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highlights
• Robust fuzzy modeling can address the effect of uncertainty in parameters

• The priority-based solution encoding is useful in construction of meta-heuristics

• The proposed Whale Optimization Algorithm provides fast high-quality solutions

• The solution quality is consistent without parameter-dependent behavior
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A robust fuzzy mathematical programming model for the closed-loop
supply chain network design and a whale optimization solution algorithm

Abstract
The closed-loop supply chain (CLSC) management as one of the most significant manage-

ment issues has been increasingly spotlighted by the government, companies and customers,
over the past years. The primary reasons for this growing attention mainly down to the
governments-driven and environmental-related regulations which has caused the overall sup-
ply cost to reduce while enhancing the customer satisfaction. Thereby, in the present study,
efforts have been made to propose a facility location/allocation model for a multi-echelon
multi-product multi-period CLSC network under shortage, uncertainty, and discount on the
purchase of raw materials. To design the network, a mixed-integer nonlinear programming
(MINLP) model capable of reducing total costs of network is proposed. Moreover, the model
is developed using a robust fuzzy programming (RFP) to investigate the effects of uncer-
tainty parameters including customer demand, fraction of returned products, transportation
costs, the price of raw materials, and shortage costs. As the developed model was NP-hard,
a novel whale optimization algorithm (WOA) aimed at minimizing the network total costs
with application of a modified priority-based encoding procedure is proposed. To validate
the model and effectiveness of the proposed algorithm, some quantitative experiments were
designed and solved by an optimization solver package and the proposed algorithm. Com-
parison of the outcomes provided by the proposed algorithm and exact solution is indicative
of high quality performance of the applied algorithm to find a near-optimal solution within
the reasonable computational time.

Keywords: Closed-loop supply chain network design; Modified priority-based encoding;
uncertainty; Whale optimization algorithm

1 Introduction

Economic and industrial changes are taking place quicker today than the past. Globaliza-

tion of economic activities along with the rapid growth of technology and limited resources

has involved the firms in a close competition with one another. Any organization that

operates under these conditions has to maintain or increase its margin to survive in the

market. The supply chain, which is also referred to as the logistics network, consists of

suppliers, manufacturing centers, warehouses, distribution centers, and retail outlets, as

well as raw materials, work-in-process inventory, and finished products that flow between

the facilities (Simchi-Levi et al. 1999). In this set, the customers are considered as the very

last members of a chain. Supply chain networks are classified into two general categories

of (1) traditional supply chains as a forward or an open-loop chain and (2) integrated

chains that are composed of components such as raw materials, manufacturing facilities,

distribution centers, and customers; all of which are connected by the flow of materials

and information in forward reverse chains, respectively (Stevens 1989). In contrast with a

traditional supply chain where the material flow movements are directed from suppliers to
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customers, a reverse supply chain refers to the flow of materials from customers towards

the supplier, and the consumed products move from the final consumer to the production

centers. The integrity of forward and reverse supply chains result in a CLSC (Guide et al.

2003). One of the most comprehensive strategic decision in supply chain management

is the network design problem that requires optimization of the whole supply chain for

an efficient long-term operation. Network design determines the number, locations, and

capacities of the production facilities and distribution channels in terms of the ingredi-

ents for consumption and production to be transferred from suppliers towards customers.

Additionally, controlling uncertain parameters is another management task in the CLSC;

uncertainties in supply (delays in sending raw materials or products), distribution and

production processes, demand estimation, and quantity of the returned products are only

a number of the problems in a practical CLSC network design. Hence, the complexity and

dynamic nature of any supply chains impose high degrees of uncertainty and considerably

affects network and supply chain decision-making process (Özkır and Başlıgıl 2012).

The effects of uncertainties on strategic decisions are by far more observable on tactical

decisions (Pishvaee et al. 2011). Hence, although ignoring uncertainties at operational

levels incurs costs, such imposed costs are often not remarkable as the system corrects

itself in a short period of time. However, if uncertainties are ignored at strategic levels,

the damage to the system is often more drastic and some times irreversible; as a result,

designing a reliable supply chain network that can properly function under uncertainty is

imperative to the competitive advantage of the chain. This paper consists of the following

sections: In the next section, the literature related to the reverse and CLSC is reviewed.

In Section 3, mathematical formulation of the proposed model and RFP are presented.

Section 4 presents a modified priority-based encoding and the proposed WOA. Section 5

provides the quantitative outcome for a set of design problems with different sizes. Finally,

the conclusions, managerial implications, and suggestions for future studies are presented

in Section 6.

2 Literature review

Over recent years, regarding the rising importance in both academic and practical attrac-

tion of supply chain, especially reverse and CLSC ones, some researchers have focused on

publishing a comprehensive review of the existing literature in this field, specifying the
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observed research gaps, and consequently proposing future research areas and paradigms.

Research related to the (Fleischmann et al. 1997) can be considered as the first work re-

viewing the research conducted on reverse logistics networks. They classified the studies

into three general categories of distribution planning, inventory, and production plan-

ning. Govindan et al. (2015) present a more comprehensive literature review regarding

the closed-loop and reverse supply chains. They classify 382 papers published from 2007

to 2013 and propose a more detailed classification based on 10 factors, e.g. the year of

release, approaches, objectives, functions, etc. They assert that almost 50% of the total

surveys are linked to the CLSC network design, and almost 40% of them are connected

to the reverse supply chain network design. Furthermore, their study revealed that 12%

and 88% of the published papers are related to the single-objective and multi-objective

models, respectively.

Nowadays, network design is considered as one of the most central tactical and strate-

gic decisions to be attended to in supply chain management (SCM). In general, supply

chain network design decisions include determining the number and locations of facilities

(strategic decisions) and the quantity of flow between them (tactical decisions). In recent

years, a few of articles have focused on integrated forward/reverse network design. The

mentioned type of integration can prevent the sub-optimality and increase the level of

network performance and coordination between forward and reverse processes. Further-

more, as mentioned above, uncertainty parameters strongly influence the strategic and

tactical decisions in CLSC network design. In the following section, some of the articles

discussing the reverse and closed-loop supply chain network design are presented.

Inderfurth (2005) studies a CLCS network based on a stochastic programming model.

He defines a parameter to measure the uncertainty of quality as demand and return rates

of the used products are stochastic. Altiparmak et al. (2006) propose a solution encoding

to find the non-dominated set of solutions for a multi-objective supply chain network

design problem. The objectives of their model are minimization of the total network

costs and maximization of the satisfaction rate of the total customer demands within the

access time. They use a genetic algorithm (GA) with priority-based encoding to solve

their proposed model. Üster et al. (2007) present a multi-product CLSC network design,

in which the location of the collection centers and reproduction centers are discussed by

considering the forward and reverse flows. The aim of their model is to minimize the
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total cost including fixed, transportation, and processing costs. They use the Benders

decomposition technique to approach the problem. Xu et al. (2008) propose a MINLP

model for a multi-objective supply chain network design problem, in which a spanning

tree-based GA with the prÜfer number representation is used to design the supply chain

network to satisfy the customer demand with maximum customer service and minimum

total network costs. Pishvaee et al. (2010b) develop a bi-objective mixed-integer linear

programming (MILP) model for a logistics network problem to simultaneously minimize

the total cost and maximize accountability. They use a mimetic algorithm to find a

set of Pareto-optimal solutions, in which a new dynamic search strategy is used of by

employing the priority-based encoding. In addition, they design a fuzzy bi-objective

multi-period model for a CLSC network design problem, in which the demand, return

rate of the used product, operation costs, transportation costs, and delivery time are

considered to be uncertain. Özceylan et al. (2014) develop an integrated MINLP model

to optimize the strategic decisions related to the flow of products in the forward and

reverse supply chains along with making tactical decisions to balance the production line

in the reverse supply chain. Zohal and Soleimani (2016) design a multi-echelon CLSC

network for gold industry. They apply the ant colony optimization algorithm to find a

near-optimal solution. The objectives of their proposed model are minimization of both

the total network costs and carbon emission rates. Amin and Zhang (2013a) propose a

stochastic multi-objective model to design the integrated forward/reverse logistics with

regard to accountability and quality levels. In their model, the demand and return rates

of the used products are considered uncertain with a minimization objective including

transportation, purchasing, and disassembly costs. Talaei et al. (2016) also design a multi-

objective MINLP model for a closed-loop green supply chain network to simultaneously

minimize both the total network costs and carbon dioxide emission rates. They took

advantage of an RFP approach to address the effects of uncertainty parameters on the

network designs. Alfonso-Lizarazo et al. (2013) investigate a carbon sensitive supply

chain network problem with green procurement. Amin and Zhang (2013b) apply the ε-

constraint approach and used a numerical illustration of Copiers Industry to show the

applicability of the proposed model. Among the most recent studies, Amin and Baki

(2017) propose a multi-objective MIP by considering global factors like exchange rates

and customs duties under an uncertain demand pattern and develop a fuzzy solution
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approach. Ghahremani Nahr et al. (2018) investigate a CLSC and propose a so called

League Champion meta-heuristic algorithm in their solution approach. Alamdar et al.

(2018) investigate the optimal decisions in CLSC under a fuzzy price and sales effort-

dependent demand. They establish several game theory models to compare the behavior

of a manufacturer, a retailer and a collector. Farrokh et al. (2018) use a fuzzy stochastic

programming approach to a supply chain design while Jabbarzadeh et al. (2018) use

a robust approach to design CLSC under operational and disruption risks. Soleimani

et al. (2017) consider a green CLSC design accounting for environmental considerations,

as well as lost working days and propose a genetic algorithm for solution method, and

Rad and Nahavandi (2018) consider also a green multi objective CLSC whose objective

functions are the economic cost, and environmental emissions,and of customer satisfaction.

They develop an ant colony optimization solution algorithm for their model. Tosarkani

and Amin (2018) conduct a Fuzzy analytic network process in a case study of battery

supply chain design, while in another case study, Özceylan et al. (2017) develop a linear

programming model for CLSC of the automotive industry in Turkey. A more detailed

classification based on four factors including the certain and uncertain parameters, single

and multi-period models, single and multi-product models, and single and multi-objective

models is illustrated in Table 1.

Contribution highlights

The review of the existing literature reveals a need for a new supply chain network design

model, capable of implementing real-world uncertain parameters. In order to make the

model closer to the real-world dynamics, the present study develop a comprehensive model

to consider uncertainty in periodic demand, raw material cost, transportation cost of

material and goods, shortage cost, and finally the uncertain nature of the amount of

return products (as a fraction of the total sales). Unlike many other studies, this model

is capable of both opening and closing selected facilities, considering the associated cost

of opening/closing, to redesign the supply chain network, if required. In addition, the

proposed model seeks to minimize the total costs among uncertain parameters. It must

be mentioned that the designed model is developed based on RFP. To approach the model,

a novel WOA algorithm is proposed using a modified priority-based encoding to find an

approximate optimal solution within a reasonable computational time.
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Table 1: Review of some supply chain network models
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Author-date

* * * * Cruz-Rivera and Ertel (2009); Diabat et al. (2015); Fleischmann
et al. (2001); Guide et al. (2003); Kannan et al. (2012); Khajavi
et al. (2011); Lee and Dong (2008); Lee et al. (2006); Lieckens
and Vandaele (2007); Louwers et al. (1999); Lu and Bostel (2007);
Mahmoudzadeh et al. (2013); Neto et al. (2008) ; Pishvaee et al.
(2010a); Schultmann et al. (2003); Wang and Hsu (2010)

* * * * Aras and Aksen (2008); Chouinard et al. (2008); Hatefi and Jolai
(2014); Kara and Onut (2010) ; Lee et al. (2010); Lieckens and
Vandaele (2007); Listeş (2007); Listeş and Dekker (2005); Pish-
vaee et al. (2009); Pishvaee et al. (2011); Qin and Ji (2010); Sub-
ramanian et al. (2013); Üster and Hwang (2016) ; Wang and Hsu
(2010); Alamdar et al. (2018)

* * * * Bouzembrak et al. (2011); Elhedhli and Merrick (2012) ; Garg
et al. (2015); Krikke et al. (2003); Özceylan et al. (2014); Pishvaee
et al. (2010b)

* * * * Fallah et al. (2015); Paksoy et al. (2012); Saeedi et al. (2015);
Saffari et al. (2015); Talaei et al. (2016)

* * * * Das and Chowdhury (2012); Dat et al. (2012); Demirel and Gökçen
(2008); Jayaraman et al. (1999); Kannan et al. (2009) ; Lee et al.
(2009); Mahmoudi et al. (2013); Pati et al. (2006); Pokharel and
Mutha (2009); Salema et al. (2006)

* * * * Francas and Minner (2009); Govindan et al. (2015); Lee et al.
(2009); Salema et al. (2006); Soleimani et al. (2014)

* * * * Abdallah et al. (2010); Üster et al. (2007); Wang et al. (2011)
* * * * Amin and Zhang (2012); Amin and Zhang (2013a); Amin and

Zhang (2013b); Ramezani et al. (2013); Ghahremani Nahr et al.
(2018)

* * * * Alfonso-Lizarazo et al. (2013); Kannan et al. (2010)
* * * * El-Sayed et al. (2010); Inderfurth (2005); Farrokh et al. (2018)
* * * * Rad and Nahavandi (2018)
* * * * Pishvaee et al. (2010b)
* * * * Alumur et al. (2012) ; Beamon and Fernandes (2004); Kannan

et al. (2010) ; Keyvanshokooh et al. (2013); Kim et al. (2006);
Ko and Evans (2007); Özkır and Başlıgıl (2012); Ramudhin et al.
(2008); Realff et al. (2004); Sasikumar et al. (2010) ; Özceylan
et al. (2017)

* * * * Cardoso et al. (2013); Shi et al. (2011); Zeballos et al. (2012);
Zeballos et al. (2014); Tosarkani and Amin (2018); Jabbarzadeh
et al. (2018)

* * * * Pasandideh and Asadi (2016); Pasandideh et al. (2015a)
* * * * Pasandideh et al. (2015b) ; Subulan et al. (2015); Soleimani et al.

(2017)
This Paper

3 Problem definition and mathematical formulation

In this problem, a multi-product, multi-period, multi-echelon CLSC network is designed

under discounts, shortage, and uncertainty. This research was initially motivated by the

case of a local automotive manufacturer in Iran. Due to international sanctions against

the country and subsequent difficulties in sourcing material and supply, CLSC has become
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as an increasingly important source of supplying critical parts, elements and material in

the country and within this industry. However, generalizing the initial model, this paper

presents a more holistic approach to CLSC optimization, as we believe this model is

capable of addressing different manufacturing sectors with similar frameworks (within

the reach of slight customization). This boarder approach is particularly of interest, as a

review on other literature shows a great attempt has already been made on different sectors

and industries with minimum effort to generalize the results. Among those literature with

focus on a specific industry are, electronics and digital equipment (Rad and Nahavandi

2018; Amin and Baki 2017); battery (Tosarkani and Amin 2018); tire (Amin et al. 2017;

Sahebjamnia et al. 2018); e-commerce in an Indian firm (Prakash et al. 2018); yarn, fabric,

and apparel (Kim et al. 2018); glass (Hajiaghaei-Keshteli and Fard 2018); and washing

machine (Jeihoonian et al. 2017).

The description of our supply chain network is given as follows. The forward flow net-

work includes raw-material suppliers, production centers, warehouses, distribution cen-

ters, and customer zones. The reverse network includes collection centers, repair centers,

recycling and disposal centers, as well as all facilities with limited capacities. As our gen-

eral map is illustrated in Figure 1, in the forward flow network, the raw-material suppliers

ship the raw materials needed to produce the new products in the production centers.

The raw materials are sent to the warehouses after being processed in the production

centers. Then, distribution centers deliver them to final customers. In the reverse flow, a

proportion of the products returned from the customers is collected by the collection cen-

ters, where fixable and upgradeable products are sent to repair centers after inspection.

The rest is sent to a recycling centers. The repaired products at the repair centers, like

new ones, go back to the forward flow and are sent back to the distribution centers and

the potential warehouses. In addition, recyclable products after disassembly at recycling

centers are sent to the production center for reuse (if they could be reused); otherwise,

they are sent to disposal centers.

To specify the study scope, the following assumptions are made to formulate the

problem:

• The discount offered by the raw material supplier is of a quantity discount type.

• All the facilities have limited and identified capacities.

• The location of all centers has to be determined.
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Figure 1: The map of a multi-echelon CLSC network

• Unmet demand of customers (shortage) is back-ordered.

• Customer demand of each product must be satisfied until the last time period.

• Distribution and collection centers are considered as hybrid centers.

• The customer demand, fraction of returned product, transportation cost between

facilities, purchase cost, and shortage cost are considered as uncertainty parameters.

With consideration of the above-mentioned assumptions, the most important issues

addressed in this paper are as follow:

• To locate the raw material supplier, production centers, warehouses, hybrid distri-

bution/ collection centers, repair centers, recycling centers, and disposal centers

• To determine the optimal flow between the located centers

• To find an appropriate level of discount.

The following subsections define the notations used the formulation of our proposed model.

3.1 Sets

Symbol Definition index

S Set of raw-material suppliers ∀s ∈ S
M Set of production centers ∀m ∈M
W Set of potential warehouses ∀w ∈ W
E Set of distribution/collection centers ∀e ∈ E
C Set of customer zone ∀c ∈ C
R Set of repair centers ∀r ∈ R
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U Set of recycling centers ∀u ∈ U
L Set of disposal centers ∀l ∈ L
T Set of periods ∀t ∈ T
P Set of products ∀p ∈ P
I Set of raw-materials ∀i ∈ I
H Set of discount levels ∀h ∈ H
N Set of Transportation mode ∀n ∈ N .

The following sets are also defined to offer definitions of the model parameters and the

decision variables:

G1 = S ∪M ∪W ∪ E ∪ C
A′ = {(i, j)|(i ∈M, j ∈ W ) ∪ (i ∈ W, j ∈ E) ∪ (i ∈ E, j ∈ C)}
A′′ = {(i, j)|(i ∈ S, j ∈M)}
G2 = C ∪ E ∪R ∪ U ∪ L
A′′′ = {(i, j)|(i ∈ C, j ∈ E)∪ (i ∈ E, j ∈ R)∪ (i ∈ E, j ∈ U)∪ (i ∈ R, j ∈ E)∪ (i ∈ R, j ∈
W )}
A′′′′ = {(i, j)|(i ∈ U, j ∈ L) ∪ (i ∈ U, j ∈M)}
G = (G1 ∪G2)\C
A1 = A′′ ∪ A′′′′ and A2 = A′ ∪ A′′′.

3.2 Parameters

fjt The fixed cost of facility j ∈ G in period t

opjt The opening cost of facility j ∈ G in period t

cljt The closing cost of facility j ∈ G in period t

tc1
ijj′n Unit transportation cost of raw-material i between facilities (j, j′) ∈ A1 with

transportation mode n

tc2
pjj′n Unit transportation cost of product p between facilities (j, j′) ∈ A2 with trans-

portation mode n

himt Unit inventory holding cost of raw-material i by production center m in period

t

h′pwt Unit inventory holding cost of product m by potential warehouse w in period

t
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prisht Unit purchase cost of raw-material i by raw-material supplier s with discount

level h in period t

vaisht Lower limit on the business volume of raw material i by raw-material supplier

s that corresponds to the discount interval h in period t (vai,s,1,t = 0,∀s, i, t)
c1

pmt Unit production of product p by production center m in period t

c2
pet Unit distribution cost of product p by distribution/collection center e in period

t

c3
pet Unit collection cost of returned product p by distribution/collection center e

in period t

c4
prt Unit repair cost of product p by repair center r in period t

c5
put Unit recycling cost of product p by recycling center u in period t

c6
ilt Unit disposal cost of raw-material i by disposal center l in period t

πpct Unit shortage cost of product p in supplying demand of customer zone c in

period t

δip The number raw-material i needed to produce a unit of product p

dempct Demand of product p of customer zone c in period t

αpct Fraction of returned product p from customer zone c in period t

βpt Fraction of repairable product p in period t

γpt Fraction of repaired product p in period t that sends to distribution/collection

center

θit Fraction of usable raw-material i in period t

cap1
si Capacity of supplier s for raw-material i

cap2
mi Capacity of production center m of raw-material i

cap3
mp Capacity of production center m of product p

cap4
wp Capacity of potential warehouse w of product p

cap5
ep Capacity of distribution center e of product p

cap6
wp Capacity of distribution center e of product p

cap7
rp Capacity of repair center r of product p

cap8
up Capacity of recycling center u of product p

cap9
li Capacity of disposal center l of raw-material i
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3.3 Decision variables

X1
ijj′nt Quantity of raw-material i shipped between facilities (j, j′) ∈ A1 with

transportation mode n in period t

X2
ijj′nt Quantity of product p shipped between facilities (j, j′) ∈ A2 with trans-

portation mode n in period t

Qist Total quantities ordered for raw material i from supplier s in period t

over the planning horizon

V Qimt Quantity of raw-material i stored at production center m in period t

IQpwt Quantity of product p stored at potential warehouse w in period t

UDpct Quantity of non-satisfied demand of product p of customer c in period t

Yjt 1 if facility j ∈ Gis opened in period t; 0 otherwise.

Aisht 1 if the quantity purchased of raw material i from supplier s in period t

falls in the discount interval h; 0 otherwise

3.4 Deterministic modeling

The deterministic mathematical model of the problem can be presented as follows.

minZ =
∑

t∈T




∑

j∈G

(fjtYjt + opjtYjt(1− Yj,t−1) + cljtYjt(1− Yj,t+1))

+
∑

n∈N


∑

i∈I

∑

(j,j′)∈A1

tc1
ijj′nX

1
ijj′nt +

∑

p∈P

∑

(j,j′)∈A2

tc2
pjj′nX

2
pjj′nt




+
∑

i∈I

∑

j∈M

hijtV Qijt +
∑

p∈P

∑

j∈W

h′ijtIQpjt +
∑

p∈P

∑

j∈C

πpjtUDpjt

+
∑

i∈I

∑

j∈S

∑

j′∈M

∑

h∈H

∑

n∈N

prijhtAijhtX
1
ijj′nt

+
∑

p∈P

∑

n∈N


∑

j∈M

∑

j′∈W

c1
pjt +

∑

j∈E

∑

j′∈C

c2
pjt +

∑

j∈C

∑

j′∈E

c3
pj′t +

∑

j∈E

∑

j′∈R

c4
pj′t

+
∑

j∈E

∑

j′∈U

c5
pj′t


X2

pjj′nt +
∑

i∈I

∑

j∈U

∑

j′∈L

∑

n∈N

c6
j′itX

1
ijj′nt



 (1)

s.t.

Aijhtvaijht ≤ Qijt, ∀j ∈ S, h ∈ H, i ∈ I, t ∈ T (2)
∑

h∈H

Aijht = Yjt, ∀j ∈ S, i ∈ I, t ∈ T (3)

Qijt =
n∈N∑

j′∈M

X1
ijj′nt, ∀j ∈ S, i ∈ I, t ∈ T (4)
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∑

j∈S

∑

n∈N

X1
ijj′nt +

∑

j∈U

∑

n∈N

X1
ijj′nt + V Qij′,t−1 −

∑

p∈P

∑

j∈W

∑

n∈N

X2
pj′jntδip = V Qij′t,

∀j′ ∈M, i ∈ I, t ∈ T (5)

∑

j∈M

∑

n∈N

X2
pjj′nt +

∑

j∈R

∑

n∈N

X2
pjj′nt + IQpj′,t−1 −

∑

j∈E

∑

n∈N

X2
pj′jnt = IQpj′t,

∀j′ ∈ W, p ∈ P, t ∈ T (6)

∑

j∈W

∑

n∈N

X2
pjjnt +

∑

j∈R

∑

n∈N

X2
pjj′nt =

∑

j∈C

∑

n∈N

X2
pj′jnt, ∀j′ ∈ E, p ∈ P, t ∈ T (7)

∑

j∈E

∑

n∈N

X2
pjjnt − UDpj′,t−1 + UDpj′t = dempj′t, ∀j′ ∈ C, p ∈ P, t ∈ T (8)

αpj′t

∑

j∈E

∑

n∈N

X2
pjj′n,t−1 =

∑

j∈E

∑

n∈N

X2
pj′jnt, ∀j′ ∈ C, p ∈ P, t ∈ T (9)

βpt

∑

j∈C

∑

n∈N

X2
pjj′nt =

∑

j∈U

∑

n∈N

X2
pj′jnt, ∀j′ ∈ E, p ∈ P, t ∈ T (10)

(1− βpt)
∑

j∈C

∑

n∈N

X2
pjj′nt =

∑

j∈U

∑

n∈N

X2
pj′jnt, ∀j′ ∈ E, p ∈ P, t ∈ T (11)

γpt

∑

j∈E

∑

n∈N

X2
pjj′nt =

∑

j∈E

∑

n∈N

X2
pj′jnt, ∀j′ ∈ R, p ∈ P, t ∈ T (12)

(1− γpt)
∑

j∈E

∑

n∈N

X2
pjj′nt =

∑

j∈W

∑

n∈N

X2
pj′jnt, ∀j′ ∈ R, p ∈ P, t ∈ T (13)

θit

∑

p∈P

∑

j∈E

∑

n∈N

X2
pjj′ntδip =

∑

i∈I

∑

j∈M

∑

n∈N

X1
1j′jnt, ∀j′ ∈ U, i ∈ I, t ∈ T (14)

(1− θit)
∑

p∈P

∑

j∈E

∑

n∈N

X2
pjj′ntδip =

∑

p∈P

∑

j∈L

∑

n∈N

X1
Ij′jnt, ∀j′ ∈ U, i ∈ I, t ∈ T (15)

∑

j′∈M

∑

n∈N

X1
ijj′nt ≤ cap1

jiYjt, ∀j ∈ S, i ∈ I, t ∈ T (16)

V Qijt ≤ cap2
jiYjt, ∀j ∈M, p ∈ P, t ∈ T (17)

∑

j′∈W

∑

n∈N

X2
pjj′nt ≤ cap3

jpYjt, ∀j ∈ W, p ∈ P, t ∈ T (18)

IQpjt ≤ cap4
jpYjt, ∀j ∈ W, p ∈ P, t ∈ T (19)

∑

j∈W

∑

n∈N

X2
pjj′nt +

∑

j∈R

∑

n∈N

X2
pjj′nt ≤ cap5

j′pYj′t, ∀j′ ∈ E, p ∈ P, t ∈ T (20)

∑

j∈C

∑

n∈N

X2
pjj′nt ≤ cap6

j′pYj′t, ∀j′ ∈ E, p ∈ P, t ∈ T (21)

∑

j∈E

∑

n∈N

X2
pjj′nt ≤ cap7

j′pYj′t, ∀j′ ∈ U, p ∈ P, t ∈ T (22)

∑

j∈E

∑

n∈N

X2
pjj′nt ≤ cap8

j′pYj′t, ∀j′ ∈ R, p ∈ P, t ∈ T (23)

∑

j∈U

∑

n∈N

X1
ijj′nt ≤ cap9

j′iYj′t, ∀j′ ∈ L, p ∈ P, t ∈ T (24)
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V Qim,0 = 0, ∀i ∈M, t = 1 (25)

IQpw,0 = 0, ∀j ∈ W, t = T (26)

UDpc,0 = 0, ∀j ∈ P, t = T (27)

X1
ijj′nt, V Qimt, Qist ≥ 0, ∀(j, j′) ∈ A1, i ∈ I, n ∈ N, t ∈ T, s ∈ S,m ∈M (28)

X2
pjj′nt, IQpmt, UDP Ct ≥ 0, ∀(j, j′) ∈ A2, p ∈ P, n ∈ N, t ∈ T,w ∈ W, c ∈ C (29)

Yjt ∈ {0, 1}, ∀j ∈ G, t ∈ T. (30)

The objective function (1) intends to minimize the total supply chain network costs

including the annual fixed costs, costs of opening and closing the facilities (first row),

transportation costs of raw materials and manufactured products (second row), holding

costs of raw materials and finished products, as well as the shortage penalty cost (third

row), raw material cost associated with the discount (fourth row) operational costs asso-

ciated with the facilities as the cost of producing, distributing, collecting, repairing and

recycling, respectively (in the fifth row), and finally disposal of products. The constraint

in inequality (2) represents the total amount of raw materials purchased from the suppli-

ers at their expressed discount levels. Constraint (3) ensures that the selected supplier

purchases the raw materials at only one discount interval. Constraint (4) sends the total

raw materials purchased from the suppliers to the production centers. Constraint (5)

presents the volume of raw materials sent by the supplier and recycling centers to the

plant, where a portion is stored in the warehouse of the factory after production. Con-

straint (6) controls the input and output volumes of the warehouse. Equation (7) is a

balance constraint on the distribution center and ensures that the input flow from the

repair center and warehouse to the repair center is equal to the output flow from the

distribution center to the customers. Constraint (8) guarantees that customer demand

must be met till the last moment. Constraint (9) presents a percentage of products which

are returned a period after being bought by customers. Constraints (10)–(11) indicate

that the proportion of repairable goods which are sent from collection centers to the re-

pair center and the proportion of irreparable ones to the recycling centers after inspection

in the collection centers. Constraints (12) indicates that a portion of repaired items are

returned back to the distribution centers while (13) shows that the rest of the repaired

items is sent to warehouses. Similarly, constraints (14) shows the portion of recycled raw

material which are re-sent to the manufacturing centers after inspection and disassembling

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the products while (15) shows the rest of them that are sent to the the disposal centers.

Constraints (16)-(17) are related to the capacity of the network facilities, i.e. the capacity

of the supplier in raw material procurement, the amount of storage of each raw material

in the warehouse, and the production capacity of each product for created factories, re-

spectively. Constraint (19) ensures that if a warehouse is established, its capacity cannot

exceed the predetermined capacity. Constraints (20)–(21) state that if dual collection and

recycling centers are created, the amount of distribution and collection does not exceed

the capacity of the facility while constraint (22) shows the maximum ability for recycling

the products at the recycling center. Constraint (23) indicates the maximum capacity of

the repair centers in terms if number of products and similarly, Constraint (24) restricts

disposal amount of unusable raw materials. Constraints (25)–(27) set the initial value of

raw material, finished product and back orders. Finally, constraints (28)–(30) define the

type of decision variables and their range.

3.5 Uncertainty modeling

3.5.1 Trapezoidal fuzzy programming model

To tackle uncertainty parameters in the objective function and constraints, some fuzzy

models such as chance constraint fuzzy programming (FP) have been developed. It is

a well-recognized method that relies on profound mathematical concepts such as the

expected value of a fuzzy number in the objective function and possibility and the necessity

measure in the constraints. Inuiguchi and Ramık (2000) propose various fuzzy number

forms such as triangular and trapezoidal fuzzy number to support uncertain model. Here

we use the trapezoidal fuzzy distribution to show the basic FP model and the necessity

measure to control the conservatism level of satisfying the constraints. Consider the

following mathematical model as the base:

(FP1) minZ = ax+ fy (31a)

s.t.

bix ≥ ci, ∀i = 1, ..., l (31b)

dix = eiy, ∀i = 1, ...,m (31c)

x, y ≥ 0. (31d)
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Suppose vector a (variable costs), c (customer demand), and coefficient matrix d (frac-

tion of the returned product) are the uncertain parameters of the problem. So, to con-

struct its FP counterpart model and tackle the uncertainty parameters, the expected

value and necessity measure are made use of in the objective function and constraints,

respectively. The necessity measure is used to convert fuzzy chance constraints into their

equivalent crisp ones. Eq. (32) expresses the membership function of a trapezoidal fuzzy

number, ã, by four sensitive points (i.e. ã(p), ã(rp), ã(ro), ã(o)) shown on Figure 2.

µã(x)





0, x < p

x−ap

arp−ap , p ≤ x ≤ rp

a0−x
a0−aro , ro ≤ x ≤ o

0, x ≥ o.

(32)

ã

1

ã(p) ã(rp) ã(ro) ã(o)

Figure 2: Fuzzy parameter ã

Therefore, the following model which all fuzzy parameters defined as trapezoidal ones

is considered as the FP counterpart expression for (31a–31d):

(FP2) minZ = ãtx+ fy (33a)

s.t.

NEC(bix ≥ ci) ≥ ϑn, ∀i = 1, ..., l (33b)

NEC(d̃ix = eiy) ≥ ϑn, ∀i = 1, ...,m (33c)

x, y ≥ 0. (33d)

Knowing that uncertainty parameters of the constraints must be formed with a satisfaction

level of at least ϑn, the equivalent crisp parametric model of (33a–33d) can be written as
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follows:

(CFP) minEV [Z] =
(
ap + arp + aro + ao

4

)
x (34a)

s.t.

bix ≥ (1− ϑn)cro
i + (ϑn)co

i , ∀i = 1, ..., l (34a)

[(ϑn)drp
i + (1− ϑn)dp

i ]x ≤ eiy, ∀i = 1, ...,m (34b)

[(ϑn)do
i + (1− ϑn)dro

i ]x ≥ eiy, ∀i = 1, ...,m (34c)

x, y ≥ 0, 0 ≤ ϑn ≤ 1. (34d)

According to the above-presented descriptions, the equivalent auxiliary crisp model of

the CLSC network design model, given in (1–30), can be formulated as follows:

minEV [Z] =
∑

t∈T




∑

j∈G

(fjtYjt + opjtYjt(1− Yj,t−1) + cljtYjt(1− Yj,t+1))

+
∑

(j,j′)∈A1

∑

i∈I

∑

n∈N

1
4
(
tc1p

ijj′n + tc1rp
ijj′n + tc1ro

ijj′n + tc1o
ijj′n

)
X1

ijj′nt

+
∑

(j,j′)∈A2

∑

p∈P

∑

n∈N

1
4
(
tc2p

ijj′n + tc2rp
ijj′n + tc2ro

ijj′n + tc2o
ijj′n

)
X2

pjj′nt

+
∑

j∈W

∑

p∈P

h′ijtIQpjt +
∑

j∈M

∑

i∈I

∑

t∈T

hijtV Qjit

+
∑

j∈C

∑

p∈P

1
4
(
πp

pjt + πrp
pjt + πro

pjt + πo
pjt

)
UDpct

+
∑

j∈S

∑

j′∈M

∑

i∈I

∑

n∈N

∑

h∈H

1
4
(
prp

ijht + prrp
ijht + prro

ijht + pro
ijht

)
AijhtX

1
ijj′tn

+
∑

p∈P

∑

n∈N


∑

j∈M

∑

j′∈W

c1
pjt +

∑

j∈E

∑

j′∈C

c2
pjt +

∑

j∈E

∑

j′∈C

c3
pjt +

∑

j∈E

∑

j′∈R

c4
pjt

+
∑

j∈E

∑

j′∈U

c5
pjt


Xpjj′nt +

∑

j∈U

∑

j′∈L

∑

i∈I

∑

n∈N

c6
ij′tXijj′nt





s.t.
∑

j∈E

∑

n∈N

Xpjj′nt − UDpj′,t−1 + UDpj′t ≥ (1− ϑ1)demro
pj′t + (ϑ1)demo

pj′t,

∀j′ ∈ C, p ∈ P, t ∈ T (35)
[
(ϑ2)αrp

pj′t + (1− ϑ2)αp
pj′t

] ∑

j∈E

∑

n∈N

X2
pjj′n,t−1 ≤

∑

j∈E

∑

n∈N

X2
pj′jnt,

∀j′ ∈ C, p ∈ P, t ∈ T (36)
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[
(ϑ2)αo

pj′t + (1− ϑ2)αro
pj′t

] ∑

j∈E

∑

n∈N

X2
pjj′n,t−1 ≤

∑

j∈E

∑

n∈N

X2
pj′jnt,

∀j′ ∈ C, p ∈ P, t ∈ T (37)

0.5 ≤ ϑ1, ϑ2 < 1 (38)

(10)–(30).

3.5.2 The proposed robust fuzzy programming

Now, we present the robust formulation of the obtained fuzzy mathematical model. As-

suming again that only vectors a, c, and the coefficient matrix d are the uncertain pa-

rameters, according to the (CFP) model, the (RFP) model is formulated as follows:

(RFP) minE[Z] =EV [Z] + ω(Zmax − Zmin) + ρ[co
i − (1− ϑn)cro

i − (ϑ)co
i ]

+ τ [dro
i + (ϑn)drp

i + (1− ϑn)dp
i − (ϑn)do

i − (1− ϑn)dro
i − dp

i ]

(39a)

s.t.

bix ≥ (1− ϑn)cro
i + (ϑn)co

i , ∀i = 1, ..., l (39b)

[(ϑn)drp
i + (1− ϑn)dp

i ]x ≤ eiy, ∀i = 1, ..., l (39c)

[(ϑn)do
i + (1− ϑn)dro

i ]x ≥ eiy, ∀i = 1, ...,m (39d)

x, y ≥ 0, 0 ≤ ϑn ≤ 1. (39e)

Similar to (CFP) model, the first term in the objective function is the expected value of

Z, which results in minimization of the expected total network costs. The second term,

i.e., ω(Zmax − Zmin), indicates the difference between the two extreme possible values of

Z where ω represents the weight of this term against the three other terms in objective

function. Moreover, Zmax and Zmin can be defined as follows:

Zmax = aox+ fy (40a)

Zmin = apx+ fy (40b)

Therefore, the existence of the second term results in controlling the optimality robustness

of the solution vector under the expected optimal value of Z. The third and fourth terms

determine the confidence level of each chance constraint. ρ and τ are the unit penalty of
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possible violation of each constraint, and [co
i − (1− ϑn)cro

i − (ϑn)co
i ] and [dro

i + (ϑn)drp
i +

(1−ϑn)dp
i − (ϑn)do

i − (1−ϑn)dro
i −dp

i ] indicate the difference between the worst case value

of uncertainties parameters in chance constraints. Therefore, the proposed robust fuzzy

programming model for CLSC network design is as follows:

minZ ′ =EV [Z] + ω(Zmax − Zmin)

+
∑

c∈C

∑

p∈P

∑

t∈T

{[
demo

cpt − (1− ϑ1)demro
cpt − (ϑ1)demo

cpt

]

+τ
[
αro

pct + (ϑ1)αrp
pct + (1− ϑ1)αp

pct − (ϑn)αo
pct + (1− ϑ1)αro

pct − αp
pct

]}
(41)

s.t.

Zmax =
∑

t∈T




∑

j∈G

(fjtYjt + opjtYjt(1− Yj,t−1) + cljtYjt(1− Yj,t+1)) (42)

+
∑

n∈N


∑

i∈I

∑

(j,j′)∈A1

tc1o
ijj′nX

1
ijj′nt +

∑

p∈P

∑

(j,j′)∈A2

tc2o
pjj′nX

2
pjj′nt




+
∑

i∈I

∑

j∈M

hijtV Qijt +
∑

p∈P

∑

j∈W

h′ijtIQpjt +
∑

p∈P

∑

j∈C

πo
pjtUDpjt

+
∑

i∈I

∑

j∈S

∑

j′∈M

∑

h∈H

∑

n∈N

pro
ijhtAijhtX

1
ijj′nt

+
∑

p∈P

∑

n∈N


∑

j∈M

∑

j′∈W

c1
pjt +

∑

j∈E

∑

j′∈C

c2
pjt +

∑

j∈C

∑

j′∈E

c3
pj′t +

∑

j∈E

∑

j′∈R

c4
pj′t

+
∑

j∈E

∑

j′∈U

c5
pj′t


X2

pjj′nt +
∑

i∈I

∑

j∈U

∑

j′∈L

∑

n∈N

c6
j′itX

1
ijj′nt



 (43)

Zmin =
∑

t∈T




∑

j∈G

(fjtYjt + opjtYjt(1− Yj,t−1) + cljtYjt(1− Yj,t+1)) (44)

+
∑

n∈N


∑

i∈I

∑

(j,j′)∈A1

tc1p
ijj′nX

1
ijj′nt +

∑

p∈P

∑

(j,j′)∈A2

tc2p
pjj′nX

2
pjj′nt




+
∑

i∈I

∑

j∈M

hijtV Qijt +
∑

p∈P

∑

j∈W

h′ijtIQpjt +
∑

p∈P

∑

j∈C

πp
pjtUDpjt

+
∑

i∈I

∑

j∈S

∑

j′∈M

∑

h∈H

∑

n∈N

prp
ijhtAijhtX

1
ijj′nt

+
∑

p∈P

∑

n∈N


∑

j∈M

∑

j′∈W

c1
pjt +

∑

j∈E

∑

j′∈C

c2
pjt +

∑

j∈C

∑

j′∈E

c3
pj′t +

∑

j∈E

∑

j′∈R

c4
pj′t

+
∑

j∈E

∑

j′∈U

c5
pj′t


X2

pjj′nt +
∑

i∈I

∑

j∈U

∑

j′∈L

∑

n∈N

c6
j′itX

1
ijj′nt



 (45)

(10)–(30), (35)–(38).
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The proposed RFP model is a MINLP model. The NP-hardness of supply chain

network design problem has been proved in a good number of studies (e.g., Jayaraman

et al. 2003). They consist of two different parts, i.e. facility location problem and quantity

flow optimization among facilities and therefore, they are reducible to facility location

problems which have been proved to be NP-complete by Davis and Ray (1969). So

the discussed CLSC network design problem is considered as NP-hard in the present

study. Approaching this problem in large sizes by exact solutions is very time-consuming

and sometimes impractical. Therefore, several meta-heuristic algorithms with different

representations have been developed to obtain near-optimal solutions; though all the

proposed algorithms are not efficient. In the present study, a WOA algorithm based on

modified priority-based encoding was applied, which will be described in the following

section.

4 Solution approach

While exact methods used to be a good way for solving problems, ranging from linear

problems to non-linear problems, the recent decades have seen an increase in the number

of heuristic and meta-heuristic approaches to solve very complex problems. Using exact

approaches to solve problems which have a large scale seems not to be the best way

therefore, researchers have inclined to use heuristic and meta-heuristic approaches to solve

complex problems. In other words, the exact solution methods are ineffective to find the

optimum solution for large scale problems so, it has set the stage for solving problems

by heuristic and meta-heuristic approaches. Here we present a new population-based

meta-heuristic optimization algorithm inspired from animal behavior, called WOA using

modified a new priority-based encoding in order to cover the feasible search space. On

the other hand we present the corresponding decoding approach for solving the designed

CLSC network.

4.1 Solution representation (priority based encoding)

The debate about solution presentation is both timely and crucial. The path towards

encoding and decoding may be steep and strewn with challenges, which affect the algo-

rithms to find the optimum solution in the feasible solution space. Tree-based solution is

one way of representing supply chain network design problems. Gen and Cheng (2000)
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introduced three ways of encoding tree, contains edge-based encoding, vertex-based en-

coding, and edge-vertex encoding, however, there are several other ways of encoding tree.

In this paper, we have used vertex-based encoding which is modified in order to solve

the CLSC network problem. Furthermore, a priority-based encoding developed is based

on the work of Gen and Cheng (2000). The most noticeable about this encoding is that

it can solve the quantity flow optimization, facility location problem and proper amount

shortage in each period simultaneously. We consider two-level supply chain network as

shown in Figure 3 with (|K|) sources and (|J |) depots. The length of this solution is

equal to |K|+ |J | and the location of each cell represents the priorities in each period. We

regard two different procedures for decoding the solution, ranging from forward to reverse

supply chain. The variation between these two procedures are related to the potential

sources that must be located. The shortage of demand in the forward supply chain, may

lead to less number of source location than that of the time at which all demand must

be satisfied. On the other hand, all the returned products, must be collected in forward

supply chain, which means that the number of sources should be such that capacity of

located sources be able collect all returned products. In the following we explained the

decoding procedures of solutions for forward and reverse supply chain.

Transportation cost



4 3 1 6
2 5 3 1
3 7 5 2




Source

1220

2210

3240

Depot

1 120

2 150

3 130

4 180

Figure 3: Sample of two-level supply chain network

4.1.1 The decoding of the solutions for forward supply chain

In the first stage of the process, we select the cell number with the highest priority among

sources as a number of sources that must be opened. Then, we select the highest prior-

ities among sources and reduce the other priorities to zero. The next stage is updating

the solution, in which before connecting to a node (source or depot) with the minimum

transportation cost, select the node (depot or source) with the highest priority. Subse-

quently, determining the amount of shipment between the selected nodes by calculating
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minimum of the total demand and the shortage of previous periods, and capacity. Next,

the priority of depot or source is reduced to zero. If total demand of depots is greater

than total capacity of the selected sources, the amount of shortage for each depot is calcu-

lated. This process is repeated until all priorities are equal to zero. Table 2 presents the

trace table for the forward supply chain network, and Figure 4 shows how this modified

priority-based encoding is obtained.

Table 2: Trace table of decoding procedure for forward supply chain network
Iteration v(k + j) capk demjt +∑

t∈T st−1 k j Xkjt

0 [0 7 2—5 3 6 4] (0,210,240) (120,150,130,180) 2 4 180
1 [0 7 2—5 3 6 0] (0,30,240) (120,150,130,0) 2 1 30
2 [0 0 2—5 3 6 0] (0,0,240) (90,150,130,0) 3 3 130
3 [0 0 2—5 3 0 0] (0,0,110) (90,150,0,0) 3 1 90
4 [0 0 2—0 3 0 0] (0,0,20) (0,150,0,0) 3 2 20
5 [0 0 0—0 3 0 0] (0,0,0) (0,130,0,0) - 3 -
6 [0 0 0—0 0 0 0] (0,0,0) (0,130,0,0)

Source

1220

2210

3240

Depot

1 120

2 150

3 130

4 180

30

180

90

20

130

Transportation cost



4 3 1 6
2 5 3 1
3 7 5 2




Sources Depots

1 2 3 1 2 3 4

1 7 2 5 3 6 4

⇒
node

v(K + J)

1 2 3 1 2 3 4

1 7 2 5 3 6 4

⇒

node
v(K + J)

1 2 3 1 2 3 4

1 7 2 5 3 6 4

⇒

node
v(K + J) 0

7

Highest priority

2

Selected node no.

updated solution

Figure 4: Sample of two-level supply chain network

This decoding process is conducted in the specific framework; its decoding algorithm

as well as calculation table in the first period is illustrated in Algorithm 1.
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Algorithm 1 Decoding algorithm of forward supply chain network
Require: Sets of K, J , T ; The demand, capacity and transportation costs; encoded solution

v(K + J)
Ensure: Xkjt: Quantity of shipment between source k and depot j Sjt: Shortage of depot j in

period t Ykt: Opening of a center at location k in period t
1:
2: for t = 1 to T do
3: Select a node on l = arg max{v(k),∀k ∈ K}, so that ∑k∈K Ykt = l
4: while |d| < l do
5: Select a node on d = arg max{v(k), k ∈ K}
6: if |d| = l then v(k − l) = 0, ∀k ∈ K, l ∈ L
7: tr(k−l),i =∞,∀j ∈ |J |, k ∈ K, l ∈ L
8: cap(k−l)=0, ∀k∈K,l∈L

9: end while
10: while v(|k|+ j) 6= 0, ∀j ∈ J do
11: Xkjt = 0, Sjt = 0,∀j ∈ J, k ∈ K, t ∈ T
12: Select a node based on l = arg max{v(t), t ∈ |K|+ |J |},∀j ∈ J, k ∈ K
13: if l ∈ K a source is selected k∗ = l then
14: j∗ = arg min{trkj |v(j) 6= 0}∀j ∈ J select a depot with minimum cost
15: else if l ∈ j a depot selected j∗ = l then
16: k∗ = arg min{trkj |v(j) 6= 0}∀k ∈ K select a source with minimum cost
17: end if
18: Update demands and capacities:
19: Xk∗j∗t = min(capk∗ , demj∗t + Sj∗t)
20: capk∗ = capk∗ −Xk∗j∗t

21: demj∗t = demj∗t + S(j
∗t− 1)−X(k

∗j∗t)Step 8.
22: if capk∗ = 0 then v(k∗) = 0
23: if demj∗t = 0 then v(j∗) = 0
24: end while
25: if ∑j Xkjt > 0 then Ykt = 1
26: if demjt > 0 then Sjt = Sj,t−1 + demjt

27: end for

4.1.2 The decoding of the solutions for reverse supply chain

Once again, consider the two-level supply chain network that shown in Figure 3. To decode

the solution, in the first section, the cell with the highest priority among source nodes

is selected, then if capacity of the selected source is less than total returned products

the next highest priority is also selected. This procedure will continue while the total

capacity of sources is less than total returned products of depots. In the next stage, the

priorities of the nodes which are not selected are decrease to zero. Then, select the node

(depot or source) with the highest priority and connect it with the node which has the

minimum transportation cost. After that, the amount of shipment between the selected

nodes is determined by taking the minimum of returned products and capacity. Then the

priority (depot or source) is reduced to zero and this process is repeated until all priorities

equal to zero. Table 3 presents the trace table for the reverse supply chain network, and
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Figure 5 demonstrates how its modified priority-based encoding is obtained. The decoding

algorithm of solution for a reverse supply chain network is also given in Algorithm 2.

Algorithm 2 Decoding algorithm of reverse supply chain network
Require: Sets of K, J , T ; The returned product, capacity and transportation costs; encoded

solution v(K + J)
Ensure: Xkjt: Quantity of shipment between source k and depot j Ykt: Opening of a center at

location k
1: Step1.
2: for t = 1 to T do
3: while capT = ∑J

j=1Rjt do
4: Select a node on l = arg max{v(k), k ∈ K}
5: capT = ∑K

l=1 capl

6: if capT <
∑J

j=1Rjt then
7: v(k − l) = 0,∀k ∈ K, l ∈ L
8: trj,(k−l) =∞ ∀j ∈ J, k ∈ K, l ∈ L
9: end if

10: end while
11: while v(|k|+ j) 6= 0,∀j ∈ J do
12: Xkjt = 0, Sjt = 0,∀j ∈ J, k ∈ K
13: Select a node based on l = arg max{v(t), t ∈ |K|+ |J |}, ∀j ∈ J, k ∈ K
14: if l ∈ K a source is selected k∗ = l then
15: j∗ = arg min{trkj |v(j) 6= 0}∀j ∈ J select a depot with minimum cost
16: else if l ∈ j a depot selected j∗ = l then
17: k∗ = arg min{trkj |v(j) 6= 0}∀k ∈ K select a source with minimum cost
18: end if
19: Update demands and capacities:
20: Xk∗j∗t = min(capk∗ , Rj∗t)
21: capk∗ = capk∗ −Xk∗j∗t

22: Rj∗t = Rj∗t −X(k
∗j∗t)

23: if capk∗ = 0 then v(k∗) = 0
24: if Rj∗t = 0 then v(j∗) = 0
25: if ∑j Xkjt > 0 then Ykt = 1
26: end while
27: end for

In this paper, as mentioned before, the problem is a multi-level, multi-product, multi-

period CLSC network design, and the proposed solution should consider these items.

Therefore, as illustrated in Figure 6, the priority based encoding is represented by a

matrix, where T is a number of time periods, P is a number of products, S is a number of

raw material supplier, M is a number of production centers, W is a number of potential

warehouses, E is a number of hybrid distribution/collection centers, R, U , L are the

numbers of repair centers, recycling centers, and disposal centers, respectively.

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 3: Trace table of decoding procedure for reverse supply chain network
Iteration v(k) capk CapT

∑J
j=1 j v(k∗)

0 [1 7 2] (220,210,240) 210 580 2 [0 7 0]
1 [1 0 2] (220,0,240) 470 580 3 [0 7 2]
2 [1 0 0] (200,0,0) 670 580 1 [1 7 2]

Iteration v(k∗ + j) capk Rjt k∗ j Xjk∗t

0 [1 7 2—5 3 6 4] (220,210,240) (120,150,130,180) 2 4 180
1 [1 7 2—5 3 6 0] (220,30,240) (120,150,130,0) 2 1 30
2 [1 0 2—5 3 0 0] (220,0,240) (90,150,130,0) 1 3 130
3 [1 0 2—5 3 0 0] (90,0,240) (90,150,0,0) 2 3 90
4 [1 0 2—0 3 0 0] (90,0,150) (0,150,0,0) 1 2 90
5 [0 0 2—0 3 0 0] (0,0,150) (0,60,0,0) 3 2 60
6 [0 0 0—0 0 0 0] (0,0,90) (0,0,0,0)

Source

1220

2210

3240

Depot

1 120

2 150

3 130

4 180

130
90

30

180
90
60

Transportation cost



4 3 1 6
2 5 3 1
3 7 5 2




Sources Depots

1 2 3 1 2 3 4

1 7 2 5 3 6 4

node
v(K + J)

1 2 3 1 2 3 4

1 7 2 5 3 6 4

node
v(K + J)

Select the highest priority among the sources until
∑

i∈selected sourcesCapi >
∑

j Rj
⇒

⇒update solution

Figure 5: The decoding of the solution for two-level reverse supply chain network

4.2 The whale optimization algorithm (WOA)

We have applied a WOA, as was first presented by Mirjalili and Lewis (2016). This al-

gorithms is based the hunting behavior of humpback whales using a spiral to bubble-net

attacking mechanism and the best search agent to chase the prey. The most intriguing

thing about the humpback whales is their interesting hunting method. This foraging

behavior is called bubble-net feeding method (Watkins and Schevill 1979). It is worth

noting that bubble-net feeding is a unique behavior that can only be characterized with

humpback whales. In this respect, the spiral bubble-net feeding maneuver is mathemati-

cally modeled in order to perform optimization. This novel meta-heuristic algorithm has

been applied in several recent optimization studies which deal with large scale problems.
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Figure 6: The solution encoding for multi-echelon multi-period multi-product CLSC network

Aljarah et al. (2018) employ it to solve a wide range of machine learning optimization

problems; Oliva et al. (2017) use it for parameter estimation of photovoltaic cells; while

Sahu et al. (2018) apply WOA for the power system stability enhancement problem.

Various other applications in image segmentation, feature selection, wireless route opti-

mization, fault estimation in power systems, wind speed forecasting and etc. exist in very

recently published studies in the literature.

In the following, the mathematical model of encircling prey, spiral bubble-net feeding

maneuver, and search for prey provided and then, the WOA algorithm is presented. The

reader may also refer to Mirjalili and Lewis (2016) for more details.

4.2.1 Encircling prey

Humpback whales identify the location of prey and spin around them. However, the

position of the optimal solution (i.e, prey) in the optimization search space is not certain,

so the algorithm assumes that the current best candidate solution is the target prey and

repeatedly, updates and defines the best search agent as represented in the following

equations:

~Y =
 ~D � ~X∗t+1 − ~Xt

 (46)

~Xt+1 = ~X∗t − ~C � ~Y (47)

where
|.| indicates the element-wise absolute values of a vector, and � denotes the

element-wise (Hadamard) product of two vectors. ~C and ~D are coefficient vectors while
~X∗ is the position vector of the best solution obtained in the corresponding iterations t
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and t+ 1. The vectors ~C and ~D are calculated as follows:

~C = 2~a� ~r − ~a (48)

~D = 2~r (49)

where ~a is linearly reduced from 2 to 0 over during the iterations and ~r is a random vector

in [0, 1].

4.2.2 Bubble-net attacking method

The mathematical model for the bubble-net behavior of humpback whales is designed in

two ways:

Shrinking encircling behavior: it is modeled by reducing the value of ~a in the Eq. (48)

which decreases the fluctuation range of ~C, as well. Therefore, ~C is confined to the interval

[−a, a]. By assigning random values to ~C in [−1, 1], the new position of a search agent

is obtained anywhere within the original position of the agent and the position of the

current best agent.

Spiral updating position: This approach calculates the distance between the whale and

prey, and provides a spiral shaped equation between them as given below.

~Xt+1 = ebl cos(2πl). ~Y ′ + ~X∗t (50)

where ~Y ′ =
 ~X∗t − ~Xt

 denotes the distance of the whale from prey (i.e, the best solution

obtained so far); the constant b defines the shape of the logarithmic spiral and l is a

random number from the interval [−1, 1]. Since humpback whales swim around the prey

within a shrinking circle and along a spiral-shaped path, it is assumed that the shrinking

encircling mechanism and the spiral model Pe% and 1-Pe% in the position updating of

whales„ respectively. Hence, the mathematical model is as follows:

~Xt+1 =





~X∗t − ~C � ~Y if p < Pr

ebl. cos(2πl). ~Y ′ + ~X∗t if p ≥ Pe
(51)

where p is a random number drawn from [0, 1].
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4.2.3 Search for prey

Humpback whales search randomly according to the position of each other. Thereby, here
~C with the random values greater than 1 or less than -1 are used to push the search agent

to move away from the reference. The new position is obtained by Eq. (53)Contrary to

the attacking phase, the position of a search agent is updated according to a randomly

chosen search agent rather than the current best search agent. This procedure and |~C| > 1

facilitate the WOA algorithm to run a global search.

~Y =
 ~D. ~Xrand − ~X

 (52)

~Xt+1 =
 ~Xrand − ~C.~Y

 (53)

where ~Xrand is a random position vector chosen from the current population. The WOA

initiates with a series of random solutions in which, search agents update their posi-

tions with respect to either a randomly chosen search agent or the current best solution.

Throughout the iterations for updating the position of the search agents, if |~C| > 1 a

random search agent is chosen, while if |~C| < 1 the best solution is selected. Given the

value of p, WOA is able to alternate between either a spiral or circular movement. The

pseudo code of the WOA is given in Algorithm 3.

Algorithm 3 The pseudo code of the WOA algorithm
1: Initialize the whales population Xi(i = 1, 2, ..., n)
2: T := maximum number of iterations
3: Pe := The possibility of the behavior of whales
4: Calculate the current fitness of each search agent
5: X∗1 = the best search agent
6: for t = 1 to T do
7: for each search agent do
8: Update a,C,D, l, p
9: if p < Pe then

10: if |C| < 1 then
11: Update the location of the current agent by Eq.(46)
12: elseif |C| ≥ 1
13: elect a random search agent (Xrand)
14: Update the location of the current fitness by Eq.(53)
15: end if
16: elseif p ≥ Pe then
17: Update the location of the current search by Eq.(50)
18: calculate the new fitness of each search agent
19: end if
20: if new fitness< current fitness then X∗t = Xt

21: end for
22: end for
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The search space in the solution of the designed CLSC network is discrete, which

means that components of each individual from the population cannot have an arbitrary

amount, and allowable values are limited only to natural numbers from 1 to N. Hence, the

continuous search space has to be changed in WOA algorithm to discrete search space.

An example of change in the solution search space is shown in Figure 7.

Node
Random number

in continuous space

1
0.94

2
1.19

3
0.17

4
5.98

5
4.16

6
4.27

Decreasingly sorted with respect to the random numbers
Priority in

discrete space
Random number

in continuous space

4
5.98

6
4.27

5
4.16

2
1.19

1
0.94

3
0.70

Figure 7: An example of change in the solution search space

5 Numerical results

5.1 Sample problems

In this section several numerical experiments are generated to validate the developed RFP

model and also to assess the performance of the proposed WOA algorithm in terms of the

objective-function value and required CPU time. As there were no benchmarks available

in the literature for this specific problem, 5 sample instances were generated each with

10 replications containing random data. The size of the exemplified problems and their

corresponding parameter values are presented in Tables 4 and 5, respectively. Hence, the

deterministic parameters and each point of the trapezoidal fuzzy number of uncertainty

parameters were randomly generated based on a uniform distribution in pre-specified

intervals.

Table 4: The size of the sample problems
Instance Levels

no. (S ×M ×W × E × C ×R× U × L× T × P × I ×N ×H)
1 (6× 6× 6× 6× 10× 4× 4× 4× 6× 2× 2× 3× 3)
2 (8× 8× 8× 8× 15× 5× 5× 5× 8× 3× 3× 4× 3)
3 (10× 10× 10× 10× 20× 6× 6× 6× 10× 4× 4× 5× 3)
4 (12× 12× 12× 12× 25× 8× 8× 8× 12× 5× 5× 6× 3)
5 (15× 15× 15× 15× 30× 10× 10× 10× 18× 6× 6× 7× 3)

As the acquired results from WOA is sensitive to their initial parameters, the Taguchi

tuning method was used for tuning the parameters to find the best solution. Using the
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Table 5: Pre-specified intervals to generate parameters based on a uniform distributions
Certain parameters Parameter Value Parameter Value

fst ∼ U(40000, 45000) c1
mpt ∼ U(0.5, 1.5)

fmt ∼ U(50000, 60000) c2
ept ∼ U(0.5, 1.5)

fwt ∼ U(50000, 60000) c3
ept ∼ U(0.5, 1.5)

fet ∼ U(50000, 60000) c4
rpt ∼ U(0.5, 1.5)

frt ∼ U(50000, 60000) c5
upt ∼ U(0.5, 1.5)

fut ∼ U(50000, 60000) c6
lit ∼ U(0.5, 1)

flt ∼ U(50000, 60000) hmit ∼ U(0.2, 0.5)
clst ∼ U(4000000, 6000000) h′wpt ∼ U(0.8, 1.2)
clmt ∼ U(3500000, 6000000) γpt ∼ U(0.4, 0.5)
clwt ∼ U(4000000, 7000000) δip ∼ U(1, 3)
clet ∼ U(6000000, 9000000) βpt ∼ U(0.4, 0.5)
clrt ∼ U(1500000, 4000000) θit ∼ U(0.2, 0.3)
clut ∼ U(3500000, 4000000) cap1

mi ∼ U(4000, 6000)
cllt ∼ U(3000000, 6000000) cap2

wp ∼ U(2000, 2500)
opst ∼ U(2500000, 5000000) cap3

ep ∼ U(200, 300)
opmt ∼ U(2500000, 4500000) cap4

si ∼ U(12000, 15000)
opwt ∼ U(3000000, 6000000) cap5

mp ∼ U(1600, 2200)
opet ∼ U(5000000, 8000000) cap6

ep ∼ U(1300, 1500)
oprt ∼ U(1000000, 3000000) cap7

rp ∼ U(200, 250)
oput ∼ U(1000000, 3000000) cap8

li ∼ U(1000, 1600)
oplt ∼ U(2000000, 4000000) cap9

up ∼ U(200, 250)
vaisht ∼ U(4000, 10000)

Uncertain parameters a ∼= (ãp, ãrp, ãro, ão)
Parameter ãp ãrp ãro ão

dempct ∼ U(50, 100) ∼ U(100, 150) ∼ U(150, 200) ∼ U(200, 300)
αpct ∼ U(0.1, 0.2) ∼ U(100, 150) ∼ U(0.3, 0.4) ∼ U(0.4, 0.5)
prisht ∼ U(1, 1.1) ∼ U(0.2, 0.3) ∼ U(1.25, 1.4) ∼ U(1.4, 1.5)
tc1

ijj′n ∼ U(2, 2.5) ∼ U(1.1, 1.25) ∼ U(3, 3.5) ∼ U(3.5, 4)
tc2

ijj′n ∼ U(5, 8) ∼ U(2.5, 3) ∼ U(12, 15) ∼ U(15, 20)
πpct ∼ U(100, 120) ∼ U(8, 12) ∼ U(150, 170) ∼ U(170, 200)

Taguchi method, first, the appropriate factors (initial parameters) were determined and

the level of each factor was selected. Then, design of experiments for this control factor

was specified to find the best combination of factors for WOA. In Table 6, the number

of whales (W ), maximum number of iterations (Maxit), and the probability of choosing

between either the shrinking encircling mechanism or the spiral model (Pe) in WOA are

given as the initial parameters. In this regard, the experiment was repeated 10 times

for each run and their average results were considered as the fitness value. The best

combination of WOA parameters values were obtained as 200 for (W ), 200 for (Maxit),

and 0.6 for (Pe).

After tuning the WOA parameters, the minimum values of the constraints satisfaction

ϑ1 and ϑ2 were set as 0.8 to analyze the WOA results. Furthermore, weight coefficient

(ω=0.6) and penalty coefficients (ρ=τ=400) were considered. For more accurate calcula-
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Table 6: Proposed parameter levels for parameter tuning the WOA algorithm
Factors Level 1 Level 2 Level 3 Level 4
W 100 200 300 500

Maxit 100 150 200 250
Pe 0.1 0.2 0.4 0.6

tions, each sample was repeated 3 times for each run using WOA algorithm. Therefore,

the average results of the objective function of 3 runs were selected as the conclusion base

for the WOA algorithm. In Table 7, the results of the objective function for each problem

using exact solution and the WOA algorithm are summarized. In the last column, the so-

lution percentage of gap between the results of exact solution and the WOA is presented.

In Figure 8 computational times of the exact solution and WOA approach are depicted.

Table 7: The average results for each sample problem
Instance no. Exact sln. WOA Gap %

14301344 14485117 1.285
14358138 14489158 0.913

1 14024170 14148818 0.889
14588111 14726523 0.949
14062490 14189029 0.900
14216932 14342359 0.882
23851373 24272419 1.765
24658085 24988196 1.339

2 24333818 24636302 1.243
24679723 24959943 1.135
27539829 28106536 2.058
27600702 27983786 1.388
47757356 48787591 2.157
47401887 48272553 1.837

3 47931709 48972971 2.172
48262991 49061752 1.655
48037320 48956153 1.913
47790428 48811230 2.136

Instance no. Exact sln. WOA Gap %
78386933 79738576 1.724
77713144 79280658 2.017

4 79939904 81553417 2.018
79792082 81884694 2.623
70203507 71681793 2.106
70027579 72167927 3.056
100029552 103202277 3.172
109777804 112038650 2.059

5 100476705 103799111 3.307
100326207 103271172 2.935
99958730 103294321 3.337
109693223 111995260 2.099

As shown, the execution time of the optimization software package is exponentially in-

creasing in the size of the problem instance. Its computational time has become more than

that of the WOA from instance #1 onward, while the solution gaps for the algorithm do

not exceed 3.33%. This reveals inefficacy of the solvers for large-scale problems whereas

the optimal solution might not even achieved. According to the results shown in Table

7, the solution gaps vary from 0.88% to 3.33% for all test problems. Furthermore, the

maximum gap for the largest test problem is less than 3.33% which is quite acceptable.
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Figure 8: The average computational time of methods for each sample problem

5.2 Sensitivity analysis

In this section, two different experiments are considered to conduct a sensitivity analysis

of the minimum values of the constraints satisfaction and penalty coefficients on the RFP

model. In the first experiment, it is assumed that the penalty coefficients were constant.

In the second experiment, it is assumed that the minimum values of the constraints

satisfaction are constant. Tables 8 and 9 present different average results of the minimum

values of the constraints satisfaction (ϑn, n = 1, 2) and penalty coefficients (ρ, τ), which

are provided by the exact solution and WOA algorithm in the RFP model, respectively.

As shown in Table 8 and 9 with an increase in (vn, n = 1, 2), the value of the objective

function increases in an ascending order, while with an increase in (ρ, τ) the objective

values do not shift which indicates that the initial penalty factors are large enough and

optimality is obtained without penalty paying for constraint violation.

6 Conclusion, managerial insights, and directions for future stud-

ies

This paper presented a multi-period, multi-product, multi-echelon CLSC network under

discount on the purchase of raw materials, possibility of demand backorder, and indigenous

and exogenous uncertain parameter. The material flow structure in our problem statement
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includes the returned items (in both upgradable and recyclable inputs); and therefore, the

model incorporates the reverse logistics in addition to the conventional forward flow of

the raw material in a supply chain. This pattern reflects the real-world practices in

several sectors where the chain is of high raw material intensity and/or complex products

are consumed/produced, such as automotive, aerospace, and electronic industries, among

others. Besides sustainability motives and carbon footprint concerns, the importance of

the returned items (for upcycling or recycling) is more eminent when sourcing of the raw

materials becomes a significant challenge due to scary of the components/material and

price/availability uncertainty of the materials, among other causes which make the reverse

logistics in such situations of an extremely high importance to the success or survival of the

entire chain. For instance, both high-tech electronic and automobile industries in Iran have

been repetitively subject to international sanctions in the last two decades and as such

the local manufacturers in these industries encounter difficulties in supply of certain raw

materials or components for sustaining the production lines. Thus, the returned faulty or

end-of-cycle products can be valuable for the manufacturer for recycling/upcycling some

of the material or components before disposing the rest. In such conditions design of a

supply network cannot afford to ignore the closed-loops flows, and thus inclusive models

like what is presented in this paper seem essential for optimizing the dynamic of the chain.

A mathematical programming model was developed for the aforementioned closed-loop

supply chain and a robust fuzzy formulation counterpart was developed to address the

effects of uncertainty parameters, including uncertainty on periodic customer demand,

raw material costs, transportation costs, shortage cost, and availability of return goods

and materials. This wide implementation of uncertain parameters in our model makes it

more realistic and closer to the real-world practice. However, approaches in confronting

with uncertain parameters vary in the nature and scope of the studies. For instance,

estimation of demand or backorder can be investigated as a separate problem with prob-

abilistic, simulation or other fuzzy techniques (see Rodger 2014). To comment on how

efficient each of these approaches may be, one requires to compare them in real case

studies, which can be suggested as one direction for the future studies. From the solu-

tion method perspective, we have contributed with proposing a priority based encoding

method to be integrated with the whale optimization algorithm. Thus, we equipped this

algorithm to solve the problems in discrete spaces by converting the continuous space into
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discrete one. The numerical experiment presented in this paper provides with some fur-

ther insights. For example, we observe the proposed meta-heuristic can perform 13 time

faster than a well known general-purposed solver while its solution deviates only at most

3.33%. The computational time of WOA algorithm was significantly less than that of the

exact solution for relatively big size problem instances and it is likely for the off-the-shelf

optimization package to be incapable of solving large scale problems even with longer

computation times. Besides, replicating different instances revealed that the algorithm

provides consistent solutions with similar qualities without parameter-dependent behavior

which is an advantage for a meta-heuristic algorithm. In addition, our sensitivity analysis

over the penalty coefficient parameters (ρ, θ), showed an insensitive objective values to

these parameters which indicates that the parameters are chosen sufficiently large and

the algorithm performs correctly.

Besides the proposed methodology, other numerical methods, such as neural networks,

genetic algorithms, Tabu search, particle swarm, ant colony optimization, and expert sys-

tem applications may be applied and incorporated into the decision support systems

(DSS) of big companies with similar supply chain structure to aid their decision makers

in strategic location selection. Hence, there are some rooms for improvement in both theo-

retical and practical aspects and the current work can be further studied either for a more

customized supply chain with the specific configurations such as waste and sustainability

issues, pricing and regulations, etc. or with the aforementioned solution methodologies,

and modeling approaches.
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