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ABSTRACT 1 

Horse handlers often encounter problem behaviour resulting from a lack of stimulus 2 

control. Handlers are often only 15% of the weight of horses, which evolved strong flight 3 

responses. Therefore, many riders and handlers resort to the use of “aids” to maintain 4 

control of their animals. However, there are increasing concerns about the efficacy and 5 

welfare implication of such devices, particularly when applied to sensitive facial 6 

structures.   One such device is a Dually® headcollar which aims to increase compliance. 7 

Despite its popularity, little is known about the effects of this aid on behaviour or stress. 8 

The aim of the current study was to determine whether the use of a Dually headcollar  9 

improves compliance during handling and, if so, whether this might be achieved with 10 

concomitant increases in stress or discomfort. Subjects completed two novel handling 11 

tests, one wearing a Dually with a line attached to the pressure mechanism and one 12 

attached to the standard ring as a Control. Crossing time and proactive behaviour were 13 

recorded as indicators of compliance. Core temperature and the discrepancy between 14 

eye temperatures were measured using IRT before and after testing as an indicator of 15 

stress. The Horse Grimace Scale (HGS) was used to measure discomfort caused by each 16 

configuration of the device. The Dually did not result in more compliant behaviour, 17 

compared to the Control (p=0.935; p=0.538). However, the Dually configuration did result 18 

in a significantly higher HGS scores (p=0.034). This may indicate that there is an impact 19 

on animal welfare by using this device that is not justified by improved behaviour. 20 

However, IRT readings of core temperature (p=0.186) and discrepancy between the eyes 21 

(p=0.972) did not indicate the Dually increased stress in subjects. Taken together, this 22 

suggests the Dually is ineffective in naïve horses but causes increased discomfort. 23 
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 26 

1. INTRODUCTION 27 

The owners and carers of horses often encounter problem behaviour resulting from a lack 28 

of stimulus control (McGreevy and McLean, 2007). In this instance, random 29 

environmental stimuli exert more control over the horse’s behaviour than the handler or 30 

rider is able to. Humans are often only 15% of the weight of their horses (Halliday and 31 

Randle, 2013) and horses have evolved strong flight responses (Lansade et al., 2008). 32 

Therefore, it is not surprising that many riders and handlers resort to the use of training 33 

aids to maintain control. These may restrain the animal in some way, rendering them less 34 

able to express flight responses. Alternatively, they magnify the pressure that can be 35 

applied, increasing the salience of human stimuli as they compete with those of the 36 

environment. However, there are increasing concerns about the efficacy and welfare 37 

implication of such devices (McLean and McGreevy, 2010b), particularly when they are 38 

applied to sensitive facial structures (Doherty et al., 2017; McGreevy et al., 2012).    39 

One such device is a Dually® headcollar designed and promoted by natural horseman 40 

Monty Roberts (Roberts, 1997). This is available commercially to aid owners in controlling 41 

their animals and is a standard tool used in many natural horsemanship demonstrations 42 

across the world. The headcollar fits around the horse’s face in a similar manner to a 43 

conventional headcollar. It differs in that it is fitted more closely to the horses’ face (though 44 

not in such a manner that would cause discomfort) and has an inbuilt pressure 45 

mechanism (Figure 1). This mechanism works when a line is connected to either side-46 



ring. When the horse pulls back, or fails to walk forward upon pressure applied to the line, 47 

a rope just below the traditional noseband constricts, putting pressure around the jaws 48 

and nose of the horse. Proponents of the device state that it works by triggering the 49 

horses’ “…instinctive reaction…to move out of the pressure zone and come back towards 50 

you” (Intelligenthorsemanship.co.uk, 2018). This headcollar can also be worn in a 51 

standard configuration with the line clipped to a ring under the chin of the horse, thus 52 

negating the pressure mechanism (Figure 2). The patent for this product states “It is 53 

extremely effective for training the animal to lead, to stand still, to walk into a truck or 54 

trailer, to walk slowly through narrow passages, to walk over unfamiliar objects…” 55 

(Roberts, 1999). Despite these claims, little is known about the effects of this aid on 56 

behaviour or stress. 57 

Stress in horses may be non-invasively measured using mobile devices such as infrared 58 

thermography (IRT). Core temperature detected using IRT increases in response to 59 

arousal or stress (Stewart et al., 2008a, 2007)  but decreases in response to pain and 60 

discomfort (Lush and Ijichi, 2018; Stewart et al., 2008b; Stubsjøen et al., 2009). This 61 

method has been used in a range of species including dogs (Travain et al., 2015), cats 62 

(Foster and Ijichi, 2017), cattle (Stewart et al., 2008a) and horses (Lush and Ijichi, 2018; 63 

Yarnell et al., 2013). Further, there is preliminary evidence that the discrepancy in 64 

temperature between eyes may indicate an emotional response to stress (Lush and Ijichi, 65 

2018). The right hemisphere is typically more active than the left during the emotional 66 

processing of experiences (Farmer et al., 2010).  Discrepancies in lateralised temperature 67 

may indicate lateralised cerebral blood flow indicated of hemispheric dominance  (Riemer 68 

et al., 2016).   69 



If the use of a Dually headcollar were to cause increases in stress response, this may be 70 

explained by discomfort caused by the pressure mechanism. Horses are typically trained 71 

using aversive sensations that the horse can avoid by offering the desired response 72 

(McLean, 2005). The Dually is no different in this respect, in that it is designed to increase 73 

the motivation of the horse to offer the desired response (stepping forward) by magnifying 74 

the aversive sensation a handler can apply. Aversive techniques are only ethical if they 75 

are proportional to the desired response, predictable and immediately release when the 76 

correct response is offered (McGreevy and McLean, 2009). However, there is currently 77 

no research on the effect of Dually pressure that would indicate whether this device 78 

causes proportional aversion. The Horse Grimace Scale is a novel means of measuring 79 

the discomfort or pain experienced by equine subjects (Dalla Costa et al., 2014). This 80 

system divides the horses’ face into pertinent areas that have been shown to alter in 81 

response to pain. Each area is then scored to give a total which has been found to have 82 

high inter-rater reliability. This provides a second non-invasive method of determining the 83 

effect of the Dually on welfare.  84 

The aim of the current study was to determine whether the use of a Dually headcollar 85 

improves compliance during handling and, if so, whether this might be achieved with 86 

concomitant increases in stress or discomfort. To this end, subjects completed two novel 87 

handling tests (Squibb et al., In Press), one wearing a Dually with a line attached to the 88 

pressure mechanism and one attached to the standard ring as a control. Crossing time 89 

and proactivity were recorded as indicators of compliance (Ijichi et al., 2013). Core 90 

temperature and the discrepancy in temperature between eyes were measured using IRT 91 

as an indicator of stress and arousal (Stewart et al., 2007). The Horse Grimace Scale 92 



was used to measure discomfort caused by each configuration of the device (Dalla Costa 93 

et al., 2014). It was hypothesised that the Dually would be associated with decreased 94 

crossing times and reduced proactive behaviour but increased core temperature, right 95 

eye dominance and Horse Grimace Scale scores, when compared with the control 96 

configuration. 97 

 98 

2. METHODS 99 

A total sample number of 20 privately owned horses were sourced from the liveries at 100 

Hartpury College (12 geldings and 8 mares). The participant ages varied between 4-15 101 

years old (mean = 9 years ± 2.83). Subjects were housed and managed as per owner 102 

preferences on a large livery yard. In general, subjects were provided forage three times 103 

a day with hard-feed dependent on workload and nutritional requirements and constant 104 

access to fresh water. They were individually stabled with a minimum of 1 hour of exercise 105 

each day but received limited turn-out at the time of testing. 106 

The study took place within an enclosed outdoor area at Hartpury College Equestrian 107 

Centre, Gloucestershire (UK) during November 2017. Subjects completed two novel 108 

handling tests in randomised test order, wearing a Dually® headcollar (Roberts, 1999) 109 

during both tests. The leadrope was attached to the side ring which applies increased 110 

pressure for the Treatment and the standard under-chin ring for the Control. Treatment 111 

order was randomised. Subjects were randomly allocated one of two experimental 112 

handlers (C.I. & K.S.) for both tests. Handlers wore protective footwear, a correctly fitted 113 

riding helmet and gloves. 114 



 115 

 116 

Figure 1.  The headcollar in the Dually configuration with the lunge-line attached to one 117 

of two side rings. This results in pressure being applied via the rope noseband which sits 118 

below the standard fixed noseband. 119 



 120 

Figure 2. The headcollar in the Control configuration. Here the lunge-line is attached to 121 

the standard ring under the chin of the horses, as per typical headcollars. 122 

2.1 Novel Handling Tests  123 

Subjects completed two novel handling tests where they were asked to navigate two 124 

distinct obstacles (Squibb et al., In Press). Test order was randomised and horse order 125 

was pseudo-random depending on the availability of owners. The start of each test was 126 

marked by a horizontal pole placed on the ground 2m in front of the obstacle. Task A 127 

consisted of a 2.5m x 3m blue tarpaulin secured to the ground by 20 individual tent pegs. 128 

To complete this test, the subject walked over the tarpaulin (Video 1). Test B consisted 129 

of two jump wings extended to a height of approximately 2.5m with a 1.6m long pole 130 

suspended over-head, from which hung 2m long plastic streamers. To complete this test, 131 

the subject walked under the overhead pole, causing the streamers to touch the face and 132 

body of the subject as they passed through (Video 2). The handler attempted to lead each 133 



horse over the tarpaulin or under the streamer obstacles using only pressure on the lead-134 

rope as a cue to the horse. Pressure was applied when the horse remained stationary, 135 

moved sideways or away from the novel object and was released when the subject took 136 

a step forward (McGreevy and McLean, 2007). No additional pressures, verbal 137 

commands or further encouragement such as whips were used. 138 

A Sony video camera (Model, HDR-CX33OE, Tokyo, Japan) was used to record all tests 139 

for retrospective analysis. Crossing time for each test began when the subject’s second 140 

front hoof crossed over the pole and bore weight on the ground. For Test A, time stopped 141 

when the last rear hoof bore weight on the tarpaulin. Horses engage their rear legs first 142 

when transforming into faster gaits.  Therefore, horses that showed a flight response on 143 

the tarpaulin were not given faster crossing times. For the attempt to be classed as a 144 

successful crossing all four hooves must have been placed onto the tarpaulin. Crossing 145 

Time for Test B stopped once the whole body of the subject passed between the jump 146 

wings supporting the streamers. A time limit of 3 minutes was allotted for each attempt as 147 

previous research indicated that subjects which had not completed the test within this 148 

time were unlikely to do so (Ijichi et al., 2013). Once the 3 minute threshold had been 149 

reached the test was ended. A crossing time of 180 seconds was given to any horse 150 

reaching this time limit. 151 

Refusal behaviour was defined as any behaviour which did not contribute to crossing the 152 

object (Ijichi et al., 2013). This included moving backwards, sideways, forwards but away 153 

from the tarpaulin, rearing or remaining stationary. Refusal that lasted for 10 seconds or 154 

more was analysed to determine how proactive that refusal was (Test A: N = 13, Test B: 155 

N = 14).  Proactive refusal was defined as any refusal behaviour that involved movement. 156 



Proactive refusal was then recorded as the percent of total refusal time for any individual 157 

which showed refusal behaviour (which included remaining stationary). A higher value 158 

indicated a greater amount of proactive behaviour (Ijichi et al., 2013).  159 

2.2 Core Eye Temperature  160 

A FLIR E4 thermal imaging camera (FLIR Systems, USA.) was used to record eye 161 

temperature. Images were taken at a distance of approximately 1m from the subject and 162 

at an angle of 90o (Travain et al., 2015; Yarnell et al., 2013). Eye temperature images of 163 

each subject’s left and right eyes were taken on entering the arena prior to each test and 164 

immediately after testing. All images were taken by the same researcher each time (S.T.). 165 

Subjects were positioned between two parallel jump poles in the same position and 166 

direction within an enclosed arena. This was to reduce the potential confounding effects 167 

of environmental factors, which may confound the accuracy of infrared thermography 168 

readings (Church et al., 2014). 169 

Images were analysed using FLIR Tools software (ver. 5.9.16284.1001) to obtain a 170 

measurement for each eye. All images were analysed by the same researcher (C.I.) and 171 

checked against independent analysis (S.T. and E.P.). Eye temperature recordings were 172 

the maximum temperature within the palpebral fissure from the lateral commissure to the 173 

lacrimal caruncle (Yarnell et al., 2013). A mean of the left and right eyes was calculated 174 

for each subject, pre and post-test, for each test. The mean pre-test temperature was 175 

then subtracted from the mean post-test temperature, referred to as Change in 176 

Temperature. In addition, the temperature of the left eye was subtracted from the right 177 

eye to indicate the discrepancy between both eyes, for each test. A positive score 178 



indicates a hotter right eye, whilst a negative score indicates a hotter left eye. This is 179 

referred to as Post-Test Discrepancy in Eye Temperature. 180 

2.3 Grimace Scale  181 

A series of photographs were taken of each subject throughout the tests with a Panasonic 182 

camera (Model, DMC-FZ72, Japan). The photographer (E.P.) used a zoom lens to take 183 

detailed images of the subject’s face from a distance of approximately 3 meters. Images 184 

were included in analysis if the lunge line formed a straight line from the handler’s hand 185 

to the ring of the headcollar, indicating that pressure was being applied to the headcollar 186 

in that instance. Therefore, subjects who completed the task without hesitation did not 187 

provide images for analysis, as no pressure was required to indicate they should walk 188 

forward. Crossing time also influenced the number of images available for each subject.  189 

A maximum of 5 images were used for each subject or the total number available if less 190 

than 5 (Table 1). These 5 images were randomly selected from the complete sample of 191 

useable images for that horse. Images with the full face visible and clearly in focus were 192 

preferentially selected where the subject provided more than 5 images. The photographs 193 

were then analysed against the Horse Grimace Scale (HGS) (Dalla Costa et al., 2014). 194 

Where an area of the face was obscured, this was not scored. Each Grimace score was 195 

expressed as a percentage to account for obscured points of the face. The average of all 196 

Grimace Scores obtained for each subject was used in analysis. Images were selected 197 

and analysed by C.I. 198 

  199 



Table 1. The number of images available for Grimace Scale analysis of each subject in 200 

each treatment 201 

Horse Control Treatment 

1 3 2 

2 5 2 

3 1 5 

4 0 3 

5 1 5 

6 0 0 

7 5 4 

8 0 5 

9 4 0 

10 5 1 

11 5 0 

12 1 5 

13 0 0 

14 0 4 

15 5 0 

16 0 4 

17 5 0 

18 1 5 

19 5 5 

20 4 2 

2.4 Ethics 202 

Owners provided informed consent for each subject via the completion of a participant 203 

information form. All data provided was held in accordance with the Data Protection Act 204 

(1998). Both researchers and owners had the right to withdraw a subject at any time, for 205 

any reason, until the point of data analysis. Prior to commencement, the current study 206 

was authorised by the Hartpury College Ethics Committee (ETHICS2017-02).  207 

 208 

 209 

 210 

 211 



2.5 Statistical Analysis 212 

Statistical analysis was carried out using R (RStudio Team, 2015). Variable normality and 213 

the sampling distribution of paired variables was tested for normality using Shapiro-Wilks 214 

(Field, 2009). Differences in Crossing Time, Temperature Change, between Treatment 215 

and Control were investigated using a Paired T-Test as the sampling distribution was 216 

normal. The difference in Post Test Discrepancy was analysed using a Wilcoxon test as 217 

the assumption of normal sampling distribution was not met (Field, 2013). Proactivity and 218 

Grimace Scores yielded only 8 samples as most subjects did not have matched data 219 

points. Therefore, an independent T-test was used to test for differences in unpaired 220 

Grimace Scales and a Mann-Whitney U-Test used to test Proactivity, as appropriate for 221 

variable normality. To avoid violating the assumptions of independence for this test, one 222 

data point was excluded for subjects that provided matched data points. The excluded 223 

data point was randomly allocated for each subject. Standard deviations are stated for 224 

normally distributed variables and Interquartile Ranges (IQR) for non-normal variables. 225 

 226 

3. RESULTS 227 

Crossing Time did not differ significantly between Control and Dually treatments (Paired 228 

T-Test: t19 = 0.083, P = 0.935).  Mean Crossing Time was 68.68 seconds (IQR = 7 – 229 

139.5) for Control versus 70.84 seconds (IQR = 9 – 137.5) for Dually Treatment. 230 

Proactivity did not differ significantly between Control and Dually treatments (Mann 231 

Whitney U-Test: U = 42, N1 = 9, N2 = 10, P = 0.538). Mean Proactivity was 15.99% 232 

(±12.744) for Control and 15.65% (IQR = 3.3 – 24) for Dually treatment. Grimace Scales 233 

were significantly different between Control and Dually treatments (Independent T-Test: 234 



t8,9 = 2.486, P = 0.034; Figure 3). Mean Grimace Scores were 31.5% (±7.584) for Control 235 

versus 49.76% (±19.34) for Dually treatment.  236 

 237 

Figure 3. Differences in HGS between Dually and Control during handling tests (t8,9 = 238 

2.486, P = 0.034). 239 

 240 

Change in Temperature did not differ significantly between Control and Dually treatments 241 

(Paired T-Test: t13 = 0.083, P = 0.186). Mean Change in Temperature was -0.443⁰ C 242 

(±1.053) for Control and -0.196⁰ C (±0.814) for Dually treatment. Post-test Discrepancy 243 

in Eye Temperature did not differ significantly between Control and Dually treatments 244 

(Wilcoxon: V = 46, N = 13, P = 0.972). Mean discrepancy in eye temperature was 0.1⁰ C 245 

(±0.535) for Control versus 0.008⁰ C (±0.895) for Dually treatment. 246 



4. DISCUSSION 247 

The purpose of the current study was to determine whether the Dually headcollar was 248 

more effective at inducing compliance in novel handling tests than a standard headcollar. 249 

In addition, the impact of the Dually on stress and pain responses was also investigated. 250 

Twenty horses were recruited to complete two novel handling tests, once with a Dually 251 

headcollar on the pressure setting and once on the standard configuration. Crossing time, 252 

proactive behaviour, Horse Grimace Scales and IRT recordings were taken to measure 253 

compliance, discomfort and stress. Results indicate limited effects of the Dually on 254 

behaviour and physiology in previously naïve horses. 255 

Crossing Time was measured as an indicator of compliance but there was no significant 256 

difference between the Control and Dually headcollar. In fact, the mean crossing time for 257 

Dually was slightly higher than that of the control. In addition, dangerous proactive 258 

behaviour such as rearing, backing-up or rushing out the side of the obstacle did not differ 259 

between the two headcollar configurations. Taken together, this indicates that the Dually 260 

does not significantly affect ease of controlling horses undertaking novel handling 261 

scenarios. However, it is important to note that the subjects of this experiment were naïve 262 

to the Dually and had not been trained in how to reduce the pressure this aid applies. The 263 

Dually applied pressure around the lower face, an area of the body not typically utilised 264 

to illicit forward steps. Horses are typically poor generalised learners (Christensen et al., 265 

2011). Consequently, subjects may not have known the targeted response to pressure 266 

from a Dually. Critically, the Dually is used in demonstrations on naïve horses for a range 267 

of reasons including trailer loading sessions, without prior training. In addition, they are 268 

marketed as acting on instinctive responses (Intelligenthorsemanship.co.uk, 2018), which 269 



would negate the need to train the correct response. This raises concerns as non-270 

contingent punishment and unremitting pressures may result in learned helplessness and 271 

neurosis (McGreevy and McLean, 2009).  272 

It could be argued by proponents of natural horsemanship that the Dually was ineffective 273 

in the current study because “Join-Up” had not been completed prior to the training 274 

session (Roberts, 1997). However, the ethological relevance and efficacy of this 275 

technique has been called into question (Henshall et al., 2012; Henshall and McGreevy, 276 

2014). Further, the control group did not have a Join-Up session before testing and so 277 

the two treatments were consistent. Future work should take repeated measures of 278 

compliance throughout a training programme using the Dually headcollar. This would 279 

identify whether correct training results in improved compliance when wearing the 280 

headcollar. However, it is worth noting that horses may habituate to any increased 281 

pressures applied by the Dually, rendering them insensitive to standard headcollars. If 282 

this were the case, this may instigate a cycle of dependency upon progressively more 283 

severe devices in order to maintain control which contravenes the ethical obligation to 284 

train horses to respond to minimal pressures (McLean and McGreevy, 2010a).  285 

Concerns about potentially increased pressures from the Dually are compounded by 286 

significant differences in scores for the Horse Grimace Scale (Dalla Costa et al., 2014). 287 

When pressure was applied to the lead-rope, mean grimace scores were 31.5% for 288 

control crossings but 49.76% during Dually use. It is widely recognised that horse training 289 

predominantly uses aversive sensations to motivate desired responses (McGreevy and 290 

McLean, 2009). From this perspective it is not surprising that both standard configurations 291 

and pressure headcollars likely apply potentially aversive pressures. However, the Dually 292 



configuration results in grimace scores analogous to those taken post-castration in horses 293 

(Dalla Costa et al., 2014). This contravenes the products claims that it applies “pressure 294 

to the bridge of the animal's nose without causing significant pain and discomfort” 295 

(Roberts, 1999).  296 

If the Dually resulted in quicker crossing times or safer behavioural responses, any 297 

increased discomfort might be justified. In fact, this was not the case. Additionally, there 298 

is recent concern as to the proportionality and controllability of forces applied during 299 

training (McLean and McGreevy, 2010a), particularly in the use of tack upon the horse’s 300 

sensitive facial structures (McGreevy et al., 2012). In contrast to certain bridles (Casey et 301 

al., 2013), pressures that can be applied by a Dually have not been quantified. Certainly, 302 

when taut, the Dually constricts beyond the two-finger rule advocated for the noseband 303 

of bridles (Doherty et al., 2017). It is worth noting that the Dually is not consistently taut, 304 

unlike nosebands. If correctly timed pressure and release are used, the horse can remove 305 

the pressure by taking a step forward. None-the-less, this aid is likely to be used to 306 

motivate horses to step towards something they find aversive, such as a trailer.  As such, 307 

wearing a Dually may result in relatively prolonged exposure to facial pressure. This is 308 

particularly the case if the handler does not train the horse in the correct response to 309 

pressure prior to any challenging handling scenario. It is therefore important to determine 310 

the pressures applied by this device and the underlying structures that may affected.   311 

Higher grimace scores when Dually pressure is applied might be expected to cause 312 

changes in eye temperature. Recently, it has been observed that the application of 313 

nosebands in various degrees of tightness results in changes to eye temperature over 314 

time (McGreevy et al., 2012). In the current study, mean eye temperature dropped after 315 



both control and Dually conditions, though there was no significant difference between 316 

the two conditions. This is in support of the study by McGreevy et al (2012), which noted 317 

a drop of 1.18⁰ C as a result of a tightly fitted crank noseband. Cattle disbudded without 318 

local anaesthetic show a temperature drop of 0.25⁰ C 2-5 minutes after the procedure 319 

(Stewart et al., 2008a). Dogs recovering from castration show a 1.22⁰ C mean drop in 320 

temperature 15 minutes post-extubation (Lush and Ijichi, 2018). Taken together, these 321 

studies consistently reveal a drop in temperature in response to pain or discomfort. Dually 322 

headcollar configuration resulted in a drop that was similar to that seen as a result of 323 

disbudding without anaesthetic (Stewart et al., 2008b) but less than that of the standard 324 

headcollar configuration in the current study, or tightly fitted nosebands (McGreevy et al., 325 

2012). Further, there was no significant difference in eye discrepancy between the two 326 

conditions. Therefore, whilst grimace scores were significantly higher during Dually 327 

application than control, this does not appear to cause a magnified stress response. 328 

However, environmental conditions may affect IRT readings (Church et al., 2014) and the 329 

images in this study were taken outside. In order to fully ascertain the impact of a Dually 330 

headcollar on stress, complimentary measurements such as heart rate variability (von 331 

Borell et al., 2007) and salivary cortisol (Hughes et al., 2010) should be included in future 332 

research. 333 

 334 

5. CONCLUSION 335 

The aim of the current study was to determine whether the use of the Dually headcollar 336 

results in improved compliance during handling challenges and, if so, whether this was 337 

achieved with a concomitant increase in stress due to the increased pressures applied. 338 



Contrary to predictions, the Dually did not result in more compliant behaviour, compared 339 

to the standard configuration of the same headcollar. However, subjects were naïve to 340 

the Dually and had not been trained in how to control the pressure applied by the 341 

headcollar. Therefore, further work is required to understand whether this device 342 

improves compliance in experienced horses. Despite not providing benefits in terms of 343 

control, the Dually configuration did result in a significantly higher Horse Grimace Scale 344 

score. This may indicate that there is a cost to animal welfare by using this device that is 345 

not justified by improved behaviour. It would be valuable to determine the pressure 346 

applied by the Dually in comparison to that applied by tight nosebands. However, IRT 347 

readings of core temperature and discrepancy between the eyes did not support the 348 

conclusion that the use of the Dually increased stress in subjects, when compared to the 349 

standard headcollar configuration. Further work utilising complimentary stress indicators 350 

are needed to more conclusively determine the impact of this device on stress.   351 
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