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Abstract

The aim of the article is to report the research of the Advanced Textiles Research

Group on the application of heat to enhance the moisture transmission in knitted

spacer structures. The current trend in the design and development of moisture man-

agement textiles is to use knitted spacer structures. Generally, in moisture management

textiles, the moisture is transmitted through the fabric due to capillary forces, which are

influenced by the hydrostatic pressure difference between the two fabric layers and the

geometry and the dimensions of the capillaries of the sandwiched fibre layer of a knitted

spacer structures. However, the hydrostatic pressure difference is also influenced by

the outer environmental changes. The research has demonstrated that the moisture

transfer rate of up to 30% per 100 cm2 of fabric area can be achieved by creating a

temperature gradient between the two layers of a knitted spacer structures. This tem-

perature gradient was achieved by application of heat at one layer of the knitted spacer

structures, which influenced the hydrostatic pressure difference of the knitted spacer

structures. Application of heat to the knitted spacer structures was achieved by knitting

small heater elements on side of knitted spacer structures to create an active moisture

management structure. Wash tests, temperature rise rates and moisture wettability

experiments of the active moisture management structure were performed, and the

results are discussed in the publication.
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Introduction

High performance moisture management textiles are an important development in
textiles. It largely involves development of textiles, which could be used to design
garments with extensive capability of removing perspiration away from the human
body. The human body is self thermoregulating and tries to maintain a core body
temperature of approximately 37�C. Where the temperature of the external envir-
onment is less than that of the body, an internal source of heat is required to
maintain the core temperature. The required heat comes from the body’s metab-
olism. However, if the external temperature is higher than the body temperature, or
the level of physical activity is more than is required for a particular purpose, and
the heat produced by the body is not properly dissipated, the body releases liquid
(sweat) in an effort to reduce the body temperature through evaporation in order to
prevent cell damage due to temperature increase [1,2]. There is, therefore, an
increasing interest in the transport of heat and liquids through clothing systems
to the atmosphere.

Textiles are worn closest to the skin for protection, warmth and self-dignity.
Therefore, in situations where moisture (sweat) is required to be removed to the
outer environment, textiles may become a problem as it might prevent mois-
ture evaporation to the atmosphere. In some cases, it may cause this moisture to
be condensed on the textile surface and cause sense of discomfort due to sudden
feel of coldness.

Existing knowledge on moisture management in textiles

There has been a number of developments in textiles which can help the transfer of
moisture from the skin to the outside environment without causing discomfort to
the wearer. One of the solution was to engineer the fibres used in producing textiles.
Research has shown that moisture transfer in a textile can be enhanced by improv-
ing the capillary action, which can be influenced by creating multiple channels in
the fibre cross sections [3–6]. These channels will enhance and improve moisture
movement through textile structure. Another solution is to combine fibre types
capable of handling moisture [7]. This involves the use of both hydrophilic and
hydrophobic fibres to create a textiles structure, which can absorb moisture quickly
and provides a surface for evaporation of moisture to the outside environment. In
general, the concept here is that the hydrophilic fibres in the textile structure would
absorb moisture quickly whilst the hydrophobic fibres provide a dry surface.

However, currently the most popular concept is to utilise textiles with multiple
fabric layers for managing moisture in a textile [1,8–10]. The basic concept here is
to employ fabric layers with different moisture handling capabilities, i.e. the fabric
layer next to the wearer’s skin is made from hydrophobic fibres in order to provide
a surface and facilitate the quick removal of moisture to the outside fabric layer
made from hydrophilic fibres due to the capillary action between the fabric layers.
Further advancement of the concept is the introduction of a middle layer between
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the hydrophilic and hydrophobic fabric layers [11]. This middle layer is made with
capillaries of predetermined pore structure and size, engineered to enhance the
moisture transfer through the middle. This is important for outdoor garment
design where the human body has to be kept warm in cold wet environments
while maintaining the inner body dry [8].

In all the moisture handling fabrics, which have been developed so far, the focus
has been to boost the moisture transfer by enhancing the capillary action [12,13].
This is the process which allows liquids to flow/rise in narrow tubes due to pressure
difference between the two ends of a tube. This ability of liquid flow/rise in capil-
laries would determine the extent and the dynamics of moisture transfer in a textile
structure [3,14,15]. Quickly the moisture is transferred through the textile structure
of a garment, the efficient it will become in terms of body cooling. As such, this is
one of the key factors to be considered when designing textile structures with
enhanced moisture management capability.

Lately, knitted spacer structures (KSS) are among the most researched textile
structures due to their ability to transfer moisture [13,16–18]. Normally, these
consist of two independent knitted fabric layers joined together by stiff monofila-
ment yarns, named spacer yarn, tucked between the two fabric layers. The spacer
yarns are tucked between the two fabric layers in a manner that micro-channels are
formed, which acts as capillaries for effective moisture transfer.

New concept for enhancing moisture transfer in KSS

Textiles have undergone many evolutions since their first use by humans many
thousands of years ago and much research has been conducted to produce efficient
and more environmentally friendly products. The concept for managing moisture
transfer in textiles demonstrated in this article falls into the category of the sports
and recreation area of technical textiles; also called sportex. Currently, the main
market of sportex is in Europe, North America and Asia. These regions have
relatively cold climates, which makes sportex an ideal material for clothing when
performing a sporting activity outdoors. Even indoors sportex materials are used as
they enhance the wearer’s performance in sporting activities. The current focus in
sports technical textiles is to develop fabrics for improved moisture removal, whilst
still being lightweight and providing warmth.

The basic concept used in the design and construction of current sportex mater-
ials is to maintain the skin dry by moving the sweat away as quickly as possible,
and then enabling it to evaporate into the outer environment. This is achieved
today by creating a fabric structure with a hydrophobic surface on one side and
a hydrophilic surface on the opposite side of the fabric, which is accomplished by
using special chemical finishing processes as well as employing hydrophobic syn-
thetic fibres and/or hydrophilic natural fibres. The hypothesis of the concept, pre-
sented in this publication, is to create a temperature gradient within the a KSS, in
order to enhance the hydrostatic pressure difference between the two surfaces of the
KSS to encourage moisture transfer and fast evaporation of moisture to the outer
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environment. The use of a KSS would also boost the moisture wicking action
within the structure due to improved capillary action.

KSS

As mentioned earlier, KSS consist of two independent fabric layers, which are
joined together by spacer yarns [18]. The spacer yarn connects the two fabric
layers in zig-zag formation. Normally, KSS are produced by using either double
needle bar warp knitting or double needle bed weft knitting technology, and the
quantity and type of spacer yarn can be varied to create a multitude of different
structures. Generally, the two fabric layers are interconnected by tucking the spacer
yarns with the two fabric layers during knitting. The arrangement of spacer yarns
between the two fabric layers would form capillaries, which are, generally, aligned
parallel and inclined to the fabric layers. A key advantage of employing compu-
terised flat-bed knitting technology to produce spacer fabrics is the ability to create
an efficient capillary system with maximum moisture transfer capability.

KSS can be engineered to have excellent absorbency characteristics to capture
the sweat secreted from the skin by the fabric layer, which is next to skin and
present it to the capillaries formed by spacer yarns for its transfer to the outer
fabric layer for evaporation. In textiles, the moisture absorption process could
occur in two ways: on the surface and/or within the fibre structure. Absorption
within fibres occurs on hydrophilic fibres in which moisture penetrates into the
structure of the fibres. On the other hand, the surface absorption involves the mois-
ture being retained only on the surface of the fibres, which is advantageous as less
energy would be required to remove this moisture in the drying/evaporation pro-
cess. In sportex materials moisture absorption and transfer has to be quick, the
main reason for using hydrophobic fires in this type of textiles. Also when design-
ing spacer structures for moisture management, one has to select a yarn with
superior hydrophobic properties to form the middle layer of the structure. The
KSS should also be lightweight and capable of high degree of moisture transfer,
absorbency and evaporation.

The spacer structures reported in this publication were produced on a Stoll
CMS820HP, E16 computerised flat-bed knitting machine. In the manufacture of
spacer fabrics, there are important parameters to be considered; they include yarn
type and count, amount of spacer yarns to be included between the two layers,
number of tuck loops between the two needle beds and the structure of the two
outer knitted fabric layers. Although a broad portfolio of different spacer struc-
tures can be produced on a computerised flat-bed knitting machine, the research
reported here was limited to nine different spacer fabrics produced by using 164/
48dTex polyester (PE) yarns and tested for moisture absorption by using a GATS
system, manufactured by M/K Systems, Inc. The M/K GATS has been designed to
comply with ISO 9073-12:2002 Apparatus for Demand Absorbency, Apparatus
described in USA Patent 6,048,123, Tappi T-561 and ASTM D5802 test standard.
The KSS produced were given the codes 6T, 4T and 2T. The number represents the
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length of spacer yarns stretching between the two needle-beds during knitting, for
example, 6T means that the spacer yarn was laid between the needle x in the front
needle bed and the needle (xþ 6) in the back needle bed during knitting with the
two needle-beds in interlock gaiting. The 6T was the thickest and the heaviest
sample, while 2T was the thinnest and lightest sample with 4T having properties
in between 6T and 2T. These were chosen to provide a broad understanding of
moisture-handling capabilities. Three different spacer yarns were also used by
varying the number of PE yarn ends; i.e. for example, 2T1E means that only one
end of PE yarn was used for the spacer yarn, and two ends and three ends denoting
2T2E and 2T3E, respectively. The nine different KSS produced are summarised in
Table 1 below.

After production of these samples, their moisture absorption and transmission
properties were investigated. The test equipment used is discussed in detail in
‘Experimentation’ section. Two different size samples were required for testing,
and as such 11.5� 11.5 cm2 samples were produced to measure moisture transmis-
sion and 5� 5 cm2 samples were knitted for moisture absorption experiments. Prior
to the start of moisture transmission test, each 11.5� 11.5 cm2 sample was sprayed
with 8.5 g of water and no heat energy was provided to the sample during the test.
The results are summarised in Figures 1 to 3 below.

The above experiments were conducted to analyse the moisture absorption char-
acteristics of nine different KSS. It is clear from the data in Figure 1 that
6T samples have a higher moisture holding capacity than 4T and 2T samples.
This could be due to 6T samples having more spacer yarns between the two,
plain knitted outer layers resulting in the formation of more capillary channels
for moisture to pass through. However, 6T is the heaviest and thickest compared
to 4T and 2T. This could be an issue as when designing an outdoor garment

Table 1. KSS properties.

Sample

Average

weight/

5� 5 cm2

(g)

Average

weight/

11.5� 11.5 cm2

(g)

Average

thickness

(mm)

Number

of spacer

yarns

Distance

between

needles

Number of

courses

per cm

Number

of wales

per cm

6T3E 2.18 10.665 3.73 3 6 11 8

6T2E 1.82 9.454 3.51 2 6 10 8

6T1E 1.42 7.662 3.15 1 6 11 8

4T3E 1.73 9.171 2.71 3 4 13 9

4T2E 1.39 8.167 2.62 2 4 12 9

4T1E 1.22 6.695 2.47 1 4 11 8

2T3E 1.29 7.609 1.95 3 2 12 10

2T2E 1.26 6.739 1.90 2 2 11 9

2T1E 1.06 5.859 1.85 1 2 13 9
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where one has to consider the fabric weight and the thickness of the material.
Therefore, although 6T samples could hold more water than 4T and 2T; it was
decided not to investigate 6T further. On the other hand, 2T shows more potential
due to its lighter weight and lesser thickness.

Figure 3 demonstrates the moisture transmission (drying times) of nine different
test samples whose fabric properties are given in Table 1. These experiments were
performed by using the test rig developed by the authors, which is discussed
in detail in ‘Experimentation’ section of this article. Figure 3 indicates that
heavier structures like 6T3E need more time to dry compared to lighter samples
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Figure 2. Average water absorbed per gram of dry KSS fabric weight.
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Figure 1. Moisture absorption capacity of KSS.
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such as 2T1E. This is supported by the experimental results obtained for moisture
absorption in KSS showed that heavy structures would hold more water; however,
this affects the transmission of moisture within the structure. Knitted structure with
2T appears to have lower time than 6T and 4T. This may be due to the manner in
which the spacer yarns are accommodated within the knitted structure. Structure
with 2T with three ends showed faster drying time compared to others. The reason
could be explained by how the spacer yarns are arranged and their angle of inclin-
ation. With 2T configuration, it means the angle of inclination of spacer yarns is
higher, which implies the spacer yarn length between the inner and outer layers is
significantly lower. This creates shorter capillaries length between the inner and
outer layers and thus higher drying times.

Active moisture management structure (AMMS)

The data presented in the previous section led to selecting the 2T2E for the devel-
opment of the new AMMS due to its light weight and good moisture absorption
and transmission properties.
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Figure 3. Moisture transmission drying rate of KSS.

Table 2. Yarn parameters.

Name

Diameter

(mm)

Linear density

(dTex) Yarn type Colour

Resistance

(�/cm)

Polyester Approx. 0.02 167/48 Multi filament White Approx.

1017 [23]

FabRoc 0.50 Approx. 37.5 Mono filament Black 0.48

Copper 0.20 Approx. 7.2 Six copper strands Brown 0.16
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The AMMS development will involve combining of heating system together
with the spacer fabric as one product. In order to protect the spacer’s absorption,
transmission and aesthetic properties; the heating elements would be preferred to
textile based.

Work carried out by NTU-ATRG on knitted heated textiles has resulted in the
development of ‘Thermoknit’ system, which involved textile-based heater elements
[19–21]. Heating effect is produced by DC power supplied to the knitted FabRoc
yarn through bus bars knitted with conductive yarns [22]. Properties of yarns used
to manufacture the KSS with heater elements are shown in Table 2 below.

The ThermoKnit system was suitable because it is textile based and achieves
temperatures required with different voltage settings. The challenge was to incorp-
orate this technology into a KSS to create an intelligent system with improved
moisture transfer capabilities. KSS consist of two plain knitted outer layers and
knitted heating elements were integrated on to one plain knitted layer to craft the
AMMS. Narrow heating elements of size 7.0� 2.0 cm2, made with two courses
were found to be effective. Bus bars used in the structure consisted of three courses
of three copper strands (each strand consist of six fine copper wires each with
0.2mm diameter). This was effective in terms of low electrical resistance.
Figure 4 below illustrates completed knitted AMMS samples both small size and

Figure 4. AMMS test samples used for evaluation of moisture absorbency and transmission.
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large size (see Table 3 below) with integrated heating elements. These samples were
used for experimental tests explained in the next section.

Experimentation

An objective of the research was to study how moisture transmission could be
improved by the application of heating on one side of the KSS (AMMS). This
would improve hydrostatic pressure difference across the formed capillary tubes by
spacer yarns. It is important to understand the AMMS’s behaviour and character-
istics when used as a moisture management textile, and, therefore, experiments

Figure 5. MK GATS system set up.

Table 3. AMMS sample properties.

Property

Small sample Large sample

With heaters Without heaters With heaters Without heaters

Size (L�W) cm 5� 5 5� 5 11.5� 11.5 11.5� 11.5

Weight (g) 2.95 1.1012 9.1612 5.9242
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were carried out to determine moisture absorption, heating rates, moisture trans-
mission, thermal characteristics and wettability of AMMS.

Moisture absorption test

The moisture absorbency of AMMS was evaluated to determine the effect
of heating elements in the structure. The MK GATS system was used to com-
pare absorption capabilities of test samples with and without heating
elements (Figure 5). Figure 6 below shows the samples used in this
experiment. The weight of moisture absorbed by the fabric was measured by
M/K245 GATS system in real time. Five samples were tested for each group,
i.e. with and without heater elements, and the average results are summarised in
Figure 7 below.

The above test was conducted to explain the effect of integrating heating elem-
ents into spacer fabric on the overall absorption characteristics. Results show that,
although there is a reduction of moisture holding capacity and increased absorp-
tion time; still the heating system could be introduced into the KSS for increased
moisture handling as the heater elements would provide the necessary hydrostatic
pressure control across the KSS. The test was conducted while the heater elements
were not operating, and heater elements could affect the moisture absorption due

Figure 6. Fabric samples with and without heating elements.
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to its yarn characteristics. The FabRoc yarn used to produce the heater elements
yarns are non-absorbent, which means absorption occurs only on non-heater areas
and not in the heater areas. This could explain the drop in moisture absorption
characteristics.

Hot mini chamber Cold mini chamber 

Weigh scale 

Results Display 

Figure 8. Experimental test rig developed at ATRG.
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Figure 7. The effect of heating elements on moisture absorption; test sample size is 5� 5 cm2.
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Moisture transmission test

The moisture transmission is one of the key attributes of the AMMS and this was
investigated by using the test rig developed by the Advanced Textiles Research
Group (ATRG) (see Figure 8 below). The test rig consists of two mini-environ-
mental-chambers. These two chambers are designed in such a way to maintain both
temperature and humidity levels between the two sides. One side will have hotter
conditions and other cold conditions. This is designed to try to replicate the two
different conditions of textiles experienced whilst worn by individual.

The AMMS sample supplied with 4W of heating energy was placed vertically
between the two mini-environmental-chambers on top of the precision weight scale,
sprayed with 4.5 g of distilled water and the moisture transfer was captured in real
time using LabVIEW data acquisition software written by the author. The tem-
perature and humidity of the two mini environmental chambers can be varied and
also measured. The test system is designed to mimic conditions as experienced by
humans performing outdoors activities. The cold chamber represents outside con-
ditions while hot chamber represents the space between human skin and textile
structure (microclimate). As such, temperature and relative humidity in the hot
mini-chamber were set to 37�C and 25%, respectively. Similarly, cold mini-
chamber was selected to mimic outside conditions having temperature and relative
humidity of 7�C and 75%, respectively.

The results of testing the AMMS samples by using the test rig are displayed
below in Figure 9 and 10 below. It is apparent from the results of the experiments
conducted that the effect of applying heating increased the moisture transmission
rate, comparing Figures 9 and 10; an increase of moisture transmission by
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Figure 9. The results of moisture transfer and its evaporation in spacer structure knitted with

two yarn ends and two tucks tested by using the test rig.
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approximately 30% is observed per 100 cm2 of AMMS sample. This moisture
transfer increase can be explained by the increase in vapour pressure in the inner
layer of the AMMS due to heat assist on the inner microclimate resulting in
increasing the hydrostatic pressure gradient across the fabric. This means the pres-
sure on the inside part of the AMMS capillary network is higher than the outer
part and this in turn causes moisture flow to the outer part by capillary force. This
heat effect is important as the hydrostatic pressure gradient could be managed and
controlled at any given outside and inner conditions due to the active nature of the
new developed system.

Looking at graphs of Figures 9 and 10, one could conclude that the fluid transfer
rates for AMMS samples appear to be dominated by a constant rate of moisture
transfer during almost 70% of the drying period. This may be due to the type of
fibre used to produce the spacer fabrics. All AMMS samples were produced exclu-
sively from polyester fibres; polyester fibre is hydrophobic, hence, the moisture
absorption could occur only between the fibres and minute insignificant amount
will be absorbed by the fibres. This would facilitate moisture to be transferred
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Figure 10. The results of moisture transfer and its evaporation in AMMS with six heater

elements generating 4 W of heat energy tested by using the test rig.

Table 4. Fabric power supply at various voltages.

Voltage (V) Current (A) Power (W)

1.0 0.38 0.38

2.0 1.02 2.04

3.0 1.85 5.55
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Figure 11. Thermal images of AMMS samples when powered at three different voltages.
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through the fabric structure rather than absorbing it [24,25]. This is evident from
the graphs as they exhibit an almost constant rate of moisture transfer compared to
the exponential moisture transfer rate curves of other non-spacer natural fabrics.
This shows that AMMS have the ability to absorb moisture and release it at con-
stant rates compared to fabrics made of natural fibres.

Thermal characteristics of AMMS

The heat generation and electrical power consumption of AMMS was studied to
determine the power requirements for efficient functioning of moisture transfer
within the structure. The knowledge gathered would also assist in the selection of
suitable power source. The 11.5� 11.5 cm2 sample was used, and thermal images
were obtained using an infrared camera, FLIR i7. The sample was connected to the
TTi laboratory bench type power supply, by connecting suitable power leads to
the press studs of the samples. The samples were powered at different voltages
and the output current of the power supply noted. The power consumption of the
samples was calculated with the voltage supplied and the current flow (see Table 4).

The temperature distribution in the samples and the maximum temperatures of
the heating elements were established from the thermal images of the camera.
Thermal images of the samples were captured at predefined times in order to
ascertain the heating rate of AMMS samples.
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Figure 13. Performance of heater elements of 11.5� 11.5 cm2 AMMS samples saturated with

distilled water when powered with 3.0 V.
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Results of this investigation are summarised in Figures 11 and 12 below. The test
data indicate that the temperature (this is the maximum temperature read from the
thermal images) in the fabric rose sharply within the first 2min and then stabilized
to maintain a constant value at all three voltages applied. This is important, as heat
application needs to be quick when needed to avoid moisture build up in the fabric
and create discomfort to the wearer. Also the tests showed that the temperature of
the six heating element was stable for a long period (after 2.5min), which would be
an useful safety feature to avoid excessive rise of temperature or an unpredictable
heat rise which could cause harm to the wearer or damage to the system. Figure 11
shows an example of thermal images of an AMMS test sample, i.e. a spacer fabric
integrated with heating elements. The temperatures achieved at the three different
voltages are within the range that could be needed to create the hydrostatic pres-
sure difference across the fabric to improve moisture transfer. For instance, at
1.0V, a maximum of 32�C was recorded, which is below the skin temperature,
so the wearer could not feel the heat but feel the drying state of the fabric.

Moisture wettability test

It was also important to study how the moisture is absorbed by the KSS of the
AMMS would affect the generation of heat by heater elements. When using AMMS
to produce outdoor garments, the heating elements could be surrounded by sweat
(moisture), and this could result in a change in the electrical conductivity of the
knitted heater system. Therefore, the performance of the knitted heater elements
of AMMS samples when they are saturated with distilled water was analysed.

After wetting 

40min 
2.8 3.0 3.2 2.89 

After wetting 

50min 
2.7 3.0 3.2 2.87 

After wetting 
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Figure 13. Continued.
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The 11.5� 11.5 cm2 AMMS samples were saturated with 15 g of distilled water
and powered at different voltages. The infrared camera, FLIR i7 was used to cap-
ture thermal images of the samples at predetermined times and the results are
displayed in Figures 13 and 14 below.

The objective was to investigate the properties of AMMS fabric operating in a
wet state. This is the state believed to occur when a fabric is worn besides a
sweating skin, and the AMMS samples were tested at 2.0V and 3.0V. At 3.0V,
as shown in Figure 13, a decrease in temperature after wetting was observed,
however, the temperature increased gradually with time. This demonstrates that
the AMMS fabric would operate well when it is wet and fabric heat could be
a source of moisture evaporation from the surface of the fabric. However, at
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Figure 14. Performance of heater elements of 11.5� 11.5 cm2 AMMS samples saturated with

distilled water wettability test when powered with 2.0 V.
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3.0V, temperature generated is much higher than the human body skin tempera-
ture. The results show how the AMMS would operate under wet conditions.
Water is regarded as a good electrical conductor and since the heater elements of
the AMMS fabric are powered by positive and negative connections (bus bars);
therefore, it is possible an electrical short circuit could be created when in contact
with water. However, it is evident from the test results that the current would
increase when the AMMS fabric becomes wet, however, due to very low voltage
requirement (2–3V) to power the heater elements, there is no risk of an electrical
shock to the wearer. This is important as the combination could safely be used for
human body protection without causing potential danger.

Wash test

Generally textiles, especially those used in garments, would undergo washing
during their lifespan. Similarly, AMMS may be subjected to washing during
their use, which might affect its performance. Therefore, the effect of washing on
performance of heater elements of AMMS had to be investigated, particularly due
to the moisture absorbent nature of the KSS of AMMS. Any distortion of the
stitches of the heater elements due to washing could influence their performance.
Therefore, in order to understand the effect of washing, the heating of the heater
elements were compared before and after wash runs. The washing conditions used
was 30�C, 800 rpm and 2.35 h. This is the average textile washing conditions used in
households. Since two different samples were made during the research, it was
appropriate to use them in this part, not by comparison, but to investigate them
separately and also to provide bulk in the washing machine. The thermal images of
the heater elements of 11.5� 11.5 cm2 and 5.0� 5.0 cm2 AMMS samples were
captured with the FLiR i7 camera before and after washing. The samples were
powered at 3.0V. The results are summarised below in Figure 15.

Maximum temperature from the thermal images displayed in Figure 16 above
are further illustrated in Figure 17 below; this was performed to understand the
temperature trend as the AMMS sample was under wash cycles. Also an observa-
tion from the thermal images, it showed unequal heat areas. This could be due to
the connections of power supply, which couldn’t distribute evenly to all the heater
elements. This could be resolved by revisiting the connection process.

To investigate the AMMS further after wash cycles, electrical resistance and
current flow through the AMMS were checked. As from above results, temperature
changes across the AMMS sample would result into changes in electrical properties
of AMMS. Thus, it was important to check electrical resistance and current before
and after the wash cycles. An Agilent 34410A precision multimetre was used to
measure and record the resistance of AMMS sample during and after wash cycle
while current draw of heater element was recorded from TTi power supply results
are displayed in Figures 18 and 19 below.

For both smaller and larger AMMS samples test results (Figures 15 and 16,
respectively), it was observed that performance of heater elements improved after
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the first wash and then stabilized on the next washes. This could be explained as the
knit structure on the heater elements would be relaxed after the first wash. This
relaxation of the knitted structure would cause the electrical conductivity of the
stitches to improve and hence improve heat rates. During the following washes, as

Before washing 

Voltage [V] Current [A] Thermal Image 

3.0 
0.52 

After washing 

[30oC,800rpm,2.35hrs] 
3.0 1.09 

After washing run2 

[30oC,800rpm,2.35hrs] 
3.0 1.28 

After washing run3 

[30oC,800rpm,2.35hrs] 
3.0 1.35 

After washing run4 

[30oC,800rpm,2.35hrs] 
3.0 1.35 

Figure 15. Washing effect on 5.0� 5.0 cm2 AMMS sample.
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the yarns in the KSS are already in a relaxed state, the knitted structure is not
affected in terms of dimensional arrangement significantly, thus it remained
unchanged. Hence, after several washes, the KSS samples performed literally in
the same manner. Figures 18 and 19 show the electrical properties of the heater
elements after 4 washes. As before, after first wash, the electrical resistance dropped

Before washing 

Voltage [V] Current [A] Thermal Image 

3.0 1.17 

After washing 

[30oC,800rpm,2.35hrs] 
3.0 2.18 

After washing run2 

[30oC,800rpm,2.35hrs] 
3.0 2.55 

After washing run3 

[30oC,800rpm,2.35hrs] 
3.0 2.61 

After washing run4 

[30oC,800rpm,2.35hrs] 
3.0 2.52 

Figure 16. Washing effect on 11.5� 11.5 cm2 AMMS sample.
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Figure 17. The influence of washing on maximum temperature of 11.5� 11.5 cm2 heater

elements when powered at 3.0 V.
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Figure 18. The change in electrical resistance of heater elements in 11.5� 11.5 cm2 AMMS

samples due to washing.
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and the current increased due to improved electrical conductivity in the contact
points of the stitches of heater elements and conductive interconnects (bus bars),
which then remained constant during the next washes. This shows that the heating
elements could be used to provide the necessary thermal gradient within the KSS for
improving moisture transfer and still be processed like a normal day to day textile.

Conclusion and recommendation

The aim of the article was to report the investigation of inclusion of heating sys-
tems onto a KSS for the purpose of increasing hydrostatic pressure difference
across the fabric thickness, which in turn would enhance moisture transmission
process and eventually assist keeping the user dry and comfortable. KSS with
variant of 2T2E was found to be useful due to its lightweight, quicker moisture
transmission and optimum moisture absorption. It was found that adding heating
elements affected moisture absorption of the fabric; however, it improved the mois-
ture transmission by an estimated value of 30% per 100 cm2. Another effect of
adding heating elements was the ability to perform under wet conditions, which
was found to be stable suggesting that the knitted spacer integrated with heater
elements (AMMS) can be used in wet conditions. Also the wash trials of AMMS
showed that the thermal performance of the knitted heating elements improved
after the first wash and remained consistent during the following washes.

Therefore, knitted heating system integrated with KSS can be used to manage
and maintain moisture transmission across a textile due to its ability to control
hydrostatic pressure difference created between the two outer layers of the KSS,
which will enhance comfortability of the wearer by keeping him/her dry.
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Figure 19. The influence of washing on current draw of heater elements when powered at 3.0 V.
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I would like to recommend that more research on this concept should be done to
further develop this idea of using heating as a driving force to improve moisture
transfer on sports and recreational textiles. The placement of heating elements,
types of conductive yarns and drape ability of KSS should be studied further.
This will provide more efficient heater elements and provide better textile aesthetic.
This heating idea should be incorporated in various textiles application as heating
source to provide heat energy, due to its incorporation into textiles.
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