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Abstract 

An integrated particle model is developed to study fluid-structure interaction (FSI) problems with 

fracture in the structure induced by the free surface flow of the fluid. In this model, the Smoothed 

Particle Hydrodynamics (SPH) based on the kernel approximation and particle approximation is used 

to model the fluid domain in accordance with Navier-Stokes equations and the Discrete Element 

Method (DEM) with a parallel bond model is used to represent the real solid structure through a 

hexagonal packing of bonded particles. Validation tests have been carried out for the DEM model of 

the structure with deformation and fracture failure, the SPH model of the fluid and the coupled SPH-

DEM model of FSI without fracture, all showing very good agreement with analytical solutions 

and/or published experimental and numerical results. The simulation results of FSI with fracture 

indicate that the SPH-DEM model developed is capable of capturing the entire FSI process from 

structural deformation to structural failure and eventually to post-failure deformable body movement. 

Keywords: Discrete Element Method, Smoothed Particle Hydrodynamics, Fluid-Structure 

Interaction, Free Surface Flow, Fracture 

Nomenclature ܨ the contact force ܭ the stiffness of a particle  ܷ the contact displacement ܸ the contact velocity Ɋ the friction coefficient ߚ the critical damping ratio ߚҧ the moment-contribution factor ݉ the particle mass  ߩ the density of a particle ݃ the body force acceleration ݔ the position vector of a particle 
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 the viscosity term in the SPH governing equations  ܴ the anti-clump term in the SPH governing equations ߎ the ratio of distance to smoothing length ܲ the pressure of SPH particles ܿ the speed of sound ݍ the distance between two particles ݇ the constant related to particle search radius ݎ the cross-sectional area of a parallel bond ܹ the kernel function ݄ the smoothing length for a kernel function ܰ the number of particles within the support domain of a kernel function ܣ Young’s modulus of the particles തܴ the radius of a parallel bond ܧ Poisson’s ratio of the material ߥ the element thickness ߜ the principle moment of inertia of a particle ܫ the resultant moment acting on a particle ܯ

Superscripts and subscripts ݊ the normal component of a vector ݏ the shear component of a vector ܣ particle A in a particle pair ܤ particle B in a particle pair ݅ particle i in a particle pair ݆ particle j in a particle pair ݀ the dashpot in the DEM model Ͳ the reference value of a physical variable 

b the bending moment 

t The twisting moment 

1. Introduction 

Fluid-structure interaction (FSI) is a phenomenon in which a flexible structure suffers pressure from 

the surrounding fluid flow to give rise to deformation, and conversely, the fluid pressure field and 

flow is affected by the moveable or deformable structure. As a result, the whole interactive process is 

repeated continuously until the deformation of solid structure remains unchanged. 

FSI is a common engineering problem, for instance, the blade of wind turbine is bent in the flapwise 

direction due to aerodynamic loading [1], the presence and flow of a red blood cell in capillary or 



AC
CE
PT
ED
 M
AN
US
CR
IP
T

3 

 

arteriole has a significant effect in understanding its microcirculation and regulation [2], the flow 

pattern of blood in the heart affects the performance of a heart valve [3], in the event of 

flooding/landslide-building interaction the flood/rock flow potentially gives rise to the collapse of 

buildings [4], injected CO2 interacts with reservoir and caprock underground and the interaction can 

result in unforeseen leakages [5], and vibration-induced buckling is observed in the carbon nano-tubes 

(CNTs) when delivering fluid flow [6], among many others. This study is concerned with the FSI 

process involving free surface flow and structural failure, thus a brief review of existing FSI models 

and their capability or penitential to model such process is discussed first. 

1.1 Current numerical modelling approaches for fluid-structure interaction 

FSI problems usually involve flow nonlinearity and multiphysics which are too complex to be solved 

by analytical methods, and a small number of numerical models have been developed in recent years. 

Although there are various numerical methods being developed and applied to simulate the separate 

behaviour of fluid and structure, combined methods for FSI are still limited. The challenge of 

coupling two methods for FSI largely depends on the nature of their discretisation. Conventional 

mesh-based methods such as the finite difference method (FDM), the finite element method (FEM) 

and the finite volume method (FVM) discretise the domain into individual meshes. The reliance on 

mesh makes the treatment of discontinuities (e.g., wave breaking, cracking and contact/separation) 

difficult because the path of discontinuities may not coincide with the mesh lines. Remeshing 

techniques can ensure the discontinuities evolve along the mesh lines but at the expense of reduced 

computational efficiency and degradation of numerical accuracy. In comparison to conventional 

mesh-based methods, meshfree (or meshless) methods are intended to approximate mathematic 

equations in the domain only by nodes without being connected by meshes. If the nodes are particles 

that carry physical properties (e.g., mass) and the system is simulated by the evolution of the particles’ 

trajectory and the particles’ properties, then this type of method is usually called a particle method. 

Typical particle methods are molecular dynamics (MD), Discrete Element Method (DEM), Smoothed 

Particle Hydrodynamics (SPH), Immersed Particle Method (IBM) and Lattice Boltzmann Method 

(LBM). It should be noted that in LBM the particles are only allowed to move along the predefined 

lattices, so it is in some ways a mesh-based particle method. In the meshfree particle methods of MD, 

SPH and DEM, a contact detection algorithm as well as an interaction law is required to define the 

particle interaction. The contact detection algorithm is used to determine whether two particles are 

interactive, and once they interact, then the interaction law must be used to calculate the interaction 

forces. In previous research, LBM and SPH are mainly used for simulating fluid flow [7, 8] whilst 

DEM is mainly used for simulating granular flow [9] and solid fracture [10]. Coupled models like 

SPH-SPH [11], SPH-DEM [12], IBM [13, 14] and LBM-DEM [15] have been developed for fluid-

structure or fluid-particle interactions.  
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As FSI involves two phases, i.e., fluid and solid, the numerical methods for each can be the same or 

different. As the interface between the fluid and solid structure is evolving in space and time, the 

numerical models of FSI can be classified as Eulerian-Eulerian, Eulerian-Lagrangian and 

Lagrangian-Lagrangian. In general, an Eulerian method discretises the space into a mesh and defines 

the unknown values at the fix points, while a Lagrangian method tracks the pathway of each moving 

mass point. Communications between the mathematical frameworks for fluid and structure are 

realised through a fluid-structure interface. 

The Eulerian-Eulerian models tend to use an Eulerian FDM to treat both fluid and structure 

boundaries on fixed meshes to avoid mesh reconstruction. This is able to handle large deformation 

and free movement of the structure in the fluid as well as the contact between structures. However, 

this comes at the price of high computational costs and additional discretisation errors since the 

interface is only tracked implicitly by the solution itself. Special techniques have to be used to link the 

material points between the reference framework and the current framework [16, 17]. 

The Eulerian-Lagrangian models solve the Eulerian form of the Navier-Stokes equations for fluid on 

a fixed grid using a finite volume method, e.g., computational fluid dynamics (CFD), and track the 

moving body (structure) in a Lagrangian fashion. A typical example is the CFD-FEM model [18-21]. 

An alternative, the Arbitrary Lagrangian-Eulerian method (ALE), was developed to allow arbitrary 

motion of grid/mesh points with respect to their frame of reference by taking the convection of these 

points into account. However, for large translations and rotations of the solid or inhomogeneous 

movements of the mesh points the fluid elements tend to become ill-shaped, which reflects on the 

accuracy of the solution. Remeshing, in which the whole domain or part of the domain is spatially 

rediscretised, is then a common strategy. The process of generating mesh multiple times during a 

computation can, however, be a very troublesome and time consuming task. In particular the contact 

of the elastic structure with the boundary is not possible within a monolithic formulation using simple 

ALE coordinates without remeshing techniques [22]. 

Even though some remedies have been used to minimise those limitations [23, 24], the features such 

as large deformation, free surfaces and deformable boundaries are still great challenges in coupled 

CFD-FEM models and conventional Eulerian-Eulerian methods and Euler-Lagrangian methods can 

only solve FSI problems where the structure is immersed in the fluid field and deforms without any 

fracture. On the other hand in the meshfree methods, the identification of free surfaces, moving 

interfaces and deformable boundaries can be handled straightforwardly [25]. Due to those evident 

advantages in meshfree methods, some research efforts have been focused on coupling meshfree 

methods with CFD [12] or FEM [26, 27], and even developing coupled meshfree models such as 

SPH-SPH [11], SPH-DEM [12, 28, 29]  and LBM-DEM [26].  
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The presence of free surface flow in the concerned FSI problems makes SPH preferred to remain in 

the coupled model to be developed. Among the above models the coupled SPH-FEM model [30], the 

coupled SPH-SPH model [11, 31] and the coupled SPH-DEM [12, 28, 29] are Lagrangian-

Lagrangian schemes. These models are capable of simulating the free-surface flow and dynamic 

boundary problems involved in FSI problems, but the kernel functions used in SPH for solid structure 

lack a physical representation of fracture, not to mention further complications such as the permeation 

of fluid in the porous or fractured zones of solid structure and the large deformation in FEM is still 

under numerical challenges. In the coupled SPH-DEM models developed in [12, 28] the structures are 

treated as rigid bodies thus the interaction between structure and fluid is not fully studied and the 

deformation and fracture of structure has not been achieved. Even if the structures in FSI problems 

with free surface flow is represented by SPH or FEM, to the authors’ best knowledge, none of those 

models is capable of dealing with fracture or crack initiation in the structure part during the FSI 

process.  

The FEM as a traditional mesh-based method and its extended versions play an important role in 

dealing with solid fracture or structural failure problems [32, 33]. Phantom-Node method [34] was 

also incorporated into FEM through integration of overlapped elements in order to handle crack 

kinematics, but the crack-tip enrichment is still challenging and its flexibility is comprised when crack 

growth is the only focus. Therefore coupling FEM with SPH for modelling fluid induced structural 

failure during the FSI process would become even more challenging. 

Another method referred as continuous/discontinuous deformation analysis (CDDA) [35] was 

developed to account for fracture by employing a link element to connect two adjacent elements as a 

virtual crack extension. Alternatively, meshfree methods [36, 37] as a promising technique in recent 

years have been applied in modelling of fracture. The development of test and trial function with a 

sign function can model cracks with arbitrary movement [14]. Rabczuk [13] used immersed particle 

method treated in fluid and structure, in which a Kirchhoff–Love shell theory is adopted, to model FSI 

with crack propagation. A cubic/quartic polynomial basis [38] was used in meshfree particle methods, 

but without taking the gradient of a kernel function to model cracks the polynomial functions used for 

solid structure lack a physical representation of fracture unlike the traditional constitutive laws 

described in solid mechanics. Even though these methods are promising in dealing with fracture, it is 

difficult to extend them for modelling more complicated Fluid-Particle-Structure Interaction (FPSI) 

system where the particle-particle interaction, particle-structure interaction and particle-fluid 

interaction has to be considered. 

As another type of meshfree methods, DEM, has recently been successfully applied to model the 

fracture of solids such as ceramics [10], concrete [39] and even composite materials [40]. The 

particles in DEM are bonded together and the crack initiation and propagation is treated as the 
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progressive breakings of bonds. The crack pattern is automatically determined without any need of re-

meshing and can be dynamically visualized during the simulation process. DEM model does not 

require the formulation of complex constitutive laws that are essential in FEM model, while it 

requires calibration with measured macro-scale results to determine the micro-scale particle and 

contact parameters that will predict the macro-scale response. Therefore, DEM is practical for 

studying general features of the statics and dynamics of fracturing, like the crack shape, global 

structural failure due to the collective behaviour of many interacting cracks as well as the dynamic 

instability of cracks during their propagation. 

1.2 Motivation and objectives 

This paper aims to present a new approach based on fully meshfree particle methods of SPH and 

DEM to handle the FSI problems with free surface flow and/or structural failure. One of the 

objectives of this research is to develop an advanced FSI model for investigating the failure 

mechanism of infrastructures (e.g. bridges and buildings) during the flooding events. For example, it 

is becoming more public concerned that the recent failure of transport bridges (particularly those 

historic and listed masonry bridges that are still widely in service in the UK) due to flooding have 

caused enormous impact on local transportation and it is timely and financially costly to get them 

repaired/rebuilt. Proactive reinforcing or strengthening techniques are thus preferred in order to make 

the bridges more resistant to the scouring and buoyance effects caused by the flood. To address this 

problem, interdisciplinary knowledge of geotechnical, hydraulic and structural engineering are 

required, and it also raises a demand on a robust and reliable computer model to predict the 

interaction between soil, flood and bridge. Thus a numerical model for fluid-particle-structure (FPSI) 

interaction would be extremely helpful for assessing the risk of bridge collapse and also assisting the 

development of dedicated strengthening technique to prevent the failure of the bridge at risk. 

The SPH-DEM model presented in this paper is the first step of developing a unified particle model 

for general FPSI problems in engineering with a principal application in flooding caused bridge 

failure. The coupled SPH-DEM model will be able to capture either the deformation or the fracture 

events in the solid structure induced by the free surface flow of the fluid. In this approach, the SPH 

based on the Navier-Stokes equations is used to model the fluid domain. The DEM is used to 

represent the solid structure through a dense packing of bonded particles which allows deformation 

and/or fracture. Similar approaches have already been adopted for modelling ceramics [10] and 

concrete [41]. As the interaction between discrete particles can be naturally taken into account by 

DEM, the coupled SPH-DEM presented in this paper for FSI has the potential of being easily 

extended to model the interaction between fluid, particles and structure simultaneously, and applied to 

address the FPSI problems in engineering as such discussed above. As both fluid and structure 

components are represented in the same framework, the coupling between SPH and DEM can be 
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easily achieved, and more importantly they can be computationally accelerated for large scale 

simulations by using GPU technique which has been already successful for individual SPH and DEM 

models. In addition the DEM can deal with discrete particles through contacts as well as continuous 

structures through bonded particles, thus the coupled SPH-DEM model is applicable to FSI problems 

and also Fluid-Particle-Structure Interaction (FPSI) problems. The coupled model is first applied in 

the FSI problems before being extended to the FPSI problems. 

This paper is organized as follows: First, individual DEM and SPH models are developed and 

validated against theoretical and existing numerical/experimental results; An interface model is then 

proposed to couple the DEM and SPH models, which is then validated against a standard FSI test; 

Finally, the coupled SPH-DEM model is applied to investigate a more complex FSI problem in which 

the fracture failure in the structure is allowed due to increasing fluid pressure.  

2. DEM model of a structure 

The discrete or distinct element method (DEM) was initially proposed by Cundall for studying the 

discontinuous mechanical behaviour of rock by assemblies of discs and spheres [42]. Upon the 

development of DEM in recent decades, its applications have been extended in various engineering 

research fields such as granular flow [39, 40] and fracture of materials and structures including rock 

[35], ceramics [10], concrete [41] and composites [36], etc. DEM is a Lagrangian method in which 

the target material is represented by particles that can interact with their neighbours. Every single 

particle is tracked in DEM throughout the entire time history of simulation, thus the field variables of 

a particle are updated in every timestep according to the interaction with neighbour particles that are 

in ‘direct’ or ‘indirect’ contact. The contact between two particles in DEM is typically represented by 

a spring and a dashpot in both normal and tangential directions, as well as a frictional element as 

shown in Fig.1. By direct contact, the two particles physically touch or overlap with each other. Two 

particles could be considered as in indirect (or distance) contact when their distance is within certain 

range [43]. The indirect contact can enable long-range interaction between particles in a way similar 

to the Van der Waals forces between molecules according to a potential function in Molecular 

Dynamics (MD). This indirect contact feature will be adopted to account for the interaction between 

particles within the smoothing length in Smoothed Particle Hydrodynamics (SPH) for the fluid part 

that will be discussed later. In this section, the structural part will be modelled by DEM using particles 

in direct contact. It should also be noted that particles in DEM can be rigid or deformable and can 

have a complex shape, e.g., elliptical. In this paper, 2D rigid particles with a circular shape are 

considered, and the Particle Flow Code in two dimensions (PFC2D 5.0) is employed as the simulation 

platform [44].  



AC
CE
PT
ED
 M
AN
US
CR
IP
T

8 

 

 

Fig.1 2D representation of contact between two particles in DEM  

In a DEM the relative displacement (see Fig.2) between two contacting particles is fed into a force-

displacement law to update the contact forces. The calculated contact forces are then applied in the 

law of motion, Newton’s Second Law, to determine the particle’s acceleration which is then used to 

update the particle velocity as well as the particle position. These two laws are applied repeatedly to 

form the whole calculation cycle of DEM. Therefore, DEM is particularly suitable for simulating the 

dynamic behaviour of discontinuous system, in which the movement of every particle is recorded and 

analysed over each time step.  

 

 

 

 

 

 

Fig.2 Two particles in direct contact  

2.1 Force-displacement law 

The force-displacement law for a contact between two particles without the presence of a bond is 

usually based on contact mechanics theory such as Hertz linear contact theory [45]. When a bond is 

assigned to the contact, the overall force-displacement of the bonded particles is a combination of 

particle and bond properties. As fracture of bonds, which could induce pure particle-particle contact 

on the cracked surfaces, will be allowed in some of the simulations presented in this paper, the force-

displacement law for pure particle-particle contact is briefly described first, followed by the 

constitutive law of the bond. More details are available in the literature [43, 46]. 

At the contact between two unbonded particles, the contact force vector is further resolved into 

normal and shear components with respect to the contact plane (see Fig. 2) as follows: 

ܨ  ൌ ௡ܨ ൅  ௦ (1)ܨ

where ܨ௡  and ܨ௦  denote the normal and shear components, respectively. 
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The magnitude of the normal force is the product of the normal stiffness at the contact and the overlap 

between the two particles, i.e., 

௡ܨ  ൌ  ௡ܷ௡ (2)ܭ 

where ܭ௡ is the normal stiffness and ܷ௡ is the overlap. 

The shear force is calculated in an incremental fashion. Initially the total shear force is set to zero 

upon the formation of contact and then in each timestep the relative incremental shear-displacement is 

added to the previous value in last timestep: 

௦ܨ  ൌ ௦ܨ  ൅  ௦ (3)ܨ߂

௦ܨ߂  ൌ  െܭ௦ܷ߂௦ (4) 

௦ܷ߂  ൌ  ܸ௦(5) ݐ߂ 

where  ܭ௦ is the shear stiffness at the contact, ܷ߂௦ is the shear component of the contact displacement, ܸ௦ is the shear component of the contact velocity and ݐ߂ is the timestep. 

In addition, the maximum allowable shear contact force is limited by the slip condition: 

௠௔௫௦ܨ  ൌ Ɋȁܨ௡ȁ (6) 

where Ɋ is the friction coefficient at the contact. 

In cases where a steady-state solution is required in a reasonable number of cycles, the dashpot force 

acting as viscous damping is grouped into the force-displacement law to account for the compensation 

of insufficient frictional sliding or no frictional sliding. In line with spring forces, the dashpot force is 

also resolved into normal and shear components at the contact: 

௡ௗܨ  ൌ  ௡ (7)ߜ௡ܭ௡ඥ݉ߚʹ

௦ௗܨ  ൌ  ௦ (8)ߜ௦ܭ௦ඥ݉ߚʹ

 ݉ ൌ ݉஺݉஻݉஺ ൅ ݉஻ (9) 

where d in superscript denotes dashpot, A and B in subscript denote the two particles in the contact 

pair, ߚ is the critical damping ratio and ߜ is the relative velocity difference between two particles in 

contact. 

When a bond is created between two particles, the normal and shear components of the bond force are 

included in the force-displacement law. It is noted that normal bond force is first examined to see if 

the tensile-strength limit is exceeded. If a bond is still present in the tension state, the shear-strength 

limit is enforced for second iteration. When the bond is broken the bond force is diminished in the 

force-displacement law. Details of the fracture of bonds in DEM will be discussed in Section 2.3. 

2.2 Law of motion 
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The motion of each particle in each timestep is governed by Newton’s Second Law in terms of 

translational and rotational motions as follow 

Translational motion: ܨ௜ ൌ ݉ሺݔపሷ െ ݃௜ሻ (10) 

Rotational motion: ܯ௜ ൌ ܫ ప߱ሶ  (11) 

where  ݅ in subscript is the indicial notation with respect to coordinate system, ܨ௜ is the resultant force, ݉ is the total mass of particle, ݃௜ is the body force acceleration vector, ݔపሷ  is the acceleration vector of 

a particle, ܯ௜ is the resultant moment acting on a particle, ܫ is the principal moment of inertia of the 

particle, and ప߱ሶ  is the angular acceleration about the principal axes. 

The leap-frog method is used to update the position of the particle. First the relationship between the 

acceleration and velocity is defined by 

పሷݔ  ሺ௧ሻ ൌ ͳݐ߂ ሺݔపሶ ቀ௧ା௱௧ଶ ቁ െ పሶݔ ቀ௧ି௱௧ଶ ቁሻ (12) 

 ప߱ሶ ሺ௧ሻ ൌ ͳݐ߂ ሺ߱௜ቀ௧ା௱௧ଶ ቁ െ ߱௜ቀ௧ି௱௧ଶ ቁሻ (13) 

Then Eqs. (12) and (13) are substituted into Eqs. (10) and (11) respectively and the velocity at time ሺݐ ൅ ௱௧ଶ ሻ is resolved as: 

పሶݔ  ቀ௧ା௱௧ଶ ቁ ൌ పሶݔ ቀ௧ି௱௧ଶ ቁሻ ൅ ሺܨ௜ሺ௧ሻ݉ ൅ ݃௜ሻ(14) ݐ߂ 

 ߱௜ቀ௧ା௱௧ଶ ቁ ൌ ߱௜ቀ௧ି௱௧ଶ ቁ ൅ ሺܯ௜ሺ௧ሻܫ ሻ(15) ݐ߂ 

Finally the position of the particle is updated accordingly: 

௜ሺ௧ା௱௧ሻݔ  ൌ ௜ሺ௧ሻݔ ൅ పሶݔ ቀ௧ା௱௧ଶ ቁ(16) ݐ߂ 

   

2.3 Contact models in DEM  

Particles in DEM can be bonded together at contacts and separated when the bond strength or energy 

is exceeded. Therefore it can simulate the motion of individual particles and also the behaviour of a 

structure which is formed by assembling many particles through bonds at contacts.  

The advantage of DEM is that the two bonded particles can be separated and thus form a crack at the 

contact point once the fracture criterion of the bond is satisfied. In a DEM model, elementary micro 

scale particles are assembled to form the structure with macroscopic continuum behaviour determined 

only by the dynamic interaction of all particles. Unlike the conventional FEM that is based on the 

traditional continuum mechanics and provides stress and displacement solutions by solving a global 

stiffness matrix equation, DEM is discontinuous and the information of each particle element and 

contact is recorded individually and updated dynamically. Thus, DEM is convenient to deal with local 
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behaviour of a material by defining local models or parameters for the specified particles and contacts. 

Subject to external loading, when the strength or the fracture energy of a bond between particles is 

exceeded, flow and disaggregation of the particle assembly occur and the bond starts breaking. 

Particles can be packed in a regular (e.g. hexagonal or cubic in 2D) or random form. When they are 

packed in a hexagonal form in plane stress condition, as shown in Fig.3, the relationship between the 

elasticity of the constructed structure and the stiffness of the contacts can be derived as [47]: 

௡ܭ ൌ ξ͵ሺͳߜܧ െ  ሻ (17)ߥ

௦ܭ ൌ ሺͳߜܧ െ ሻξ͵ሺͳߥ͵ െ  ଶሻߥ
(18) 

where ܭ௡  and ܭ௦  are the contact stiffness in normal and shear directions respectively,  E is the 

Young’s modulus, į is the element thickness and Ȟ is the Poisson’s ratio. 

As illustrated in Eq. (18), there is a constraint of (1-3Ȟ) term on the right-hand side of equation in 

which the value of Poisson’s ratio needs to be smaller than or equal to 0.33 so as to guarantee a 

positive value of ܭ௦. 

 

Fig. 3 Hexagonal packing of discrete particles with parallel bonds 

A bond in DEM can be regarded as a glue to stick two particles together, and linear parallel bond is 

special bond (see rectangular box indicated in Fig.3) that can be decomposed into linear model and 

parallel bond model which are acting in parallel. The bond is broken when the strength limit of bond 

is exceeded [40, 43] and after that only the linear model is active. Upon the use of a linear parallel 

bond model, the contact stiffness ܭ௜ is the result of combination of both particles’ stiffnsess and bond 

stiffness according to the following formulation [43]: 

௜ܭ  ൌ పഥ݇ܣ ൅ ݇௜ (19) 

ܣ  ൌ ʹ തܴ(20) ߜ 

 ݇௜ ൌ ݇௜ሾ஺ሿ݇௜ሾ஻ሿ݇௜ሾ஺ሿ ൅ ݇௜ሾ஻ሿ (21) 

Where തܴ and ܣ are the radius and cross-sectional area of the bond, respectively, ݇పഥ  is the parallel bond 

stiffness and ݇௜ is the equivalent stiffness of two contacting particles. In this study the radius of the 
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bond is the same as the particle radius. If two particles have the same normal and shear stiffness,  ݇௜ is 

simplified as: 

 ݇௜ ൌ ݇௜ሾ஺ሿʹ ൌ ݇௜ሾ஻ሿʹ  (22) 

It can be assumed that the parallel bond stiffness is much larger than the particles’ stiffness, thus the 

forces are predominantly passed through parallel bonds, i.e. ݇௜ ൌ ͲǤͲͳ݇ܣపഥ ,  

௜ܭ  ൎ పഥ݇ܣ  (23) 

Thus the parallel bond stiffness is determined by combining Eqs. (19) and (20) with Eq.(23). 

According to the nature of parallel bond model, bond strength is the only criterion to determine the 

fracture of a structure. When the structure is under pure tension, the bond strength can be derived in 

terms of ultimate tensile strength and Poisson’s ratio [41]: 

 ௡݂௖௥௜௧ ൌ തܴߪߜ௨௟௧ʹሺͳ െ ሻߥ ሺξ͵ െ  ξ͵ሻߥ
(24) 

 ௦݂௖௥௜௧ ൌ തܴߪߜ௨௟௧ʹሺͳ െ ሻߥ ሺͳ െ  ሻߥ͵
(25) 

௡௖௥௜௧ߪ  ൌ ௡݂௖௥௜௧ʹ തܴߜ  
(26) 

௦௖௥௜௧ߪ  ൌ ௧݂௖௥௜௧ʹ തܴߜ  
(27) 

where ௡݂௖௥௜௧ and ௦݂௖௥௜௧ are maximum normal and shear forces acting on the parallel bond, ߪ௡௖௥௜௧ and ߪ௦௖௥௜௧ are critical tensile and shear stresses. It should be noted that the above derivation is only valid 

for 2D simulations in plane stress condition. 

During the simulation, the parallel bond forces in normal and shear directions are updated at each 

timestep through the force-displacement law: 

௡݂ ൌ  ௡ (28)ߜ߂ത݇௡ܣ

௦݂ ൌ െܣത݇௦ߜ߂௦ (29) ߪ௡ ൌ ௡݂ܣ ൅ ҧߚ ௕ܯ തܴܫ ൌ ത݇௡ߜ߂௡ ൅ ൅ߚҧ ௕ܯ തܴܫ  
(30) 

௦ߪ ൌ ȁ ௦݂ȁܣ ൅ ቐ Ͳǡ ሺʹܦሻߚҧ ௧ܯ തܴܫ ǡ ሺ͵ܦሻ ൌ ത݇௦ߜ߂௦ ൅ ቐ Ͳǡ ሺʹܦሻߚҧ ௧ܯ തܴܫ ǡ ሺ͵ܦሻ 
(31) 

where ߜ߂௡  and ߜ߂௦  are the relative normal-displacement increment and the relative shear-

displacement increment respectively, ܯ௕ is the bending moment,  ܯ௧ is the twisting moment and ߚҧ is 

the moment-contribution factor. It should be noted that ߚҧ in Eqs. (30) and (31) is set to be zero in 

order to match those derived formulations in Eqs. (26) and (27). 
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Then the strength limit is enforced to examine if the gained stresses exceed the threshold value of 

critical stresses. If the tensile-strength limit is exceeded (i.e. ߪ௡ ൒  ௡௖௥௜௧), then the bond is broken inߪ

tension, otherwise, shear-strength limit is enforced subsequently and the bond is broken in shear if ߪ௦ ൒  ௦௖௥௜௧. Once two particles are in unbonded state, parallel bond model is not active any more, butߪ

the linear particle-particle contact model, which force-displacement law is described in Section 2.1, is 

then activated to account for the collision of particles. More details about parallel bond can be found 

in [43, 46].  

As seen from Eqs. (30) and (31), parallel bond is behaved linearly and the plastic deformation is not 

taken into consideration here. As for plastic or adhesive materials, several alternative models may be 

used by considering more complicated constitutive behaviour. One of them is the contact softening 

model [47] which is a bilinear elastic model and is similar to cohesive zone model (CZM) in 

continuum mechanics. In this study the structure is considered as elastic. 

2.3 DEM modelling of structural deformation and fracture  

To verify the capability of DEM in modelling the structure part in later FSI simulations, a tip-loaded 

cantilever beam test is studied in this section. Comparisons of deflections, stress distributions and 

final failure load are made to carefully evaluate the accuracy of the DEM approach in modelling 

structural deformation and fracture. 

The material properties of cantilever beam are shown in Table 1 and the configuration of the beam is 

shown in Fig.4. The left end of cantilever is clamped and the other side of cantilever is under an 

increasing upward force F to give rise to a deflection.  

Table.1 the list of material and particle properties 

Material properties Values 

Density, ߩ ሺkgȀmଷሻ ʹͺͲͲ  
Ultimate tensile strength, ߪ௨௟௧ ሺMPaሻ  ͵ͳͲ ൈ ͳͲ଺ 

Young’s modulus, E ሺNȀmଶሻ ͹Ͳ ൈ ͳͲଽ 

Poisson’s ratio, 0.33 ߥ 

Particle radius, R ሺmሻ 0.0005 

Bond radius, തܴ ሺmሻ 0.0005 

Cantilever length, ܮ ሺmሻ 0.201 

Cantilever height, ݄ ሺmሻ 0.006196 
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Fig.4 Configuration of cantilever under single point load in DEM 

The deformations of cantilever under three sets of upward forces, 50 N, 500 N and 5000 N, applied on 

the right bottom tip of cantilever are compared with analytical solutions [48] in Table 2. The 

deflection is measured when the model reaches an equilibrium state that the ratio of the unbalanced 

force (i.e. the sum of contact force, body force and applied force) to the sum of body force and 

applied force is extremely small, e.g. ͳ ൈ ͳͲି଻. The results from DEM model and analytical solution 

are almost fully matched with acceptable small errors which may be due to the fact the load is applied 

at the centre of the particle not the exact edge of the real beam.  

Table.2 Deflections for the tip-loaded cantilever beam test 

Load (N) deflection in DEM model (m) deflection in analytical solution (m) Error 

50 9.7533E-05 1.002417E-05 2.78% 

500 9.7533E-04 1.00247E-04 2.78% 

5000 9.7533E-03 1.002286E-03 2.76% 

 

In addition, the same test of cantilever beam at load 5000N is carried using FEM software ABAQUS 

in order to compare the stress distribution. The element size in FEM is the same as the particle radius 

in DEM. It can be seen from Fig.5 that the distribution of stress component ˰11 in FEM is nearly 

identical to the one in DEM. The maximum stresses in both methods are also very close with an error 

of 0.24%. This further confirms that the DEM model can accurately predict the structural deformation.  

 

(a) FEM model 

0.006196 m 

F 

0.201 m 
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(b) DEM model 

Fig.5 Distribution of stress ˰11 in cantilever beam at load 5000N  

To test the failure of the beam, the incremental loading approach used above is replaced by assigning 

a constant and very small upward velocity ݒ ൌ ͲǤͲʹ݉Ȁݏ to the particle at the right bottom end of the 

beam. This small loading velocity is chosen to ensure the structure under quasi-static loading 

condition till the final failure [43]. The simulation is stopped immediately once a bond breaking 

occurs. The obtained force at right bottom end of the beam is compared with analytical solution 

according to: 

௨௟௧ߪ  ൌ ܮܼܲ
 (32) 

 ܼ ൌ ܾ݄ଶ͸  (33) 

where Z is section modulus, b is the thickness of beam which is unit in 2D simulations. In this test, the 

cantilever beam is assumed to fail when maximum stress is equal to ultimate tensile strength. In Table. 

3 the maximum applied load obtained from the DEM model shows good agreement with the applied 

load computed from Eqs. (32) and (33). It should be note that the DEM prediction is slightly higher 

the theoretical one which is calculated under the assumption that the beam is still perfectly straight at 

failure. 

Table. 3 Maximum applied load for the tip-loaded cantilever beam test 

 Analytical DEM Error 

Maximum applied load P 

(N) 
9868.66 10322.1 4.595% 

 

3. SPH model of fluid 

Smoothed Particle Hydrodynamics (SPH) is also a Lagrangian particle method which was initially 

used in astrophysical simulations [49] and later extensively applied in fluid hydrodynamics [50, 51]. 
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The applications of SPH range from multi-phase flow [51], quasi-incompressible flows [52], heat 

transfer and mass flow [50] and so on. 

3.1 Interpolation of a function and interpolation of the derivative of a function 

The formulation of SPH is made up of two key steps, kernel approximation and particle 

approximation. In the first step, the typical integral forms of a function is given by the multiplication 

of an arbitrary function and a smoothing kernel function, and its derivative are described by simply 

substituting ݂ሺݔሻ with ߘ ή ݂ሺݔሻ and finally formatted as: 

 ݂ሺݔሻ ൌ න ݂ሺݔ ǡሻܹሺݔ െఆ ݔ ǡǡ ݄ሻ݀ݔ ǡ (34) 

ߘ  ή ݂ሺݔሻ ൌ න ݂ሺݔ ǡሻܹሺݔ െ௦ ݔ ǡǡ ݄ሻ ή ሬ݊Ԧ ݔ݀ ǡ െ න ݂ሺݔ ǡሻ ή ݔሺܹߘ െఆ ݔ ǡǡ ݄ሻ݀ݔ ǡ (35) 

In the second step, the integral representation of the function and its derivative is approximated by 

summing up the values of influential surrounding particles and this step is usually called particle 

approximation, as shown in Fig.6. Only the particles located in the support domain of kernel function 

with a radius of ݄݇ are taken to account in particle approximation. As a result, the final forms of 

Eqs.(34) and (35) are approximated as: 

 ݂ሺݔ௜ሻ ൌ ෍ ௝݉ߩ௝
ே

௝ୀଵ ݂൫ݔ௝൯ ௜ܹ௝ (36) 

ߘ  ή ݂ሺݔሻ ൌ ෍ ௝݉ߩ௝
ே

௝ୀଵ ݂൫ݔ௝൯ ή ௜ߘ ௜ܹ௝ (37) 

where ݅ and ݆  in subscript denote particle ݅ and ݆ , ܰ is the number of particles within the support 

domain of the kernel function, ݉ is the mass of the particle and ߩ is the density of the particle. 

 

Fig.6 Particle approximations for particle ݅ within the support domain ݄݇ of the kernel function ܹ. ݎ௜௝ 

is the distance between particle ݅ and ݆, ݏ is the surface of integration domain, ߗ is the circular 

integration domain, ݇ is the constant related to kernel function and ݄ is the smooth length of kernel 

function. 
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SPH is adaptive as the field variable approximation is performed at each timestep based on a current 

local set of arbitrarily distributed particles. Because of this adaptive nature, the formulation of SPH is 

not affected by the arbitrariness of particle distribution. Therefore, it is attractive in treating large 

deformations, tracking moving interfaces or free surfaces, and obtaining the time dependent field 

variables like density, velocity and energy.  

3.2 Kernel 

Up to now, various kernel functions have been developed and used in the SPH method [25], among 

which the most widely used are the cubic spline kernel function [53] and the Wendland kernel 

function [54]. 

Cubic spline -ܹሺݎǡ ݄ሻ ൌ ௛ܥ ቐሺʹ െ ሻଷݍ െ Ͷሺͳ െ ʹሻଷ ሺݍ െ   ሻଷ Ͳݍ
for Ͳ ൑ q ൑ ͳfor ͳ ൏ q ൑ ʹfor q ൐ ʹ  (38) 

where ݍ ൌ ȁݎȁȀ݄ . ȁݎȁ  is the distance between two particles, ݄  is the smoothing kernel length 

associated with a particle and the normalisation is ensured by setting up the constant ܥ௛  to be ͳͷȀሺͳͶ݄ߨଶሻ in two dimensions. 

Wendland ܹሺݎǡ ݄ሻ ൌ ௛ܥ ൜ሺʹ െ ሻସሺͳݍ ൅ ሻͲݍʹ  
for Ͳ ൑ q ൑ ʹfor q ൐ ʹ  (39) 

where ܥ௛ in two dimensions is normalised to be ͹Ȁሺ͸Ͷ݄ߨଶሻ 

Static tank tests are carried out using SPH with both kernel functions. According to the results shown 

in later section, the simulation using Wendland kernel show more orderly distribution of particle than 

cubic spline kernel, as a result, the Wendland kernel is chosen for all simulations in this study. 

3.3 SPH modelling of incompressible fluid flow 

With the application of SPH, Navier-Stokes equations in the form of partial differential equations 

(PDEs) were transformed into ordinary differential equations (ODEs) through kernel approximation 

and particle approximation. 

For continuity equation, the rate of change of density, in Navier-Stokes form is given by: 

 
ݐܦߩܦ ൌ െߘߩ ή  (40) ݒ

In SPH form, the continuity equation becomes: 

 
ݐܦ௜ߩܦ ൌ ෍ ௝݉ݒ௜௝ே

௝ୀଵ
߲ ௜ܹ௝߲ݔ௜ఉ  (41) 
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In addition, the density of particle can be directly calculated by summing up all the particles’ mass 

together since the integration of density over the entire problem domain is exactly the total mass of all 

the particles: 

௜ߩ  ൌ ෍ ௝݉ே
௝ୀଵ ௜ܹ௝ (42) 

However, the summation density approach is influenced by the boundaries where the domain of the 

kernel function is partly truncated, and the non-zero surface integral is directly the result of truncation. 

One of the accuracy improvements has been proposed to normalise Eq. (42) by summing up the 

kernel function over the surrounding particles [55]: 

௜ߩ  ൌ σ ௝݉ே௝ୀଵ ௜ܹ௝σ ሺ ௝݉ߩ௝ ሻே௝ୀଵ ௜ܹ௝ (43) 

In concern with the discontinuity at boundary or interface, the density integrated by 
஽ఘ೔஽௧  can assure the 

preservation of discontinuity all the time with much less computational cost. Therefore, continuity 

density approach is the default one to calculate particle density. 

Before solving the momentum equations, the inclusive pressure term should be calculated to account 

for the artificial compressibility assumed in the incompressible flow. In the SPH method, each particle 

is driven by a pressure gradient which is based on local particle density through an equation of state. 

However, there is no equation of state for incompressible flow in which the pressure is obtained 

through continuity and momentum equations. In order to calculate the pressure term in the momentum 

equations in incompressible flows, the concept of artificial compressibility was proposed to consider 

what is theoretically an incompressible fluid as weakly compressible fluid [52]. A feasible quasi-

incompressible Tait equation of state for incompressible flow is applied as follows: 

 ܲ ൌ ሺ൬ܤ ଴൰ఊߩߩ െ ͳሻ (44) 

where ߛ is a constant taken to be 7 in most circumstances, ߩ଴ is the reference density and B is the 

pressure constant. The subtraction of 1 on the right-hand side of Eq.(44) is to remove the boundary 

effect for free surface flow [25]. 

The value of pressure constant is important to keep the density fluctuation as small as possible. The 

density fluctuation can be defined as: 

 
ȁߩ െ ଴ߩ଴ȁߩ ൎ ଶܯ ؠ ௠௔௫ଶܿ௦ଶݒ  (45) 

where ܯ is the Mach number,  ݒ௠௔௫ is the maximum velocity and ܿ௦ is the speed of sound. 

The formulation of the speed of sound at reference density is: 
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 ܿ௦ଶ ൌ ଴ߩܤߛ  (46) 

If the speed of sound is assumed to be 10 times of the maximum velocity, the pressure constant can be 

worked out then: 

ܤ  ൌ ͳͲͲߩ଴ߛ  ௠௔௫ଶ (47)ݒ

 

In the same way as the transformation of continuity equation from Navier-Stokes form to SPH form, 

the moment equation in SPH form is described as: 

 
ݐ௜݀ݒ݀ ൌ ෍ ௝݉ሺ ௜ܲߩ௜ଶ ൅ ௝ܲߩ௝ଶ ൅ ߘ௜௝ሻߎ ௜ܹ௝௡

௝ୀଵ  (48) 

where  ߎ௜௝ is the viscosity term. 

There is a wide variety of derivation of the viscosity term [56], and the first one derived as an 

artificial viscosity is based on the consideration of strong shocks [57]: 

௜௝ߎ  ൌ ቐെܿߙɊത௜௝ ൅ ҧ௜௝ߩɊത௜௝ଶߚ  Ͳ  
௜௝ݒ ݂݅ ή ௜௝ݎ ൏ Ͳ݁ݏ݅ݓݎ݄݁ݐ݋  (49) 

where ߙ  and ߚ  denotes the artificial viscosity coefficient respectively, Ɋത௜௝ ൌ ͳȀʹ൫Ɋ௜ ൅ Ɋ௝൯ and ߩҧ௜௝ ൌ ͳȀʹሺߩ௜ ൅  ௝ሻ. As it has been a common practice to use an artificial viscosity in compressibleߩ

SPH formulations for better accuracy in the simulation of shock wave, this viscosity form will not be 

taken into consideration here. Instead, another viscosity form including physical viscosity of particle 

derived in [58] is adopted in this study:  

௜௝ߎ  ൌ ௝݉ ሺɊ௜ ൅ Ɋ௝ሻݎ௜௝ ή ߘ ௜ܹ௝ߩ௜ߩ௝ሺݎ௜௝ଶ ൅ ͲǤͲͳ݄ଶሻ  ௜௝ (50)ݒ

where ͲǤͲͳ݄ଶ in the denominator is meant to avoid singularity. 

Apparently Eq.(50) can approximate the viscosity term physically and it is also useful for dealing with 

multiphase problems where densities at interface are not identical. This will become more important 

when discrete particles are incorporated in the present SPH-DEM model in the future to enable the 

FPSI simulations. 

3.4 Completeness and tensile instability 

Even though SPH is an increasingly promising numerical method, several difficulties have been 

encountered in recent decades. The first difficulty is the completeness of SPH which is the ability of 

the approximation to reproduce specified functions and other ones are the rank deficiency and the 
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tensile instability that manifests itself as a bunching of nodes. This unphysical phenomenon, which is 

normally due to tensile instability, could reduce resolution and even cause numerical errors during the 

simulation. To extend applications of SPH into a wide range of fluid dynamics problems, a series of 

modifications and corrections have been introduced to improve the approximation accuracy.  

In terms of completeness, there are two approaches for approximating the continuity equation: one is 

density summation approach and the other one is continuity density approach. The density summation 

approach conserves the mass since the integration of density over the entire support domain is equal 

to the total mass of all the particles. However, this approach suffered edge effect, namely boundary 

particle deficiency where the support domain is not fully filled with particle at the edge of fluid 

domain, as a result, the density is smoothed out to cause some spurious results. Randles and Libersky 

[59] proposed the normalisation of  the summation density approach with the SPH summation of the 

smoothing function itself over the surrounding particles to improve the accuracy of approximation. In 

this study, the continuity density approach was applied instead of the density summation approach to 

introduce velocity difference into the discrete particle approximation as the usage of the relative 

velocities in anti-symmetrized form serves to reduce errors arising from the particle inconsistency 

problem [25].  

The rank-deficiency is defined as that the number of integration points is less enough so that the 

solution to the underlying equilibrium equation becomes non-unique. Even though some researchers 

[60, 61] proposed to eliminate the rank-deficiency by introducing additional integration points (e.g. 

stress points) at other locations than the SPH centroids, the increased computational effort associated 

with the additional integration points renders this approach less efficient, and a precise guideline as to 

how many additional stress points are needed is missing. In this study, several smooth lengths were 

tested to find out the optimal value of smooth length in order to keep the rank deficiency as minimum 

as possible. 

The original updated Lagrangian formulation of SPH, which is also termed Eulerian SPH, suffers 

from the so-called tensile instability, in which leads to the clumping of particles. In a Lagrangian 

formulation the kernel approximation is performed in the initial, undeformed reference coordinates of 

the material [14]. In the application of Lagrangian kernel, the tensile instability is absent, however, 

rank deficiency still exists. In this study, the instability can be removed by using an artificial stress 

which, in the case of fluids, is an artificial pressure. An anti-clump term was introduced to be added 

into the momentum equations to prevent particles from forming into small clumps due to unwanted 

attraction [62]:  

ݐ௜݀ݒ݀  ൌ ෍ ௝݉ሺ ௜ܲߩ௜ଶ ൅ ௝ܲߩ௝ଶ ൅ ௜௝ߎ ൅ ܴ௜௝ሻߘ ௜ܹ௝௡
௝ୀଵ  

(51) 
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 ܴ௜௝ ൌ ௠௔௫ଶܿ௦ଶݒ ቤ ௜ܲߩ௜ଶ ൅ ௝ܲߩ௝ଶቤ ሺ ௜ܹ௝ሺܹ௱௉ሻሻସ (52) 

where ݒ௠௔௫ ൌ ଵଵ଴ ܿ௦, and  ܲ߂ is the initial particle spacing. 

Another remedy also applied in this model is to correct the rate of the change of particle position in 

order to keep particles move orderly in the high speed flow: 

 
ݐ௜݀ݎ݀ ൌ ௜ݒ ൅ ߝ ෍ ௝݉ሺݒ௝ െ ҧ௜௝௝ߩ௜ሻݒ ௜ܹ௝ (53) 

where the second term on the right hand side of Eq.(53) is the correction factor, the value of ߝ is 

problem-dependent as large ߝ can slow down the particle velocity unphysically. 

3.5 No-slip boundary 

When a SPH particle is approaching a boundary (see Fig.7), its support domain overlaps with the 

problem domain, consequently its kernel function is truncated partially by the boundary and the 

surface integral is no longer zero. Theoretically only particles located inside the support domain are 

accounted for in the summation of the particle interaction, but there are no particles existing in the 

truncated area beyond the solid boundary. Different remedies have been proposed recently to rectify 

boundary truncation. The normalisation formulation of density approximation was derived to satisfy 

the normalisation condition and ensures the integral of kernel function over the support domain is 

unity [55]. In comparison with kernel re-normalisation, the application of virtual or ghost particles is 

widely used to replace the solid boundary and to produce a repulsive force in order to avoid wall 

penetration [52]. The interaction force between a boundary particle and an SPH particle could be in 

Lennard-Jones form [52], in which the SPH particles are repelled within a cut-off distance, but 

Lennard-Jones form is highly dependent on the problem being simulated. In order to have a simple, 

robust as well as reliable, interaction between boundary and SPH particles, in this study two-layers of 

fixed boundary particles are placed as solid boundaries, which are initialised with a reference density 

of SPH particles, but their density and other parameters such as position and velocity are all fixed and 

not evolved with the parameter variance of SPH particles. In order to produce sufficient repulsive 

forces, the distribution of boundary particles is denser than the distribution of SPH particles as shown 

in Fig.8. 

 

 

Support domain of 
kernel function 

SPH particle i 

Solid boundary 
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Fig.7 Truncation of particle support domain by a boundary 

        

Fig.8 Boundary particles and their interaction with SPH particles 

3.6 Smoothing length 

Smoothing length can vary in space and time, and this is useful in modelling of compressible flow to  

ensure the number of particle within kernel is more or less constant. The formulation of smoothing 

length is: 

 ݄௜ ൌ ௜ߩሺ݉௜ߪ ሻଵȀௗ ൌ  (54) ݌οߪ

where ߪ is the constant with a typical value of 1.3 and ݀ is the dimensionality of the simulation 

As the mass of particle in SPH is assumed to be constant, the smoothing length associated with 

particle volume should vary accordingly with density. However, the density fluctuation in 

incompressible flow is minor [63], thus using variable smoothing length with extra computational cost 

is not expected to produce significantly different results. Therefore, smoothing length is chosen to be 

constant with ͳǤʹͷο݌ in this study for easy numerical implementation and saving computational time. 

Note that it would be better to use variable smooth length to improve the numerical accuracy in the 

future, however, as a first step in developing this SPH-DEM model, constant smooth length is used 

for simplicity. 

3.7 Numerical implementation of SPH  

In this study, the SPH theory above is implemented in PFC2D v5.0 using C++. The indirect contact 

feature is adopted to enable the particle interaction in SPH. PFC2D 5.0 as a DEM software package 

which has many features that can be directly utilised for SPH simulations such as a particle search 

scheme and a time integration scheme.  A particle search scheme is based on a Linked-list algorithm 

to sub-divide the particles within different cells and particles are identified through a linked list. 

PFC2D 5.0 uses a leapfrog technique for numerical integration to update field variables at each 

particle. The workload for coding SPH and later SPH-DEM coupling is significantly reduced by 

making use of those two features. A detailed flow chart of implementing SPH and its coupling with 

DEM is shown later in this section. As the codes are written in C++, they are portable for other open 

source DEM codes for SPH-DEM simulations without much modification. 

Boundary 
particles 

SPH particle i 

Support domain of 
kernel function 

Boundary particles have 
interaction with SPH particle i 



AC
CE
PT
ED
 M
AN
US
CR
IP
T

23 

 

3.8 Sensitivity study and validation of the SPH model  

To show the success of implementing SPH into PFC code for modelling the fluid flow in later FSI 

simulations, the SPH model is carefully assessed through a series of numerical tests including a static 

tank test to see the performance and adaptability of different kernel functions and a dam break test to 

evaluate the effects of different smoothing length and particle resolution.  

3.8.1 SPH simulation of static tank test with different kernel functions 

A simple static stank test with an initial cubic packing of particles is set up in a ͵Ͳmm ൈ ͵Ͳmm tank, 

as shown in Fig.9. Two different kernel functions are investigated, i.e. cubic spline kernel and 

Wendland kernel.  Under only gravity the particle distribution was observed for a time period of 1.0 

second.  

Each SPH particle is initialised with a hydrostatic pressure in accordance with the particle’s position 

and its reference density. The density of each particle is then updated through equation of state in 

Eq.(44). The particle spacing ο݌ is 0.005m and the mass of particle in 2D simulation is described as: 

 
݉௜ ൌ  ሻଶ݌௜ሺοߩ

 
(55) 

where ݉௜ is the mass of fluid particle. 

The smoothing length is initially set as ݄ ൌ ͳǤͲ ൈ ο݌ for all cases and the maximum velocity of 

particle is assumed to be ݒ௠௔௫ ൌ ඥʹ݃ܦ, where ܦ is the depth of the fluid and ݃ is the gravitational 

acceleration, ͻǤͺͳ݉Ȁݏଶ. All the material and numerical properties are listed in Table. 4 

 

Fig.9 Initial configuration of the static tank test 

(SPH particles in black colour and boundary particles in white colour) 

Table.4 SPH parameters used for the static tank test 



AC
CE
PT
ED
 M
AN
US
CR
IP
T

24 

 

Parameters Values 

Boundary particle spacing (m) 0.0025 

SPH particle spacing (m) 0.005 

Particle number 1278 

Kernel function Cubic spline/Wendland 

Kernel smooth length (m) 0.005 

Fluid density (kg/m3) 1000 

Fluid viscosity ሺPa ή sሻ ͺǤͻ ൈ ͳͲିସ 

Time step (s) 0.000004 

Physical time (s) 1.0 

 

Fig.10 shows the particle distribution at 0.2s time interval for cubic spline kernel and Wendland 

kernel, respectively. It can be seen that the particle distribution for the test using Wendland kernel 

nearly remains the same as the original particle distribution and only a small disorder is found at the 

corners of fluid, which is due to the boundary/interface deficiency. For the test using cubic spline 

kernel, the particles are packed orderly as well, but the particle distribution is not cubic any more, it 

and more likely becomes hexagonal after 0.2s. Even though the reason for this difference is not clear, 

both tests show good particle distribution without any particle cluster. Considering the Wendland 

kernel seems to produce better form of particle distribution, it will be used for all the simulations later. 

Time Cubic spline kernel Wendland kernel 

(a) 

t=0.2s 

  

(b) 

t=0.4s 
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(c) 

t=0.6s 

  

(d) 

t=0.8s 

  

(e) 

t=1.0s 

  

Fig.10  Particle distribution during a period time of 1.0s using two different kernel functions. 

3.8.2 SPH simulation of dam break test with different smoothing length 

The case of a collapsing water column has been used in SPH studies [64, 65], therefore it is utilised 

here to validate the implemented SPH model. Besides the validation of SPH model, the effect of 

different smoothing length, ݄ ൌ ͳǤͲ ൈ ο݌, ݄ ൌ ͳǤʹͷ ൈ ο݌ and ݄ ൌ ͳǤͷ ൈ ο݌, is also examined. The 

geometry of the case is depicted in Fig.11 and the simulation parameters are listed in Table 5. The 

water column is initially adjacent to the left wall and is supported by a wall that is instantaneously 

removed when the experimental test starts. The water is thereby released into a dry channel. The SPH 

particles are initialised with hydrostatic pressure in accordance with the position and the density of 

each SPH particle derived by reversing Eq. (44). The distribution of density for the SPH particles is 

displayed in Fig. 12. 



AC
CE
PT
ED
 M
AN
US
CR
IP
T

26 

 

 

 

Fig.11 2D SPH representation of the dam-break test 

 

Fig.12 Initial density of SPH particles with an assumption of artificial compressibility  

In Fig. 13, the SPH simulation results with a smoothing length of ݄ ൌ ͳǤʹͷ ൈ ο݌ are compared with 

experimental images as well as the numerical simulations using the moving particle semi-implicit 

method (MPS) for a time period of 1.0s with a time interval of 0.2s [64]. The collapsing water runs 

along with bottom wall with an increasing velocity at the leading edge at 0.2s (see Fig. 13a), and the 

accelerated water is then blocked by the right vertical wall thereby moving upwards at 0.4s (see Fig. 

13b). At 0.6s, the SPH particles tend to reach the highest position with losing momentum energy 

which is offset by gravitation acceleration and then these SPH particles fall down to hit other SPH 

particles which still move along with bottom wall. At 1.0s, the movement of reflected SPH particles is 

gradually restricted by the left vertical wall. In general all the simulated flow patterns of water in SPH 

agree well with experiment and MPS.  

ȡ (kg/m3) 

 

0.142 m 
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3 
m

 

0.
35

 m
 

0.584 m 

SPH particles 

Boundary particles 
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Fig.14 shows the numerical results with different smoothing length. The flow patterns are almost 

identical before 0.6s. After 0.6s, those fluid particles repelled back by right vertical wall are gradually 

mixing with incoming fluid particles that are approaching right vertical wall. Due to this expected 

phenomenon, the simulations with longer smoothing length can search more surrounding particles to 

more accurately represent the fluid profile. It is apparent that results with ݄ ൌ ͳǤʹͷ ൈ ο݌ and ݄ ൌͳǤͷ ൈ ο݌ showed a good match in fluid profile from the beginning to 1.0s. In addition to the fluid 

flow profile, computational cost is another determining factor. More computational cost is required 

for the simulation with݄ ൌ ͳǤͷ ൈ ο݌, and it produces better results than ݄ ൌ ͳǤͲ ൈ ο݌(particularly at 

time 1.0s, see Fig.15e) but similar with ݄ ൌ ͳǤʹͷ ൈ ο݌. Therefore, smoothing length ݄ ൌ ͳǤʹͷ ൈ ο݌ 

is a better choice for numerical accuracy and computational efficiency and it is chosen for the rest of 

numerical simulations. 

Table.5 SPH parameters for the dam-break test 

Parameters Values 

Boundary particle spacing (m) 0.0025 

SPH particle spacing (m) 0.005 

Particle number 2743 

Kernel function Wendland 

Kernel smooth length (m) 0.005/0.00625/0.0075 

Fluid density (kg/m3) 1000 

Fluid viscosity ሺPa ή sሻ ͺǤͻ ൈ ͳͲିସ 

Time step (s) 0.000004 

Physical time (s) 1.0 

  

Time Experiment [66] MPS [64] SPH, h=1.25×∆p 

(a) 

t=0.2s 

  

 

(b) 

t=0.4s 

  

  

V (m/s) 

V (m/s) 
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(c) 

t=0.6s 

  

 

(d) 

t=0.8s 

  

 

(e) 

t=1.0s 

  

 

 

Fig.13 Results from experiment [51], MPS [53] and SPH with h=1.25×∆p for a time period of t=1.0s. 

 

Time  h=1.0×∆p h=1.25×∆p h=1.5×∆p 

(a) 

t=0.2s 

   

 

(b) 

t=0.4s 

   

  

(c) 

t=0.6s 

  

  

V (m/s) 

V (m/s) 

V (m/s) 

V (m/s) 

V (m/s) 

V (m/s) 
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(d) 

t=0.8s 

  

  

(e) 

t=1.0s 

  

  

Fig.14 SPH simulations with three different smoothing length for a time period of t=1.0s. 

 

3.8.3 SPH simulation of dam break test with different particle resolutions 

In this section the dam break test is simulated again using the same kernel function (Wendland kernel) 

and smoothing length (݄ ൌ ͳǤʹͷ ൈ ο݌) but three different particle resolutions, i.e. particle spacing ο݌. 

The particle spacing of 0.005m used before is chosen as a sample data, and two more different particle 

spacing, one is finer whilst the other one is coarser, are investigated for comparisons. The data for 

three particle resolutions are presented in Table.6, and the simulation results for physical time 1.0s are 

shown in Fig.15. 

Table.6 Particle resolutions in the dam-break test 

Parameters Coarse Medium Fine 

Boundary particle 

spacing (m) 
0.003 0.0025 0.002 

SPH particle spacing 

(m) 
0.006 0.005 0.004 

Particle number 2087 2743 4098 

 

Time  Coarse Medium Fine 

(a) 

t=0.2s 

 

   

V (m/s) 

V (m/s) 

V (m/s) 
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(b) 

t=0.4s 

 

   

(c) 

t=0.6s 

 

   

(d) 

t=0.8s 

 

   

(e) 

t=1.0s 

 

   

Fig.15 SPH simulations with three different particle resolutions for a time period of t=1.0s. 

It is evident in Fig.15 that the results for particle spacing of ο݌ ൌ ͲǤͲͲͶ show the best fluid flow 

profile and even capture the void at time ݐ ൌ ͲǤͺݏ and the curved wave at time ݐ ൌ ͳǤͲݏ. Usually finer 

particle resolutions would give better results with more fluid flow profile details but at a cost of 

computational time. Therefore it is essential to balance the numerical accuracy and the computational 

cost, which highly depends on the kind of results that are expected to achieve. In this study, Wendland 

kernel and smoothing length in ݄ ൌ ͳǤʹͷ ൈ ο݌  are determined to be applied in the following 

simulation of fluid-structure interaction, and the particle resolution will be adjusted in accordance 

with the testing problem at a reasonable computational cost. 

4. Coupled SPH-DEM model for FSI 

4.1 Methodology 

In dealing with interface between SPH and DEM particles, the interactive force could be defined 

differently in accordance with flow configurations (e.g. fluid-structure interaction flow or fluid-

particle interaction flow). In the fluid-particle system, the force acting on a single DEM particle is the 

summation of DEM-DEM contact force, drag force, buoyancy force and gravity force [29, 67]. 

V (m/s) 

V (m/s) 

V (m/s) 

V (m/s) 
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Conversely, as DEM particles are bonded together in fluid-structure system, the interaction force 

between SPH and DEM particles can be determined by Newton’s Third Law of Motion under a non-

slip condition [12, 68].  In this study of fluid-structure interaction, the SPH particles for fluid domain 

and the DEM particles for solid domain are coupled together by using fluid-structure interaction under 

Newton’s Third Law in which the forces on the solid from the fluid and the forces on the fluid from 

the solid are equal in magnitude but opposite in direction. The interaction forces between SPH 

particles and DEM particles follow Eq. (34). The density and the pressure for DEM particles stay 

unchanged at all times, and only their velocity and position evolve with time. It is worth noting that 

special care needs to be taken with the numerical technique when considering DEM particles in Eq. 

25. For a structure composed of bonded DEM particles, the force from fluid to solid acts only on the 

surface layer of the structure, hence the inner DEM particles that are included in the support domain 

of a SPH particle should not be taken into account [69].  Even though this special technique is 

physically correct, the forces acting on the inner DEM particles are too small as they are close to the 

edge of support domain. Therefore, this technique is not used in this study yet and it will be 

undertaken in future to improve the coupled SPH-DEM model. The flow chart of coupling SPH and 

DEM is schematically described in Fig.16.  
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Fig.16 Computation flowchart for coupling DEM and SPH 

4.2 Validation of the coupled SPH-DEM model 

The validation test for the coupled SPH-DEM model is to simulate the water flow in the elastic gate 

problem for comparison with experimental data and numerical results using a coupled SPH-SPH 

method [11]. The initial configuration is illustrated in Fig.17 and the simulation parameters for this 

validation case are listed in Table 7. The top end of elastic gate in purple is fixed and the other end is 

Density change 
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update  
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update  
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and velocity 

update 

Repulsive forces  
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and external forces 
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free to move. The bonded DEM particles representing the elastic gate are distributed in a hexagonal 

pattern and particle and bond stiffness is determined according to Eqs. (19-21) and (23). The SPH 

particles for water are initialised with hydrostatic pressure, and there is no pre-existing stress and 

deformation for bonded DEM particles. 

 

 

Fig.17 Configuration of 2D elastic gate test in a coupled SPH-DEM model  

A comparison of numerical results from the present SPH-DEM model against experimental data and 

numerical results from the coupled SPH-SPH model is shown in Fig.18. Compared to the experiment 

snapshots, the deformation of the elastic plate and the vertical displacement of free surface of water 

are generally well predicted by the coupled SPH-DEM model. The maximum deformation of the plate 

is at top end and behaves almost as a rigid body without deformation at bottom end of the plate. It 

should be noted that after removing the hammer, which fixes the elastic plate against water pressure 

immediately in the experiment, water leakage besides the elastic plate is observed. Owing to this 

leakage, the water pressure acting on elastic plate is lower than that in the SPH-DEM simulation and 

consequently the vertical displacement of the free surface in the SPH-DEM simulation is larger than 

the experimental results. In comparison with both experimental and SPH-SPH results, both larger 

deformation and higher vertical displacement of the free surface in SPH-SPH and SPH-DEM results 

make sense without water leakage. Due to the decreasing hydrodynamic pressure of water, the 

deformation of the plate tends to be smaller after 0.16s in the SPH-DEM model, and as a result the 

vertical displacement of free surface changes more slowly. 

Table.7 Parameters for SPH-DEM modelling of the elastic gate test 

Parameters Values 

Boundary particle spacing (m) 0.00125 

SPH particle spacing (m) 0.00175 

0.005 m 

0.
07

9 
m

 0.
14

 m
 

SPH particles 

DEM particles 

Boundary particles 
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DEM particle size (m) 0.00125 

Particle number 6648 

Kernel function type Wendland 

Kernel smooth length (m) 0.0021875 

Fluid density (kg/m3) 1000 

Fluid viscosity ሺPa ή sሻ ͺǤͻ ൈ ͳͲିସ 

Gate density (kg/m3) 1100 

Gate elastic modulus (MPa) 12.0 

Gate Possoin’s ratio 0.33 

Time step (s) 0.000004 

Physical time (s)  0.4 

 

Time Experiment [11] SPH-SPH [11] SPH-DEM 

(a) 

t=0.0s 

   

(b) 

t=0.08s 

   

(c) 

t=0.16s 

   

(d) 

t=0.24s 

   

V (m/s) 

V (m/s) 

V (m/s) 

V (m/s) 
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(e) 

t=0.32s 

   

(f) 

t=0.40s 

   

 

Fig.18 Comparisons between experimental, SPH-SPH and SPH-DEM results of elastic gate test with a 

time period of 0.40s. 

   

(a) Water level behind the gate                          (b) Water level 5cm far from the gate  

Fig.19 Water levels at different time 

In Fig.119 the water levels behind the gate and the water level 5cm far from the gate are quantitatively 

recorded to represent the evolution of free surface with time. Due to the water leakage in the 

experiment, the flow rates calculated from both SPH-SPH and SPH-DEM models are slightly higher 

than the experimental data, which results in a faster decrease of water level. The SPH-SPH model and 

SPH-DEM model show good agreement throughout the entire test process in terms of plate 

deformation and vertical displacement of free surface. 

5. Coupled SPH-DEM model for FSI with fracture 

In order to demonstrate the versatility of the coupled SPH-DEM model in simulating fluid-structure 

interaction in this section, an FSI problem with fracture is presented. The same configuration in the 

validation test of coupled SPH-DEM model is used, as shown in Fig.20, but the elastic plate is 

clamped at the bottom end and free to move at the top end. In addition, the fixed plate in pink is 

removed in this case, and the material strength limit is lowered in order to allow for a fracture to occur 
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due to the pressure of the water. Simulation parameters in Table 7 are used here. In this case, the 

boundary particles not only produce repulsive forces to SPH particles but also need to respond to the 

fractured bonded DEM particles when they contact. As the momentum energy of fractured bonded 

DEM particles is much greater than an individual SPH particle, the two-layer boundary particles 

cannot produce large enough force to impede the penetration of fractured bonded DEM particles. To 

solve this issue, two different kinds of repulsive forces are created from every single boundary 

particle to act on the SPH particles and DEM particles, i.e., the smaller repulsive forces are only 

designated for SPH particles while fractured bonded DEM particles receive other greater repulsive 

forces.   

In Fig.21 (a) and (b), the largest stress (stress component ı22) is found near to the bottom end of elastic 

plate before the occurrence of fracture due to the maximum bending moment induced by the water 

pressure. At time around 0.12s, the strength limit of elastic plate is exceeded and consequently the 

elastic plate breaks into two parts and then the fractured part moves towards the left boundary wall 

under the forces produced by the SPH particles of water. With the modification of the boundary 

particles in handling the approaching bonded DEM particles, wall penetration is fully avoided. Due to 

the vibration of the elastic plate, the flow pattern of water is highly affected to cause flow fluctuation 

which leads to some irregular movements of certain individual particles or small clusters of particles. 

After 0.16s, the fractured structure is pushed away to approach the left solid boundary. When the plate 

moves along with bottom solid wall, the stresses acting on bond are negligible as no significant 

deformation is observed. This coupled SPH-DEM model used in FSI with fracture is not 

experimentally validated yet, but these results demonstrate its capabilities. 

 

Fig.20 2D representation of FSI with fracture  

Time Particles velocity (m/s) ı22 in the structure (Pa) 

SPH particles 

DEM particles 

Boundary particles 
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(a) 

t = 0.04s 

  

(b) 

t = 0.08s 

  

(c) 

t = 0.12s 

  

(d) 

t = 0.16s 

  

(e) 

t = 0.20s 
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(f) 

t = 0.24s 

 

 

(g) 

t = 0.28s 

 

 

(h) 

t = 0.32s 

 

 

(i) 

t = 0.36s 

 

 

(j) 

t = 0.40s 

 

 

Fig.21 SPH-DEM modelling of FSI with fracture 

 

6. Conclusions 

A 2D coupled SPH-DEM model for fluid-structure interaction problems has been proposed and 

developed. In this model, SPH based on Navier-Stokes equations is used to model the fluid phase 
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while DEM with a bond feature is used for the solid phase. In dealing with the fluid-solid interface, 

Newton’s Third Law is applied with the same magnitude in both phases, but in opposite directions. As 

both SPH and DEM are Lagrangian particle methods, no special treatment is required to define the 

fluid-structure interface, even in the presence of large deformation and/or fracture of structure. The 

contact between SPH and DEM particles is automatically detected in accordance with a particle 

search radius that is twice the smooth kernel length. When a smoothed particle is approaching a fixed 

boundary and its support domain is intersected with the boundary, two-layer boundary particles are 

placed in the position of solid boundary to produce repulsive forces to handle the kernel truncation. 

The individual DEM model and SPH model has been validated by comparison with analytical, 

experimental and other numerical results. A tip-loaded cantilever beam has been chosen to validate 

the DEM model with bonded particles for predicting structural deformation and fracture. A typical 

dam-break test with dry bed was considered to validate the SPH model for predicting free surface 

flow. After the validations of both DEM and SPH models, the coupled SPH-DEM model was then 

validated against a typical fluid-structure interaction problem where a thin and long elastic plate 

interacts with free surface flowing fluid. Finally the coupled SPH-DEM model is extended to include 

the occurrence of structural fracture by allowing the bonds in the DEM model to break and the broken 

structure to move under fluid pressure. 

The obtained results have shown satisfactory predictions in terms of flow pattern, structure 

deformation and velocity contour, although some improvements such as particle distribution density, 

no-slip condition, skin layer of solid structure, sensitivity studies in different kernel functions and 

smooth kernel lengths are still required. In the future, the coupled model will be expanded from 2D to 

3D simulation. The case for fluid-structure interaction with fracture will be validated through 

laboratory experiment and further improvements for this coupled model will be made to enable the 

simulations of real engineering problems. 
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