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Abstract

Dynamical Energy Analysis (DEA) is a mesh-based high frequency method
for modelling structure borne sound in complex built-up structures. Vibro-
acoustic simulations are performed directly on finite element meshes, cir-
cumventing the need for re-modelling strategies. DEA provides detailed
spatial information about the vibrational energy distribution within a com-
plex structure in the mid-to-high frequency range. We will present here
progress in the development of the DEA method towards handling complex
FE-meshes including Rigid Body Elements and sound radiation. We also
provide, for the first time, a detailed comparison of the simulations with
measurements on a complex engineering structure consisting of the chassis
and cabin of a tractor. Both structure borne vibrations and sound pressure
levels (SPL) inside the cabin were considered. For the latter, a combined
DEA/SEA analysis has been developed. The simulation results compare
favourably with measurement results, both for vibration levels measured
across the structure and for SPLs inside the cabin.
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1. Introduction

A major difficulty in modelling structure-borne sound lies in the complex
geometry of the structures. The Finite Element Method (FEM) can describe
geometric details with sufficient accuracy in the low frequency region, but
requires extremely fine meshes at high frequencies to capture the shorter
wavelengths. Statistical representations such as the Statistical Energy Anal-
ysis (SEA) [1] have been developed, leading to relatively small and simple
models in comparison with FEM. A range of methods have been proposed
to extend the applicability of SEA such as the hybrid FEM/SEA method
[2, 3, 4]. An alternative to SEA is to start from a ray-tracing ansatz and re-
formulate it in terms of integral equations. This leads to linear flow equations
for the mean vibrational energy density and forms the basis of the Dynami-
cal Energy Analysis (DEA) method introduced in [5]. DEA includes SEA as
special case via a low order representation of the so-called transfer operator.
Higher order implementations enrich the DEA model with information from
the underlying ray dynamics, leading to a relaxation of SEA assumptions. In
particular, DEA allows for more freedom in sub-structuring the total system
and variations of the energy density across sub-structures can be modelled.
An efficient implementation of DEA on meshes has been presented in [6, 7].
Vibro-acoustic energy densities are computed for multi-modal propagation,
including energy transport over curved surfaces. Connections at material in-
terfaces are described in terms of reflection/transmission matrices and hence
DEA resolves the full geometrical complexity of the structure. DEA im-
plemented on meshes provides a detailed spatial resolution of the energy
density, including variations over larger substructures such as the windows
due to damping or local coupling.

In this paper, we apply the DEA method to a stripped down version
of a Yanmar tractor consisting of the cabin (including windows and doors)
mounted on a chassis. The simulations are carried out in the range from 400
to 4000 Hz both for the structure borne sound as well as the sound pressure
level (SPL) at the driver’s ear position. The results are compared with de-
tailed measurements across the entire structure. The DEA results are based
on an FE mesh created for the structure with standard meshing software. In
this paper, the main focus is on the implementation of DEA in the presence
of Rigid Body Elements (RBEs), or similar FE coupling methods [8]. We
will furthermore introduce a DEA/SEA hybrid method for determining the
acoustical response inside the cabin. In Sect. 2, we introduce the built-up
structure and give a detailed account of the measurement program. In Sect.
3, we describe the DEA technique and discuss our strategies for dealing with
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Figure 1: Body-in-Blue structure together with the excitation region

mesh interconnections, such as the RBEs commonly used in an FE analysis
to join together different sub-meshes of the structure. We also detail the
interior acoustic predictions via the DEA/SEA hybrid method mentioned
above. Results will be presented and discussed in Sect. 4. A detailed ac-
count on implementing DEA on 2D meshes is given here for the first time
in Appendix A to Appendix D.

2. The tractor - measurement set-up

The tractor model under consideration in this study has been provided by
Yanmar Co., Ltd. and is a stripped down version of a tractor from Yanmar’s
EG400 series. The tractor body consists of a chassis frame and a cabin; the
latter includes doors and windows, often referred to as a ‘body-in-blue’ (BiB)
structure. The chassis frame consists of the gear casing and a front frame.
The cabin is mounted onto the chassis by four rubber mounts; the actual
structure is depicted in Fig. 1, together with the excitation point (to the
rear) provided by a modal shaker in the frequency range between 400 Hz
to 4000 Hz. The chassis frame is supported by rubber mounts to ensure a
free-free boundary condition.

The sound pressure at the operator’s ear location is measured with a
microphone. In addition, the acceleration of the structure is measured at 29
points on the cabin and at 13 points on the chassis frame using a accelerom-
eters. The acceleration on the upper and lower sides of each cabin mount
are also measured giving valuable information about the coupling via the
rubber mounts. Fig. 2 shows the location of the measurement points (blue
dots) on an FE model of the structure. The FE mesh, also used for the
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Figure 2: FEM model of the tractor including the accelerometer positions across the
structure (blue dots, 44 points in total).

DEA computation in Sect. 4, consists of 521572 mesh cells with a typical
cell measuring 1 cm in diameter. In the FE model, the rubber mounts are
treated as spring elements, so-called CELAS1 elements [8].

3. Dynamical Energy Analysis on meshes

3.1. General theory

We will give here a brief account of the major ideas behind DEA - for
a detailed description of the theory and the implementation on 2D meshes,
see [6] and Appendix A to Appendix C. In the high frequency regime, the
dynamics described by linear wave equations can be approximated using
semi-classical or ray-tracing methods describing the transition from wave
acoustics to ray acoustics; this serves as a starting point for DEA. By ne-
glecting phase information, DEA approximates the transport of wave energy
by a Hamiltionian flow [5] described by the Liouville equation. DEA, like
SEA, can thus determine averaged values of the local wave energy neglecting
variations on a wavelength scale. The energy flow is phase space volume pre-
serving and can be formulated in terms of trajectories or rays. In contrast
to ray tracing, DEA does not work with individual rays, but describes how
ray densities are transported along the flow. In this work we are primarily
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interested in the stationary solution of transport problems corresponding to
wave problems in the frequency domain with time-harmonic driving terms.
Interference (or phase) effects are neglected.

The ray density can be related to a wave energy density and is defined
on a phase space, that is, it depends both on position and direction. For
two-dimensional systems (as considered in this work), the phase space is
four dimensional and is parametrised by two position and two momentum
coordinates. The momentum coordinates are equivalent to the wave vector.
For fixed frequency ω and a given wave mode, the modulus of the wave
vector, that is, the wavenumber, is fixed. Hence, there is only one free
parameter necessary to describe the direction.

The transport problem can be conveniently solved on a mesh as de-
scribed in [6]. The meshes can be quite large such as the mesh shown in
Fig. 2 with more than 250 000 mesh points and are typically reused from
existing FE meshes. There is thus no need for sub-structuring and typical
structural elements and interfaces will be resolved in detail by the mesh. It
is advantageous to restrict the Hamiltonian flow to sections on the union of
all the edges of the mesh cells describing the two-dimensional structure in
question. The coordinates used to describe this restricted two-dimensional
phase space, the so-called Surface of Section (SoS), are the arc-length along
each edge i, si, and the corresponding component of the wave vector along
the direction of the edge, pi. The continuous Hamiltonian flow is thus trans-
formed into a discrete map, also called the Discrete Flow Map (DFM) [6].

DEA describes the transport of ray densities from the SoS to itself us-
ing a linear transfer operator. Iterations of this operator map phase space
densities on the SoS back to itself; the stationary solution is obtained by
summing over all iterations of an initial density produced by a source term,
see Appendix A for details. To relate the source density to an SoS bound-
ary density and to obtain the stationary density in the interior of the mesh
cells, phase space densities on the SoS need to be related back to the corre-
sponding full four-dimensional phase space density; this step is described in
Appendix B. The evaluation of densities in the interior and their relation
to the boundary densities is treated in Appendix C.

Mode conversion between in-plane and flexural waves at boundaries can
be included in the treatment and the reflection/transmission coefficients are
obtained from wave scattering theory [9]. An example is shown in Fig. A.14
in Appendix A. Shell effects leading to curved rays [10] are included by
treating the meshed structure as a set of plate-like elements, see [6, 7] for
details. Modelling connections between different meshes via RBEs, such as
used in the tractor model, is described briefly in the next section and in

5



Figure 3: A typical RBE-interface connecting two meshes together.

more detail in Appendix D.

3.2. Implementation of RBEs in DEA

DEA, as described in Sect. 3.1 above and in more detail in Appendix
A, models the flow of wave energy across a triangulated surface, and in
particular, the energy flow between neighbouring mesh cells through their
common edges. FE meshes used in engineering often consist of several tri-
angulated surfaces coupled together through so-called Rigid Body Elements
(RBEs), see Fig. 3. The RBEs correspond to linear constraints between the
displacements at several points on the mesh [8], and as a result, energy can
flow between locations on the mesh that have no physical connection (such
as a common edge). These elements cannot be used in an ordinary DEA
treatment, which is based purely on energy flux through interfaces. The FE
model of the tractor structure shown in Fig. 2 is such an example, consisting
of a number of different sub-meshes connected via RBEs. The number of
RBEs can be quite large, 7481 RBEs in the case of the FE mesh in Fig. 2.
The RBEs are used here to form connections at the glass-metal interfaces,
the sidewall-roof interfaces, and for connecting the doors to the cabin frame.

To avoid an expensive re-meshing for DEA, we have developed a method
treating RBEs as DEA coupling elements directly, so-called RBE patches;
these patches can handle energy transfer through RBEs and similar con-
straint elements. In ordinary DEA, where energy flows between neighbour-
ing mesh cells, one can make a local plane wave assumption. That means
when a plane wave with a well-defined direction hits an edge, it comes out on
the other side with a well-defined direction. This scenario directly translates
to the ray picture. In actual FE meshes, the RBEs often connect different
points in a very complicated way and we have, in general, little or no in-
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Figure 4: SEA subsystems of the tractor cabin

formation about how rays encountering an RBE will emerge on the other
side. Due to this lack of information, we make the simplifying assumption
that an RBE patch in DEA spreads out the incoming energy uniformly in
all directions on both meshes connected by the RBE. In the ray picture,
that means that a single ray with a well-defined direction is split into many
rays going into many directions on both ends of the RBE, keeping the total
(energy) density preserved. Details of the mathematical implementation of
RBE patches are given in Appendix D.

To describe the energy transfer across non-compatible meshes in our
tractor model we use RBE patch elements at each RBE position, thus intro-
ducing coupling between edges both in the ‘upper’ and ‘lower’ sheets con-
nected by the RBE. Incoming ray-densities on one side of the RBE-interface
are then mapped onto the other side of the interface. In the FE model, the
rubber mounts between the chassis and the cabin are treated as CELAS1
spring elements [8]. For the purpose of DEA, we treat these elements in the
same way as we treat RBEs.

3.3. Sound pressure levels in the interior of the cabin – a hybrid SEA/DEA
approach

The sound pressure level (SPL) inside the cabin, and in particular at the
position of the driver’s ear, can be computed from the vibrational energy
densities obtained in the DEA computation. Ideally, this would be done
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by coupling the 2D structural DEA computation to a 3D acoustics DEA
model, such as described in [14]. However, a fluid-structure model has yet
to be fully developed within DEA and further simplifying assumptions are
necessary at this point. We present an SEA/DEA hybrid method in this
section, which computes the SPLs inside the cabin using an SEA model
where the radiated energy produced by the bending vibrations of the cabin
walls, floor and ceiling obtained from DEA provide the input/source. The
SEA treatment inherently implies a diffuse field assumption, that is, the
steady-state interior sound field (including wall reflections) is assumed non-
directional.

To obtain the SEA sub-systems, we first identify the main panels forming
the walls of the cabin as displayed in Fig. 4. We then define a power flow
equation between these panels (the subsystems) and the acoustic volume of
the cabin (the cavity). Only the coupling between the cavity and each main
panel is taken into account; the coupling between different panels is already
treated through calculating the vibrational energy distribution on the panels
using DEA. The resulting power flow equations can then be written as

P1

P2
...
Pn
Pc

 = ω


ηc1 0 · · · 0 −η1c

0 ηc2 · · · 0 −η2c
...

...
. . .

...
...

0 0 · · · ηcn −ηnc
−ηc1 −ηc2 · · · −ηcn ηdc +

∑
i ηci




E1

E2
...
En
Ec

 . (1)

Here, ηdc is the damping loss factor in air, that is, inside the cavity and
ηic, i = 1, 2, . . . , n, are the coupling loss factors between the structural
subsystem i and the cavity subsystem c such that ηic = ηci. In addition, Ei
is the vibrational energy in panel i, Pi is an external input power flowing
into panel i from other parts of the structure, and Ec is the acoustic energy
in the cabin. Under the assumption of stationarity of the vibrational field
in the structure, we can set

Pi = ωηciE
0
i = ωηciMi < v2

i >, (2)

where E0
i is the energy in panel i without acoustic coupling. The coupling

loss factors are given by the radiation condition

ηci =
Z0Aiσ

rad
i

ωMi
. (3)

Here, Z0 is the acoustic impedance, Ai is the area of the ith plate and σradi

is the corresponding radiation efficiency for a rectangular plate, which is
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Figure 5: DEA results for the acceleration (given here in mm/s2) at a frequency of 1000
Hz.

computed using the approximation derived in [11]. The mean displacement
velocity < v2

i > in panel i with mass Mi is obtained from the DEA calcula-
tion of the flexural mode and averaged over each of the panels. After setting
Pc = 0, we solve Eq. (1) for the energies Ei, i = 1, 2, . . . , n, and Ec. For
the form of the SEA matrix given in Eq. (1), the result can easily be given
in closed form, that is,

Ec =
1

ωηdc

n∑
i=1

Pi. (4)

The acoustic energy inside the cabin is the sum of the inflowing energies
from all sub-systems weighted by the inverse of the damping coefficient. The
latter can be interpreted as a trapping coefficient taking care of reverberation
inside the cabin. The mean SPL inside the cabin is then obtained from
the value of Ec. For the example considered here, we divide the cabin
walls, ceiling and floor into 16 sub-panels as shown in Fig. 4. We assume
furthermore that the damping loss in air is ηdc = 1.5%; damping within the
structure is already included in the DEA computation as discussed in Sec.
4.2.
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4. Results

4.1. Structure-borne sound calculations

We perform DEA calculations for the full structure shown in Fig. 2 in
the frequency range 400 Hz – 4000 Hz. The damping values and input
powers used in the numerical simulation are described in the next section.
The results are compared to experimental data obtained from measurements
carried out by Yanmar. The experimental results are averaged over one third
octave bands and the corresponding DEA results are calculated at the centre
frequencies of these bands (without averaging). The DEA computation is
preformed on a mesh consisting of 521572 elements and for a momentum
basis of Legendre polynomials truncated at degree 3; typical computation
times are about 12h for a single frequency on a single core of a desktop PC.
Note that the resolution for a full frequency run as shown, for example, in
Fig. 7 does not need to be high and can be done with a few dozen points,
here 10 frequencies in the range from 400 Hz to 4000 Hz.

Fig. 5 shows the outcome of a DEA calculation at 1000 Hz. DEA com-
putes vibrational energy densities for different wave modes as laid out in
Appendix C; these energy densities can be related to velocities for flexural
displacements and thus to acceleration levels resulting from a narrow-band
excitation of the structure, which can then be compared directly with the
measurement results. Fig. 5 shows the local variations which can be ob-
tained by implementing DEA on an FE mesh. Note that no additional work
regarding sub-structuring is necessary; DEA serves as a black-box tool, once
meshes have been read in and interpreted correctly (such as with respect to
RBE coupling) - this can all be automised and requires no further user in-
put. A more in-depth analysis of Fig. 5 shows that most of the vibrational
energy remains near the source (at the rear end of the chassis) and in the
chassis itself. This is due to the weak coupling between the chassis and the
cabin, facilitated by the rubber mounts. The acceleration levels on the cabin
are thus considerably lower overall and decrease according to the distance
from the source.

A point-by-point comparison with the measurement results at 2500 Hz
can be found in Fig. 6. We note that the numerical results agree reasonably
well with the measurements across the whole structure and display a level of
detail not easily achievable with other high-frequency methods. There are
systematic differences, for example at the rubber mounts and on the frame
elements; these may be explained by the complex nature of the mounting
points and the beam-like structure of the frame, both of which require fur-
ther investigation. Results for specific measurement positions across the
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Figure 6: Comparison of simulation and measurement results at 2500 Hz. The acceleration
is measured in g = 9.8m/s2.

whole frequency range are shown in Fig. 7. Good agreement is achieved and
the energy gap between the chassis and the cabin is well captured. Overall,
the simulation reproduces the energy distribution across the whole structure
remarkably well despite the simplifying assumptions for the RBE coupling
and the cabin mounts.

4.2. Damping values and input power

In addition to material parameters such as the Young’s modulus, Poisson
ratio, material densities and plate thickness, the material damping parame-
ters play a crucial role in DEA calculations. We can distinguish two different
types of damping mechanism here: firstly, the damping of vibrational en-
ergy as waves propagate across the structure (or across the mesh cells in our
model), which is modelled by a hysteretic damping parameter. Secondly,
damping occurs at rubber elements such as the rubber mounts supporting
the cabin or the rubber seals connecting the metal frame with the window
glass panes. These connections are treated with RBE patch elements and
interface specific damping parameters are assigned.

Below 1600 Hz, we are using a hysteretic damping value of 0.005 typical
for metallic plates. Above 1600 Hz, however, a hysteretic damping value
of 0.5% has proven to be too large and associated DEA calculations un-
derestimate the measurement results considerably. To obtain realistic high
frequency damping parameters, we use the decrease in the measured accel-
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Figure 7: Acceleration at specific points on the structure: DEA results versus measurement
over the frequency range 400 Hz to 4000 Hz.

eration along the chassis, from the back to the front, to estimate frequency
dependent hysteretic damping values. From this, we conclude that the hys-
teretic damping values need to be reduced from 0.5% at 1600 Hz to 0.1 %
at 4000 Hz, see Fig. 8.

In the FE model of the tractor, the RBEs are always applied in places
where the physical model has some material with damping properties. For
example, between the windows and the cabin frame there is a sealing ma-
terial. Therefore, we should assign an inherent damping parameter to the
corresponding RBE, which is then used in Eq. (D.3). Currently we work
with a transmission factor of 0.98 (across all frequencies) for all RBEs not
associated with the rubber mounts. This value gives a reasonable agreement
between measurement and DEA across all frequencies and points. We note
that a transmission factor of 0.98 is fairly high and can not be related to
a physical transmission factor. Instead, it reflects some of the properties of
our RBE coupling implementation as described in Appendix D. The RBE
interfaces are quite irregular as shown, for example, in Fig. 3. An important
consequence of this irregularity is that energy can become trapped in the
region near the RBEs for a relatively long time, which artificially increases
the damping associated with the RBEs. Therefore the physically relevant
damping across the window seals is larger than a transmission factor of 0.98
would suggest.

The RBEs describing the rubber mounts are treated differently and again
we use the experimental data for realistic estimates of the damping be-
haviour. The rubber mounts are critical in any computation, as they are
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Figure 8: Left: Hysteretic damping values used in the DEA calculation. Right: Trans-
mission factors for the rubber mounts used in DEA calculation.

designed to block structure-borne sound from flowing out of the chassis and
into the cabin. In fact, they are the only places where such a vibrational en-
ergy transfer can take place. We denote the vibrational wave energy below
and above the rubber mounts as E< and E>, respectively. We now consider
the ratio τ = E>/E<, which can be obtained directly from the measurement
data and define the transmission factor in Eq. (D.3) as min(2τ, 1). Here, we
have assumed an approximate linear relationship between the transmission
factor and the energy ratio, and the factor of two is a consequence of the
RBE patch element in DEA taking into account both reflected and transmit-
ted energy. The results for τ are shown in Fig. 8. The transmission factors
at the rear and front mounts are different, but coincide for the left and right
mounts. The transmission factor reflects the steep decrease in acceleration
measured from the lower (chassis) to the upper part (cabin) of the structure
near the rubber mounts. As shown in Fig. 8, the damping properties of
the rubber mounts vary greatly with frequency and with the applied load
(as can be seen in the difference between the rear and front mounts). The
damping parameters have entered the computation leading to the results
presented in Figs. 6 and 7. The uncertainty in assigning the correct damp-
ing characteristics is shared with other numerical methods such as the FEM
and hence the procedure for obtaining realistic damping parameters using
measurements described here is not peculiar to DEA. The DEA method it-
self has no modelling capability to predict damping values and must rely on
input from other pre-processing tools.

The vibrational energy determined by DEA scales linearly with the in-
put power Pin. In the experiment, the shaker at the rear of the gear-
box excites the structure and thus provides a power input. We calculate
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Figure 9: The measured input power Pin flowing from the shaker to the tractor.

Pin = 1
2Re(v∗ · F) from the measured velocity v and force F at the point on

the structure where the shaker is attached. The results are shown in Fig. 9.
In the DEA calculation we apply a point source according to Eq. (C.9)
at the appropriate mesh point, where the value of the input power Pin is
determined from the measurements.

4.3. Vibrational energy flow in the tractor - main transfer paths

DEA calculates a ray density %(r,p) in phase space consisting of a po-
sition variable r and a direction variable p, see Appendix A to Appendix
C for details. The structure under consideration here is effectively made
up of two-dimensional plates and hence both r and p are two-dimensional,
albeit on the surface of a complex structure in three dimensions. The results
shown in Sect. 4.1 are all derived from energy density calculations, where
the energy density ε(r) is proportional to the density of rays passing through
the point r, independent of the direction, that is,

ε(r) ∝
∫
%(r,p) dp,

see also Eq. (C.1). Note that for elastic waves we have different wave modes,
that is, longitudinal, shear and bending modes and associated energy densi-
ties. While the DEA computation determines the contributions of all three
modes, we consider here only the bending component since this gives the
main contribution when compared to measured accelerations and interior
SPLs. Furthermore, for a monochromatic excitation, the modulus of the
momentum coordinate |p| = k(ω) (that is, the wavenumber) is fixed for a
fixed frequency ω, but differs depending on the mode type.
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Figure 10: Left: Vibrational energy flow on the structure at 2500 Hz; Right: Vibrational
energy flow on the cabin main frame (Black circle: connection between main frame and
floor panel).

The ray density %(r,p) computed in DEA provides more information
than just the energy density ε, however. In particular, it allows one to esti-
mate the momentum density vector I(r) directly, and thus give information
about the direction of mean energy flow at each point on the structure. This
can be done as a post-processing step by computing the vectorial quantity

I(r) ∝
∫

p %(r,p) dp

at each point on the structure; see also Eq. (C.5) and the discussion in
Appendix C.2. This may serve as a valuable tool for the engineer and prac-
titioner to identify important transfer paths, which can be used to inform
optimisation measures. Results for the energy flow density on the tractor
are shown in Fig. 10. On the left hand side of Fig. 10 we can see that the
energy is spreading predominantly from the source region at the rear of the
structure towards the front of the chassis. There is also directed energy
spreading on the cabin, as shown on the right hand side of Fig. 10. In par-
ticular, one can detect energy flowing along the beam connecting the wheel
area to the front of the cabin from which considerable amount of energy
is spread into the front floor region. This information can be helpful for
informing the location of sound insulation measures.

4.4. SPL at driver’s ear

SPL calculations at the driver’s ear position follow the approach sketched
in Sect. 3.3. Results are presented in Fig. 11 and are compared with mea-
surements. The hybrid SEA/DEA simulations and the measurements show
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Figure 11: SPL at the driver’s ear position: experiment (black, solid); SEA/DEA simu-
lations (grey, dashed). The contribution from some selected panels are shown in colour;
the main contributions are coming from the floor panel.

good agreement on average across the whole frequency range. We note vari-
ations in both the experimental data and the simulations, but the overall
range (between 45 and 55 dB) is captured well by the simulation. We also
show individual contributions from selected plates; these contributions are
computed by solving the SEA equations using a source term derived from
the vibration levels of a given selected plate only. By far the most important
contributions to the SPLs at the driver’s ear come from the floor panel, that
is, the panel closest to the source. Other important contributions are from
the front and back windows and the side panels.

The agreement between measurements and calculations for the SPLs
is slightly inferior compared to the vibration levels of the structure as for
example shown in Fig. 6. This is nor surprising as additional approximations
have been made here. For example, the radiation efficiencies are in itself an
approximation and furthermore are originally defined only for rectangular,
flat plates; we are using it here for sub-structures which are not necessarily
completely flat or rectangular.
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5. Conclusions

We have demonstrated that the DEA method can compute structure-
borne sound across a complex structure, here for the case of a BiB substruc-
ture of a full tractor. The results presented in this work emphasise the level
of detail provided by the DEA method and its flexibility in handling FE
meshes including RBEs. Results over the full frequency range from 400 Hz
to 4 kHz have been presented and a new energy flow chart technique has
been introduced which allows to obtain information about transfer paths in
a post-processing step. A combined SEA/DEA model of the SPL in the
interior of the cabin gives agreement within ±5 dB.
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Appendix A. DEA implementation

We present here a detailed account of the implementation of DEA on
meshes as sketched in Sect. 3.1. In this work we only consider meshes con-
sisting of two dimensional elements (eventually glued together with RBEs)
and polygonal mesh cells. Energy can flow between neighbouring mesh cells,
which are joined along edges, and we describe the densities of rays on the
edges of each mesh cell. In order to parametrise rays starting at an edge
and travelling in any direction to one of the other edges, each edge is split
into several half-edges. Each half-edge belongs to exactly one of the poly-
gons joined together along the edge and covers all rays originating at the
edge and going into that polygon. That means each half-edge covers 180◦.
For edges connecting two mesh cells, the two half-edges together cover 360◦.
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Figure A.12: A ray transports wave energy from half-edge 0 to half-edge 1, where part
of the energy is reflected and the rest of the energy is transmitted to half-edge 2. The
direction of the transmitted ray is given by Snell’s law.

This generalises to higher order plate crossings, for example, at a T- or X-
junction. Then three or four half-edges are used to describe rays going into
each of the three or four plates.

To describe the coordinates used in more detail, let us consider two ad-
jacent polygonal mesh cells as depicted in Fig. A.12. We will now construct
the map which takes a ray from one half-edge, say edge 0, of this polygon to
the neighbouring half-edges. In the scenario depicted, the ray hits the edge
separating two mesh cells; we denote the half-edge seen by edge 0 as edge
1, which will account for reflection, and the half edge for the transmitted
ray as edge 2. The rays originating from an edge are parametrised by local
Birkhoff coordinates (s, p), where s is the arclength along the half-edge and
p = k sinα is the component of the momentum along the edge. The angle
α measures the direction of the ray with respect to the normal. The mo-
mentum perpendicular to the edge is denoted p⊥ = k cosα. The variable
k = 2π/λ is the wavenumber. For triangular mesh cells, the ray tracing map
Φ0→1 from the initial coordinates (s0, p0) to the final coordinates (s1, p1) on
half-edge 1 is given by

d1(s1) = d0(s0) p⊥0/p⊥1; α1 = θ − α0.

Here, θ is the angle between the two edges, see Fig. A.12, and di(si) is the
distance of the point si from the intersection point between edge 0 and edge
1. The Jacobian of this map is

DΦ0→1 =

 ∂s1∂s0
∂s1
∂p0

∂p1
∂s0

∂p1
∂p0

 =

[
−p⊥0
p⊥1

− D
p⊥0 p⊥1

0 −p⊥1
p⊥0

]
,

where D denotes the length of the ray from edge 0 to edge 1. Note that the
map Φ0→1 is phase space volume preserving, that is, | detDΦ0→1| = 1. Fur-
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thermore, note that the wavenumber k1 equals k0 because both rays travel
across the same polygon. Therefore, the wavenumber dependency drops out
of the Jacobian for rays parametrised by the same wavenumber. For the
transition from half-edge 0 to the half-edge 2 in the neighbouring mesh cell
(which may consist of a different material with a different wavenumber), we
obtain from Snell’s law that p1 = p2, or k1 sinα1 = k2 sinα2. By introducing
ki, i = 1, 2, in the parametrisation of the relevant phase space coordinates,
we again obtain | detDφ0→2| = 1 for the map from half-edge 0 to half-edge
2 and phase space volume preservation follows.

Generalising this procedure, we can define a global phase space on the
Surface of Section (SoS) consisting of all half-edges and possible momenta
and an associated ray tracing map Φ from any half-edge to any adjacent
half-edge. Technically, this is done using the Frobenius-Perron operator. To
simplify notation, we introduce the two-dimensional phase space coordinate
X = (s, p), combining both arclength and momentum along all distinct half-
edges. Now, let E and E′ be two adjacent half-edges. The ray density %(X)
in the phase space of half-edge E is mapped by the ray tracing map Φ to
the density %′(X ′) in the phase space of half-edge E′. In the simplest case
without damping or reflection/transmission, we have %′(Φ(X)) = %(X) due
to phase space volume conservation. Technically this map can be expressed
in terms of the integral equation

%′(X ′) = {T%} (X ′) =

∫
λ(X ′) e−µD(X′,X) δ(X ′ − Φ(X)) %(X) dX. (A.1)

Here, we have introduced an additional damping factor e−µD(X′,X) (with
D(X ′, X), the distance between the points X ′ and X) and a reflection/
transmission factor λ(X ′). The latter term covers mode conversion and is
akin to the coupling loss factors in SEA.

To construct a discrete version of the operator T , we project it onto a
finite basis by introducing an orthogonal basis system Fn(X) with orthog-
onality relation (Fn, Fm) = ||Fn||2 δn,m and ||Fn||2 = (Fn, Fn). The inner
product is defined as

(u, v) =

∫
u(X)v(X) dX ,

where u and v are two functions on the phase space of all edges and −k ≤
p ≤ k. Note that the wavenumber k may differ on different edges or for
different modes. We can now express the relation between an initial density
%(X) and the corresponding propagated density %′(X ′) = (T%)(X ′) in this
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basis as

%(X) =
∑
n

fn Fn(X), %′(X ′) =
∑
n′

f ′n′ Fn′(X
′)

where
f ′n′ =

∑
n

Tn′n fn.

Here, the matrix representation of the Frobenius-Perron operator T is given
by

Tn′n =
1

(Fn′ , Fn′)
(Fn′ , TFn).

The matrix elements can be evaluated using the inner product

(Fn′ , TFn) =

∫
Fn′(X

′) {TFn} (X ′) dX ′

=

∫ ∫
Fn′(X)λ(X ′) e−µD(X′,X′) δ(X ′ − Φ(X))Fn(X) dX dX ′

=

∫
λ(Φ(X)) e−µD(Φ(X),X) Fn′ (Φ(X)) Fn(X) dX.

The choice of basis employed here is piecewise constant functions in position
space and Legendre polynomials in momentum space, that is,

F(b,β)(s, p) =
1√
Ab kb

1b(s)Pβ

(
p

kb

)
; (F(b,β), F(b̃,β̃)) =

2

2β + 1
δb,b̃ δβ,β̃,

where 1b is the characteristic function of edge b (that is, 1b(s) = 1 for s on
edge b and 0 elsewhere) and Ab is the length of edge b. For an implementation
using higher order basis functions in position space, see [12]. The multi-
index n ≡ (b, β) combines the index of the edge b with the index β, which
corresponds to the degree of the Legendre polynomial. The matrix elements
in this basis read

Tn′n =
2β′ + 1

2
√
Ab′ Abkb′ kb∫ Ab

0

∫ +kb

−kb
λ(x′) e−µD(s′,s) 1b′(s

′) 1b(s)Pβ′(p
′/kb′)Pβ(p/kb) dp ds,

or in the angular variable α (with p = kb sinα and sinα′ = (kb/kb′) sin(θ−α)
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Figure A.13: An illustration of the geometry underlying the position integral, showing is
the transmitted ray. The target half-edge b′ corresponds here to the upper right side of
the triangle.

according to Snell’s law) we have

Tn′n =
2β′ + 1

2
√
Ab′ Ab

√
kb
kb′∫ Ab

0

∫ +π/2

−π/2
λ(x′) e−µD(s′,s) 1b′(s

′) 1b(s)Pβ′(sinα
′)Pβ(sinα) cosα dα ds.

In the following, we assume that λ(x′) is only a function of the angle. Then
the calculation of the double integral simplifies as the position integral may
be evaluated analytically, reducing the computation to a one-dimensional
numerical integral over the angular variable:

Tn′n =
2β′ + 1

2
√
Ab′ Ab

√
kb
kb′

∫ +π/2

−π/2
λ(α′)h(µ, α) Pβ′(sinα

′)Pβ(sinα) cosα dα.

(A.2)
The position integral

h(µ, α) =

∫ Ab

0
e−µD(s′,s)1b′(s

′) 1b(s) ds =

∫ smax(α)

smin(α)
e−µD(s′,s) ds

can be evaluated analytically [6], see Fig. A.13. For zero damping, that is,
µ = 0, we have

h(0, α) =


0 for α ∈ [−π

2
, γ−]

Ab′
cosα1
cosα for α ∈ [γ−, γ+]

Ab for α ∈ [γ+,+
π

2
],

(A.3)
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with γ± corresponding to the exterior angles of the triangular mesh cell
depicted in Fig. A.13. Here α1 = θ − α is the angle at which the ray
arrives at the receiving edge without applying Snell’s law. One can use
the position integral h(0, α) for zero damping given in (A.3) to express the
position integral h(µ, α) for non-zero values of the damping. For µ 6= 0, one
obtains

h(µ, α) =
1− e−µ̃h(0,α)

µ̃
with µ̃ = µ

sin |θ|
cosα1

.

The function h(µ, α) is a piecewise smooth function of the angle α. The
numerical integration over the angular variable α is now split into three
sub-intervals according to Eq. (A.3). If the reflection/transmission coeffi-
cient λ(α′) is smooth in each interval, then the integrand is smooth and the
numerical integral can be calculated using Clenshaw-Curtis integration (or
similar schemes) to high precision. If λ(α′) also has singularities, more care
has to be taken when performing the numerical integration.

Having determined the transfer operator T , the stationary phase space
density %∞ on the boundaries of each of the mesh cells is obtained by iter-
ation, that is

%∞ =
∞∑
n=0

Tn%0 = (1− T )−1 %0.

Here, %0 is the initial source density projected onto the mesh boundaries as
discussed in Appendix C.

In this work we assume that the structure is assembled from thin plates.
Elements of this type support three wave modes: longitudinal and shear
waves, which are both in-plane modes with a linear dispersion relation, and
bending waves, which are an out-of-plane mode with a quadratic dispersion
relation. Each of these three modes is described by its own ray density;
technically this is done by enlarging the multi-index n to n ≡ (m, b, β) by
introducing a mode number index m. At an edge, the three different modes
can be converted into one other. The conversion coefficients are included as
part of the reflection/transmission coefficients λ(X ′) and are given by the
scattering matrix derived in [9]. Fig. C.15 shows as an example the results
for an L-joint consisting of two plates fixed at a right angle. The elements of
the scattering matrix Sabmn are plotted where the indices m,n are the wave
modes P, S or B and a, b = 1, 2 represent the two plates. The plates in
the example have identical properties and the frequency is chosen such that
kL/kB = 0.3. The modulus squared of the scattering matrix element Sabmn
are the reflection (a = b) and transmission (a 6= b) coefficient.
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Figure A.14: Transmission and reflection coefficients for two plates at a 90◦ angle. The
different coefficients are added up, so |S12

BL|2 is the distance from the red curve to the blue
one. α is the angle of the incoming ray.

This allows DEA to take curvature, plate intersections and varying ma-
terial parameters into account. In this work we are using a hysteretic
damping model, which replaces Young’s modulus E with the complex value
Ec = E(1 + iη). Here, η is the hysteretic damping parameter. The corre-
sponding decay in the energy density of a plane wave across a distance D (in
the propagation direction) is e−ηkL/SD for longitudinal and shear waves, and
e−ηkBD/2 for bending waves where kL/S/B is the corresponding wavenum-
ber. It follows that the damping parameters for DEA are µL/S = ηkL/S and
µB = ηkB/2.

Remark: The DEA formulation as described here and later in Appendix
C can be simplified by multiplying the vector of expansion coefficients fn by√
kn. If done consistently, one can drop the

√
kn prefactors in the expressions

for the matrix elements, Eq. (A.2) and later Eq. (D.2), as well as in the
relation for the spatial or interior density (C.4) and the source densities
(C.8) and (C.10). However, the

√
kn factors must remain present in the

source strength of the point force given in Eq. (C.12) and in the weighting
factors for the RBEs (D.3).

Appendix B. Transformation of Surface of Section coordinates to
bulk coordinates

In the previous section, we have worked with a ray density on a SoS
formed by the union of all edges of a polygonal mesh and associated mo-
menta. We will now show how this boundary density can be related to a den-
sity in the interior of each mesh cell. The first step is to lift the density from
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the SoS coordinates X = (s, p) to the full four dimensional phase space coor-
dinates using a 4D coordinate transformation. We introduce the coordinate
system x ≡ (q‖, p‖, q⊥, p⊥) for the full phase space at an edge with q‖ ≡ s,
p ≡ p‖ and (q⊥, p⊥) are the position and momentum perpendicular to the
edge. The SoS coordinates (s, p) can be augmented to full four dimensional
phase space coordinates by introducing the time t (along the propagation di-
rection of the ray in question) and the frequency ω (equivalent to the energy
E in classical mechanics). Therefore, the desired coordinate transformation
is from the coordinates (s, p, t, ω) to coordinates (q‖, p‖, q⊥, p⊥). To relate
the transformation to the underlying ray-dynamics, we must give a relation
between the frequency ω and the momentum vector1 (p‖, p⊥). This is done
by introducing a Hamilton function H given in the form of the dispersion
relation

H(q‖, p‖, q⊥, p⊥) = αk2β = ω with k =
√
p2
‖ + p2

⊥, (B.1)

which is valid for isotropic and homogeneous (translation invariant) sys-
tems. Here, k is the wavenumber and β = 1

2 for linear dispersion relations
(longitudinal and shear modes), or β = 1 for quadratic dispersion relations
(bending modes). The equations of motion are then

ẋ =



∂H
∂p‖

− ∂H
∂q‖

∂H
∂p⊥

− ∂H
∂q⊥

 =
2βω

k2


p‖

0

p⊥

0

 .

For homogeneous and isotropic systems, the modulus of the velocity equals
the group velocity vg = ∂ω

∂k and is

|ẋ| = vg = 2β
ω

k
= 2β vph,

where we have introduced the phase velocity vph = ω(k)/k. Note, that
for longitudinal/shear waves vph = vg = α (linear dispersion relation). For
bending waves (quadratic dispersion relation), we have that the group veloc-
ity vg,B = 2vph(k) with vph(k) = αk. The parameter α is given by material
constants.

1Note that the momentum vector is equivalent to the wave vector, in the same way as
the Hamiltonian H is equivalent to the frequency ω.
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The linearised four dimensional coordinate transformation Ω is now given
as

Ω :


s
p
t
ω

 7→

q‖
p‖
q⊥
p⊥

+
2βωt

k2


p‖
0
p⊥
0

 ,

with Jacobian matrix

DΩ =


1 0 2βωp‖/(p

2
‖ + p2

⊥) 0

0 1 0 0
0 0 2βωp⊥/(p

2
‖ + p2

⊥) 0

0 −p‖/p⊥ 0 (p2
‖ + p2

⊥)/(2βωp⊥)

 .
Here, we have used that

∂p⊥(s, p, t, ω)

∂p‖
= −

p‖

p⊥
and

∂p⊥(s, p, t, ω)

∂ω
=
p2
‖ + p2

⊥

2βω p⊥
,

which can be derived from (B.1). Note that DΩ is symplectic and in par-
ticular, detDΩ = 1. That means that the density at the new coordinates
(q‖, p‖, q⊥, p⊥) is simply the density in the old coordinates evaluated at the
corresponding point (s, p, t, ω). To lift the density %(s, p) to the 4D coordi-
nate system (s, p, t, ω) we write

%4D(s, p, t, ω) = %(s, p)ω0 δ(ω − ω0), (B.2)

where we make use of the stationarity of the solution for fixed frequency
ω = ω0. The additional factor ω0 is introduced for dimensionality reasons.
In full phase space coordinates, we obtain

%4D(q‖, p‖, q⊥, p⊥) = %(q‖, p‖)ω0 δ(ω(k)− ω0),

with ω(k) = H(p‖, p⊥) from (B.1). Writing the density directly on the

manifold k = const, we obtain (using the group velocity vg(k) = ∂ω
∂k ) that

%4D(q‖, p‖, q⊥, p⊥) = %(q‖, p‖)
ω0

vg,0
δ(k − k0), (B.3)

with k0 related to ω0 through the dispersion relation (B.1).
In some cases, we need p⊥ as the argument inside the delta function.

Applying the substitution rule once more, we get

%4D(q‖, p‖, q⊥, p⊥) = %(q‖, p‖)
ω0

vg,0

k0

p⊥,0
δ(p⊥ − p⊥,0) (B.4)

with p⊥,0 =
√
k2

0 − p2
||.
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Appendix C. Energy density in the interior

Appendix C.1. Spatial energy density

The spatial ray density %sp(r) at a point r = (x, y) in the interior of
a mesh cell is defined as the integral of the phase space density over all
momentum components p = (px, py), that is,

%sp(r) =

∫
%4D(r,p) dp. (C.1)

The quantity %4D(r,p) at a point r in the interior of a polygon is directly
related to the phase space density on the edges of the polygon. Denoting the
intersection of the ray emanating from r in direction −p with the boundary
of the polygon as rbd(r,p), one obtains

%sp(r) =

∫
%4D(r,p) dp =

∫
e−µ|r−rbd|%4D(rbd(r,p),p) dp.

Writing the integral with respect to p in polar coordinates (k, φ) leads to
p = (k cosφ, k sinφ) and dp = k dφ dk, then applying Eq. (B.3) gives

%sp(r) =

∫ ∞
0

∫ 2π

0
e−µ|r−rbd| %(s(r, φ), k sinα(r, φ))

ω0

vg,0
δ(k − k0) k dφ dk

=
ω0 k0

vg,0

∫ 2π

0
e−µ|r−rbd| %(s(r, φ), k0 sinα(r, φ)) dφ.

(C.2)
Here, φ is the polar angle parametrising trajectories approaching r, and
s(r, φ) and α(r, φ) are the position and angle at which rays hit the boundary,
respectively. In the last equation, we could also write the pre-factor as
ω0 k0 v

−1
g,0 = ω2

0 v
−1
ph,0 v

−1
g,0. This form is closer to the result from Eqs. (27–33)

in [13], where the special case vg = vph is considered.
After a change of variables from φ to s, see Fig. C.15, one obtains

%sp(r) =
ω0 k0

vg,0

∫
e−µD(s,r) %(s, k0 sinα(s, r))

cosα(s, r)

D(s, r)
ds, (C.3)

where s is the arc length around the boundary of the polygonal mesh cell
containing r and D(s, r) = |r − rbd(s)| is the distance of the point r from
the point on the boundary. After inserting a basis expansion of the form

%(s, p) =
∑
b,β

fb,β√
Ab kb

1b(s)Pβ(p/kb)
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Figure C.15: Coordinate transformation from angle to arc-length coordinates.

into Eq. (C.3), the spatial density can be written as

%sp(r) =
ω0

vg,0

∑
b,β

fb,β

√
kb
Ab

∫
e−µD(s,r)1b(s)Pβ(sinα(s, r))

cosα(s, r)

D(s, r)
ds

(C.4)
where the sum includes all half-edges of the polygonal mesh cell containing
the point r. For these half-edges we have k0 = kb.

Appendix C.2. Momentum density

As well as considering wave energy transport and the calculation of wave
energy densities, we may also consider the momentum transport properties
of our wave system. In order to get a quantitative measure of the momentum
transport, we define the momentum density %mom(r) at a point r = (x, y)
(in the interior of a mesh cell) as the integral of the momentum vector
p = (px, py) weighted by the phase space density, that is

%mom(r) =

∫
p %4D(r,p) dp. (C.5)

Following the steps of the previous section, we can write

%mom(r) =
ω0 k

2
0

vg,0

∫
D(s, r)

D(s, r)
e−µD(s,r) %(s, k0 sinα(s, r))

cosα(s, r)

D(s, r)
ds.

(C.6)
Here the vector D(s, r) = r − rbd indicates the propagating direction and
hence the momentum of the ray. In terms of our basis, the momentum
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density reads

%mom(r) =
ω0k0

vg,0

∑
b,β

fb,β

√
kb
Ab

∫
D(s, r)

D(s, r)
e−µD(s,r)1b(s)

Pβ(sinα(s, r))
cosα(s, r)

D(s, r)
ds .

(C.7)

The magnitude of the momentum density vector varies greatly across the
structure. Therefore in order to visualize the momentum density, we adjust
the length of the plotted vector to log (|%mom(r)|/kmom,ref) where kmom,ref is
a fixed reference scale. The direction of the plotted vector is unchanged.

Appendix C.3. Line source

Next we turn to a description of the source terms. We start by modelling
a source along an infinite edge Eb0 radiating out in the direction φ0 with
strength R0. The initial phase space density on the edge for this scenario is
given by

%0(s, p) = R0 ω
−1
0 cosφ0 1b0(s) δ(p− p0)

with tangential component p0 = k0 sinφ0. The source strength R0 plays
the role of an intensity, that is, the energy per unit time flowing through a
unit line element perpendicular to the direction of the source. Starting from
Eq. (B.4), we get the four dimensional phase space density as

%4D,0(r,p) = R0 v
−1
g,0 δ(p− p0)

with p0 = (k0 sinφ0, k0 cosφ0) and a constant spatial density

%sp,0(r) = R0 v
−1
g,0.

We obtain, as expected, that the intensity equals the energy density times
the group velocity. Expanding the source density into the basis components,
one obtains

%0(X) =
∑
n

f0,n Fn(X) with f0,n =
(%0, Fn)

(Fn, Fn)
.

In our specific basis, this reads

f0,n = R0 ω
−1
0 cosφ0 δb,b0

√
Ab0
kb0

(
2β + 1

2

)
Pβ(sinφ0) (C.8)

with n = (b, β) and p0 = kb0 sinφ0.
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Appendix C.4. Point source

We now consider the case of a point source in the interior of a mesh cell
at a position r0. The source strength is again denoted as R0 and can be
interpreted as the energy which flows out of the source per unit time. The
4D energy density is then given as

%0,4D(r,p) =
R0

2π vg,0

e−µ|r−r0|

|r− r0|
δ

(
p− k0

r− r0

|r− r0|

)
and the spatial energy density is

%sp,0(r) =
R0

2π vg,0

e−µ|r−r0|

|r− r0|
. (C.9)

According to Eq. (B.4), the corresponding 2D boundary energy density is
given as

%0(s, p) =
R0

2π ω0

e−µD(s,r)

D(s, r)
δ(p− k0 sinα(s, r)) cosα(s, r).

If one neglects damping by setting µ = 0 and calculates the energy flowing
through the boundary per unit time, one gets R0 as expected. Technically,
this is done by integrating the product of the energy density (C.9) and the
group velocity vg,0 around a circle with centre r0. Next, we project the
source density onto our basis as follows

%0(X) =
∑
n

f0,n Fn(X) with f0,n =
(%0, Fn)

(Fn, Fn)
.

In our specific basis, this reads

f0,n =
R0

2π ω0

√
1

Ab kb

(
2β + 1

2

)∫
λ(α(s)) e−µD(s,r)Pβ(sinα(s))

cosα(s)

D(s, r)
ds

(C.10)
with n = (b, β). Here the reflection/transmission coefficient λ(α(s)) ac-
counts for a possible change in material parameters between the polygon
containing the source and the polygon belonging to f0,n. The angle α(s)
takes Snell’s law into account.

Appendix C.5. Point excitation of a thin plate

Consider an infinitely extended thin plate which is excited by a time-
harmonic point force of strength F0 acting perpendicular to the plate. The
equation of motion for the resulting bending wave u(r) is

h%p ü(r) + D∆2u(r) = F0 e
iωt δ(r− r0)
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with r, r0 ∈ R2. Here, h is the plate thickness, %p is the (volume-)density of

the plate and D = h3

12
E

1−ν2 is the so-called the flexural rigidity (also known
as the bending stiffness) with Young’s modulus E and Poisson ratio ν. Using
a time-harmonic ansatz gives the biharmonic Helmholtz equation[

∆2 − k4
]
u =

F0 k
4

h%p ω2
δ(~r − ~r0) (C.11)

with dispersion relation h%p ω
2/D = k4. The Green’s function solving (C.11)

can be written as a combination of the Green’s functions for the Helmholtz
equation and the modified Helmholtz equation using the relation

(∆2 − k4)−1 =
1

2k2

[
(∆− k2)−1 − (∆ + k2)−1

]
.

The Green’s function GHel of the 2D Helmholtz equation with r = |r − r0|
is given by

GHel(r) = − i
4
H

(1)
0 (rk),

and satisfies
[
∆ + k2

]
GHel(r) = δ(r − r0). Hence, one obtains the Green’s

function Gbih for the biharmonic Helmholtz equation as[
∆2 − k4

]
Gbih = δ(r− r0) ; Gbih(r) =

1

2k2

[
i

4
H

(1)
0 (rk)− 1

2π
K0(rk)

]
.

The asymptotic behaviour for r →∞ is then given by

Gbih(r) ∼ 1

8k2

√
2

πrk

[
ei(rk−π/4) − e−rk

]
and is equivalent to the high frequency asymptotics as k → ∞. Therefore
the propagating part of the solution of the original problem, Eq. (C.11), is
given as

u(r) =
i F0 k

2

8h%p ω2

√
2

πrk
eirk−iπ/4

with a related energy density e = %ph|u̇|2/2 of the form

e =
F 2

0 k
3

32h%p ω2

1

2πr
.

Comparing with Eq. (C.9) and using vg = 2ωk , one obtains

R0 =
F 2

0 k
2

16h%p ω
. (C.12)
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Figure D.16: Left: An illustration of the RBE patch elements in DEA; here edge E′′ is
connected to edge E′ with an RBE and energy flows from edge E to edge E′. Right: DEA
patch elements in a situation where many edges are connected by RBEs.

Appendix D. Implementation of Rigid Body Elements (RBEs) in
DEA

To illustrate RBE patch modeling in DEA as discussed in Sec. 3.2, we
consider the following simplified scenario of having three edges, E,E′′ and
E′ as shown in the left part of Fig. D.16. The edges E and E′′ are neighbours
and energy flows in the same way as in ordinary DEA. However, we now
assume that E′′ and E′ are connected via an RBE and can thus exchange
energy even though they do not have a common interface; these connections
need to be handled by RBE patches. In the transfer operator, we now
create a connection between edges E and E′ without referring to the edge
E′′ directly. The edge E′′ is called the base and the edge E′ is called the
target.

The RBE patch element as introduced in Sec. 3.2 is a diffusive element.
To model this mathematically, we replace the sharp delta function in the
transfer operator Eq. (A.1) with a general distribution

{T%} (X ′) =

∫
Ξ(X ′, X) %(X) dX. (D.1)

The final distribution should not depend on X ′, i.e. it should be equidis-
tributed in phase space. We enforce the condition that only rays which hit
the edge E′′ contribute. When a ray hits E′′ we require energy conservation
for E′, that is, ∫

Ξ(X ′, X) dX ′ = 1.

Damping is included in the normal way during the passage from E to E′′.
This leads to

Ξ(X ′, X) =
1

2Ab′kb′
e−µD(Φ(X),X) 1b′′(Φ(X)),
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where Φ is the ray tracing map from E to E′′. Inserting into (D.1), one
obtains

%′(X ′) = {T%} (X ′) =
1

2Ab′kb′

∫
e−µD(Φ(X),X) 1b′′(Φ(X)) %(X) dX.

In the orthogonal basis Fn, this reads

Tn′,n =
(F ′n′ , F

′
n′)
−1

2Ab′kb′

[∫
F ′n′(X

′) dX ′
] [∫

e−µD(Φ(X),X) 1b′′(Φ(X))Fn(X) dX

]
and we obtain in our basis∫

F ′n′(X
′) dX ′ =

1√
Ab′ kb′

∫ ∫ kb′

−kb′
Pβ′

(
p′

kb′

)
dp′ ds′ = 2

√
Ab′kb′ δβ′,0

and ∫
e−µD(Φ(X),X) 1b′′(Φ(X))Fn(X) dX

=
1√
Ab kb

∫ ∫ kb

−kb
e−µD(Φ(X),X) 1b′′(Φ(X))Pβ

(
p

kb

)
dp ds

=

√
kb
Ab

∫ +π/2

−π/2
h(µ, α)Pβ(sinα) cosα dα.

Together this gives

T(b′,β′),(b,β) =
δβ′,0

2
√
AbAb′

√
kb
kb′

[∫ +π/2

−π/2
h(µ, α)Pβ(sinα) cosα dα

]
. (D.2)

Usually we do not have a single target edge E′ as depicted in the left part
of Fig. D.16, but instead the energy is spread out evenly over multiple edges
in a target set T as sketched in the right part of Fig. D.16. If there is more
than one target E′, for each edge E′ in the target set T we create an entry
in the matrix representing the transfer operator T . We modify the matrix
entry T(b′,β′),(b,β) by inserting an additional weight factor based on the phase
space volume of the edges in the target set T . The resulting matrix element
T̃(b′,β′),(b,β) reads

T̃(b′,β′),(b,β) = ηb′
Ab′kb′∑
b̃∈T Ab̃kb̃

T(b′,β′),(b,β). (D.3)
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Here, the transmission factor ηb′ is an additional factor accounting for damp-
ing due to losses. This factor has to be determined from experience or ex-
periment as explained in Sect. 4.2. The weighting factor in front of the T
matrix entry is based on the relative phase space volume of edge b′ and re-
flects the idea that the RBE patch element acts like a chaotic scatterer that
traps energy for some time. After a certain delay time, the trapped energy
can escape to the adjacent regions with a rate based on the available phase
space volume.

As an example, in the right part of Fig. D.16 we use the target set
T = {1, 2, 3, . . . , 22} and introduce the following 22 RBE patch elements:
base {1} and target T , base {2} and target T , . . ., base {22} and target T .
Of special note is that we always include the base in the target set. We can
then model that part of the energy is reflected. This kind of connectivity is
also important for reciprocity: for zero damping and a basis consisting only
of zero order Legendre polynomials, we expect that by appropriate weighting
of the basis functions we can make both the column sums and the row sums
(not with the same weighting) of the matrix T to be equal to one.

We can also use more complicated schemes to transfer energies between
different interface sections on the mesh. Let {Jk}nk=1 be the edge-index sets
defining the n interfaces. Let Sk′,k be the transition matrix whose entries
are non-negative and whose column-sum is less than or equal to one. Then
the matrix entries for the transfer operator are given by

T̃(b′,β′),(b,β) =

∑
k̃

Sk̃,k

 Sk′,k Ab′kb′∑
k̃ Sk̃,k

∑
b̃∈Jk̃

Ab̃kb̃
T(b′,β′),(b,β),

where b′′ ∈ Jk and b′ ∈ Jk′ . This formulation allows for energy transfer
between multiple interfaces and for finer control over how much energy flows
between the interfaces. Damping is taken into account by allowing the
column sums of the matrix Sk′,k to be less than one. Although this more
complicated formulation is not used in the calculations presented here, it is
worthwhile to mention it as a possible direction for future investigation.
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