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Abstract Wearable inertial measurement units incorporating accelerometers
and gyroscopes are increasingly used for activity analysis and recognition. In
this paper an activity classification algorithm is presented which includes a
novel multi-step refinement with the aim of improving the classification accu-
racy of traditional approaches. To do so, after the classification takes place,
information is extracted from the confusion matrix to focus the computa-
tional efforts on those activities with worse classification performance. It is
argued that activities differ diversely from each other, therefore a specific set
of features may be informative to classify a specific set of activities, but such
informativeness should not necessarily be extended to a different activity set.
This approach has shown promising results, achieving important classification
accuracy improvements of up to 4% with the use of low-dimensional feature
vectors.

Keywords Activity Recognition · Quotidian Activities · Wearable Sensors ·
Accelerometer · Classification

1 Introduction

Human activity recognition (HAR) is a challenging research area extensively
investigated in the field of Ambient Assisted Living (AAL)(Suryadevara and
Mukhopadhyay, 2014). The knowledge of the daily behaviour of an elderly
person living independently can be valuable information for clinicians (God-
frey et al., 2007). However, self-assessment of daily activities has shown to be
subjective and variable, as a subject’s own assessment can differ from that
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of an expert in the field (Smith et al., 2005). This fact explains the increas-
ing attention on the development of automatic activities tracking systems for
subject monitoring.

Different sensor platforms are utilized with the aim of automatically mon-
itoring a person in a home environment. According to the type of sensor/s
employed for data collection, approaches can be roughly divided into three
different categories; 1) computer vision (video cameras), 2) ambient sensors
such as passive infrared sensors (PIRs), On/Off or open/close sensors, micro-
phones, vibration sensors etc. and 3) wearable devices with inertial sensors
such as accelerometers, gyroscopes and magnetometers. Research efforts are
currently shifting towards wearable solutions, which avoid occlusion and the
privacy concerns related to the use of video cameras in a home environment.
In fact, previous surveys regarding the acceptability of the use of wearable
devices showed positive results, not only in adults but also within the elderly
population (Nelson et al., 2016), (O’Brien et al., 2015).

Several efforts have been made to develop systems for HAR using wear-
able sensors in view of its many applications in fitness, security and health
care. However, predominantly, attention has been given to fitness applica-
tions, analysing periodic activities such as walking, running or climbing stairs
(Bayat et al., 2014), (Casale et al., 2011), (Capela et al., 2015), (Erdaş et al.,
2016). Little research is reported concerning quotidian daily activities, such as
eating, drinking or hygiene-related activities, which could also be used as an
indicator of a person’s well-being. The authors in (Amft et al., 2007), (Dong
et al., 2014), (Amft and Tröster, 2008) investigated activity events related
to eating as well as dietary periods. Amft et al. (2010) studied fluid intake.
However, hygiene-related activities have not yet been studied in depth.

A HAR system normally embodies data collection, signal pre-processing,
feature extraction, feature selection/reduction and activity classification. Given
that human activity takes places at frequencies of up to 20 Hz, data collection
is normally performed at frequencies of 50 Hz to 100 Hz avoiding an alias-
ing effect on the collected signals (Wang et al., 2011a). In the pre-processing
step, different filters are applied to eliminate potential noise outside the hu-
man activity frequency range, as well as to separate the low frequency com-
ponent (gravity) from the high frequency component (body motion) (Bayat
et al., 2014), (Casale et al., 2011), (Erdaş et al., 2016), (Mannini and Sabatini,
2010). After filtering, the signal is normally segmented into sliding windows
(Bayat et al., 2014), (Casale et al., 2011), (Ravi et al., 2005), (Wundersitz
et al., 2015), (Erdaş et al., 2016), (Capela et al., 2015) or shorter fundamental
movements known as primitives (Zhang and Sawchuk, 2012), (Garcia-Ceja and
Brena, 2013) from which feature vectors are extracted.

Features are normally calculated in the time and frequency domains. The
extraction of features in the wavelet domain have been investigated (Erdaş
et al., 2016), however, the classification results did not improve when added
to the features calculated in the other two domains. Within the time domain,
statistical features have demonstrated good classification results. Examples in-
clude mean, standard deviation, inter-quartile range and correlation between
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accelerometer axes (Casale et al., 2011). Algorithms such as Dynamic Time
Warping (DWT) (Billiet et al., 2016), (Bruno et al., 2013) and Histogram of
Oriented Gradients (Miyamoto and Ogawa, 2014), typically used in computer
vision, are also employed as feature descriptors. Once the feature vector is
defined, a step of feature selection/reduction is normally applied to remove
those redundant and irrelevant features not contributing significantly to im-
prove the signal description. Selection models such as Chi-Square (Erdaş et al.,
2016), Analysis of Variance (ANOVA) (Wundersitz et al., 2015), Lasso Regres-
sion (Wundersitz et al., 2015), or filter-based approaches such as Relief-F or
Correlation-based Feature Selection (CFS) (Capela et al., 2015), have been
used in previous work for dimensionality reduction purposes. Finally, the clas-
sification step takes place. Although unsupervised classification approaches
have been investigated in the past (Kwon et al., 2014), human activity recog-
nition is typically tackled as a supervised learning problem. A wide range
of supervised classifiers such as Support Vector Machines (SVM), Neural Net-
works, Random Forest (RF) or K-Nearest Neighbours (KNN) have been widely
used in previous studies (Jafari et al., 2007).

The aim of the research reported here is to develop a novel model to detect
different sets of quotidian activities of daily living (ADL) using data collected
with a wrist-mounted tri-axial accelerometer worn on the dominant hand of
the user. The rest of this paper is organized as follows. Section 2 reviews
previous work on the use of wearable devices for activity recognition. Section
3 describes the methodology followed to develop the multi-level refinement
classification approach. Section 4 discusses the results. Section 5 justifies the
use of the multi-level refinement step in future activity classification studies.

2 Related Work

Many attempts have been made to develop HAR systems using wearable sen-
sors. Studies have varied with regards to the type of sensors, the number of
them, their location, the activities to be tracked, the pre-processing techniques,
the feature extraction and selection methods, the classification approaches as
well as the research purpose itself. Bayat et al. (2014) used a smart-phone
with a single tri-axial accelerometer to test the activity recognition results on
a set of six activities, carrying the phone in the pocket and carrying the phone
in the hand. They achieved a maximum accuracy of 91.15% on the ’in-hand’
experiment using a combination of different classifiers. Casale et al. (2011),
studied a group of five activities using a single tri-axial accelerometer worn
on the chest, achieving a maximum accuracy of 94% using the Random For-
est Classifier. Ravi et al. (2005) used a tri-axial accelerometer worn near the
pelvic region to study eight different activities, obtaining an accuracy of over
99% combining different classifiers by applying plurality voting. However, data
was collected only from two subjects, thus compromising the variability of the
experiment.
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Wundersitz et al. (2015) studied a circuit composed of eight fitness ac-
tivities using a system embodying a tri-axial accelerometer and a tri-axial
gyroscope embedded in a vest and located at the upper trunk of the exper-
iment participants, achieving a maximum accuracy of 92% using a Logistic
Model Tree (LMT). Zhang and Sawchuk (2012) used data from a tri-axial
accelerometer and a tri-axial gyroscope worn at the right hip to develop a
Bag-of-Words (BoW) approach applied to activity recognition. They achieved
a maximum accuracy of 92.7% using a K-Means clustering algorithm for prim-
itive construction and Support Vector Machine using an RBS kernel for the
classification of those primitives. Erdaş et al. (2016), used data from a tri-axial
accelerometer worn on the chest to study seven activities. Their approach in-
cluded an ensemble feature selection, which combined with a Random Forest
classifier obtained a maximum accuracy of 88%. Godfrey et al. (2007) used
two accelerometers worn on the sternum and on the right thigh to classify
sitting, standing and stepping with an accuracy of around 98%. Jafari et al.
(2007) classified sit-to-stand, stand-to-sit, lie-to-stand and stand-to-lie move-
ments using a tri-axial accelerometer exhibiting an average of 84% accuracy
using a K Nearest Neighbours classifier.

Dong et al. (2014) developed a detector for periods of eating from data
collected by a wrist-worn tri-axial accelerometer and gyroscope, combining a
custom wrist energy peak detector and a naive Bayes classifier, achieving an
accuracy of 81%. Munoz-Organero and Lotfi (2016) developed a stochastic
model for recognizing and classifying different types of steps and falls using
a tri-axial accelerometer worn on the abdomen for model training and on the
chest for validation, achieving a step classification accuracy of 91.14%. Garcia-
Ceja and Brena (2013) tackled a long term activity recognition problem as a
distribution of simple activities with an accelerometer worn on the belt of
the users, achieving a maximum accuracy of 92.5% using a KNN classifier.
Wang et al. (2011a) developed a Hidden Markov Model (HMM) to classify six
different daily activities using data from a waist-worn tri-axial accelerometer,
achieving a recognition accuracy of 94.8%.

Billiet et al. (2016) studied six transition activities in rheumatic and mus-
culoskeletal patients using a bi-axial accelerometer worn on the biceps of the
dominant arm. This study included signal-processing features and pattern-
based features applying Dynamic Time Warping (WDT), obtaining an average
accuracy of 93.5%. The authors in (Mannini and Sabatini, 2010) developed a
Gaussian Continuous Hidden Markov Model (cHMM)-based sequential clas-
sifier using data from five bi-axial accelerometers to classify seven different
activities, achieving a maximum accuracy of 98.4%. Amft and Tröster (2008)
investigated dietary events using four inertial measurement units (IMUs) worn
on the upper and lower parts of the arms, an ear microphone and a sensor collar
composed of a stethoscope microphone and a Electromyogram (EMG), obtain-
ing a maximum recognition rate of 82% for the classification of cutlery usage,
drink, spoon usage and eating only using the hand. Using the same sensors,
(Amft et al., 2007) studied the intake of six different types of food and water
by the use of a Probabilistic Context-Free Grammar (PCFG) parser, achieving
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Fig. 1 Diagram showing how the accelerometer is mounted on the wrist and the direction
of the orthogonal output signals [Ax, Ay , Az ].

an average classification rate of 80%. Amft et al. (2010) studied the recogni-
tion of sips by using the feature similarity search (FSS) as feature descriptor,
alongside traditional features, for data collected by a wrist-worn system em-
bodying a tri-axial accelerometer, a tri-axial gyroscope and a compass, as well
as a magnetic coupling sensor to measure the relative position between the
wrist and the shoulder of subjects. The achieved sip detection rate was 89.2%.
Authors in (Bruno et al., 2013), propose a recognition model for motion prim-
itives relying on Gaussian Mixture Modelling (GMM) and Gaussian Mixture
Regression (GMR) based on Dynamic Time Warping (DTW) and Mahalanobis
distance descriptors, using data from a single wrist-worn accelerometer.

Among the studies above, a common feature can be seen; some activities
are less easily discriminated than others. This problem has motivated the
development of the multi-level refinement approach presented in this paper.
For example, authors in (Wang et al., 2011a) struggled to classify ’sit’ and
’fall’. Billiet et al. (2016) observed the highest number of false detections in
their study was occurring in two specific activities; ’get up’ and ’maxreach’.
Amft et al. (2007) found the groups ’spoon’ and ’apple’ to have considerably
lower detection rate than others. Zhang and Sawchuk (2012) found difficulties
to classify ’walking upstairs’ and ’walking downstairs’ among other walking-
related activities.

3 Methodology

Using a simple wristband which includes a tri-axial accelerometer sensor has
proven to be the most acceptable form of wearable sensor. There are many
readily available wristband which incorporate other sensors including gyro-
scope, gps, heart rate variation (HRV) and temperature. A tri-axial accelerom-
eter is a sensor that provides simultaneous acceleration measurements in three
orthogonal directions, namely x, y and z axes to represent acceleration Ax,
Ay and Az respectively. From that data, an informative feature set can be
calculated and a posteriori the activity classification is tackled as a supervised
classification problem. Using a tri-axial accelerometer sensor on a wrist is illus-
trated in Figure 1. As an alternative to a tri-axial accelerometer, a gyroscope
could also be used. However, given that a gyroscope consumes approximately
ten times the power of an accelerometer (Dong et al., 2014), making the use
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Fig. 2 Diagram representing the steps employed by previous work for activity classification
(top) and in this paper (bottom). It can be seen that after the classification step takes place,
an additional multi-level refinement step is included, whereby pairs of activities which worsen
the performance of the classification model, are grouped together for further inspection.

of the former excessively power consuming for all-day monitoring systems, the
decision was taken to use only accelerometer data, which as shown by previous
HAR studies, is sufficient to achieve high activity classification rates.

Based on the literature review presented in Section 2, it can be observed
that the general question of HAR is being addressed via several approaches.
To the best of our knowledge, previous work in the field lacks further analysis
of classification results which can lead to better classification performance.

In the remainder of this section, the multi-level refinement activity clas-
sification approach will be explained step by step. This investigation differs
from earlier studies as follows. Firstly, some of the activities included in the
activity set have not been studied together. Secondly, the proposed approach
does not finish on the classification step as traditional approaches do. Instead,
a novel approach is used whereby the classification performance in the form of
confusion matrix is examined to identify those activities which worsen the per-
formance of the proposed model, with the aim of directing the computational
efforts towards refining the misclassification rate of the model. A comparison
between the methodology used in this paper and that in most previous work
is illustrated in Figure 2.
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Fig. 3 Diagram of the activities studied and their accelerometer signals (1 second windows).

3.1 Data Collection

Six subjects, two female and four male, between 21 and 36 yeas of age, par-
ticipated in this research experiment. They were ask to perform a set of seven
quotidian daily activities:

1. Hand Washing,
2. Teeth Brushing,
3. Standing,
4. Sitting,
5. Picking up an object from the floor,
6. Walking Upstairs,
7. * Walking Downstairs is also included in the activity set for classification.

The volunteers were asked to wear the sensor on their dominant hand but
no instructions were given as to how to perform the activities, adding reality
and variability to the data. Since human activity happens at no more than
20 Hz (Wang et al., 2011a), a sampling frequency of 100 Hz was used which
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according to the Nyquist theorem will be sufficient to avoid undesirable aliasing
effects on the collected signals.

A Meta Motion R wristband mounted system was used for data collection
(MetaMotionR, 2017). A visual representation of the system alongside one
second windows of the signals from the different activities studied in this pa-
per can be observed in Figure 3. This system includes, among other sensors,
a tri-axial accelerometer, which was employed in this experiment. After the
data was collected, it was sent via low energy Bluetooth to a smart-phone with
the use of the Metabase app, which allows for the configuration of the sensors
as well as the access to the sensor data. The question on where an inertial
sensor should be worn to optimize the information collected keeps unraveled,
since the optimal location is dependent on the chosen activity set. However,
as compared to other areas of the human body, the wrist enables a high de-
gree of freedom. Additionally, the wrist is a natural place for instrumentation,
avoiding undesired obtrusiveness. Given that, the social acceptance is likely to
increase due to its resemblance to a common watch.

3.2 Pre-processing

The accelerometer data is composed of three different time series axt , ayt , azt ,
which correspond to the medio-lateral, vertical and antero-posterior accelera-
tion inputs respectively. A fourth time series, namely |at|, is calculated as the
argument of the tri-dimensional vector.

Different smoothing and filtering techniques are applied to each time se-
ries. First of all, a median filter with a window length wl = 7 has been used
for smoothing purposes. Wang et al. (2011b) demonstrated that this filter has
a competitive signal to noise ratio (SNR) as compared to other types of fil-
ters used for accelerometer data. On top of the median filter, a low-pass 20
Hz Butterworth filter is applied to filter out those frequencies not related to
human activity. According to previous studies, human activity takes place at
frequencies lower than 20 Hz (Wang et al., 2011a).

Two different components can be extracted from the accelerometer raw
data; The gravity component, which is associated with the low frequency com-
ponent of the signal, and the linear acceleration caused by the motion itself,
which is associated to the high frequency component of the original signal. As
done by previous work (Casale et al., 2011), a cut-off frequency of 1 Hz was
used to extract the gravity component and the motion component from the
signal.

In addition to the time series above, the rate of change of acceleration
(jerk) of the the signal before being split into motion and gravity components
was calculated, therefore obtaining four additional time series. The resultant
time series are as follows:

- Original signal: [axt
, ayt , azt , |at|]

- Motion: [axmt
, aymt

, azmt
, |amt

|]
- Gravity: [axgt

, aygt , azgt , |agt |]
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- Jerk: [axjt
, ayjt , azjt , |ajt |], where |ajt | =

∂|at|
∂t

The segmentation of the signals is performed using sliding windows with
a window length of 1 second and a 40% overlapping percentage. Features will
be calculated from these windows a posteriori.

3.3 Feature Extraction

Guided by previous work (Ravi et al., 2005), (Erdaş et al., 2016), (Dargie,
2009), different features in the time and frequency domains were evaluated.
Within the time domain, different statistical features were explored. These
include measures of central tendency like the mean and root mean square
(RMS), measures of statistical dispersion such as range, standard deviation
and inter-quartile range, measures of distribution shape such as kurtosis or
skewness, measures of dependence between different axes, such as Pearson’s
correlation and measures of magnitude of varying quantity such as signal mag-
nitude area. On top of the statistical features, measures such as peak frequency,
zero-crossings frequency and signal entropy were calculated. After converting
the signal to the frequency domain through the Fast Fourier Transform (FFT),
features such as largest magnitude of the signal spectrum, index of the spec-
trum component with the highest magnitude and the energy of the signal
across all the spectrum components were explored. Except few cases where it
was not appropriate, features were calculated over all the time series exposed
in Section 3.2. The dimensionality of the resultant feature vector is n = 266.

This feature set has been carefully selected so as to provide informative
and discriminative information with regards to a wide array of signal char-
acteristics, such as range, dispersion, central tendency, periodicity, frequency
distribution, magnitude and changes in direction. Description of the selected
features are presented below:

- Mean:

a =
1

Wl

Wl∑
t=0

at (1)

where at is the acceleration at time t and Wl is the window length expressed
as number of samples.

– Standard Deviation:

σ =

√∑Wl

t=0(at − a)2

Wl − 1
(2)

where at is the acceleration at time t, Wl is the window length expressed
as number of samples, and a the mean acceleration of the corresponding
window.
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- Signal Magnitude Area:

sma =
1

Wl

∫ T=Wl

0

(|axt
− ax|+ |ayt − ay|+ |azt − az|)dt (3)

where axt
, ayt , azt are the acceleration at time t on the x, y and z axes

respectively, Wl is the window length expressed as number of samples,
and ax, ay, az the mean acceleration on the corresponding axis in the
corresponding window.

- Signal Entropy:

H(a) =

Wl∑
t=0

|at − a| log10 |at − a| (4)

where at is the acceleration at time t, Wl is the window length expressed
as number of samples and a the mean acceleration in the corresponding
window.

- Correlation:

rxy =
Cov(ax, ay)

σ(ax)σ(ay)
(5)

where Cov(ax, ay) is the covariance of the acceleration on the axes x and
y, and σ(ax)andσ(ay) are the standard deviation for the acceleration on
the axes x and y respectively.

- Skewness:

γ1 =
1
Wl

∑Wl

t=0(at − a)3

(σ(a))3
(6)

where at is the acceleration at time t, Wl is the window length expressed
as number of samples and, a and σ(a) are the mean acceleration and the
standard deviation in the corresponding window respectively.

- Kurtosis:

β2 =
1
Wl

∑Wl

t=0(at − a)4

(σ(a))4
(7)

where at is the acceleration at time t, Wl is the window length expressed
as number of samples and, a and σ(a) are the mean acceleration and the
standard deviation in the corresponding window respectively.

- Root Mean Square

RMS =

√√√√ 1

Wl

Wl∑
t=0

(at)2 (8)

where at is the acceleration at time t and Wl is the window length expressed
as number of samples. The root mean square is calculated on all the time
series presented in Section 3.2.
The transformation from the time domain to the frequency domain has
been computed using the Fast Fourier Transform:
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A(k) =

Wl−1∑
t=0

ate
(−i2πkt/Wl) (9)

where at is the acceleration at time t and Wl is the window length expressed
as number of samples, A(k) is the sequence of Wl complex-valued numbers
given the sequence of data a(t).

- Energy

E =

∑Wl

k=1 |ak|
2

Wl
(10)

where a1,a2,... aWl
are the FFT components of the corresponding window

of length Wl.

3.4 Feature Selection/Reduction

As stated by Mannini and Sabatini (2010), when the dimension of a feature
space is considerably high, learning the parameters for a classifier becomes
a difficult and consuming task. In addition, feature selection/reduction can
maintain or even increase the discriminative capability of the whole feature
set. The current study has explored the use of three different methods for
dimensionality reduction. First an analysis of variance (ANOVA) is conducted,
where features were ranked according to their F measure, which is calculated
as the ratio of the variance between classes and the variance within the class.
After features are ranked, the subset that maximizes the classification result
is selected. The other two approaches explored were Principal Component
Analysis (PCA) and Truncated Singular Value Decomposition (SVD). These
two approaches perform an orthogonal transformation of the data into a new
coordinate system where the new coordinates are those which maximize the
variance of the data, being the difference between the two approaches that
PCA centres the data before computing the singular value decomposition.

3.5 Classification

As mentioned above, seven activities were investigated in this study. Each ac-
tivity was recorded for each person separately and then labelled accordingly
to fit them into the selected classifiers after feature extraction and selection.
The performance of three different classifiers were evaluated: K-Nearest Neigh-
bours (KNN), Random Forest (RF) and Support Vector Machine (SVM) using
a Radial Basis Kernel (RBS). Prior to the evaluation, parameter estimation
with 10-fold cross validation was computed to optimize the performance of the
classification algorithms. In the case of K Nearest Neighbours, its performance
was studied across the parameter K, which indicates the number of nearest
points to be taken into consideration for the classification. For Random Forest,
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its performance was studied across the maximum number of features utilized
on each split and the number of decision trees employed for the classification.
In SVM, the parameters C and γ which correspond to the penalty parameter
of the model and the kernel coefficient respectively were considered.

3.6 Multi-Level Refinement

Our multi-level refinement can be defined as an algorithm that aims at opti-
mizing the classification accuracy of a group of classes by an improvement on
the recognition rate of those classes which lower the classification rate of the
whole group. Its implementation is justified by the fact that in a classification
problem, a classification accuracy lower than 100% is normally caused by the
difficulty to classify specific classes, unless the recognition rate is identical for
all the classes, though this is not a common occurrence.

After the activity classification takes place, the confusion matrix is further
analyzed and activities are compared in pairs. If the classification accuracy
between any pair of activities is lower than that on the whole model, those
activities are grouped together for refinement. Activities which are found to
lower the accuracy of the system due to their misclassification rate with an
activity already pertaining to a refinement group are added to that same group,
otherwise a new refinement group is constructed with these pair of activities.
At this point the feature selection is optimized for each group selecting the
most informative feature set for each of them. This process is repeated until
groups of two activities are reached.

The multi-level refinement then focuses the computational efforts on the
classification of those activities that are more difficult to classify in the first
place.

We state the multi-level algorithm as shown in Algorithm 1.

4 Results

In this section, the experimental results reached are presented, explained and
discussed. Section 4 is divided as follows; Section 4.1 computes parameter
estimation for KNN, RF and SVM and the results of these three classifiers
are compared. Section 4.2 examines the feature selection methods proposed
for dimensionality reduction. Section 4.3 presents the classification results and
the improvement achieved by the multi-level refinement algorithm. Finally
Section 4.4 discusses the results obtained.

4.1 Parameter Estimation

Parameter refinement is implemented to estimate the optimal hyper-parameters
for the data set. To do so, a 10-fold cross validation approach is used across
different arrays of parameters, specific to each of the classifiers, to find the
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Algorithm 1 Multi-level Refinement
1: top:
2: accuracy← classification accuracy
3: c m← confusion matrix
4: i← rows confusion matrix
5: j← columns confusion matrix
6: for n rows do
7: for n columns do
8: if (row 6= column) then
9: if ((1− c m[i, j]/c m[i, i]) < accuracy) then

10: activity pairs.append[(i, j)]
11: end if
12: end if
13: end for
14: end for
15: for activity pair ∈ activity pairs do
16: for activity ∈ activity pair do
17: if (activity belongs to a group) then (add its pair to the group)
18: else(create new group and add both activities)
19: end if
20: end for
21: end for
22: if All activities belong to the same group then (remove activity with the highest accuracy)
23: end if
24: for group ∈ groups do
25: Feature Selection
26: Run Classifier
27: if (grouplength > 2) then
28: goto top.
29: end if
30: end for

combination that leads to the best classification performance. As it can be
seen in Table 1, Table 2 and Table 3, Random Forest outperforms KNN and
SVM on classification performance. In particular, the best classification per-
formance was obtained computing Random Forest with 40 decision trees and
when the number of features to be considered at each split within each decision
tree is log2 of the total number of features, in this case: log2(266) ≈ 8.

4.2 Feature Reduction

Having done the parameter estimation, ANOVA K-best, PCA and SVD are
computed to find out the optimal subset of features/components for the de-
scription of the data set. To do so, the performance of the different feature se-
lection methods is examined across all the possible values ranging from n=1 to
n=266 (whole feature set). Although PCA and SVD peak faster than ANOVA
K-best, needing fewer dimensions to obtain reasonably good performance, the
best classification result (classification accuracy = 98.04%) is obtained using
ANOVA K-Best with n=209, n being the number of features after ranking
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according to their F ratio. The performance of the different feature selection
methods across the number of dimensions can be observed in Figure 4.

4.3 Classification and Refinement

Once the optimal hyper-parameters and feature sub-set are estimated, the
data set is divided, so that 80% is used as the training set and the remaining
20% as the test set. The classification reports the following confusion matrix
and classification metrics (See Figure 5 and Table 4 respectively).

The classification accuracy achieved by the model is 97.46%, however there
exist relevant differences in terms of precision, recall and F-score between dif-

Table 1 Random Forest: Parameter Estimation.

Number of trees auto log2 sqrt
10 0.9513 0.9469 0.9508
20 0.9583 0.9600 0.9600
30 0.9569 0.9591 0.9553
40 0.9573 0.9633 0.9628
50 0.9610 0.9592 0.9611
60 0.9617 0.9626 0.9605
70 0.9624 0.9590 0.9603
80 0.9609 0.9614 0.9609
90 0.9606 0.9622 0.9602
100 0.9621 0.9613 0.9626

Table 2 K Nearest Neighbours: Parameter Estimation.

K Neighbours Accuracy K Neighbours Accuracy
1 0.9511 11 0.9480
2 0.9504 12 0.9473
3 0.9526 13 0.9479
4 0.9520 14 0.9464
5 0.9528 15 0.9459
6 0.9527 16 0.9460
7 0.9508 17 0.9447
8 0.9505 18 0.9442
9 0.9493 19 0.9449
10 0.9493 20 0.9442

Table 3 Support Vector Machine: Parameter Estimation.

C γ Accuracy C γ Accuracy
0.1 0.001 0.6427 1 0.1 0.8919
0.1 0.01 0.8286 1 1 0.8033
0.1 0.1 0.8421 10 0.001 0.8597
0.1 1 0.7271 10 0.01 0.8855
1 0.001 0.8281 10 0.1 0.8917
1 0.01 0.8590 10 1 0.8053
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Fig. 4 Accuracy of different feature selection methods employed as a function of the number
of dimensions.

Fig. 5 Confusion matrix before the first refinement step.

ferent activities. Taking into account the respective binary classification ac-
curacies from the confusion matrix, Algorithm 1 outlines that the activities
lowering the performance of the model are Teeth Brushing, Walking Down-
stairs and Walking Upstairs. Consequently, these activities are selected for
further inspection. Considering the interactions between this set of activities
before refinement, the resultant confusion matrix and classification metrics are
as shown in Figure 6 and Table 5 respectively.

At this point, feature selection and classification are performed again for
the new activity set composed by three activities. The classification metrics
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Fig. 6 Confusion matrix before the first refinement step. The activities remaining are ’Teeth
Brushing’, ’Walking Downstairs’ and ’Walking Upstairs’.

observed in Table 6 show that, in comparison to the classification performance
before the first refinement step shown in Table 5, the classification accuracy,
precision, recall and F-measure improved for all three activities. A visual rep-
resentation of the improvement on classification accuracy after the first refine-
ment step can be observed in Figure 7. The optimal classification accuracy
was achieved using a 54-dimensional feature vector calculated during the re-
finement feature selection step. From the results obtained, it can be concluded
that not only was the classification accuracy improved after refinement, but
also that this was achieved using a feature vector with lower dimensionality
as compared to the 209-dimensional feature vector used to classify the whole
activity set.

Table 4 Classification metrics of the whole model .

Acc. Prec. Rec. F-score
H. Washing 99.00% 97.64% 98.70% 98.17%
T. Brushing 99.06% 91.41% 98.68% 94.90%
Stand 99.76% 98.77% 99.59% 99.18%
Sit 100.00% 100.00% 100.00% 100.00%
P. Object 99.12% 99.56% 97.20% 98.37%
W. Down 98.89% 82.86% 69.05% 75.32%
W. Up 99.00% 81.82% 80.00% 80.90%
Total 97.46% 97.46% 97.46% 97.46%

Table 5 Classification metrics before the first refinement step.

Accucacy Precission Recall F-score
T. Brushing 95.96% 94.30% 100.00% 97.07%
W. Down 91.85% 82.86% 69.05% 75.32%
W. Up 93.04% 83.72% 80.00% 81.82%
Total 90.68% 90.68% 90.68% 90.68%

Table 6 Classification metrics after the first refinement.

Accucacy Precission Recall F-score
T. Brushing 98.73% 98.09% 100.00% 99.04%
W. Down 95.88% 83.67% 95.35% 89.13%
W. Up 96.28% 100.00% 80.85% 89.41%
Total 95.49% 95.49% 95.49% 95.49%
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Fig. 7 Comparison of activity classification accuracy before and after the first refinement
step.

With the resultant classification metrics in Table 6, obtained during the
first refinement step, the same process is now repeated. In this case, Algo-
rithm 1 selects the activities Walking Downstairs and Walking Upstairs for
further examination, since according to the calculations performed, they were
the classes lowering the classification accuracy of the group. Considering the
interaction between these two activities, the resultant confusion matrix and
classification metrics before the second refinement step are shown in Figure 8
and Table 7 respectively.

Fig. 8 Confusion matrix before the second refinement step. The activities remaining are
’Walking Downstairs’ and ’Walking Upstairs’.

Table 7 Classification metrics before the second refinement.

Accuracy Precision Recall F-score
W. Down 90.80% 83.67% 100.00% 91.11%
W. Up 90.80% 100.00% 82.61% 90.48%
Total 90.80% 90.80% 90.80% 90.80%



18 Dario Ortega Anderez et al.

During the second refinement step, a 195-dimensional feature vector was
found to be the optimal selection for the classification of the remaining two
activities. In this case, the dimensionality is also reduced as compared to that
for the whole activity set (n=209), though the number of dimensions increased
with respects to the previous refinement step. This can be justified by the
similarity between walking downstairs and walking upstairs in terms of wrist
motion. The classification metrics after the second refinement step are shown
in Table 8.

Table 8 Classification metrics after the second refinement step.

Accuracy Precision Recall F-score
W. Down 92.41% 82.86% 100.00% 90.63%
W. Up 92.41% 100.00% 88.00% 93.62%
Total 92.94% 92.94% 92.94% 92.94%

Fig. 9 Comparison of activity classification accuracy before and after the second refinement
step.

It can be seen that again an improvement on classification accuracy was
achieved. A visual representation of the classification accuracy improvement
can be observed in Figure 9.

4.4 Validation and Discussion

To validate the multi-level refinement algorithm, a test was run on the An-
guita et al. (2013) data set. The data set consists of data collected from 30
volunteers performing a group of six different activities of daily living (ADLs)
while wearing a tri-axial accelerometer and a tri-axial gyroscope on the waist.
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After the classification, two groups were formed: 1) Sitting and Laying, 2)
Walking Downstairs and Walking Upstairs. An improvement on classification
performance was seen in both groups. The first group improved classification
accuracy from 96.92% to 100%. The second group went from 97.69% to 99.32%.

These results suggest that the use of the proposed multi-level refinement
can improve classification accuracy on those activities that were more difficult
to classify between when following a traditional classification approach. In
addition, this method will benefit unbalanced experiments where data from
specific activities are more difficult to collect as compared to others. After
cross-validating the data-set, the data from those specific activities may be
not enough to classify them against similar activities. This problem could be
reduced by applying the multi-level refinement approach presented.

5 Conclusion

In this paper we propose a novel multi-level refinement technique for opti-
mization of classification results in a HAR problem using accelerometer data.
The proposed refinement algorithm autonomously analyses the confusion ma-
trix, finding those activities that worsen the performance of the model and
grouping them together for further inspection. Individual groups of activities
are then studied separately, this process being repeated until only two activi-
ties remain in each group. The proposed approach has demonstrated that the
classification results improve on each refinement step. Activities with low clas-
sification rates in the first place, obtained better classification accuracy when
studied separately, even with the use of lower dimensional feature vectors in
some cases.

This suggests that feature informativeness depends on the activity set cho-
sen. Thus computational efforts should be given to particular group of activ-
ities (or classes) with lower classification performance, in order to optimize
the selection of features and thus their classification rate. This approach could
have a significant positive impact when the recognition of a specific activity
or class is crucial for the interest of the study as for example a fall detection
system.
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