptide profiles.  The results from 

the MALDI analysis will then be subjected to bioinformatic analysis, using 

artificial neural networks to identify potential biomarkers that may 

associate with melanoma cell apoptosis. 
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Chapter 5: Identification of important ions using 
proteomics and bioinformatics analysis which could be 

associated with drug response. 
 
 

5.1 Introduction 
 
 
In the UK alone, more than 10,000 people are diagnosed with skin cancer 

each year.  About 3 out of every 100 cancers diagnosed (3%) are 

melanomas.  Although not a common cancer, melanoma is important 

because it is easily curable if diagnosed early.  Primary treatment 

involves surgical removal of the melanoma which results in 98% of low-

risk patients being cured. However, if the disease has progressed current 

treatment is still experimental and effective only in a small number of 

cases. There is no recent evidence to show that survival rates have 

improved due to adjuvant therapy. Serum biomarkers that are currently 

used clinically, with the ability to differentiate between high and low stage 

melanoma patients are lactate dehydrogenase (LDH), S100B and 

melanoma-inhibitory activity (MIA). These tests lack sensitivity and are 

unreliable predictors of asymptomatic and metastatic cancer (Matharoo-

Ball et al., 2007). This has resulted in a large amount of research being 

undertaken to search for melanoma biomarkers that predict a patients’ 

risk of cancer or metastasis and to monitor those receiving adjuvant 

therapies. Phenotypic expression patterns could hold the key to certain 

pathological conditions resulting in the discovery of novel biomarkers or 

as a target for new therapies. Techniques involving molecular profiling 

are not only confined to identifying macromolecules (e.g 

peptides/proteins) that could form the basis of new treatment regimes 

(Mian et al., 2003), they can even be applied as a novel methodology for 

the pathological classification of diseased tissue such as cancer (Koomen 

et al., 2005; Matharoo-Ball et al., 2007; Ball et al., 2001). 
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One approach that shows great promise is proteomic profiling, in which 

new methods for sensitive and reproducible identification and 

quantification of thousands of different proteins in cells and serum are 

being applied to analyse molecular changes in melanoma (Bernard et al., 

2003). The availability of new mass spectrometers capable of high-

throughput protein analysis has brought about powerful screening 

methods for identifying protein signatures with disease stage. The two 

most popular approaches in analysing and identifying proteins that are 

present in biological samples are MALDI (matrix assisted laser desorption 

ionisation) and SELDI (surface enhanced laser desorption ionisation) 

mass spectrometry (MS). These methods are capable of measuring 

protein profiles as a “top-down” approach, analysing intact proteins in 

complex mixtures, and peptides, a “bottom-up” approach. The robustness 

of MALDI-TOF-MS facilitates the investigation of complex samples and 

has been applied successfully using a variety of statistical pattern-

recognition tools for early cancer detection in ovarian, colorectal, breast, 

prostate, astrocytoma/glioblastoma and melanoma cancers (Mian et al., 

2005; Petricoin et al., 2002; Li et al., 2002; Matharoo-Ball et al., 2007).  

SELDI, introduced by Hutchens and Yip, utilises a sample platform using 

solid phase supports or “chips” coated with a selection of chemical or 

biochemical agents for protein separation prior to analysis by MALDI (Li 

et al., 2002). A limitation of MALDI-MS and SELDI-MS analysis is that 

identification of proteins cannot be carried out by measuring the protein 

molecular weight or m/z without the incorporation of protein digestion. 

This is usually carried out separately following 2-DE analysis of proteins 

or as in solution digestion prior to MS analysis.  

 

There has been much controversy about the methodology used regarding 

biological, technological and data mining tools that could introduce bias. 

These mainly refer to the way samples are collected, processed and 
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stored, instrumentation and data analytical methods used. The research 

team at Nottingham Trent University has employed a combination of an 

automated robotic chromatographic ZipTipTM methodology combined with 

MALDI-TOF-MS generating a powerful and sensitive analysis of samples 

(Matharoo-Ball et al., 2007). This method enables measurement at the 

protein level, with the same sample tryptically digested for measuring 

peptides (bottom-up) for identification as demonstrated in figure 5.01. 

Measurement of proteins alone would require further investigation by 

additional techniques to confirm identification. 

  

 
 Figure 5.01 A flow diagram to illustrate the procedure of mass spectrometry 

 

Due to the high number of samples and the quantity and dimensionality of 

the data produced by MALDI-TOF MS, data mining tools are essential in 

order to sort through the data for protein or peptide patterns. To produce 

accurate and sensitive predictions of important ions, the statistical 

methods used have to be very powerful. Some of the methods assessed 

include Bayesian analyses, fuzzy logic, and the computational tool 

employed in this study, artificial neural networks (ANNs). ANNs are 

divided into two main classes; supervised and unsupervised methods 

(Lancashire et al., 2005). Supervised learning involves a dataset 

consisting of both input and output data which is presented to the ANN 

during a training phase. The ANN tries to find a link between the data that 
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results in the least error adjusting the weighted links until this error falls 

below a certain threshold. Once the ANN has established a connection 

between the inputs and outputs, the model can then be utilised for 

unseen data. In comparison, unsupervised learning uses only the input 

dataset and the ANN is free to search for hidden relationships amongst 

this data (Tafeit et al., 1999). Recent studies have shown that the 

application of ANN-based approaches can be used to identify patterns 

strongly associating with specific disease stages (Matharoo-Ball et al., 

2007; Ball et al., 2002; Petricoin et al., 2002). The ANNs used in the 

present study, uses the supervised approach, learning predictive patterns 

contained within complex datasets, by adjusting and updating the 

connecting weights between the layers of the network using the back 

propagation (BP) algorithm applied to the multi-layer perceptron (MLP).  

 
 
 
 
 
 
 

 
 
Figure 5.02 To show the structure of the multi-layer perceptron ANN 

 

o Input layer: Receives input from the raw data, 

corresponding to one of the variables i.e. control (1) or drug 

treated (2). 

o Hidden layer: It is a feature detector which can classify 

non-linear data. 

o Output layer: The data from this section are the final 

results.  
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As illustrated in figure 5.02, the ANNs are trained using the input layer 

(representing independent variables), and given the resulting output or 

correct sample group. The input layer could represent the m/z value and 

intensity from a set of mass spectral profile data. (Note: The ion values 

(m/z) represent [M+H]+ ions from the MALDI-MS). The hidden layer 

represents the mathematical mechanism of the model and it learns by 

processing all the data and information it receives to find patterns 

between sample groups and passes it to the output layer via weighted 

links. The output layer is calculated by the network based on the data 

inputted, and is then compared with the actual known output. For 

example, in a classification model an output of 1 would represent a 

control sample and an output of 2 would represent a cancer-treated 

sample, and then the error between the predicted and actual outputs is 

calculated. This error demonstrates how well the ANNs are working.  

 

When using ANNs, analysing the data can be separated into three 

groups; (1) the training data as previously mentioned; (2) the test data 

where the ANNs are checked and validated for its outputs on the test set 

whilst the training occurs and (3) once training has been completed, it is 

validated by a further set of completely blind data which are applied and 

an output calculated based upon the new data (Basheer et al., 2000; 

Lancashire et al., 2005). The performance on unseen data indicates 

whether a generalised model has been obtained or not. By using multiple 

models with different unseen datasets (random sample cross validation) a 

more generalised model may be obtained with only a small sample 

number. ANNs are based on biological neurons which are highly 

organised, processing information which contains high levels of noise and 

redundancy (Ball et al., 2002). Their ability to learn and adapt, allow the 

system to modify itself enabling analysis of unseen data. ANNs have 

been used in a variety of applications including modeling, classification, 
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pattern recognition, and multivariate analysis. The stepwise approach 

used in this study is a detailed method of parameterisation, whereby ions 

are added step by step for the determination of the best subset of ions to 

predict a particular outcome. Interactions between the ions may also be 

identified in this way. The analysis is based on the hypothesis that the 

change in performance when an input is added indicates its influence on 

the model. Multiple sub models are run with input 1, then with 2, and then 

with input 3 and so on until all of the inputs are modeled separately. The 

error known as “test error” is determined for each sub model and the 

input that gives the best “test performance” and the lowest “test error” is 

selected. This is then placed with all of the remaining inputs sequentially 

in a number of sub models once more. This process continues adding 

more inputs until there is no improvement in the error revealing a subset 

of identified ions. 

 

The aim of the research in this chapter was to identify molecular factors 

that may be associated with the drug-resistant or sensitive phenotypes of 

three pre-selected malignant melanoma cell lines. To minimise criticisms 

involving bias in biomarker identification a validated, robust, and 

reproducible methodology based on MALDI-TOF-MS combined with 

bioinformatics to profile tryptic peptides was used. The three human 

melanoma cell variants exhibiting low and high levels of resistance to 

various drugs tested in chapter 4 were exposed to the histone 

deacetylase inhibitor, trichostatin A. Its effect on these cells was 

characterised using MALDI-TOF MS for peptide identification. Alterations 

in the various protein expressions were monitored over time and at 

different dose concentrations of the drug, thus simulating a situation close 

to clinical chemotherapy. ANNs were applied to the data for the cell lines 

and a panel of peptide biomarkers obtained correlating to the dose and 

time of drug exposure.  



                                                                                                                              
Chapter 5                                                                                                                          

 

 
Susan Catherine Gill 
PhD Thesis, 2009 

 

190 

 

  
Figure 5.03  Schematic flow chart outlining the methodology carried out in this study 
for biomarker identification. 
 

The aims of this chapter will be to: 

 

o Prepare and optimise the samples for analysis. 

o Separate the proteins using C18 ZipTips, utilising an automated 

methodology (Xcise, Proteome Labs, Shimadzu, Manchester, UK), 

followed by tryptic digestion of the cellular proteins and a second 

C18 ZipTip for desalting and concentration of the sample. 

o To analyse the samples by MALDI-TOF MS and then visually 

inspect the data.  

 

Standard sample collection 

Freezing aliquots of sample in -80°C 

Randomization of the sample position on the Xcise 96 well 
plate and MALDI 384 plate 

Sample equalisation of  
protein 

MALDI-MS analysis 

Data pre-processing 

Bioinformatics 

ZipTip clean-up & protein analysis 

Tryptic digest & peptide analysis 

Same aliquot of sample 

Step 1. Sample  
preparation 

Step 2. Protein  
separation  

Step 3. Analysis  
and Protein  
identification   
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o Pre-process the MALDI-TOF MS spectra ready for bioinformatic 

analysis using ANNs.  

o Train and test the ANNs and allow the trained network to recognise 

key differences between drug-treated and untreated melanoma 

cells using a blind dataset.  

o Carry out MALDI-TOF MS/MS for protein identification of the tryptic 

peptide ions predicted by ANNs.  
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5.2 Results 
 
5.2.1 Protein quantification of melanoma samples 

 

Protein quantification was performed using the Bio-Rad protein micro 

assay as described in chapter 2.9.2.  The standard curve used for the 

quantification of protein in the MEWO cell samples is illustrated in the 

graph below (figure 5.04). As can be seen an R2 value of 0.98 was 

achieved from this experiment with the standard curves for Ma Mel 26a 

and Ma Mel 28 cells resulting in an R2 value of 0.97 and 0.98 

respectively.  

 
Figure 5.04 An illustration of the BSA standard curve obtained after measurement on a 

plate reader at an absorbance of 595 nm. 

 
5.2.2 Sample optimisation  

 

Once the amount of protein was quantified on all 3 cell lines, the frozen 

aliquots of the Ma Mel 26a cell lysates were corrected to 0.1 mg.ml-1 
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using 0.1% TFA prior to analysis on the MALDI-TOF MS. This 

concentration was chosen because the majority of the samples had very 

low starting protein concentrations. Samples were optimised as explained 

in chapter 2.9.3 and 2.9.4 prior to sample randomisation on the MALDI 

target plate using Microsoft Excel 2003.  Once randomised and diluted 

the samples were processed on the robotic system Xcise (Shimadzu, 

Manchester, UK).  
 
5.2.3 MALDI-TOF-MS 
 

The samples were analysed using an Axima CFR+ MALDI-TOF mass 

spectrometer (Shimadzu, Manchester UK) operated in reflectron mode 

mass range of 800-3500 Da for peptide analysis. Mass spectra 

acquisition was performed using autoquality mode, with the accumulation 

of 100 profiles and using per 5 shots per profile. After data acquisition by 

MALDI-MS, all spectra were checked visually to ensure the quality and if 

they resembled a blank profile then these were removed prior to ANN 

analysis. Figure 5.05 shows the spectra observed from six QC samples at 

various positions on the same MALDI target plate demonstrating the 

reproducibility of the MALDI-TOF MS method. There is still some slight 

variation in the intensities of some peaks even though they have been 

subjected to the same MALDI MS run, laser power and matrix. However, 

these samples undergo a cleaning procedure twice on the robotic system 

prior to MALDI analysis which may increase the variability between 

samples. Another observation of the QC samples in figure 5.05 is that 

although the spectrum obtained is highly reproducible, it is also very 

complex making many individual peaks difficult to compare and identify 

without closer inspection.  
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5.2.4 Ma Mel 26a cells 

 

Preliminary work was carried out on the Ma Mel 26a cells to investigate 

the proteomic profile differences between drug-treated and untreated 

cells after initial dose (day 0), day 1, day 2 and day 3 after drug exposure 

for identification of biomarkers that could correctly classify differences 

between these groups. Upon visual inspection, differences were 

observed between the tryptic peptide spectra obtained from treated and 

untreated cells. The representative spectra for the peptides with 1 µM and 

5 µM trichostatin A are shown in figures 5.06 and 5.07 respectively. As 

can be seen, these spectra are too complex and the pattern differences 

between the groups are ambiguous by eye. Any visual differences seen 

between the treated and untreated cells may not necessarily mean that 

they will be important predictive markers.  

 

Differences seen in ions m/z 1321 and 1468 (figure 5.06) appear to show 

the protein being expressed less in the drug-treated cells with the 

intensity dropping at each time point measured from day 0 to day 3. 

Figure 5.07 shows an ion at 1568 which appears to increase in intensity 

over time, showing expression within the cells as they are treated with 

trichostatin A. After day 3 the intensity of the ion appears to drop again. 

Even though the samples were equalised for the initial protein 

concentration the general spectra at day 3 appeared to have a trend of 

lower intensity peptide peaks compared with days 1 and 2 of exposure. It 

was however noted from the spectra that the protein levels needed to be 

more concentrated than the 0.1 mg.ml-1 that was used, as very few 

peptide peaks could be visually seen with even less observed after 3 

days as mentioned above. There are other peaks that could also be said 

to have differences within the spectra but due to the number of samples 
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analysed and complexity of the data the application of ANN analysis was 

necessary for full data analysis.  
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5.2.4.1 Bioinformatic analysis of Ma Mel 26a cells using ANNs 

Bioinformatic analysis was carried out to compare the different profiles 

obtained by MALDI-MS, using a stepwise approach. To interpret this 

highly complex data, a sophisticated algorithm (i.e. ANNs) was employed. 

Prior to ANNs analysis it was essential to reduce the data points by 

rounding (binning) the m/z values to the nearest Dalton, to increase the 

accuracy and efficiency of the analysis. Any spectra that looked like blank 

profiles or not having consistent peaks were removed prior to ASCII file 

conversion and bioinformatic analysis. A stepwise approach was utilised 

to train the data to recognise key peptide profiles that differentiated 

untreated cells versus the cells treated with the drug to give a panel of 

important biomarkers. A multi-layer perceptron ANN with a back 

propagation was used for this study as described by Lancashire et al. 

(2005) and demonstrated in figure 5.02. The m/z MALDI-MS data were 

used to train, test and validate the ANN model which was developed 

using random sample cross validation where the data is randomly split 

into three subsets.  The data consisted of n=14 experiments with each 

time point (0, 24, 48 and 72 hours) and drug treatment (0, 1, 5 µM) (i.e. 

168 datapoints (14x12)). 60% of samples from each cell line were set 

aside for training, with 20% used to test the performance of the ANNs and 

then a final 20% of the samples used as a blind or validation set of data.  

The primary ion identified by the model was used as a single input and for 

each model 50 random training/test/validation bootstrapped subsets were 

used. The model with the lowest predictive error determined the most 

important input. This identified input was then combined with a second 

input (two inputs) to train the models as described above and accordingly 

the second important ion was identified. This process was continued until 

no significant improvement in the performance of the model was obtained 

by adding new inputs. This methodology resulted in the production of a 

list of key ions, as shown in table 5.01 for Ma Mel 26a cells. These ions 
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are the most important for correctly classifying the two classes of 

samples: untreated and treated cells.   
  



                                                                                                                              
Chapter 5                                                                                                                          

 

 
Susan Catherine Gill 
PhD Thesis, 2009 

 

201 

Stepwise 
steps 

m/z 
[M+H]+ 

Test 
Performance 

(%) 

Test 
Error 

    
Day 1 

Control 
vs 1 µM 

   

1 
2 

1082 
1680 

75 
83 

0.166 
0.141 

 
Day 2 

Control 
vs 1 µM 

   

1 
2 
3 
4 

844 
1793 
3163 
1666 

71 
85 
86 

100 

0.193 
0.126 
0.089 
0.059 

 
Day 3 

Control 
vs 1 µM 

   

1 
2 
3 

2782 
2955 
1429 

75 
75 
88 

0.191 
0.149 
0.126 

 
Day 1 

Control 
vs 5 µM 

  
 

 

1 
2 
3 

3334 
2355 
1476 

79 
79 
86 

0.157 
0.132 
0.114 

 
Day 2 

Control 
vs 5 µM 

   

1 
2 
3 
4 

3235 
1025 
2553 
1107 

71 
85 
86 

100 

0.191 
0.139 
0.109 
0.068 

 
Day 3 

Control 
vs 5 µM 

   

1 
2 

1062 
2155 

85 
86 

0.859 
0.135 

 
 

Table 5.01 Artificial Neural Network results of Ma Mel 26a cells (n=14). Table to show 
the test performances and the mean squared error for the test data sets as each input is 
added to the model. The results show the top ions that gave the best accuracy of 
prediction with the error failing to improve with subsequent additions.  
 
N = number of experiments 
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As can be seen in table 5.01, several ions have been identified as 

important in each of the models. In the control versus treatment exposure 

(1 µM) for day 1, the first step of the model identified the ion at m/z 1082 

which shows a significant difference in 75% of the data analysed; this 

was demonstrated to be the most important ion. The addition of the 

second ion at m/z 1680 increased the performance to 83% after which 

the addition of further ions did not improve the model. After day 2 of drug 

treatment a new set of ions were shown to be important with ion m/z 844 

showing a 71% performance. The addition of ions 1793, 3163, 1666 

produced a 100% performance rate. At day 3, three ions were identified, 

ion m/z 2782 being the most important with the addition of the ions 2955 

and 1429 giving a model performance of 88%. Treatment with 5 µM 

trichostatin A showed ion m/z 3334 between the groups to differentiate 

with a 79% accuracy, ions 2355 and 1476 resulted in 86% performance; 

day 2 identified four ions; 3235 (most important), 1025, 2553 and 1107, 

combined gave a 100% performance rate and at day 3, 1062 and 2155 

gave an 86% performance rate.  

 

5.2.4.2 Validation of ANNs with blind data set 

 

After training and testing of the model was completed, a new independent 

blind set of data, not previously incorporated into the model was 

presented to validate the results by evaluating the ability of the model to 

assign these new samples to the correct class. Validation samples n=5 of 

treated and n=5 of untreated for each drug concentration and drug 

exposure time were used for data analysis. For the untreated compared 

to the treated cells with 1 µM trichostatin A, the model correctly classified 

only 55% of the day 1 dataset, 45% of the day 2 dataset and 60% of the 

day 3 dataset. This series of experiments questioned the validity of the 

model and predicted ions (table 5.01) to associate and define the class of 
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samples. For the untreated compared to the treated cells with 5 µM 

trichostatin A the model also failed to predict unseen samples accurately, 

38% were correctly classified for the day 1 dataset, 48% correct for the 

day 2 dataset and only 33% classified correctly for day 3. With the 

original spectra proving inconclusive visually, due to the low 

concentration of protein, and the additional lack of good quality ANNs 

data, the biomarker ions identified within these models were considered 

to be inaccurate and were not analysed by MS/MS. The cell line could not 

be repeated at a higher protein concentration due to a lack of cell 

samples remaining. Time permitting the original experiments would have 

been repeated.  
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5.2.5 Ma Mel 28 cells 
 

Due to the low quality of spectra produced for the Ma Mel 26a cells using 

a protein concentration of 0.1 mg.ml-1, the starting protein concentration 

was increased to 0.5 mg.ml-1 for subsequent experiments. After a visual 

inspection of the peptide spectra (shown in figures 5.08 and 5.09), it can 

be seen that the increased protein levels led to a better quality spectra 

when compared to the Ma Mel 26a data  (figures 5.06 and 5.07). Visual 

differences were possible because cell spectra were equalised for the 

same peak intensity. Due to the large amount of data, only a few peaks 

were identified visually as showing differences between the treated and 

untreated cells. Ions m/z 1346, 1439 and 1618 were seen to have an 

increasing intensity when the cells were treated with 1 µM trichostatin A 

as shown in figure 5.08. Ions m/z 1482 and 1676 were the two peaks 

shown to increase in intensity (figure 5.09) with the increase in drug-

treatment to 5 µM trichostatin A. As seen previously with the Ma Mel 26a 

cells, after day 3 of treatment with 5 µM trichostatin A, the spectra has 

significantly less peptide peaks. The ions m/z 1482 and 1676 appear to 

decrease in expression in this spectrum possibly due to the secretion of 

the protein into the surrounding media or initiation of apoptotic 

mechanisms which may suggest cell death following drug exposure.   
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5.2.5.1 Bioinformatic analysis of Ma Mel 28 cells using ANNs  

 

As for Ma Mel 26a cells, data mining was conducted using ANNs to 

derive and recognise patterns that associate with drug treated and control 

cells. As can be seen in table 5.02, the ANNs have performed well in all 

the models tested. After day 1 of treatment with 1 µM trichostatin A, three 

ions were identified to be of importance. The most important ion m/z 1541 

resulted in an 88% performance rate and the addition of m/z 2191 and 

m/z 3383 gave additional support to the model resulting in a 100% 

performance. After day 2, the ion m/z 1440 gave a performance of 83% 

with the addition of the second ion m/z 2840 giving a 100% performance. 

At day 3 a single ion, m/z 1378, gave a 100% test performance.  When 

treated with 5 µM trichostatin A, some of the ions seen previously with 1 

µM trichostatin A re-appeared. After day 1, ion m/z 1817 (with a singular 

performance of 80%), combined with ions m/z 2566 and 1884 gave a 

performance of 90%. Day 2 resulted in the most important ion m/z 1430 

(81%), together with ions m/z 1440 and 1618 giving a 100% performance.  

The m/z 1440 ion had been previously identified after day 2 of treatment 

with 1 µM trichostatin A where it was the most important ion (see ion in 

red, table 5.02).  Day 3 of treatment with 5 µM trichostatin A again 

showed the re-appearance of the ion m/z 1430 where it was now seen to 

be the most important ion giving a 100% performance. 
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 *No identity found 
 
Table 5.02 Artificial Neural Network results on Ma Mel 28 cell line (n=10). Table to show 
the test performances and the mean squared error for the data sets as each input is 
added to the model. The results show the top ions that gave the best accuracy with the 
error failing to improve with subsequent additions; highlighted in red are the ions which 
appear in more than one model as a top predictive ion.  
 
N = number of experiments 

 

Stepwise 
steps 

m/z 
[M+H]+ 

Test 
Performance 

(%) 

Test 
Error 

Day 1 
Control vs 

1 µM 

   

1 
2 
3 

1541 
2191 

 3383* 

88 
88 

100 
 

0.127 
0.098 
0.060 

 
Day 2 

Control 
vs 1 µM 

   

1 
2 

1440 
2840 

83 
100 

0.120 
0.049 

 
Day 3 

Control vs 
1 µM 

   

1 1378 100 0.077 
 

Day 1 
Control vs 

5 µM 

   

1 
2 
3 

1817 
2566 
1884 

 

80 
90 
90 

 

0.162 
0.149 
0.100 

Day 2 
Control vs 

5 µM 

   

1 
2 
3 

1430* 
1440 

 1618* 

81 
94 

100 
 

0.130 
0.076 
0.035 

Day 3 
Control vs 

5 µM 

   

1 1430* 
 

100 0.017 
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A population chart was generated to test the ANNs ability to predict the 

peptide profiles correctly for individual sample. Over 50 models the ANNs 

predicted this model with an accuracy of 100%. Figure 5.10 is based on 

the single ion m/z 1430 obtained from untreated and 5 µM trichostatin 

treated cells after 72 h of treatment. The results show the model correctly 

predicted 91 % of the individual cell lines as either a control or drug-

treated sample; the misclassified samples have been circled. The ratios 

below 0.5 are assigned to the untreated control group and a ratio above 

0.5 is classified as the treated samples. It can be seen from the chart that 

all of the drug-treated cells were classified correctly (red bars) with a ratio 

of >0.5 however; the control cells had four samples misclassified with the 

remaining predicted correctly with a ratio <0.5.  

 
 
Figure 5.10 Predictive capability of ANNs trained to recognise tryptic peptide profiles 
based on the ion m/z 1430 for Ma Mel 28 cells versus control. The error bars represent 
the confidence interval. The blue bars correspond to the control samples and the red 
indicate drug treated samples. A predicted value below 0.5 indicates a control sample, 
whilst a prediction greater than 0.5 indicates a treated sample. 
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5.2.5.2 Validation of ANNs with blind data set 

 
To test the validity of the trained model further we used a completely 

independent blind dataset that had not been included in the model 

previously. This validation set to test the model included MALDI spectral 

data from n=4 treated and n=4 of untreated cells for each drug treatment 

and incubation period. For treatment of 1 µM trichostatin A compared to 

untreated cells, the samples were correctly assigned to a median 

accuracy of 84% for day 1; 96% for day 2 and 100% for day 3. Treatment 

with 5 µM trichostatin A gave a median accuracy of 66% for day 1, 94% 

for day 2 and 100% for day 3. These results suggested that the model 

was performing well and that the predictive ions identified could be used 

as biomarkers discriminating between untreated and drug treated cells. 

This proof of principle study has important implication for tailoring the 

drug treatment to patient response and a move toward personalised 

therapy. To investigate this further, it would mean repetition of 

experiments to see if the same biomarkers appear. If they do these 

markers could be representative of response to therapy. To clinically 

evaluate the data, serum samples would have to be collected in 

conjunction with these experiments as this would be more realistic at a 

clinical level i.e. cells obtained from biopsies is not an easy option. 

 
 
5.2.5.3 Identification of predicted biomarkers for Ma Mel 28 

cells 

 

The results from the blind dataset revealed the ANN model to have good 

predictive capabilities; the only exception being the control and drug-

treated cells (5 µM) at day 1, which only classified 66% of the blind data 

correctly. Therefore the biomarker ions within these models were 

considered to be those which most accurately distinguished between 
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control and treated melanoma cells for this dataset. The predictive 

peptide ions in table 5.02 were analysed by MS/MS on the Ultrafelx III 

(Bruker), a more sensitive machine than the initial MALDI data which was 

run on the Shimadzu AXIMA-CFR. Due to the complexity of biological 

samples a more rigorous pre-fractionation of the samples was carried out 

prior to MALDI-MS/MS analysis. The samples were manually C18 

ZipTipped and eluted with increasing concentrations of ACN. Only a few 

peptides were identified using the MALDI-MS-MS methodology due to the 

minimal fractionation using C18 ZipTip. This may have led to several 

overlapping peptide peaks making classification of these proteins difficult. 

Therefore the MEWO and Ma Mel 28 cell line samples were sent to 

Bruker Daltonics (Bremen, Germany) for analysis. Prior to MS/MS 

analysis a comprehensive Liquid Chromatography separation was carried 

out so that one sample was fractionated over the 384 MALDI target plate 

ensuring separation of the peptides to allow protein identity. 

 

To identify the peaks following MS/MS analysis the Mascot database 

search engine was used and the search parameter settings for the 

Mascot sequence query routine were as follows: 4 maximum missed 

cleavage, 0.8 Da tolerance was used for the singly and doubly charged 

precursor ion and 0.9 Da for the fragment ion mass. Swissprot was used 

as the reference database (human taxonomy) and trypsin was set as the 

proteolytic enzyme.  

 

The biomarker with m/z 1440 identified by ANNs as discriminatory 

between day 2 control and 1 µM and 5 µM trichostatin-A treatment was 

identified as ATP synthase with a measured m/z of 1439.7783. Protein 

identities were also found for the measured peptide with an m/z value of 

1540.77 as alpha enolase for the ANN ion m/z 1541. The predicted 

peptide ion m/z 1817 resulted in three possible identities which were ATP 
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synthase subunit beta (m/z 1815.86), tropomyosin alpha-3 chain (m/z 

1815.88) and m/z 1815.99 which belonged to 78 kDa glucose regulated 

protein. The tryptic peptide biomarker with m/z 1884 had two possible 

identities which were pyruvate kinase isozymes M1/M2 with a measured 

peak at m/z 1883.88 and a second protein identified as glutathione S-

transferase P with an m/z 1883.94. The last predicted ion identified in 

drug-treated samples from the ANNs analysis was m/z 2840 which was 

identified as trifunctional enzyme subunit beta, mitochondrial (m/z 

2840.32). All the ions with an m/z of 1541, 1817, 1884 and 2840 were 

found in drug-treated samples only and were not found in any control cell 

lines.  

 

For the peptide ion 1378 two possible peptides were identified – 

heterogeneous nuclear ribonucleoproteins A2/B1 (m/z 1377.61) and poly 

ADP-ribose polymerase 1 (m/z 1377.73). The ion with m/z 2191 was also 

identified as a component of heterogeneous nuclear ribonucleoproteins 

A2/B1 (m/z 2189.88) whilst the ion m/z 2566 from the ANN analysis was 

identified as staphylococcal nuclease domain-containing protein 1 (m/z 

2565.25). Both these peptide peaks were only found in the control 

samples.  A summary of the results are shown in table 5.03. These 

results would have to be re-analysed to assess the reproducibility of the 

data. 

 

For the ANN ions m/z 1430, 1618 and 3383 no peptide sequences were 

identified upon database searching using the appropriate MS/MS spectra. 

The identified proteins and the associated peptide peaks were noted and 

checked to ensure the peaks were present in the original MALDI-TOF-MS 

peptide spectra. Peptide profiles of m/z 1439.77 (ATP synthase) are 

shown in figure 5.11.  
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TR = drug-treated samples CON = Control samples 
 
 
Table 5.03 Table to show the peptides identified by MS/MS using ions predicted by ANNs for discrimination between untreated and 
drug-treated cells. 

Ma Me 28 ions (combined)  
ANN Ion m/z 

Identified 
Peptide sequence Mowse 

Score 
Protein                                                                               Samples  
                                                                                             
Identiifed 

1378 1377.6183 GGGGNFGPGPGSNFR 75 Heterogenous nuclear ribonucleoproteins A2/B1                  CON 
 1377.7368 TTNFAGILSQGLR 42 Poly ADP-ribose polymerase 1 

     
1440  1439.7783 VALTGLTVAEYFR 92 ATP synthase subunit beta, mitochondrial                              TR 

     

1541 1540.7742 VVIGMDVAASEFFR 124 Alpha enolase                                                                          TR 
     

1817 1815.8639 IMDPNIVGSEHYDVAR 99 ATP synthase subunit beta, mitochondrial                              TR 

 1815.8888 HIAEEADRKYEEVAR 53 Tropomyosin alpha-3 chain 
 1815.9924 IINEPTAAAIAYGLDKR 70 78kDa Glucose regulated protein 

     

1884 1883.8853 LNFSHGTHEYHAETIK 87 Pyruvate kinase isozymes M1/M2                                           TR 
 1883.9447 FQDGDLTLYQSNTILR 129 Glutathione S-transferase P 

     

2191 2189.8857 NMGGPYGGGNYGPGGSGGSGGYGGR 209 Heterogenous nuclear ribonucleoproteins A2/B1                  CON 

     
2566 2565.2588 VLPAQATEYAFAFIQVPQDDDAR 33 Staphylococcal nuclease domain-containing protein 1          CON 

 
     

2840 2840.3223 FNFLAPELPAVSEFSTSETMGHSADR 62 Trifunctional enzyme subunit beta, mitochondrial                   TR 
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The identified peptides peaks were checked for presence with the original 

spectra to confirm their presence in the samples. The peak at m/z 

1439.77 was present in most of the spectra in drug treated cell samples. 

Figure 5.11 demonstrates that this peak was observed at both 1 µM and 

5 µM trichostatin A after day 2 of treatment as identified by the ANN 

analysis. 
                                   

 
 
 
Figure 5.11 Representative mass spectra of peptides magnified using fractionated Ma 
Mel 28 cell lysate from control and trichostatin-A treated samples after day 2 of 
treatment. This spectrum illustrates the observed intensity differences of ion at m/z 
1440, present in treated melanoma but not in the control samples. 
 
 
The ion identified at m/z 1541 by ANNs predicted 88 % of the cells after 

day 1 of treatment with 1 µM trichostatin A versus control cells. Its 

presence was found in many of the samples treated with both 1 µM and 5 

µM of drug with no peaks observed in the untreated cells. Although figure 

5.12 shows the presence of ion m/z 1541 in both concentrations of 

trichostatin treated samples after day 1 of drug treatment in the raw 

MALDI spectra; this ion was not found to be an important predictive ion 
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usingthe stepwise ANNs in the 5 µM treated cells versus control samples 

for any of the drug exposure times. 
 

 
 
 
Figure 5.12 Representative mass spectra of peptides magnified using fractionated Ma 
Mel 28 cell lysate from control and trichostatin-A treated samples after day 1 of 
treatment. This spectrum illustrates the observed intensity differences of ions at m/z 
1541, present in treated melanoma but not in the control samples. 
 

The identified ion at m/z 1884 was observed in only 4 treated samples out 

of 42, where it was identified by ANNs after day 1 of treatment with 5 µM 

trichostatin A versus control melanoma Ma Mel 28 cells (figure 5.13). This 

result is not unexpected as the stepwise ANNs model predicted the top 

ion m/z 1817 which predicted 80% and the addition of 2566 increased the 

predictive performance to 90% and the third ion m/z 1884 also predicted 

90% of the cells. The ion at m/z 2566 only added 10 % of the population 

to the overall model which resulted in the presence of this ion in only 4 

drug treated samples. The ion m/z 1430.78 was found only in untreated 

cells at low intensity in the control melanoma cells only when compared 

with days 2 and 3 of drug treatment with trichostatin A but not in cells 

exposed to day 1 of treatment. 
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Figure 5.13 Representative mass spectra of peptides magnified using C18 ZipTip 
fractionated Ma Mel 28 cell lysate from an untreated control sample and a trichostatin-A 
treated sample after day 1 of treatment with 5 µM. This spectrum illustrates the 
observed intensity differences of ion at m/z 1884.04, present in treated melanoma but 
not in the control samples. 
 

5 µM trichostatin-A; 
Day 1 

Control; Day 1 
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5.2.6  MEWO cells 
 

As the protein concentration of 0.5 mg.ml-1 resulted in improved spectra 

that were of good quality for the Ma Mel 28 cells, the protein 

concentration was equalised to 0.5 mg.ml-1 for all melanoma MEWO cells 

in the following experiments.  Figures 5.14 and 5.15 illustrate the peptide 

spectra obtained. The spectra were observed visually and differences 

between the treated and untreated cells are highlighted in figures 5.14 

and 5.15. Decreasing intensity of ion m/z 1310 can be seen in figure 5.14 

for cells that were treated with 1 µM trichostatin A. As observed with the 

other two melanoma cell lines the spectra at day 3 for MEWO cells also 

contained very few peaks compared to the other days tested  as shown in 

figure 5.15 with 5 µM trichostatin A. Another ion at m/z 1440 was 

observed in figure 5.15 increasing in intensity but reduced after day 3. 

This ion may represent a drug effect resulting in the cells going into 

apoptotic death as a result of drug exposure.  
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5.2.6.1 Bioinformatic analysis of MEWO cells using ANNs  

 
ANN analysis of the MEWO data in table 5.04 revealed one ion m/z 

1439/1440 which repeatedly appeared as the most important ion. The 1 

Da mass difference in the m/z value is due to the fact that prior to ANNs 

analysis the raw MALDI data was rounded to the nearest Da to reduce 

the amount of data for bioinformatic analysis so the two m/z ions may 

belong to the same peptide. i.e. a m/z ion of 1439.4 would be rounded 

down to 1439 and a m/z value of 1439.8 would be rounded up to 1440. 

Peaks corresponding to the ions at m/z 1440 and 1439 were seen to be 

present as the first ion in day 1, day 2 and day 3 with 5 µM trichostatin A 

and in the day 1 samples of cells treated with 1 µM trichostatin A. In 

addition the same ion that was also seen and identified in the Ma Mel 28 

cells. With 1 µM trichostatin A after day 1 of dosing this ion gave a 

performance of 83% with the ion 2570 increasing this performance to 

89%. Day 2 revealed two ions, 1531 and 1677 giving a combined test 

performance of 86%. Day 3 resulted in 1133 giving 71% performance 

with the addition of the ions m/z 1934, 3082, and 1828 increasing this to 

93%. Treatment with 5 µM trichostatin A gave the ion m/z 1439 a 

performance of 94% with the ion m/z 2266 increasing this to 100% at day 

1. Again at day 2, ion m/z 1440 gave a performance of 88% with the 

second ion m/z 3372 taking this to 100%. Day 3 revealed m/z 1440 (90% 

performance) and although ion m/z 2939 did not improve the model 

performance, addition of ion m/z 1729 resulted in a 100% performance of 

the model. 
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Stepwise 
steps 

m/z 
value 

Test 
Performance 

(%) 

Test 
Error 

Day 1 
Control vs 1 

µM 

 
 

  

1 
2 

 1439  
   2570*  
   

 

83 
89 

0.157 
0.108 

Day 2 
Control vs 1 

µM 

   

1 
2 

 1531  
 1677  
   

 

85 
86 

0.176 
0.128 

Day 3 
Control vs 1 

µM 

   

1 
2 
3 
4 

1133 
1934 

  3082* 
1828 

 

71 
79 
89 
93 
 

0.198 
0.125 
0.120 
0.075 

 
Day 1 

Control vs 5 
µM 

   

1 
2 

1439 
2266 

 

94 
100 

0.101 
0.062 

 
Day 2 

Control vs 5 
µM 

   

1 
2 
 

1440 
  3372* 

 

88 
100 

 

0.102 
0.058 

 
Day 3 

Control vs 5 
µM 

   

1 
2 
3 

1440 
2939 

 1729* 

90 
90 

100 

0.126 
0.078 
0.049 

 
          * No Identify found 
 

Table 5.04 Artificial Neural Network results on MEWO cell line (n=18). Table to show the 
test performances and the mean squared error as each input is added to the model. The 
results show the top ions that gave the best accuracy with the error failing to improve 
with subsequent additions. The highlighted ions in red show the same value re-
appearing as the most important ion particularly when treated with 5 µM trichostatin A. 
 
N = number of experiments 
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The validity of the ANNs model was tested by generating a population 

chart for each individual melanoma sample assignment as drug treated or 

control using the stepwise predicted ions. Figure 5.16 is based on ions 

m/z 1439 and 2266 obtained from untreated and treated cells after day 1 

of drug treatment with 5 µM trichostatin A. The results show that the 

ANNs model correctly predicted 97% of the data as either a control or 

drug-treated sample; the misclassified samples have been circled. The 

ratios below 0.5 are assigned to the untreated control group and ratios 

above 0.5 are classified as treated samples. It can be seen that the 

majority of the control cells, with the exception of one sample, were 

classified correctly (blue bars) with a ratio of <0.5. The drug treated cells 

had two misclassified samples with the remaining predicted correctly with 

a ratio >0.5.  

 

 
 
Figure 5.16 Predictive capability of ANNs trained to recognise tryptic peptide profiles 
based on the ions m/z 1439 and 2266. The error bars represent the confidence interval. 
The blue bars correspond to the control samples and the red indicate drug treated 
samples. A predicted value below 0.5 indicates a control sample, whilst a prediction 
greater than 0.5 indicates a treated sample. 
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5.2.6.2 Validation of ANNs with a blind data set 

 
MEWO cell samples (n=5) for each treatment and exposure time and 

control cell samples (n=5) at each time period were used to predict the 

ANN models generated as an independent blind data set. The trained 

models were tested with a completely blind dataset to determine the 

validity of the results. For cells treated with 1 µM trichostatin A, compared 

to untreated cells, the samples were correctly assigned to a median 

accuracy of 97% for day 1; 77% for day 2 and 48% for day 3. Treatment 

with 5 µM trichostatin A gave a median accuracy of prediction 57% for 

day 1, 80% for day 2 and 88% for day 3. The high accuracy of prediction 

observed in table 5.04 infer that the model was performing well and that 

the ions identified represent possible biomarkers for drug treatment and 

exposure time. 

 

5.2.6.3 Identification of predicted biomarkers for MEWO cells 
 
The blind data was correctly classified in most of the samples except 

between control cells and treated cells (with 5 µM of drug) for day 1 

(57%) and at 1 µM trichostatin after 3 days of incubation. Therefore the 

biomarker ions within these models were considered to be those which 

most accurately distinguished peptide patterns between control and 

treated melanoma cells for this dataset. The predicted peptide ions (table 

5.05) were analysed by MS/MS to obtain the sequence and subsequent 

identity of the protein. Due to the complexity of the biological samples, a 

pre-fractionation was required before MALDI analysis. As with Ma Mel 28 

cells, the original samples were manually fractionated using a C18 column 

and eluted from the column sequentially using increasing concentrations 

of ACN diluted in 0.1% TFA. Each of the eluted samples were analysed 

by MALDI-TOF MS/MS analysis. As already mentioned in section 5.2.5.3 
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above for the Ma Mel 28 cell line, the samples for MEWO were also sent 

to Bruker Daltonics (Bremen, Germany) for further identification of 

predictive peptide ions from the ANNs analysis.   

 

A mascot search (Swissprot database) identified all three ANNs ions with 

m/z 1440/1439, 2266 and 1677 as ATP synthases with the peaks 

observed in the drug-treated samples (m/z 1439.7827; 2266.0762 and 

1676.8289). Analysis of the ANNs biomarker at m/z 1531 and 1934 were 

identified as 10 KDa heat shock protein (with a measured peak of m/z 

1529.7858) or haemoglobin subunit alpha (measured peak of m/z 

1529.7205) and GRP78 precursor respectively (measured peak m/z 

1933.9866). The ANNs ion m/z 1531 was shown to be at high intensity in 

the control cell lysates whilst the ion at m/z 1934 was present only in the 

drug-treated samples. The ANNs ion at m/z 1133 had two possible 

identities of actin, cytoplasmic 1 (with an observed peak at m/z 1132.51) 

or m/z 1132.62 as ADP/ATP translocase 2. Upon visual inspection of the 

spectra the peaks were observed in the drug-treated samples. The 

predictive tryptic peptide ions m/z 1828 and 2939 with measured peaks of 

m/z 1827.9164 belonged to eukaryotic initiator factor 4a-1 and m/z 

2928.3254 was identified as elongation factor 1-alpha 1. Very few peaks 

were observed in the original spectra for the ANNs ion m/z 1828 but 

where it was observed, it was present only in the drug-treated samples. 

The ANNs ion m/z 2939 was also observed only in drug-treated samples. 

The predictive peptide ions m/z 1729, 2570, 3082 and 3372 did not yield 

significant sequence matches (<0.05) using the MASCOT search 

engines. A summary of the identified proteins and their respective 

sequences are given in table 5.05. As previously mentioned with the Ma 

Mel 28 data, the ANNs would have to be repeated to verify the identities 

and thus the reproducibility of this methodology. 
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TR = drug-treated samples CON = Control samples 

 
Table 5.05 Table to show the peptides identified by MS/MS using ions predicted by ANNs for discrimination between untreated 
and drug-treated cells. 

 

MEWO Ions 
ANN Ion m/z Identified Peptide sequence Mowse 

Score 
Protein                                                    Samples  
Identified                                                 identified                                                          
 

     
1133 1132.6202 QIFLGGVDKR 56 ADP/ATP translocase 2                                 TR 

 1132.5128 GYSFTTTAER 60 Actin, cytoplasmic 1 
     

1439 1440 1439.7827 VALTGLTVAEYFR 
 

67 ATP synthase subunit beta, mitochondrial    TR 

     
1531 1529.7858 VVLDDKDYFLFR 113 10kDa heat shock protein, mitochondrial      CON            

 1529.7205 VGAHAGEYGAEALER 75 Haemoglobin subunit alpha 
     

1677 1676.8289 FEDEKFEVIEKPQA. 61 ATP synthase coupling factor 6,                    TR 
mitochondrial   MOST DOSED 

     

1828 1827.9164 GIYAYGFEKPSAIQQR 
 

83 Eukaryotic initiation factor 4a-I                       TR 

     
1934 1933.9866 DNHLLGTFDLTGIPPAPR 74 GRP78 Precursor                                           TR 

 
     

2266 2266.0762 IPSAVGYQPTLATDMGTMQER 
 

71 ATP synthase subunit beta                             TR 

     
2939 2938.3254 SGDAAIVDMVPGKPMCBESFSDYPPLGR 43 Elongation factor 1-alpha 1                             TR 
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All of the identified ions were confirmed to be present in the original 

MALDI-TOF MS peptide spectra. Figure 5.17 shows the ATP synthase ion 

at m/z 1439.7827. The peak was observed in the majority of the samples 

after treatment with 5 µM trichostatin A as predicted by the ANNs 

revealing both 1439 and 1440 to be a key first ion. The ion was also 

observed in some samples treated with 1 µM trichostatin A after day 1 of 

drug-treatment. No peaks were seen in the control samples. The spectra 

in figure 5.17 demonstrate the peak seen at m/z 1439.7827 revealing its 

presence in drug-treated cells but not in control cells.   

 
 

 
 
 
Figure 5.17 Representative mass spectra of peptides magnified using fractionated 
MEWO cell lysate from control and trichostatin-A treated samples after 24 h of 
treatment. This spectrum illustrates the observed intensity differences of ions at m/z 
1439.79, present in treated melanoma but not in the control samples. 
 

 

5 µM trichostatin-A 

1 µM trichostatin-A 

Control 
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5.3 Discussion 
 
Currently there is a lack of biomarkers which predict whether a patients’ 

treatment has been successful. If peptide “fingerprints” and a panel of 

biomarkers from proteomic studies can be identified, then this would be of 

great clinical benefit to the patient (personalised medicine). In vitro 

cultured cells are currently used in many studies due to the scarcity of 

patient tissue and the results of this chapter reveal that it is possible to 

identify biomarkers from cell lines that correlate with drug treatment and 

exposure. This work examined the potential of MALDI MS based 

proteomics combined with ANN analysis to determine whether melanoma 

cell lines expressed altered peptidomic profiles following treatment and 

exposure times with the histone deacetylase inhibitor, trichostatin A.  

 

5.3.1 Sample preparation and analysis  
 

Prior to analysis by MALDI MS, the melanoma samples were adjusted to 

0.1 mg.ml-1 (Ma Mel 26a) and 0.5 mg.ml-1 (MEWO and Ma Mel 28 cell 

lines). Although analysis by MALDI MS is not quantitative, protein 

adjustment has to be carried out to identify differential intensities of the 

peaks and establish patterns between the data points. Measurement of 

the protein standards using the Bio-Rad micro-assay, gave a R2 value of 

over 0.98 on all cell lines, enabling accurate measurement of the cell 

lysate samples. The cells were then adjusted to their respective 

concentrations using 0.1% TFA; this dilution buffer was used through out 

the MALDI MS analysis.  
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5.3.2 Importance of QC in MALDI-MS analysis 

 

There has been a considerable amount of debate surrounding the use of 

SELDI-MS and MALDI-MS protein analysis, particularly with regard to the 

reproducibility of the methods (Diamandis, 2004). Critics have argued that 

reported discriminatory protein profiles have been based largely on 

experimental artefacts rather than biological differences (Matharoo-Ball et 

al., 2007). However, the methods used in this study for MALDI MS 

analysis were optimised for sample preparation and analysis carried out 

using the in-house protocol (Matharoo-Ball et al., 2007). Processing time, 

clotting times, centrifugation speeds, pre-aliquoting, storage temperature 

and the number of freeze-thaw cycles are all critically important as well as 

variation in ZipTip fractionation, MALDI crystallisation, laser irradiation, 

and sample preparation all of which influence protein/peptide outcomes. 

All samples in this study were centrifuged at a set speed and time and 

stored at -80oC until use. Freeze-thaw was limited to two cycles with 

sample preparation of each cell line carried out on ice prior to sonication 

and MALDI analysis. Sample bias reported by Petricoin et al., (2002) 

regarding the reproducibility of MALDI based approaches were tackled by 

randomising the position of samples on the target plate prior to analysis. 

Appropriate blanks, QC and BSA samples were also randomised and 

included on all plates. The blanks (0.1% TFA and matrix) were included 

to monitor contamination of the target plate; QC samples ensured a 

robust and reproducible methodology and BSA controls were used to 

confirm the efficiency of the tryptic digest and peptide acquisition. Close 

external calibration for peptides was used where the data was acquired 

from a calibration mixture spotted adjacent to each group of four sample 

spots. Poor or infrequent calibration can lead to a significant shift in the 

m/z values for the mass spectral peaks. 



                                                                                                                              
Chapter 5                                                                                                                          

 

 
Susan Catherine Gill 
PhD Thesis, 2009 

 

229 

5.3.3 MALDI-MS analysis 

 

The spectra produced by MALDI MS revealed some visual differences 

between drug-treated and control melanoma and the reproducibility of the 

QC samples in figure 5.05 revealed a good correlation between all 

spectra captured on the MALDI MS. The spectra for Ma Mel 26a cells 

contained the worst peptide profiles, with very few peaks present visually 

due to the low starting protein concentration. This concentration as 

previously mentioned was chosen because the majority of the Ma Mel 

26a cells had very low total protein concentrations. This was rectified for 

the MEWO and Ma Mel 28 cells which resulted in a significantly improved 

spectral profile. When sufficient sample was available, the protein 

concentration was increased further (1 mg.ml-1) resulting in improved 

peptide spectral profile which enabled identification of the ANNs predicted 

biomarkers.  The spectra for MEWO and Ma Mel 28 cells at day 3 

showed low intensity peptide peaks compared with days 1 and 2 of drug 

treatment. Comparing this data to the results obtained in chapter 4, a 

correlation between the data can be seen. The MEWO cells were shown 

to have 50% cell death compared to 30% in the Ma Mel 28 cells after 

treatment for 3 days with 5 µM trichostatin A (chapter 4) when measured 

using the ToxiLight® and ViaLight Plus® assays. The MEWO spectra 

analysed by the MALDI-TOF MS in this study revealed very low intensity 

peptide peaks at day 3 with both 1 µM and 5 µM of drug. This may imply 

that drug treatment induces the initiation of the apoptotic pathway 

resulting in down-regulation of most proteins in drug exposed cells 

compared to untreated melanoma cells. The Ma Mel 28 cells which were 

more resilient to the drug treatment only showed a reduction in the 

peptide peaks with MALDI-TOF MS after day 3 and then only with the 

higher concentration (5µM) of trichostatin A. At this time the combinatorial 
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assays ToxiLight® and ViaLight Plus® also showed cell death due to 

drug exposure but less so with shorter drug exposure times.  

 

5.3.4 Analysis by ANNs  

 

Bioinformatic analysis acceptance criteria was based on visual inspection 

of mass spectrometric, BSA, and calibration profiles and those deemed to 

have a poor signal were removed from bioinformatic data assessment. 

The noisy and highly dimensional data obtained through proteomic 

analysis requires all aspects of data interrogation to be optimised 

including spectra pre-processing, quality control and dimensionality 

reduction. The biggest challenge in analysing data is the development of 

algorithms that can predict samples accurately into their correct groups 

for unseen or blind data. There are many data mining methods that can 

be employed and presently no single method can provide the most 

accurate and reliable analysis. 

 

The results in this study using ANN analysis, failed to validate the model 

for Ma Mel 26a cells for untreated compared to drug treated cells with 1 

µM trichostatin A and correctly classified only 55% of samples of the day 

1 dataset, 45% of the day 2 dataset and 60% of the day 3 dataset. This 

was disappointing but not unexpected due to the poor peptide spectral 

quality and the low starting protein concentration. However; it has to be 

noted that with the current and improved MS instrumentation (Bruker 

Ultraflex III) a starting concentration of 0.1 mg.ml-1 would generate good 

quality spectral profiles (unpublished data). Ma Mel 28 cells, on the other 

hand, performed well when analysed using ANNs for both the modelling 

set of samples and when tested with an independent blind dataset. ANNs 

analysis showed good predictions with the exception of one model which 
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resulted in only 66% of samples being correctly classified but the 

remaining five models assigned > 84% of samples correctly into their 

respective groups (drug-treated (both 1 and 5 µM) and untreated cells).  

 

For the MEWO cells the modelling data resulted in good prediction for all 

models between the trichostatin (1 and 5 µM) treated samples with 

increasing drug incubation times versus controls. For the blinded MEWO 

samples the ANNs predicted ions accurately classified >77% of samples 

in four of the six models, with the remaining 2 models underperforming 

(<77%). The application of blinded validation and test data in the 

modelling approach produced models with good performance on blind 

data and prevented over-fitting. In the Ma Mel 28 and MEWO melanoma 

cell lines the ion at m/z 1439/1440 appeared as predictive peptide ions in 

more than one model for both drug concentrations and exposure times. 

This ion may therefore be reflective of a marker of cell toxicity through 

apoptosis following drug exposure.  

 

Due to the poor results obtained with Ma Mel 26a cells, no further 

analysis was carried out for identification of predicted ions. Time and 

samples permitting, these cells would have been re-tested at a higher 

protein concentration. The top ions identified by the ANNs could have 

been identified following pre-fractionating the samples to further separate 

the proteins prior to MS/MS analysis. Identification of peptide ions was 

however; conducted for Ma Mel 28 and MEWO cell line. MALDI-TOF 

MS/MS was carried out following sample fractionation using sequential 

elutions of increasing organic solvent to resolve the peptide ions in order 

to help with the identification of the peptide and therefore parent protein. 

Further identification was carried out by LC-MALDI followed by MALDI-

TOF MS/MS (Bruker). 
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Protein identification of the tryptic peptide biomarker ions was achieved 

for the MEWO cells using MALDI-TOF MS/MS and LC-MALDI with the 

ANN discriminatory ion m/z 1439 identified as a peptide from protein ATP 

synthase (m/z 1439.78). Two further peptide ions were also identified 

from the protein ATP synthase (m/z 2266.0762 and 1676.8289) providing 

further evidence for its presence with the peaks observed in the spectra 

belonging to drug-treated samples only. Two identities were found for the 

ANNs ion at m/z 1133 with possible identities of beta actin (m/z 1132.51) 

or ADP/ATP translocase 2 (m/z 1132.62). Multiple identities were found 

for many of the ANNs ions in both cell lines. These proteins provided 

significant scores through the MASCOT database and because prior 

bioinformatic analysis requires reduction of the number of data points by 

binning the m/z to the nearest Dalton, it means that the ANNs predicted 

ions could represent either of the two identified proteins. A second reason 

may be due to the resolution and mass accuracy of the older MALDI 

instrument which was used for the initial MS analysis for discovery of the 

biomarkers correlating to drug treatment. However; the identity of the ions 

was carried out on a MALDI instrument with a much higher resolution and 

mass accuracy leading to a more comprehensive coverage of the 

proteome and higher protein identification rate. To confirm significance of 

the proteins immunoassays (ELISA, western blotting or 

immunohistochemistry) would have to be carried out which was beyond 

the investigations of this study. It was not possible to achieve protein 

identification of all the predictive ANNs ions using MALDI MS/MS and LC-

MALDI. A more sensitive method using ESI-MS/MS would have to be 

employed to identify these ions.  
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Successful protein identification from the tryptic peptide biomarker ions 

was gained for the Ma Mel 28 cells using MALDI-TOF MS/MS and LC-

MALDI with sequences of the ANN discriminatory ion at m/z 1440 being 

identified as a peptide belonging to the protein ATP synthase subunit 

beta (m/z 1439.7827) which was present in the drug-treated samples 

only. As already stated with the MEWO cells, multiple identities were also 

found for the Ma Mel 28 cell line for the ANN ions at m/z 1817 and 1884. 

The ANNs discriminatory ion m/z 1817 had three possible identities with 

peptides belonging to the protein ATP synthase subunit beta (observed in 

peak m/z 1815.86); tropomyosin alpha-3 chain (m/z 1815.88) or 78 kDa 

glucose regulated protein (m/z 1815.99). The final ANNs ion with m/z 

1884 had two possible identities with a peptide sequence observed for 

pyruvate kinase isozymes M1/M2 (m/z 1883.88) and glutathione S-

transferase P (m/z 1883.94). The reason for multiple identities as 

previously explained could have been due to binning the m/z to the 

nearest Dalton prior to ANN analysis and/or the mass and resolution 

accuracy of the new improved MALDI mass spectrometer. This means 

that the predictive m/z value identified by ANNs could potentially 

represent all of the identified proteins. In order to find out conclusively 

which protein was the “true biomarker” a further investigation would need 

to be carried out using Immunoassay methods.  

 
5.3.5 Clinical relevance of identified ions 

Protein identities from both Ma Mel 28 and MEWO cell lines revealed 

similar differentials between control and drug-treated samples by ANNs 

analysis with many peptide ions belonging to ATP synthases. This added 

confidence to the possibility that this biomarker could be used to predict 

therapeutic response in melanoma cells. ATP synthase or ATP5B (beta 

subunit) or H+ transporting, mitochondrial F1 complex are human genes. 
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These genes encode a subunit of mitochondrial ATP synthase which 

catalyzes ATP synthesis, during oxidative phosphorylation.  There are 

two linked subunits of ATP synthase composed of the soluble catalytic 

core, F1, and the membrane-spanning component, F0, and together they 

comprise the proton channel. The catalytic portion of mitochondrial ATP 

synthase where the identities were found consists of 5 different subunits 

(alpha, beta, gamma, delta and epsilon). Recent studies on melanoma 

have demonstrated that malignant melanoma show abnormal redox 

regulation, and although the molecular mechanisms involved are not well 

characterised, they seem to be related to oxidative stress (Locatelli et al., 

2009). ATP synthase has been demonstrated to be up regulated during 

apoptosis in a time–linked manner. This up regulation ensures that there 

is sufficient intracellular ATP levels and therefore efficient functioning of 

the mitochondrial respiratory chain for successful completion of the 

apoptotic pathway (Singh and Khar, 2005).  The presence of this protein 

in both MEWO and Ma Mel 28 cells treated with trichostatin A could 

indicate that the treatment is having a positive effect on the cells and they 

are undergoing or preparing for apoptosis. This could imply that 

prolonged exposure of the drug past the 3 days monitored in this study 

may result in a larger percentage of cells being killed. The presence of 

ATP synthase is therefore very promising especially combined with the 

ViaLight PlusTM data in chapter 4. As ATP was demonstrated to have 

dramatically reduced in the majority of the experiments tested by the 

ViaLight PlusTM assay, the implication that the mitochondria were being 

affected by the drug-treatment could imply that apoptosis is occurring and 

adds further confidence to the fact that the protein ATP synthase (which 

is involved in apoptosis) has been discovered by MALDI MS in 

conjunction with ANN analysis and identified by MALDI-MS/MS in the 

drug-treated samples. This could be a marker for apoptosis illustrating 
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that a cytotoxic drug is having a positive effect for a patient undergoing 

treatment and should be investigated further. This study also illustrates 

that using multiple assay platforms can identify biomarkers which could 

be used for patient tailored treatments. Further investigations to monitor 

the reproducibility of this work would involve repeating the experiments 

using serum samples from patients rather than cells to see if ATP 

synthase can be found as a marker after treatment. Even though cells are 

the closest way of monitoring the tissue in vitro this is not always feasible 

due to the difficulties in obtaining cells by biopsy. Serum is easy to obtain 

from a blood sample and can be monitored over a patient’s treatment.  

Two proteins identified in the drug-treated MEWO cell lysates were beta 

actin and 10 kDa heat shock protein. Beta actin (gene name ACTB) is 

one of six different actin isoforms which have been found in humans. This 

is one of two non-muscle cytoskeletal actins. Actins are highly conserved 

proteins that are involved in cell motility, structure and integrity. The actin 

cytoskeleton controls multiple cellular functions, including cell 

morphology, movement and growth. A recent article by Dundr et al., 

earlier this year (2009) suggested that neural crest-derived tumours had 

shown expression of smooth muscle actin on some occasions but not 

consistently. It has however; been shown to play a role in metastasis by 

coordinating changes of the filaments. Yang et al., revealed the role actin 

played in stabilising the space generated by the membrane deformation 

ensuring efficient protrusion (Yang et al., 2009). Although a transient 

space can be formed without actin playing a part, the filaments were 

required to fill the space to allow the cells to protrude.  Actin (if the correct 

identity for the ANNs ion – it was one of two possible identities for the 

ANNs ion) was only present in drug-treated samples in this study and not 

controls which could imply that the cell cytoskeleton was being broken 

down due to the effects of the drug.  
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Heat shock proteins are a class of functionally related proteins whose 

expression is increased when cells are exposed to elevated temperatures 

or other stress to try to restore immature proteins or denatured proteins, 

thus protecting the cell. The expression of heat shock proteins has been 

observed in hepatocellular carcinoma (HCC) where correlation with 

tumour severity and poor outcomes of HCC patients has been observed 

(Lu et al., 2009). The presence of the heat shock protein in this study (10 

kDa heat shock protein) was present only in the control melanoma 

samples. This could be a normal house keeping protein that monitors the 

cell ensuring proper protein conformation. In addition, to the 10kDa heat 

shock protein, both the cell lines (MEWO and Ma Mel 28) revealed the 78 

kDa glucose regulated protein, a heat shock protein belonging to the heat 

shock protein-70 family. The 70 kDa heat shock protein was present in 

only drug-treated samples indicating that the cell was under stress. If 

further investigations into heat shock proteins on a larger population size 

identifies its relationship to severe melanoma cases, it may enable this 

protein to be used as a prognostic biomarker. The presence of these 

proteins has been observed in many malignant tumours, but their 

expression in association with melanoma has yet to be studied (Park et 

al., 2009). A review was published by Lee in 2007 discussing the role that 

GRP78 plays in many cancers. It was stated that the protein GRP78 or 

BIP (immunoglobulin heavy-chain binding protein) is induced under 

conditions of stress which then promotes tumour proliferation, survival, 

metastasis and resistance (Lee, 2007). Its presence is indicative of poor 

patient survival and higher pathological grade. This could be the reason 

for the presence of this protein in the melanoma samples in this study as 

it was potentially identified in both cell samples. The results from the 

ToxiLightTM assay in chapter 4 revealed only very low levels of cell death 

especially in the Ma Mel 28 cells implying resistance. Given the 
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importance of this protein in cancer cell survival, it could represent a 

prime target for anticancer agents. 

 

The ANNs ion m/z 1828 was identified as a peptide from the protein 

eukaryotic initiator factor. Protein synthesis can be divided into three 

phases: initiation, elongation and termination. Initiator factors are proteins 

that bind to the small subunit of the ribosome during the initiation of 

translation, a part of protein biosynthesis. Protein synthesis has been 

shown to considerably reduce during programmed cell death (Bushell et 

al., 2004). The presence of this protein in only a few drug-treated 

samples at low intensity could also be an indicator of apoptosis. The 

majority of the potential protein identities in both cell lines fall into three 

main categories: metabolic proteins (e.g. ATP synthase), cytoskeleton 

proteins (e.g. actin) and nuclear proteins (e.g. heterogeneous nuclear 

ribonucleoproteins A2/B1). They all imply that the cell is under stress and 

beginning to break down further supporting the previous cell assay data 

with ToxiLightTM and ViaLightTM Plus in chapter 4. The drug-treated cells 

were showing signs of stress by the decrease in ATP observed and an 

increase, although only a low percentage, in cell death. 

 

The cell lines used in this study were mostly derived from metastases 

meaning that many of the identified ions could be associated with 

metastatic disease, and may have a connection with drug 

response/treatment and exposure time (see table 5.06). Unfortunately the 

patients had little history to compare the data with due to their low 

survival rate after tissue extraction.  
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Tissue 

Number 

 
Patient 
Number 

 
Cell Line 

Code 

 
Tissue Origin 

 
Survival 

(months) since 
tissue 

extraction 

 
285 

 
 

284 
 

 
MA 000263 

 
 

MA 000336 
 

 
Ma Mel 26a 

 
 

Ma Mel 28 

 
Lymph node 

 
 

Squamous 
cell 

(skin) 

 
6.30 

 
 

4.59 
 

 
 

 
Table 5.06 Clinical information of the cell lines used in this study 

 

The identified ATP synthases mainly in the treated cells could be an 

indicator of apoptosis and thus cytotoxicity occurring in vivo for a patient 

receiving treatment. This could help in monitoring drug toxicity levels to 

prevent unnecessary over-exposure of the drug and hence drug side-

effects for the patient. To further clarify these findings further 

investigations would be required to define the in vivo role and impact of 

the identified proteins after trichostatin-A drug treatment and exposure. 

Although the study was carried out within a low passage number, it 

should be noted that changes in both the proteome and genome may 

have occurred during in vitro culture and hence there are likely to be 

differences between the original tissue and the cell line.  
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5.3.6 Conclusion 

 

Due to the limitations of tumour tissue, the research carried out on cell 

lines is of importance to identify diagnostic and prognostic markers. Other 

studies have been carried out on drug resistant cells. Urbani et al., (2005) 

examined etoposide resistance to chemotherapy in human 

neuroblastoma, discovering a number of over-expressed proteins; and 

Craven et al., (2004) studied proteins induced in response to interferon α. 

The results obtained from work presented in this chapter have revealed 

how cell lines can be used to provide useful information on markers that 

associate with drug treatment for a particular disease, especially at the 

protein level. It provides a proof of principle study that markers can be 

identified by MALDI MS analysis in conjunction with ANNs associated 

with drug-sensitive and drug-resistant cell samples. These findings could 

lead to the discovery of proteins that are of prognostic and therapeutic 

benefit with the long term outcome leading to personalised treatments for 

individuals in which a decision can be made on the best suited treatment.  
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Chapter 6: Discussion  
 
 
6.1 ToxiLight® and its use as a cytotoxicity assay 

 

The research presented in this thesis has demonstrated the design, 

optimisation and effective use of a novel bioluminescent assay for the 

analysis of cell death. The initial work illustrated the production of a novel 

assay that is sensitive, rapid and homogeneous competing against 

current methodologies already commercially available. The use of 

bioluminescence as a measurement of cell viability and cell death has 

been proven in this study to be a reliable alternative to the conventional 

methods. ToxiLight® was found to be highly sensitive both in detecting 

AK standards and low cell numbers with excellent reliability. It was able to 

measure a 96 well white walled luminometer plate in less than 5 min 

(dependent upon the transport mechanism of the luminometer used) 

showing detection limits of 10 cells per well. This sensitivity has to the 

best of my knowledge, not been identified in an assay previously making 

this assay the most sensitive measurement of cell death. Due to the low 

signal to noise levels of bioluminescence, the assay demonstrated better 

sensitivity than both fluorescent (LDH) and colorimetric assays (WST-1, 

MTT, MTS) currently utilised and does not contain any harmful 

radioactive components present in the well-renowned chromium51 release 

assay. The overall evaluation of the kits tested within this study illustrated 

that ToxiLight® proved to be the best cytotoxicity assay tested. This study 

did however highlight the need for combination assays to gain maximal 

information on the cells tested and as a result the bioluminescent kits 

ViaLight® and ToxiLight® were found to work well in conjunction with 

each other. This combination of a viability and cell death assay was 

discussed by Miret (2006) stating the need to analyse both apoptotic and 

necrotic forms of cell death. By measuring and comparing the relative 

amounts of AK and ATP within a population of cells, it was found that it 
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was possible to screen for all outcomes in a cell viability study. An 

increase in ATP values above that of the control sample would indicate 

proliferation in the cell sample, whereas samples giving lower ATP/RLUs 

to the control and showing a decrease / no change in the levels of AK 

would indicate growth arrest and a decrease in ATP and an increase in 

AK would conclude that the cells are necrotic. A good example of the 

need to measure cell viability and cell death was shown by measuring the 

effects of dacarbazine on melanoma cells. Neither the ToxiLight® assay 

nor the ViaLight® Plus assays on their own could identify the true effects 

of the drug on the cells.  It was only when the two assays were used in 

combination with each other that a conclusion of cell cytostasis could be 

drawn from the experiment (figure 3.18).  

 

Cell-based assays are being adopted with increasing frequency in drug 

discovery programs because cell systems are often inherently predictive 

of in vivo response. The use of technical optimisation in the combined kits 

allows an increase in the relevance of correlation testing, to enhance the 

chances of detecting precisely the cytotoxicity effects of drugs and to 

reduce the overall handling time and the amount of test compounds 

needed. It also allows optimal use of rare and valuable cell samples, such 

as primary cell cultures. Multiple endpoint kits may also provide hints of 

the mechanisms of toxicity. Since its launch in 2005, ToxiLight® has been 

utilised successfully by researchers for detecting the effects of drugs on 

cells in studying many diseases including cancer (Daniels et al, 2006; 

Kumarasuriyar et al., 2007; Morgan-Lappe et al., 2007; Si et al., 2008). In 

addition a paper published in 2006 by Miret compared many in vitro 

assays of cellular toxicity in HepG2 cells and concluded the ViaLight® 

Plus, ToxiLight® and caspase 3 fluorometric assays to be the most useful 

combination, again confirming the need for more than one assay to fully 

evaluate the cellular effects of a drug. Since the production of ToxiLight®, 
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a novel assay has been produced which is a 2 in 1 assay measuring both 

cell viability and cell death known as MultiTox-Fluor, it incorporates both 

fluorescence and luminescence measurements of proteases. Although it 

was not assessed in this study, this assay would be beneficial if its claims 

of sensitivity and rapid throughput are correct. However, it does possess 

obvious disadvantages, including the instability of the protease released 

upon cell death after 9 h in cell culture (Promega, 2009). This would 

result in ineffective and inconsistent measurements over a prolonged 

period of time. Future work for improving the ToxiLight® assay would be 

the inclusion of a “stop” solution which would allow for a more accurate 

measurement over time, to overcome the very rigid time restriction (of no 

more than 30 min) after addition of the AK detection reagent for analysing 

by luminometry. Ideally, a stop solution would improve the reproducibility 

for users and prevent any adverse effects of this reversible reaction. 

 

6.2 Cytotoxicity assays and melanoma study 

 

One of the main aims of the research was to obtain a drug sensitive and 

resistant melanoma cell line for further investigations into cellular 

proteomics. The combination of the ToxiLight® and ViaLight® Plus 

assays successfully identified the Ma Mel 28 cells as a vindesine, 

camptothecin and dexamethasone resistant cell line (chapter 4 of this 

thesis). The assays also revealed that the response observed with these 

cells was mainly due to a cytostatic effect to their treatment with the drugs 

ara-C, cisplatin and doxorubicin.  In contrast to the Ma Mel 28 cell line, 

the Ma Mel 26a and MEWO cell lines proved to be more sensitive overall 

to the exposure to drugs ara-C, doxorubicin, camptothecin, cisplatin and 

trichostatin A used in this study. However, not all the drugs resulted in the 

same cellular effects throughout, with responses varying within the same 

cell line. Resistance is known to occur with many chemotherapy drugs 
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and experimentally, acquired resistance has been reported to various 

compounds (Kerbel et al., 2001). Goldie and Coldman (1979) suggest 

that spontaneous mutations occurring during tumour evolution are 

responsible for the presence of intrinsically resistant cells before 

exposure of a tumour to a cytotoxic drug and this hypothesis continues to 

play a crucial role in the application of treatments (Poprach et al., 2008). 

The results gained from studies presented in this thesis revealed that 

melanoma cells respond differently to various chemotherapeutic agents. 

A cell line may respond positively to one toxic agent but not another, and 

it may be inferred that individual patients respond differently to the agents 

used for their treatment. This highlights the need for “personalised” 

therapy for all patients so they can be screened individually for their 

potential response to a given cytotoxic drug prior to administration.  

 

Melanomas are known to be intrinsically resistant to both chemotherapy 

and radiotherapy (Seetharamu et al,, 2009) and assays capable of 

detecting drug-resistance before commencement of treatment would be 

of benefit to patient management. The ToxiLight® and ViaLight® Plus 

assays could be utilised in these settings, but would rely on the use of 

techniques that reproducibly allowed primary cell cultures to be 

established. This represents an area that in the past has been difficult to 

address successfully. Current research is looking into the role cancer 

stem cells play in the resistance observed when patients undergo 

treatment. These cells are a small population of the tumour that possess 

the stem cell property of self renewal and proliferation (Gao, 2008). The 

cancer cells that undergo apoptosis when treated with a cytotoxic agent 

may be the tumour cells that have limited proliferation properties and are 

unable to renew. It is reported that cancer stem cells can resist apoptosis 

(Wei et al., 2006) and it is therefore these resistant cells which should be 
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used in the screening for biomarkers and should be considered for future 

research.  

 

6.3 The use of trichostatin A in the treatment of melanoma 
 

Previously, trichostatin A, the most potent inhibitor of histone 

deacetylase, was shown to strongly suppress growth of pancreatic 

adenocarcinoma cells (Donadelli et al., 2003). More recently the effects of 

trichostatin A on cancers including melanoma, have been widely tested 

and demonstrated to induce growth arrest and apoptosis in many studies 

(Koh et al., 2007; Khan et al., 2008). The data presented by Khan et al. 

(2008) revealed that abnormalities observed in some tumours, for 

example in the expression of MHC class I antigens may result from 

epigenetic repression. The use of trichostatin A has been shown to 

convert a tumour cell to an “antigen presenting cell” capable of activating 

IFN-gamma secreting T cells via the class I pathway (Khan et al., 2008). 

This is most likely due to T-cell engagement which without the presence 

of co-stimulatory molecules e.g. B7, would lead to T-cell apoptosis and 

clonal detection/peripheral tolerance (Zamorano et al., 2001). Trichostatin 

A has also been shown to stabilise wild-type p53, although this was not 

proven to be the cause of the observed growth arrest (Peltonen et al., 

2005). The results indicate that while the action of TSA is independent of 

p53, the activation of the apoptosis pathway by the HDAC inhibitors may 

provide further therapeutic approaches for melanoma treatment (Peltonen 

et al., 2005). The results in this thesis replicated the results observed in 

the study by Peltonen et al., where all the cell lines responded to 

treatment with the drug. Although Ma Mel 28 cell death was not observed 

until after 72 h (using 5 µM trichostatin A) the cells were non-replicating, 

indicating growth arrest.  
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It is not possible to mimic in vitro the exact condition of drug therapy, 

since many factors need to be taken into account. Melanoma patients 

undergo long treatment regimes whereas drug treatment in vitro is time 

restricted usually 24 – 72 h. The concentration of the drug at the tumour 

site will be variable depending on where the tumour is in the body, and 

the drugs pharmacokinetics: the extent and rate of absorption, 

distribution, metabolism and excretion of the drug (ADME); although in 

recent years pharmacokinetics has been better described as LADME:  

 

 Liberation - the drugs release from the formulation. 

 Absorption - the drug entering the body. 

 Distribution - the dispersion or dissemination of the drug 

throughout the fluids and tissues of the body.  

 Metabolism - the irreversible transformation of parent compounds 

into daughter metabolites.  

 Excretion - the elimination of the substances from the body. In rare 

cases, some drugs irreversibly accumulate in a tissue in the body.  

 

Future work on melanoma cells would investigate the undamaged cells by 

re-growing this hypothetically resistant population by exposing cells to 

trichostatin A over a prolonged period of time. This would prove whether 

or not a longer incubation time (beyond 3 days) would result in additional 

cytotoxic effects or whether a resistant population survives. This can then 

be compared to the original drug sensitive population for changes in the 

proteome and molecular pathways which may lead to a greater 

understanding of events within a cancer cell in vivo. This method would 

be a better way of monitoring differences between sensitive and resistant 

cells in vitro as this research resulted in findings related to ‘drug-induced’ 

effects. If the melanoma cells fail to respond to additional exposure of 

trichostatin A, a second agent in combination with trichostatin A could be 
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tested. Touma et al., (2005) combined the use of retinoic acid and 

trichostatin A, which led to increased growth inhibition in renal cell 

carcinoma. Before confirmation of the overall effects of trichostatin A, the 

results obtained in this melanoma study could be repeated on different 

cancer cell types to determine whether the same heterogeneous 

response occurs. If these results conclude a lack of commonality within a 

larger homogeneous patient population then it may be concluded that 

there is a need for assays for drug sensitivity testing: personalised 

medicine (Marko-Varga et al., 2007).  

 

6.4 The cancer cell lines proteome 

 

Proteomics has proven to be a useful tool in this study to extend our 

understanding to the molecular mechanisms associated with drug treated 

and untreated cancer cells. MS and bioinformatic analysis were 

introduced to interrogate the proteome of melanoma cells. The cell lines 

studied have revealed proteomic profiles that can be used to identify 

cellular changes resulting from the use of the chemotoxic drug, 

trichostatin A. Differences in the peptide fingerprinting profiles was 

observed that reflected the results obtained with the ToxiLight® and 

ViaLight Plus® assays. This led to the hypothesis that the differences in 

the profiles (drug treated versus control) would correlate with drug-

response and the development of resistance to drug treatment. To further 

this aspect of the study, the reproducibility of the MALDI-TOF MS 

analysis was explored. The duplication of MS data is a contentious 

subject between many researchers, as highlighted in earlier studies by 

Petricoin et al., (2002) which indicated that the data produced was not 

always replicated in further studies. However, the original work by 

Petricoin lacked vigorous quality control and standard operating 

procedures using robotic and automated sample processing. The MS 
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work carried out in chapter 5 were rigorously controlled and standardised 

including the use of an automated Xcise robotics for sample preparation; 

the inclusion of quality control to check for reproducibility; BSA controls to 

ensure the proteins had been tryptically digested; blanks to confirm there 

had been no contamination on the MALDI target plate and the 

randomisation of the samples on the MALDI plate. A problem that is often 

highlighted in proteomic research is the cut off for peak discrimination. 

Small peaks are often the same peak intensity as the baseline peaks 

themselves, but could contain important information not readily identified 

due to the lack of sensitivity of the methodology.  

 

To corroborate the peptide profile data obtained in this study, future work 

should include validation by other operators on the same and other 

instruments at more than one centre. An added parameter to consider 

upon analysing the results for peptide profile differences between the cell 

lines is that each individual cell line should undergo assay on different 

days to establish the in built error of analysis at different time points. 

Other parameters associated with cell culture and freezing conditions will 

be important to understand and crucial in removing any bias that may be 

introduced to a study. 

 

Cell lines are proving to be a valuable alternative and a pre-requisite to 

the use of tissue for genetic and proteomic studies. The availability of 

tissues to researchers has been problematic for a number of reasons: the 

lack of adequately characterized high quality tissues, increasing concerns 

due to privacy issues and the inability to obtain follow-up or clinical 

outcome of patients. Protein profiles between areas of the tissue mass 

can also alter, similar to the alteration seen with cell lines during their time 

in culture. A number of proteomic studies have been conducted whereby 

the authors have utilised cell lines to identify proteins of possible clinical 
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significance. Mian et al., (2003) studied the effects of the 

chemotherapeutic agent taxol, in resistant and sensitive breast cancer 

cell lines by examining their protein expression patterns over a treatment 

period of 96 h. Analysis of a resistant gastric cancer cell line by MALDI-

TOF MS identified nine differential expression proteins between the 

parental and resistant strains enabling the sensitization of the cells by the 

construction of a vector for Triosephosphate isomerase (TPI) which was 

found to be down-regulated (Wang et al., 2008). After transfection with 

the vector, the cells became more sensitive to several drugs and the 

resistance was shown to be reversed.  

 

6.5 Use of bioinformatics as a tool in biomarker identification 
 

Due to the enormous quantity of data obtained by proteomics it was 

necessary to evaluate the results by means of statistical algorithms 

capable of handling the dimensionality of large data sets. This prevents 

both bias and promotes faster analysis of data establishing differences or 

commonalities in protein profiles for biomarker identification. As 

previously mentioned, data pre-processing is important for reproducible 

data (Carlson et al., 2005; Petricoin et al., 2002). Although ANNs has not 

been used directly in patient treatment, the results show that it has huge 

potential to be of benefit to patients for personalised therapy in the future. 

Larger populations would improve the predictive performance of the 

ANNs resulting in a larger validation set if the data were analysed in the 

same manner as in this study i.e. 60% training set; 20% test data set and 

a 20% blind data set (Schwarzer et al., 2000).  

 

The majority of proteins identified by proteomic profiling were associated 

with either metabolic, cytoskeletal or nuclear responses in this 

investigation (ATP synthase was identified as a prominent response). 
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However, such high abundance molecules are often produced as a 

reaction to tumour presence, but could still represent valid biomarkers of 

the disease process or response to therapy (Diamandis, 2002).  As 

revealed in this study the presence of ATP synthase in both Ma Mel 28 

and MEWO cells was indicative of cell death, and it can be suggested 

that protein could be of use in diagnosis or prognosis with this or other 

drugs. Whether other drugs produce the same protein anti-inflammatory 

response or not remains to be established. Further research using a 

broader range of drugs, patient samples and different cancers should be 

conducted. A larger patient population would also benefit accuracy and 

reproducibility of ANN analysis allowing further differences and new 

cancer biomarkers to emerge; these biomarkers could provide valuable 

information that may aid in a more effective diagnosis, prognosis, and 

response to therapy. 

 

From the results obtained here using mass spectrometry and ANN 

analysis, the identity and correlation of patterns of melanoma response to 

trichostatin A has revealed differences between drug-treated and control 

melanoma cells. The responses identified upon drug exposure (e.g. ATP 

synthase in drug-treated cells) revealed that the cells had been damaged 

by the drug treatment replicating the results observed with the cytotoxicity 

assays; ViaLight® Plus and ToxiLight®. Further research investigating 

trichostatin A as a future potential agent in patient treatment would be 

required using a larger patient sample population, obtained from various 

centres. The protein identities in this study should also be confirmed by 

other methodologies including western blotting and ELISA.  

 

This methodology of using MALDI-MS and the combinatorial cell death 

assays could provide a way of monitoring the treatment of patients in the 

future. At present, there are limitations to the methodologies. The MALDI-
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MS and ANNs analysis is time consuming, equipment is expensive and 

the software requires specialist knowledge and interpretation. The 

techniques would need to be reproducible, robust, user-friendly and 

easily adapted for the high throughput screening (HTS) of therapeutic 

drugs. The biomarkers identified in this research could have potential in 

monitoring the effects of drug treatment. If ATP synthase is confirmed to 

be consistently up regulated after a patient has a positive response to 

drug treatment, then this biomarker could be a potential maker for drug 

therapy. The research would have to be repeated on a larger population, 

in different clinics and monitored using patient serum as tissue is not 

easily accessible or optional for regular monitoring.  

 

6.6     Personalised medicine 

 

Recent advances in science offers the potential to define an individuals 

risk based on their own personal “genetic make-up”. Currently, cancer 

treatment is based upon standards of care that are determined by 

averaging the response rates of clinical trials across large cohorts i.e. a 

treatment plan that is similar for the analysis of clinical trials in different 

cancer types (Mansour et al., 2008; Van't Veer et al., 2008). The 

emergence of subtypes of disease adds to the difficulty of determining the 

prognosis of patients and recommendation of the most appropriate 

treatment; the stage, grade and histological type of the cancer can affect 

how drugs localise in cancer tissue and should be taken into account. 

Personalization of treatment should be based on an individual patient’s 

clinical status, taking into account age, gender, height, weight, diet and 

environment that could be used to stratify disease status; select between 

different medications and/or tailor their dosage; provide a specific therapy 

for an individual's disease; or initiate a preventative measure that is 

particularly suited to that patient at the time of administration. Several 
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examples of approaches to personalized medicine have already been 

established in practice, such as the testing for disease-causing mutations 

in the BRCA1 and BRCA2 genes implicated in familial breast and ovarian 

cancer syndromes (Tonin et al., 2006) and the well documented herceptin 

therapy (Germano and O’Driscoll, 2009). It is hoped that in the future with 

the use of proteomic and genomic approaches to diagnosis, drug 

development and individualized therapy will improve the quality of life for 

patients with cancer (Marko-Varga et al., 2006). Better diagnosis and 

prediction of treatment outcome will prevent patients undergoing 

treatments that are unnecessary and identify, with a higher degree of 

accuracy, appropriate (personalised) therapies. 

 

.  
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