Molecular-Genetics Studies of Organophosphate Induced Neurodegeneration in Differentiating Mammalian Cell lines and Neural Progenitor Stem Cells

Najiah Alyamani

A thesis submitted in partial fulfilment of the requirements of Nottingham Trent University for the degree of Doctor of Philosophy

March 2018
In loving memory of my true love my Dad
Copyright statement

This work is the intellectual property of the author.

Najiah Alyamani
Declaration

I certify that all the work submitted of this thesis was carried out by me, except the publish reports of other works which have been clearly stated in the text. Acknowledgement has been made for assistance received under the supervision of my supervisors and guidance of colleagues helped. I further declare that this research has not previously accepted to ward of any other degree.

Signed .. (Candidate) Date 14/03/2018

Signed .. (Director of Studies) Date 14/03/2018
"In the name of God, the Most Gracious, the Most Merciful" ...
Acknowledgments

From bottom of my heart I would like to thank Allah for being with me all way and all his gifts that made me the person I am today.

I would like to express my sincere gratitude to my supervisors Dr. Alan J. Hargreaves, and Dr. Cristina Montiel-Duarte for all their help and support during my studies. They made this experience, in which I felt the development in my way of thinking and personality, very special. Their presence and support were very valuable and made this work more interesting and accomplished.

I would also like to acknowledge King Abdulaziz University and Saudi Cultural Bureau in London, who sponsored my scholarship.

At this stage, I would like to thank Wayne for his help especially in my first year. Special thanks to Biola and Reham for all the help and support. Many thanks for my lab mate Rmaya for her guides and comments. Special thanks to all my friends and colleagues in King Abdulaziz University in Jeddah and Nottingham Trent University who made this experience more enjoyable.

Finally, words cannot express my deepest feelings and emotions to my mom, who surrounded me with all her love, her prayer and support throughout my entire life. My deepest thanks to my sisters who were always surrounding me with all their love.

Thanks Allah for passed all difficulties I faced to achieve my dream.
Organophosphorus (OP) pesticides are widely used despite evidence they cause neurotoxicity after exposure. The primary target for OPs is acetylcholinesterase, but there is evidence they can inhibit other cellular proteins including cytoskeletal and axon growth associated proteins, which are implicated in nervous system development. Furthermore, little is known about the ability of OPs to cause genotoxicity.

The objectives of this study were to evaluate the effects of selected OPs on neurite outgrowth, expression of cytoskeletal proteins and associated gene expression levels, and to investigate histone deacetylation (HDAC) activity in three types of differentiating cell models. The initial findings indicated that cell viability was unaffected by exposure to 1, 3 and 10 µM CPF, CPO and PSP in N2a and C6 cells. A high content assay was sensitive enough to rapidly detect and quantify morphological changes, including inhibition of neurite number and length.

Western blot and ELISA analysis in N2a and C6 cells revealed reduced levels of the selected cytoskeletal and associated regulatory proteins (MAP-2, Tau, βIII-tubulin, GAP-43, NFH and GFAP) following the treatment with at least one concentration of CPF, CPO and PSP, which could be linked to the inhibition of neurite outgrowth. Using quantitative RT-PCR analysis on the total RNA of the genes MAP-2, TUBB3, MAPT, NEFH, GAP-43, and GFAP showed a good correlation between the altered protein expression and regulation of gene levels for most markers, which suggests these OPs can cause genotoxic effects. Increased levels of HDAC activity were observed for all OPs in rodent cell lines, suggesting that epigenetic effects may be at least partly involved in some gene expression changes.

RT-PCR analysis of TUBB3, NEFH, and GFAP was also carried out in ReNcell CX cells, a co-culture of neuronal and glial cells, and showed down-regulation of gene levels for at least one concentration of all the OPs, as well as increasing the level of HDAC activity in a similar pattern to the results for N2a and C6 cells.

Taken together, the data in this thesis suggest a novel action of OPs altering HDAC activity, which can be correlated to some of the observed changes in gene and protein levels of selected cytoskeletal and associated regulatory proteins that can be linked to the observed disruption of neurite outgrowth and neural development. Further work is needed to identify other molecular targets involved in these phenomena, particularly when there is no correlation with HDAC activity changes.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ach</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>ACHE</td>
<td>Acetylcholinesterase</td>
</tr>
<tr>
<td>ACP</td>
<td>Advisory Committee of Pesticides</td>
</tr>
<tr>
<td>AD</td>
<td>Alzheimer's disease</td>
</tr>
<tr>
<td>ADF</td>
<td>Actin depolymerizing factor (cofilin)</td>
</tr>
<tr>
<td>AIDA</td>
<td>Advanced Image Data Analyser software</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulphate</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninic acid</td>
</tr>
<tr>
<td>Bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>BW</td>
<td>Body weight</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>COPIND</td>
<td>Chronic OP induced neuropsychiatric disorder</td>
</tr>
<tr>
<td>CPF</td>
<td>Chlorpyrifos</td>
</tr>
<tr>
<td>CPO</td>
<td>Chlorpyrifos oxon</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrome</td>
</tr>
<tr>
<td>Ct</td>
<td>Cycle threshold</td>
</tr>
<tr>
<td>dbcAMP</td>
<td>Dibutyl cyclic 3',5'-monophosphate</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>DEP</td>
<td>Diethylphosphate</td>
</tr>
<tr>
<td>DETP</td>
<td>Diethylthiophosphate</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's modified Eagle’s medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>ECACC</td>
<td>European Collection of Animal Cell Cultures</td>
</tr>
<tr>
<td>ECL</td>
<td>Enhanced chemiluminescence reagent</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix protein</td>
</tr>
<tr>
<td>EGF</td>
<td>Recombinant human epidermal growth factor</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal bovine serum</td>
</tr>
<tr>
<td>FGFb</td>
<td>Recombinant human fibroblast growth factor b</td>
</tr>
<tr>
<td>GAP-43</td>
<td>Growth associated protein-43</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GDNF</td>
<td>Glial-derived neurotrophic factor</td>
</tr>
<tr>
<td>GFAP</td>
<td>Glial fibrillary acidic proteins</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosine triphosphate</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>Sulphuric acid</td>
</tr>
<tr>
<td>HDAC</td>
<td>Histone deacetylases assay</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase secondary antibody conjugate</td>
</tr>
<tr>
<td>HTS</td>
<td>High throughput screening</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>IP</td>
<td>Intra peritoneal</td>
</tr>
<tr>
<td>IC50</td>
<td>Half maximum inhibitory concentration</td>
</tr>
<tr>
<td>IFs</td>
<td>Intermediate filaments</td>
</tr>
<tr>
<td>KCl</td>
<td>Potassium chloride</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>Monopotassium phosphate</td>
</tr>
<tr>
<td>LD</td>
<td>Lethal dose</td>
</tr>
<tr>
<td>Lys40</td>
<td>Lysine at position 40</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MAPs</td>
<td>Microtubule associated proteins</td>
</tr>
<tr>
<td>MBP</td>
<td>Myelin-basic protein</td>
</tr>
<tr>
<td>MFs</td>
<td>Microfilaments</td>
</tr>
<tr>
<td>MN</td>
<td>Micronuclei</td>
</tr>
<tr>
<td>MS</td>
<td>Multiple sclerosis</td>
</tr>
<tr>
<td>MTOCs</td>
<td>Microtubule organising centres</td>
</tr>
<tr>
<td>MTs</td>
<td>Microtubules</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>N2a</td>
<td>Mouse neuroblastoma 2A</td>
</tr>
<tr>
<td>Na2HPO4</td>
<td>Disodium phosphate</td>
</tr>
<tr>
<td>NaB</td>
<td>Sodium butyrate</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NCFAP</td>
<td>National Centre for Food and Agriculture Policy</td>
</tr>
<tr>
<td>NF</td>
<td>Neurofilament proteins</td>
</tr>
<tr>
<td>NFH</td>
<td>Neurofilament heavy chains protein</td>
</tr>
<tr>
<td>NFL</td>
<td>Neurofilament light chains</td>
</tr>
<tr>
<td>NFM</td>
<td>Neurofilament medium chains</td>
</tr>
<tr>
<td>NTE</td>
<td>Neuropathy target esterase</td>
</tr>
<tr>
<td>OP</td>
<td>Organophosphate</td>
</tr>
<tr>
<td>OPIDN</td>
<td>Organophosphate-induced delayed neuropathy</td>
</tr>
<tr>
<td>OPs</td>
<td>Organophosphates</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PC12</td>
<td>Rat PC12 pheochromocytoma cell line</td>
</tr>
<tr>
<td>PCE</td>
<td>Polychromat erythrocyte</td>
</tr>
<tr>
<td>PI-3K/PKB</td>
<td>Phosphoinositide-3-kinase/protein kinase B</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonyl fluoride</td>
</tr>
<tr>
<td>PNS</td>
<td>Peripheral nervous system</td>
</tr>
<tr>
<td>PON1</td>
<td>Paraoxonase 1</td>
</tr>
<tr>
<td>PSP</td>
<td>Phenyl saligenin phosphate</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonyl fluoride</td>
</tr>
<tr>
<td>qPCR</td>
<td>Quantitative real time polymerase chain reaction</td>
</tr>
<tr>
<td>RB</td>
<td>Electrophoresis running buffer</td>
</tr>
<tr>
<td>ReNcell CX</td>
<td>Human neural progenitor cell line</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>Rps18</td>
<td>RPS18 ribosomal protein S18</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>Reverse transcription polymerase chain reaction</td>
</tr>
<tr>
<td>SCE</td>
<td>Sister chromatid exchange</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>SCOTP</td>
<td>Saligenin cyclic-o-tolyl phosphate</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard error of mean</td>
</tr>
<tr>
<td>Ser-444</td>
<td>Serine at residue 444</td>
</tr>
<tr>
<td>SENSOR</td>
<td>Sentinel Event Notification System for Occupational Risks</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris- Acetate-EDTA buffer</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris-buffered saline</td>
</tr>
<tr>
<td>TCP</td>
<td>3,5,6-trichloro-2-pyridinol</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N,N-Tetramethylethylene diamine</td>
</tr>
<tr>
<td>TEPP</td>
<td>Tetraethyl pyrophosphate</td>
</tr>
<tr>
<td>the USA</td>
<td>The United States</td>
</tr>
<tr>
<td>TMB</td>
<td>3,3',5,5'-Tetramethylbenzidine</td>
</tr>
<tr>
<td>TOCP</td>
<td>Tri-ortho cresyl phosphate</td>
</tr>
<tr>
<td>TOTP</td>
<td>Tri-ortho-tolyl phosphate</td>
</tr>
<tr>
<td>Tween</td>
<td>Polyoxyethylene sorbiton monolaurate</td>
</tr>
<tr>
<td>UK</td>
<td>The United Kingdom</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>βIII-tubulin</td>
<td>The class III β-tubulin isotype</td>
</tr>
<tr>
<td>β-ME</td>
<td>β-mercaptoethanol</td>
</tr>
</tbody>
</table>
Research publications and scientific meetings arising from this thesis

Publications:

Scientific meetings:

1. Molecular studies of organophosphate toxicity in cultured neural cell (Oral presentation and poster), abstract no: 8, pp.21. 9th annual research (STAR) conference, 6-7 May 2015, Nottingham Trent University, Nottingham, UK.

Table of Contents

Chapter 1 Introduction ..1
1.1 Major cell types in the nervous system ..1
 1.1.1 Neurons ..1
 1.1.2 Glial cells ..1
1.2 Historical overview of organophosphates ...5
1.3 Organophosphorus insecticides and pesticides ...5
1.4 Chlorpyrifos ..7
 1.4.1 Chemical structure and physical properties ...7
 1.4.2 Routes of exposure to chlorpyrifos ...8
 1.4.3 Metabolic pathway of chlorpyrifos to chlorpyrifos-oxon10
1.5 Phenyl saligenin phosphate ...11
1.6 The acute toxicity of organophosphates in the nervous system12
1.7 Acute cholinergic syndrome ...15
1.8 Intermediate syndrome ...18
1.9 Organophosphate-induced delayed neuropathy (OPIDN) ..18
1.10 Other chronic neurological conditions associated with OP exposure21
1.11 Effects of OPs on cytoskeletal proteins ...22
 1.11.1 Cellular and cytoskeletal proteins as molecular targets of CPF, CPO and PSP toxicity 22
 1.11.2 Microtubules ..23
 1.11.3 Intermediate filaments ...28
 1.11.4 Glial fibrillary acidic proteins ...31
 1.11.5 Microfilaments and GAP-43 ..32
1.12 Genotoxic effects of organophosphorus compounds ..33
 1.12.1 CPF, CPO and PSP associated genotoxicity ...34
 1.12.2 The use of in vitro mammalian cell line models for assessment of organophosphate induced neurotoxicity ...37
 1.13.1 N2a neuroblastoma cell line ..39
 1.13.2 C6 rat glioma cell lines ...40
 1.13.3 Human neural progenitor stem cells (ReNcell CX) ..41
1.14 Summary ...42
1.15 Project Aims ...44

Chapter 2 Material and Methods ..45
2.1 Materials ..45
 2.1.1 General laboratory reagents ..45
 2.1.2 Plastic ware ..47
 2.1.3 Test compounds ...48
 2.1.4 Cell lines ...48
2.2 Methods ...49
 2.2.1 Cell culture and maintenance of N2a neuroblastoma cells and rat C6 glioma cells 49
 2.2.2 Human neural ReNcell CX stem cell culture and maintenance50
 2.2.3 Cryopreservation of cell lines ...51
 2.2.4 Cell recovery from liquid nitrogen storage ..51
 2.2.5 Cell plating for experimentation ..52
 2.2.6 Induction of cell differentiation ..54
 2.2.7 Measurement of cell viability in cells exposed to OPs55
 2.2.8 Morphological measurements of fixed differentiated N2a and C6 cells56
 2.2.9 Indirect immunofluorescence staining ...57
 2.2.10 Image acquisition and analysis ...59

XII
2.2.11 Preparation of N2a and C6 cell lysates for one dimensional polyacrylamide gel electrophoresis (SDS-PAGE) .. 60
2.2.12 One dimensional polyacrylamide gel electrophoresis (SDS-PAGE) .. 62
2.2.13 Western blotting .. 66
2.2.14 Enzyme linked immunosorbent assay (ELISA) ... 70
2.2.15 Reverse transcription polymerase chain reaction (RT-PCR) .. 71
2.2.16 Quantitative PCR (qPCR) .. 77
2.2.17 Histone deacetylases assay (HDAC) .. 79
2.2.18 Statistical analysis .. 81

Chapter 3 Cytotoxic Effects of Organophosphate Compounds on Differentiating Mouse N2a Neuroblastoma and C6 Glioma Cells ..
3.1 Introduction ... 82
3.2 Aims ... 85
3.3 Effects of CPF, CPO and PSP on the viability of differentiating N2a cells 86
3.4 Effects of CPF, CPO and PSP on the viability of differentiating C6 cells 86
3.5 Effects of CPF, CPO and PSP on N2a and C6 cell growth .. 89
3.6 Effects of CPF, CPO and PSP on N2a cell morphology ... 92
3.7 Development of high content screening assay of neurite outgrowth 95
3.8 Monitoring multi-parameters of neurite outgrowth in differentiating N2a cells 98
3.9 Monitoring multi-parameters of neurite outgrowth in differentiating C6 cells 103
3.10 Effect of CPF, CPO and PSP on cytoskeletal organization in cultured differentiating N2a and C6 cells .. 107
3.11 Discussion .. 117

Chapter 4 Effects of Organophosphates on Cytoskeletal and Associated Regulatory Proteins in Differentiating N2a Neuroblastoma and C6 glial Cells
4.1 Introduction ... 122
4.2 Aims ... 124
4.3 Effects of CPF, CPO and PSP on the expression level of GAPDH in N2a and C6 cell line125
4.4 Effects of CPF, CPO and PSP on the expression levels of microtubule proteins in differentiating N2a cells .. 126
4.5 Effects of CPF, CPO and PSP on the expression levels of neurofilament and growth associated proteins in N2a cells .. 128
4.6 Effects of CPF, CPO and PSP on the expression levels of glial fibrillary acid protein in C6 cells .. 131
4.7 Determination of concentration-response effects of CPF, CPO and PSP on cytoskeletal and associated regulatory proteins using cell ELISA 133
4.8 Discussion .. 138

Chapter 5 Genotoxicity of Organophosphate Compounds Chlorpyrifos, Chlorpyrifos Oxon and Phenyl Saligenin Phosphate on Differentiating Mammalian Cell Lines
5.1 Introduction ... 143
5.2 Aims ... 145
5.3 Results ... 146
5.3.1 Primer validation .. 146
5.3.2 Housekeeping genes .. 149
5.3.3 Effect of CPF, CPO and PSP on neural markers in mammalian cell lines 151
5.3.4 Effect of CPF, CPO and PSP on GFAP expression in differentiating C6 cells 158
5.3.5 Histone deacetylase (HDAC) activity upon exposure to CPF, CPO and PSP in differentiating neuronal cells .. 161
5.4 Discussion .. 164

Chapter 6 Organophosphate Toxicity in a Human Neural Progenitor Stem Cell Model
6.1 Introduction ... 171
6.2 Results ... 173
6.2.1 Cell viability in the presence of organophosphates ... 173
6.2.2 Primer validation...176
6.2.3 Effect of CPF, CPO and PSP on neuronal markers in ReNcell CX cell line........178
6.2.4 Gliarial fibrillary acidic protein (GFAP)..180
6.2.5 Histone deacetylases (HDAC) activity upon exposure to CPF, CPO and PSP in
differentiating RenCellCX cells..183
6.3 Discussion..184

Chapter 7..
7.1 General Discussion..188
7.2 Conclusions...198
7.3 Future work...198

References..202

Appendix ...229
List of Figures

Figure 1.1. Schematic representation of neural cell types. .. 3
Figure 1.2. Chemical structure of (A) general organophosphate structure, (B) chlorpyrifos. 8
Figure 1.3. Representation of the metabolism of CPF. ... 11
Figure 1.4. Inhibition of AChE by organophosphates. ... 14
Figure 1.5. Classification of organophosphate toxicity. ... 15
Figure 1.6. Representation of interactions between esterases and OPs. 17
Figure 1.7. Microtubule structure and composition ... 23
Figure 1.8. Structure of intermediate filament protein subunits .. 30
Figure 1.9. Schematic representation of neural stem cell differentiation 42

Figure 2.1. Graphical protocol of the steps involved in RNA extraction 74
Figure 2.2. Phase contrast microscopy images of homogenised cells for nuclear extraction ... 80

Figure 3.1. Effects of CPF, CPO and PSP on MTT reduction in differentiating N2a cells after 24 h. 87
Figure 3.2. Effects of CPF, CPO and PSP on MTT reduction in differentiating C6 cells after 24 h. 88
Figure 3.3. Effects of CPF, CPO or PSP on the cell number and viability of differentiating N2a cells. ... 90
Figure 3.4. Effects of CPF, CPO or PSP on the number and viability of differentiating C6 cells. 91
Figure 3.5. Effects of CPF, CPO or PSP on the morphology of differentiating N2a cells. 94
Figure 3.6. Segmentation of stained differentiating N2a and C6 cells using high throughput screening assay .. 97
Figure 3.7. Effects of CPF, CPO and PSP on cell number and cell body area in differentiating N2a cells as assessed by high throughput assays ... 99
Figure 3.8. Effects of CPF CPO or PSP on average intensity of staining and percentage of cells with significant outgrowth in co-differentiated N2a cells as assessed by high throughput analysis. ... 100
Figure 3.9. Effects of CPF, CPO or PSP on maximum and average neurite length/cell in differentiating N2a cells as assessed by high throughput analysis .. 102
Figure 3.10. Effects of CPF, CPO or PSP on maximum and average neurite length/cell in differentiating N2a cells as assessed by high throughput analysis .. 105
Figure 3.11. Effects of CPF, CPO or PSP on multiple parameters in co-differentiated C6 cells as assessed by high throughput analysis .. 106
Figure 3.12. Indirect immunofluorescence staining of CPF effects on βIII tubulin staining of differentiating N2a cells as detected by EVOS cell imaging system 108
Figure 3.13. Indirect immunofluorescence staining of CPO effects on βIII tubulin staining of differentiating N2a cells as detected by EVOS cell imaging system 109
Figure 3.14. Indirect immunofluorescence staining of PSP effects on βIII tubulin staining of differentiating N2a cells as detected by EVOS cell imaging system 110
Figure 3.15. Indirect immunofluorescence staining of CPF effects on NFH staining of differentiating N2a cells as detected by EVOS cell imaging system .. 111
Figure 3.16. Indirect immunofluorescence staining of CPO effects on NFH staining of differentiating N2a cells as detected by EVOS cell imaging system .. 112
Figure 3.17. Indirect immunofluorescence staining of PSP effects on NFH staining of differentiating N2a cells as detected by EVOS cell imaging system .. 113
Figure 3.18. Indirect immunofluorescence of CPF effects on anti-GFAP staining co-differentiated C6 cells as detected by EVOS cell imaging system ... 114
Figure 3.19. Indirect immunofluorescence of CPO effects on anti-GFAP staining co-differentiated C6 cells as detected by EVOS cell imaging system ... 115
Figure 3.20. Indirect immunofluorescence of PSP effects on anti-GFAP staining co-differentiated C6 cells as detected by EVOS cell imaging system ... 116

XV
Figure 4.1. Detection of microtubule proteins by Western blots of differentiating N2a cell lysates. ...127
Figure 4.2. Detection of neurofilament and growth associated proteins by Western blots of differentiating N2a cell lysates.129
Figure 4.3. Detection of Glial fibrillary acidic protein by Western blots of differentiating C6 cell lysates. ...131
Figure 4.4. Effects of CPF, CPO and PSP on microtubule proteins in differentiating N2a cells as determined by cell ELISA.134
Figure 4.5. Effects of CPF, CPO and PSP on neurofilament and growth associated proteins in differentiating N2a cells as determined by cell ELISA. 136
Figure 4.6. Effects of CPF, CPO and PSP on glial fibrillary acidic protein in differentiating N2a cells as determined by cell ELISA.137

Figure 5.1. Analysis of genes of interest in mitotic and differentiating N2a cells by PCR.148
Figure 5.2. Analysis of other neurofilament genes of interest in mitotic and differentiating N2a cells by PCR. ..149
Figure 5.3. GFAP expression in mitotic and differentiating C6 cells. ..149
Figure 5.4. Ct values obtained for GAPDH and Rps18 expression (qPCR) in differentiating N2a cells after different OP treatments.150
Figure 5.5. Ct values obtained for GAPDH and Rps18 expression in C6 cell line151
Figure 5.6. Relative expression of MAP-2 mRNA in differentiating N2a cells after CPF, CPO and PSP exposure as determined by quantitative PCR. ..152
Figure 5.7. Relative expression of TUBB3 mRNA in differentiating N2a cells after CPF, CPO and PSP exposure as determined by quantitative PCR. ..154
Figure 5.8. Relative expression of MAPT (Tau) mRNA in differentiating N2a cells after CPF, CPO and PSP exposure as determined by quantitative PCR. ..155
Figure 5.9. Relative expression of NEFH mRNA in differentiating N2a cells after CPF, CPO and PSP exposure as determined by quantitative PCR. ..156
Figure 5.10. Relative expression of GAP43 mRNA in differentiating N2a cells after CPF, CPO and PSP exposure as determined by quantitative PCR. ..158
Figure 5.11. Relative expression of GFAP mRNA in differentiating C6 cells after CPF, CPO and PSP exposure as determined by quantitative PCR. ..159
Figure 5.12. Effects of CPF, CPO and PSP on HDAC activity in differentiating N2a cells.162
Figure 5.13. Effects of CPF, CPO and PSP on total HDAC activity differentiating C6 cells163

Figure 6.1. Effects of CPF (A), CPO (B) and PSP (C) on MTT reduction in differentiating ReNcell CX cells ...174
Figure 6.2. Effects of CPF, CPO or PSP on the morphology of differentiating ReNcell CX cells.175
Figure 6.3. Confirmation of PCR for genes of interest in mitotic and differentiating ReNcell CX cells. ...178
Figure 6.4. Expression of TUBB3 mRNA in differentiating ReNcell CX cells after CPF, CPO and PSP exposure, as determined by quantitative qPCR. ..179
Figure 6.5. Expression of NEFH mRNA in differentiating ReNcell CX cells after CPF, CPO and PSP exposure as determined by quantitative qPCR. ..180
Figure 6.6. Expression of GFAP mRNA in differentiating ReNcell CX cells after CPF, CPO and PSP exposure as determined by quantitative qPCR. ..181
Figure 6.7. Effects of CPF, CPO and PSP on HDAC activity in differentiating ReNcell CX cells. ...183

Figure 7.1. Schematic diagram of common CPF, CPO and PSP impacts on neural cells.200
Figure 8.1. Dose estimation of the effects of CPF, CPO and PSP on MTT reduction in differentiating N2a cells after 24 h. ... 229
Figure 8.2. Dose estimation of the effects of CPF, CPO and PSP on MTT reduction in differentiating C6 cells after 24 h. ... 230
Figure 8.3. Electropherogram data for MAP2 (panel A), TUBB3 (panel B), MAPT (panel C), NEFH (panel D) and GAP43 (panel E) PCR sequenced product in N2a cell lines. 231
Figure 8.4. Electropherogram data for GFAP PCR sequenced product in C6 cell lines ... 232
Figure 8.5. Sequences alignments ... 233
Figure 8.6. Sequences alignments .. 233
Figure 8.7. Electropherogram data for NEFM (panel A) and NEFL (panel B) PCR sequenced product in N2a cell lines ... 233
Figure 8.8. Sequences alignments .. 233
List of Tables

Table 1.1. Acetylcholine receptors, subtypes and location (Adopted from Tata et al., 2014)13
Table 1.2. Major microtubule cytoskeleton proteins of the nervous system and their regulation (Adopted from Luduena, 1993). ...25
Table 1.3. Intermediate filament classification ...29

Table 2.1. List of cell culture reagents ...45
Table 2.2. List of other reagents and materials ...46
Table 2.3. The cell density of N2a, C6 and ReNcell CX cell lines for the experiments of current study ...54
Table 2.4. List of primary antibodies used for indirect immunofluorescence staining57
Table 2.5. Secondary antibodies for indirect immunofluorescence staining58
Table 2.6. BSA protein standards for protein estimation ..62
Table 2.7. Reagent volumes required for preparation of SDS-PAGE resolving gel for two mini gels ...65
Table 2.8. Reagent volumes required for preparation of SDS-PAGE stacking gel for two mini gels ...65
Table 2.9. List of primary antibodies used for Western Blot and ELISA assay67
Table 2.10. Secondary antibodies for probing Western blot ...67
Table 2.11. List of reverse transcription polymerase chain reaction reagents72
Table 2.12. Final volumes and amounts of cDNA synthesis components75
Table 2.13. Volumes and final concentrations of the components for RT-PCR76
Table 2.14. Settings of thermal cycler for PCR ...76
Table 2.15. Volumes and amounts of the components used in qPCR78
Table 2.16. Quantitative RT-PCR protocol ..78
Table 2.17. List of nuclei extraction buffers for HDAC assay ...79
Table 2.18. Assay incubation setup ..79

Table 3.1. Quantification of neurite outgrowth in differentiating N2a cells93

Table 4.1. Densitometric analysis of Western blots probed with antibody to GAPDH protein in N2a and C6 cell lines ..126
Table 4.2. Densitometric analysis of Western blots probed with antibodies to microtubule proteins in N2a cell lines ...128
Table 4.3. Densitometric analysis of Western blots probed with antibodies to neurofilament and growth associated proteins in N2a cell lysates ...130
Table 4.4. Densitometric analysis of Western blots probed with antibodies to glial fibrillary acid protein (GFAP) in C6 cells ...132

Table 5.1. Designed primers targeting N2a and C6 cell lines neuronal markers147
Table 5.2. Summary of OP effects on neural marker gene expression relative to GAPDH160

Table 6.1. Primer sequences and standardised PCR optimisation protocols for the amplification of specific neural markers genes ...177
Table 6.2. Summary of OP effects on human neural marker genes relative to GAPDH182
Chapter 1

Introduction
1.1 Major cell types in the nervous system

The nervous system in mammals is composed of two main cell types, the glial and neuronal cells, both of which play important roles in the regulation of neural function. Neuronal cells are involved in the transmission of information to neighbouring cells, which may be either neurons or effector cells, via electrical impulses that travel along axons (Alberts et al., 1983). Glial cells do not play a direct role in such information processing; their main roles include providing structural, homeostatic, and defensive support to neurons (Barone et al., 2000). These functionally and morphologically distinct cells act together to sustain the correct functioning of the nervous system; it is therefore important to understand the basic properties of these cells in order to better understand the effects of neurotoxins in vivo (Brown, 1991).

1.1.1 Neurons

As neurons regulate neurotransmission, any effect of a neurotoxin on this cell type may have a large effect on the nervous system. Neurons are responsible for the perception of and response to stimuli, and they also transmit cellular signals to other neighbouring cells through synaptic transmission (Barres and Barde, 2000). Neurons are highly polarised cells that produce dendrites and axons upon differentiation. The structural and morphological features of axons reflect their role in neurotransmission and the need for a system to mediate axonal transport (Barres and Barde, 2000).

The structure of the differentiated neuronal cells displays three key features: the growth cone, axon and cell body. Within the cell body are located the nucleus and the cytoplasmic organelles including ribosomes and the endomembrane system (Wilson and Hunt, 2014). The axon is a long projection that extends from the cell body; this structure is vital for neurotransmission and axonal transport. The actual length of the axon varies and can measure up to one thousand times longer than the cell body (Alberts et al., 1983). Further information about these morphological features can be determined by studying cultured neuronal cells induced to differentiate in a controlled environment (Henschler et al., 1992; Flaskos et al., 1994; 1998; Schmuck and Ahr, 1997).

1.1.2 Glial cells

The second most important type of cells, and the most numerous in the nervous system is the glial cell. Glial cells include all neural cells that do not transmit electrical signals (Compston et al., 1997). They are not directly involved in signal transduction, but the
Introduction

interest in glia has increased due to their multiple roles, including providing defensive, homeostatic, structural, and nutritional support to neurons (Barone et al., 2000). The actual number of glial cells in the nervous system is much greater than neuronal cells; approximately 90% of the cells in the human brain are glial cells (Allen and Barres, 2009).

Glia comprises a heterogeneous array of cell types from different origins that have specific functions and morphologies (Compston et al., 1997). The cell types include microglia, oligodendrocytes and astrocytes in the central nervous system (CNS), and enteric glia and Schwann cells in the peripheral nervous system (PNS) (Figure 1.1) (Allen and Barres, 2009).

Glia comprises a heterogeneous array of cell types from different origins that have specific functions and morphologies (Compston et al., 1997). The cell types include microglia, oligodendrocytes and astrocytes in the central nervous system (CNS), and enteric glia and Schwann cells in the peripheral nervous system (PNS) (Figure 1.1) (Allen and Barres, 2009).

Glia comprises a heterogeneous array of cell types from different origins that have specific functions and morphologies (Compston et al., 1997). The cell types include microglia, oligodendrocytes and astrocytes in the central nervous system (CNS), and enteric glia and Schwann cells in the peripheral nervous system (PNS) (Figure 1.1) (Allen and Barres, 2009).

Glia comprises a heterogeneous array of cell types from different origins that have specific functions and morphologies (Compston et al., 1997). The cell types include microglia, oligodendrocytes and astrocytes in the central nervous system (CNS), and enteric glia and Schwann cells in the peripheral nervous system (PNS) (Figure 1.1) (Allen and Barres, 2009).

Glia comprises a heterogeneous array of cell types from different origins that have specific functions and morphologies (Compston et al., 1997). The cell types include microglia, oligodendrocytes and astrocytes in the central nervous system (CNS), and enteric glia and Schwann cells in the peripheral nervous system (PNS) (Figure 1.1) (Allen and Barres, 2009).

In the PNS, Schwann cells consist of two types, myelinating and non-myelinating cells. The myelinating cells have a similar function and structure to oligodendrocytes in the CNS; they produce an insulating sheath around axons. The non-myelinating Schwann cells provide metabolic and mechanical support for neurons. Enteric glia have an essential role in synaptic transmission and are located in the autonomic ganglia (Jessen, 2004).
1.1.2.1 Microglia

Microglia is prenatally derived from mesodermal (myeloid) tissue (Chan et al., 2007). They have a protective role as specialised brain macrophages, in that they clean up cellular debris, check the brain for damage or infections, eliminate inadequate synapsis and digest dead neurons that have undergone apoptosis (Compston et al., 1997; Allen and Barres, 2009).

In some neurodegenerative disorders, for example Alzheimer's disease (AD), microglia become activated, which changes the phenotype to amoeboid and this increases their phagocytic function (de la Torre, 2002; Grammas et al., 2002; Nakamura, 2002; Allen and Barres, 2009).
1.1.2.2 Oligodendrocytes

Oligodendrocytes synthesise the myelin sheath around axons, which is an insulating membrane that provides support and improves electrical signal transmission efficiency and speed (Compston et al., 1997; Allen and Barres, 2009). Due to their important role, any toxicity towards these cells could greatly affect the development of insulated neurons in mammals (Sachana et al., 2008). In some neurodegenerative disorders, such as multiple sclerosis (MS), the myelin sheath produced by the oligodendrocyte undergoes an autoimmune attack, resulting in demyelination of the axons (Antel, 2006). Other studies have suggested that loss of this type of glial cell can be linked to clinical depression (Allen and Barres, 2009).

1.1.2.3 Astrocytes

Originally, it was thought the main function of astrocytes was to regulate the levels of extracellular potassium ions in neurons (Orkand et al., 1966). However, it is now known that astrocytes carry out several important roles that support the functionality of neurons; they can guide neuronal migration, differentiation and proliferation, help in assembly and formation of synapses during central nervous development, neurite outgrowth generation, supply the neurons with energy, guidance for axons, and help to maintain the trophic and ionic balance of neurons and the extracellular environment (Guerri and Renau-Piqueras, 1997; Aschner et al., 1999; Allen and Barres, 2009). Astrocytes also help to regulate the formation of the blood-brain barrier and they can respond to neural injury by secreting neurotrophic factors, including glial-derived neurotrophic factor (GDNF) (Barres and Barde, 2000).

Astrocytes can also act as physical barriers; they separate synaptic connections between neighbouring neurons, and they can recycle neurotransmitters, which protects the neurons from excitotoxicity (Hassel et al., 1997; Hertz et al., 1999). Astrocytes are in contact with neurons and blood vessels, which means that the calcium response that activates the astrocytes after neuronal activity, can be used to modulate the ability of blood vessels to regulate blood flow (Zonta et al., 2003). This allows for more oxygen and glucose to be transported to the neurons (Allen and Barres, 2009). The intake of glutamate by astrocytes can induce glycolysis leading to elevated lactate production, which can be used by neurons as an energy source (Tsacopoulos and Magistretti, 1996). Astrocytes can also protect neurons from oxidative stress by releasing antioxidants including glutathione (Sagara et al., 1993). Thus, the different types of neuronal and glial cells act cooperatively in the
regulation of neural function and the targeting of any one of them by neurotoxins such as organophosphates could have a detrimental effect on the nervous system.

1.2 Historical overview of organophosphates

Organophosphorous compounds (OPs) are a group of synthetic chemical compounds formed by a reaction between a phosphoric acid and alcohol. They were first synthesised in the 19th century (Singh and Khurana, 2009). Historically, OPs have been used in a range of agricultural, industrial and domestic settings, with a wide range of applications, but as more investigations were carried out it became clear that these types of compounds were toxic to mammals, causing different levels of neurotoxicity depending on the dose, age and route of exposure. OPs were developed as insecticides and pesticides in 1940 when Schrader’s group developed around 2000 compounds, including chemical warfare agents like sarin and tabun and pesticides such as parathion (Antonijevic and Sojiljkovic, 2007).

1.3 Organophosphorus insecticides and pesticides

Pesticides are mainly used to control insect damage in agricultural crops; they are mixtures of chemicals and the OP insecticides are the most widely used (Gupta, 2006; Gennari et al., 2015). The worldwide consumption of pesticides is significant; it is estimated to be more than five billion pounds per year (Gupta, 2006; Gennari et al., 2015).

Although the main use of OPs is in agriculture, they are not restricted to this category; they are also used in many residential, medical, and industrial settings, including use as solvents, lubricants, and fire retardants as well as insecticides (Hargreaves, 2012). In the year 2005, it was estimated that 2 billion tonnes of OP insecticides, including chlorpyrifos (CPF), were applied to agricultural fields across the world; only a small proportion of this actually targeted pests, and the rest ended up polluting the environment (Gavrilescu et al., 2015).

A European study has helped to highlight how widespread the problem of OP pollution is; it is reported that different food products including processed food and baby food were contaminated with more than 250 different OPs (EC, 2005). In addition, the study found that approximately 50% of the cereals, fruits, and vegetables from Europe contained OP residues (EC, 2005). These findings of overuse and pollution were supported by a study from the USA, which reported that in 1995, approximately 11 million kg of OP compounds (primarily diazinon, malathion, and CPF) were used to produce agricultural crops, with commercial and residential properties using 6 to 9 million kg of insecticidal OP compounds in the same year (Aspelin, 1997).
The widespread overuse of OPs and their potential adverse effects pose a significant risk to public health; it is not only agricultural workers that are at risk of exposure to these insecticides; due to pollution, the general population are also at risk (Mearns et al., 1994; Stephens et al., 1995). Different epidemiological studies have all shown that there is repeated exposure in the majority of people to low concentrations of OPs, due to interaction with the environment and also through food sources. Over the long-term this exposure may cause chronic nervous system damage (Mearns et al., 1994; Stephens et al., 1995).

This prolonged low level exposure to OPs, together with increased reports of acute pesticide poisoning is a major public health concern. Globally, around three million people suffer accidental acute pesticide poisoning, which results in around 346,000 deaths per year (WHO, 2008). A report by the World Health Organisation (WHO) highlighted that each year there are 2 million cases of pesticide poisoning which results in approximately 370,000 deaths worldwide (Gunnell et al., 2007). The US Sentinel Event Notification System for Occupational Risks (SENSOR) pesticide program has shown that nearly 50% of the acute pesticide related illnesses were caused by OP insecticides (Calvert et al., 2004). The incidence of acute poisoning related deaths in the UK and other western countries is relatively low (Jamal, 1995), but this is in contrast to developing countries, where the rate is significantly higher, with estimates of over 300,000 deaths/year. The increased rate is influenced by the higher use of OP pesticides, combined with a lack of strict regulations, and limited knowledge of safety procedures in developing countries (Carlton et al., 2004; WHO, 2008).

Due to their widespread use and potential impacts on public health, there have been suggestions by regulatory authorities in some developed countries that OP compounds should be tightly regulated, including imposition of restrictions or bans on their uses. For example, in the USA the Environmental Protection Agency (EPA) in 2000 completely banned CPF for domestic use due to its proven developmental neurotoxicity (EPA, 2000). The Advisory Committee of Pesticides (ACP) in the UK also raised concerns over the potential toxicity of CPF and its impact on public health and food safety (ACP, 2002). Based on these recommendations, the use of CPF in a household setting has been stopped and it was restricted to agricultural application only in some countries (Colborn, 2006). As mentioned previously, a recent study by the EPA recommended that the use of most of OPs should be banned not only in household but in agriculture as well due to the toxicity of OPs (EPA, 2016), but the suggested ban has not been carried out (EPA, 2017). Despite the
potential dangers to health and the imposed restrictions, CPF remains a popular pesticide to use especially in many developing countries (Salyha, 2010).

1.4 Chlorpyrifos

CPF was first synthesised and then manufactured commercially in 1965 by the Dow Elanco Company, and it is still one of the most extensively used OPs to control insects in homes, gardens and agricultural fields worldwide (Cox, 1994; Hargreaves, 2012). It has become widely distributed in the world market under different brand names, including Scout, Eradex, Empire, Brodan, Lorsban, Dursban, and Reldan (Salyha, 2010). In 1997, there were approximately 850 commercial CPF products registered in the USA, according to the EPA (EPA, 1999). Currently CPF use is still authorised in around 50 countries, including Japan, New Zealand, Australia, USA, France, UK, Canada, Spain, and Italy (Salyha, 2010).

CPF has been used in many applications in different locations; within residential settings it has been used to control pests and insects including cockroaches, mosquitoes, fleas, flies, and lice, whereas in farming and industrial settings it is applied directly to storage bins, farm buildings, golf courses, lawns, animal sites, and even sheep and turkeys (Eaton et al., 2008; Salyha, 2010). One of the largest areas of use is arable farming; CPF is applied to several major crops, including corn, fruits, vegetables, tree nuts, wheat, soybeans, and citrus fruit (Eaton et al., 2008; Salyha, 2010). The National Centre for Food and Agriculture Policy (NCFAP), reported that the USA used approximately 1.4 million kg of CPF in the home and garden every year (NCFAP, 2000). This high level of use is also typical in other countries; for example, the annual usage of CPF in 2011 in China was approximately 20 million kg (AgroNews, 2013).

CPF is classified as an EPA class II toxicant as it induces the same toxic effects as most acetylcholinesterase (AChE) inhibiting pesticides, but there are conflicting data on the carcinogenic and mutagenic potential of CPF in the literature (Dreiher et al., 2005; Cui et al., 2006).

1.4.1 Chemical structure and physical properties

OPs are phosphoric acid derived esters (Figure 1.2, panel A), which contain an X group (leaving group) and two lipophilic groups R1 and R2 (Eddleston et al., 2008; Hargreaves, 2012). The X group is usually displaced when an OP binds forming a stable bond through an organophosphorylation reaction (Costa, 2006). The chemical name of CPF, which is one of the compounds of interest to the current study, is O,O-diethyl O-3,5,6-trichloropyridin-2-
Introduction

Chapter 1

Chlorpyrifos-ethyl; it is normally found as a white to colourless crystalline solid, which gives off a strong mercaptan-like odour (Figure 1.2). CPF is the active ingredient in many insecticide formulations, available in different forms, including capsules, suspensions, granules, powder, gel-based products, and emulsifiable concentrates (Wauchope et al., 1992). CPF is lipophilic meaning it is poorly soluble in water but it does dissolve into most organic solvents; therefore, before application on to crops or animals, it needs to be mixed with solvents, for example acetone, benzene, xylene, diethyl ether, methanol or carbon disulphide (Wauchope et al., 1992; Eaton et al., 2008).

Figure 1.2. Chemical structure of (A) general organophosphate structure, (B) chlorpyrifos.

OPs contain a central phosphorus atom with a double bond to either sulphur or oxygen, R1 and R2 groups that are typically (but not always) ethyl or methyl in structure, and a leaving group which is specific to the individual organophosphate. Adopted from Reigart and Roberts (1999).

1.4.2 Routes of exposure to chlorpyrifos

There are different routes that can lead to exposure CPF; it can enter the body through ingestion, dermal contact, or inhalation, and this leads to it being rapidly absorbed through the airways, oral mucosa, and skin (Karki et al., 2004; Munoz-Quezada et al., 2012). Common exposure routes in animals and humans are from inhaling contaminated dust, breathing polluted air, contact during application or preparation of OPs in the workplace, and eating or drinking food and water that are contaminated with OPs (WHO, 2001).

In the USA one of the major sources of CPF exposure is application of pesticides and other insect treatments indoors; the EPA reported over 17,000 cases between 1993 and 1996 (EPA, 1997), and between 1998 and 2002 there were 2,593 incidents of acute CPF poisoning reported in school children in the USA (Alarcon et al., 2005). Even after the
introduction of restrictions in CPF use, there were still more than 300 cases of acute CPF toxicity reported between 2002 and 2011 (EPA, 2013).

Outside of the home, occupational exposure is one of the most common sources of CPF poisoning; CPF exposure affects agricultural workers, such as pesticide sprayers, sheep dippers, and farmers, and their families (Gupta, 2006; Munoz-Quezada et al., 2012). Even children and other people living on or near a farm that uses OP insecticides can be at risk of OP exposure due to the amounts of insecticides applied (Gupta, 2006; Munoz-Quezada et al., 2012). There is also a risk that the treatment of a workplace with insecticides, such as CPF, to remove termites or other insects could lead to significant exposure of the employees; indeed, over 1300 cases of workplace exposure to CPF were reported between 1985 and 1992 to the US poison control centre (EPA, 1994). Another common source of CPF exposure is during manufacturing; a prospective cohort study evaluated the level of occupational exposure in manufacturing workers. The results of the study showed there was a significant increase in CPF metabolites in the urine of those workers tested, which raised major concerns about the guidelines for occupational exposure to CPF (Albers et al., 2004).

One of the other key exposure routes is through inhalation of CPF contaminated air and water, with CPF contamination of groundwater having been reported in nine states in the USA (EPA, 1992), South Africa and Spain (Thoma and Nicholson, 1989). Significant CPF air contamination has been detected at application sites; studies that analysed air samples taken from approximately one metre above a cornfield that had been sprayed, showed that half of the CPF applied was vaporized, and that this contaminated the air for over 25 days (Whang et al., 1993). CPF can also be carried up into the atmosphere and move some distance away from the application site; for example, studies of air samples detected CPF contamination up to about 24 km away from the site of CPF application (Zabik and Seiber, 1993).

As soon as CPF is applied and is in the environment, it can be rapidly absorbed through all possible routes of exposure (oral, dermal, inhalation) due to the fact it is a lipophilic compound which crosses biological membranes, including the blood brain barrier and the placenta (Timchalk et al., 2002). As CPF enters the bloodstream it can distribute into the tissues at significant concentrations, which are able to inhibit AChE, a key enzyme in the regulation of cholinergic neuron activity, and induce neural damage (Timchalk et al., 2002).
1.4.3 Metabolic pathway of chlorpyrifos to chlorpyrifos-oxon

Within humans, many different enzymes contain polymorphisms which means that individuals can have variations in enzyme activity, and therefore will react differently after exposure to toxins such as OPs, resulting in differences in activation and detoxification of the xenobiotic in question (Costa et al., 2005). CPF is metabolically converted into its oxygen form chlorpyrifos oxon (CPO), by replacing the sulphur group with oxygen. CPF biotransformation is mostly mediated by cytochromes. Generally, CPF is oxidized by CYP450 to diethylthiophosphate (DETP) and 3,5,6-trichloro-2-pyridinol (TCP) formation (Figure 1.3). CYP450 are present in several isoforms in the liver; studies have shown CYP2B6 and CYP3A4 are the most effective enzymes for CPO formation from CPF (Mutch and Williams, 2006; Croom et al., 2010). Then, the metabolites are filtered through the kidneys to be excreted in the urine (Eaton et al., 2008). In the liver, CPO is hydrolysed by diethylphosphate (DEP) and 3,5,6-trichloro-2-pyridinol (TCP) to become a less toxic product. CPO detoxification also involves plasma A-esterases, such as paraoxonase 1 (PON1). It has been highlighted by several in vivo studies which showed that low levels of these enzymes can increase the OP neurotoxicity susceptibility (Costa et al., 2013). Studies in humans have shown that PON1 has a polymorphic distribution in plasma samples, which means there is a large variation in concentrations and activity in individuals (Costa et al., 2013).
1.5 Phenyl saligenin phosphate

Phenyl saligenin phosphate (PSP) is a structural analogue of saligenin cyclic-o-tolyl phosphate (SCOTP), which is the active metabolite of tri-ortho cresyl phosphate (TOCP) (Fowler et al., 2001). Studies of this non-pesticide OP and its ‘parent’ compound show that they produce their toxic effect by NTE organophosphorylation, which leads to inhibition of enzyme activity and can cause organophosphate-induced delayed neuropathy (OPIDN) (Nomeir and Abou-Donia, 1986; Zhao et al., 2006). Occupational exposure to toxic aerosols of TOCP via its use in aviation fluids, can result in cognitive dysfunction, neurodegenerative poisoning, and memory loss (Winder and Balouet, 2001; Michaelis, 2011; Hargreaves, 2012).

Studies of PSP have shown that it has several key targets within the body, such as neuropathy target esterase (NTE), mitogen-activated protein kinase (MAPK) signalling, cytoskeletal proteins, transglutaminase enzyme activity and neurotrophin receptors (Carlson and Ehrich, 2001; Harris et al., 2009a; Pomeroy-Black and Ehrich, 2012; Baker et al., 2013). PSP is a classical inhibitor of NTE; after exposure to PSP, NTE is inhibited by organophosphorylation. In differentiating neuronal cells, this is followed by reduced neurite...
outgrowth associated with modification of axonal morphology and neuronal degeneration, which are critical events in the development of OPIDN (Flaskos et al., 1994; Ehrich and Jortner, 2001).

Studies investigating PSP-induced toxicity have focused on the effects of MAPK and phosphoinositide-3-kinase/protein kinase B (PI-3K/PKB) signalling, as these play a vital role in the neuronal response to OP exposure (Kaplan, 1995; Hargreaves et al., 2006; Pomeroy-Black and Ehrich, 2012). The studies found increased phosphorylation of PKB and MEK1/2 protein kinases in human SH-SY5Y neuroblastoma cells by low concentrations of PSP (e.g. 0.01-1.0 µM), and that 2.5 µM PSP for 4 h in mouse N2a neuroblastoma cells caused activation of extracellular-signal-regulated kinases 1/2 (ERK1/2) associated with the inhibition of NTE and neurite outgrowth (Nostrandt et al., 1992; Carlson et al., 2000; Hargreaves et al., 2006; Pomeroy-Black and Ehrich, 2012).

Other studies have focused on the effects of PSP on cytoskeletal proteins and myelin basic protein; generally, the studies have found that sub-lethal concentrations of PSP induced NF and microtubule degradation, in association with in myelin degeneration, abnormal neurite growth and axonal damage (Abou-Donia and Lapadula, 1990; Ehrich and Jortner, 2001; Massicotte et al., 2003; Hargreaves et al., 2006; El-Fawal and McCain, 2008).

Overall, these results indicate that PSP and TOCP can cause significant neurotoxicity by disrupting the activity of cytoskeletal proteins and MBP, but the molecular basis of these effects has not been fully investigated; therefore, further research is required to fully elucidate the mechanisms involved (Baker et al., 2013).

1.6 The acute toxicity of organophosphates in the nervous system

The enzyme AChE is the primary target of OPs in the nervous system, and its inhibition produces the best-known effect of OP acute toxicity. AChE is found at neuromuscular junctions, is involved in termination of neurotransmission, and is a serine hydrolase that catalyses the degradation of acetylcholine (ACh), a neurotransmitter that is present in the CNS and PNS, to produce acetate and choline (Campbell et al., 1997; Steevens and Benson, 1999; Ray and Richards, 2001). The inhibition of AChE results in the accumulation of ACh in the synaptic cleft, thereby overstimulating nicotinic and muscarinic receptors (Table 1.1) (Hasan et al., 1979; Pope, 1999; Costa, 2006). This overstimulation causes neurotoxic effects, for example neuromuscular paralysis (such as continuous muscle contraction), throughout the entire body (Gupta, 2006).
Table 1.1. Acetylcholine receptors, subtypes and location (Adopted from Tata et al., 2014).

<table>
<thead>
<tr>
<th>ACh receptors</th>
<th>Subtypes</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicotinic receptors</td>
<td>N1 or Nm</td>
<td>Neuromuscular junction</td>
</tr>
<tr>
<td></td>
<td>N2 or Nn</td>
<td>Autonomic ganglia, central nervous system</td>
</tr>
<tr>
<td>Muscarinic receptors</td>
<td>M1</td>
<td>Cortex and hippocampus regions of the brain</td>
</tr>
<tr>
<td></td>
<td>M2</td>
<td>Heart, brain, spinal cord, exocrine gland</td>
</tr>
<tr>
<td></td>
<td>M3</td>
<td>Exocrine glands and smooth muscles</td>
</tr>
<tr>
<td></td>
<td>M4</td>
<td>Central nervous system</td>
</tr>
<tr>
<td></td>
<td>M5</td>
<td>Central nervous system</td>
</tr>
</tbody>
</table>

OPs inhibit AChE by forming a covalent bond with a serine residue in the active site; as a consequence of this reaction, a transient intermediate complex is generated, which is partially hydrolysed through the loss of the X substituent group, resulting in the formation of a stable, organophosphorylated and inhibited AChE enzyme (Figure 1.4) (Betancourt and Carr, 2004; Eaton et al., 2008). CPF can target AChE both in the CNS and PNS, however in its non-oxidised state, it does not inhibit AChE very strongly in vivo, whereas the oxidised state (CPO) powerfully inhibits AChE. As mentioned previously, cytochrome P-450 catalyses the conversion of CPF to CPO through oxidative desulphuration, allowing CPF to become a powerful inhibitor of AChE in vivo (Betancourt and Carr, 2004; Eaton et al., 2008).
Introduction

Chapter 1

14

Figure 1.4. Inhibition of AChE by organophosphates.

This leads to accumulation of ACh in the synaptic cleft which results in impeded neurotransmission. Obtained from Vargas-Bernal et al. (2012).

Another vital target for some OPs is the serine hydrolase enzyme known as NTE. NTE is a B-esterase, and its inhibition and ageing (in a similar manner as AChE (Section 1.6) is associated with the onset of the disorder called OPIDN (Johnson, 1970; Costa, 2006). In vertebrates, NTE is an integral membrane protein which is expressed in the endoplasmic reticulum (ER) of all neuronal cells, and some non-neuronal tissues, such as testicles, kidney, and lymphocytes (Glynn et al., 1998; Glynn, 1999). NTE belongs to the esterase family of enzymes and plays a critical role in neural development.

Other functions of NTE include the hydrolysis of lipids to form lysolecithin, a membrane phospholipid that possesses demyelination properties and is linked with cell signalling between glial cells and neurons in nervous system development (Glynn 1999; Costa, 2006). NTE expression increases in the early stages of embryo development, where it may be involved in nervous system development and signal transduction (Lotti and Moretto, 1993; Moser et al., 2000; Road, 2010). Genetic studies have suggested the absence of NTE in the brain causes neuronal degeneration as associated with the loss of ER, and vacuolation in cell bodies, which cause defects in cellular function (Van Tienhoven et al., 2002; Akassoglou et al., 2004). To date, the precise molecular mechanism underlying OPIDN has not been fully elucidated; it has been established that, besides inhibition and ageing of
NTE, some cytoskeletal rearrangements as well as disruption of calcium homeostasis, are involved in the disorder (El-Fawal and Ehrich, 1993; Hargreaves, 2012).

The clinical manifestations that form as a result of CPF poisoning can be divided into four main categories, including acute cholinergic syndrome, intermediate syndrome, delayed neuropathy and other neurological disorders (Figure 1.5) (Abou-Donia, 2003). The development of the specific neurological syndromes is dependent on different factors, including the onset of clinical symptoms, the chemical nature of the compound, and time and extent of exposure (Abou-Donia, 2003).

Figure 1.5. Classification of organophosphate toxicity.

Representation of the pathways involved in forming the different types of OP toxicity. Adopted from Jones and Karalliedde (2006).

1.7 Acute cholinergic syndrome

The main cause of acute CPF toxicity in mammals is the bioactivation of CPF to CPO in the liver as, at the molecular level, the P=O moiety of CPO can act as a potent inhibitor of AChE, whereas the P=S moiety of CPF lacks the inhibitory effect (Richardson, 1995; Bjorling-Poulsen et al., 2008; Eaton et al., 2008). CPO binds to the active site of by forming a stable covalent bond between the hydroxyl group of the serine in AChE and the phosphate group of the OP compound, which usually remains stable for hours to weeks (Karalliedde, 1999). This organophosphorylation of AChE results in the inhibition of its
normal function, degrading the major neurotransmitter of ACh at the ending of cholinergic nerve in the CNS and PNS, which leads to accumulation of ACh (Koelle, 1992).

The accumulation of excess ACh at the synapses in the PNS and CNS results in hyperstimulation of the cholinergic receptors and causes what is known as 'cholinergic syndrome' (Abou-Donia, 2003). It is characterised by different clinical symptoms depending on the site where ACh accumulation occurs; the excess ACh binds to muscarinic receptors and different muscarinic effects can develop depending on the route of toxic exposure, including visual disorders, miosis, bronchoconstriction, hypersalivation, hypotension, bronchorrhoea, increased sweating and lacrimation, diarrhoea, vomiting, increased gastrointestinal mobility, abdominal cramps, and lowered heart beat (Elersek and Filipic, 2011).

After CPF exposure, development of acute cholinergic syndrome usually occurs within a few minutes or up to a few hours (Eaton et al., 2008; Hargreaves, 2012). The extent and severity of the symptoms depends on the nature of the OP and the level of OP-AChE binding (Chambers, 2004). During onset, nicotinic receptors are stimulated, which causes hypertension and uncontrolled muscle contractions subsequently leading to paralysis (Singh and Sharma, 2000; Elersek and Filipic, 2011). The well-established symptoms of cholinergic crisis occur when there is severe inhibition of AChE (i.e. > 70 % of the normal levels) (Clegg and van Germet, 1999a). After the development neuromuscular paralysis (such as neuromuscular block) in the body, death can occur within a short time, by respiratory-failure and/or cardiac arrest (Lauder and Schambra, 1999; Costa, 2006; Gupta, 2006; Easton et al., 2008; Flaskos, 2012; Hargreaves, 2012). Different CNS symptoms can arise after severe CPF intoxication, including confusion, headache, blurred vision, spasms, speaking disorders, insomnia, ataxia, coma, and convulsions (Cleeg and van Garmet, 1999b; Lotti and Moretto, 2005; Elersek and Filipic, 2011).

The reactivation of AChE after inhibition by many different OP compounds usually occurs within several hours by the spontaneous hydrolysis of the AChE-OP bond (Abou-Donia and Lapadula, 1990). However, when the inhibition is caused by CPO, the AChE-CPO complex undergoes an 'ageing' mechanism where a non-enzymatic hydrolysis or dealkylation process results in loss of one or two of the alkoxy labile groups (R1, R2) (Figure 1.6). After this ageing process has occurred, the inhibition of AChE becomes irreversible as the enzyme is more resistant to reactivation, and this inhibition can only be
overcome by the synthesis of new enzyme molecules and clearance of the xenobiotic (Abou-Donia and Lapadula, 1990; Karalliedde, 1999; Costa, 2006).

Figure 1.6. Representation of interactions between esterases and OPs.

The first reaction (1) leads to reversible organophosphorylation of AChE; the second (2) to hydrolysed OP and spontaneous reactivation of AChE, and the third (3) forms the ‘aged’ organophosphorylated AChE which is inactive, stable and carries an increased negative charge. Adopted from Costa (2006).

There are two main approaches to the treatment of acute CPF toxicity; the first is to block the over stimulation of the muscarinic receptors and the second is to reactivate AChE activity. The first of these aims can be achieved by administering atropine that is a cholinergic muscarinic antagonist and prevents the ACh accumulation at the receptors. For the second approach, which promotes ACh breakdown, AChE enzyme reactivation is induced by the administration of an oxime, such as paraidoxime (Thiermann et al., 1999; Eaton et al., 2008; Eddleston et al., 2008). However, if the AChE-CPO complex has already undergone ageing, oximes are unable to reactivate the inhibited AChE (Eaton et al., 2008). Anticonvulsant drugs such as diazepam are another potential treatment for CPF intoxication; these drugs are used to relieve anxiety and the convulsions, which are caused by acute poisoning after the exposure to CPF (Thiermann et al., 1999; Eaton et al., 2008; Eddleston et al., 2008).
1.8 Intermediate syndrome

Intermediate syndrome is another neurotoxic effect associated with OP toxicity, characterised by symptoms that begin with respiratory insufficiency, and continue to produce weakness in limbs, neck and respiratory muscles (Senanayake and Karalliedde, 1987; Eaton et al., 2008). This condition develops after the symptoms of cholinergic syndrome, but prior to the signs of OPIDN (Senanayake and Karalliedde, 1987; Costa, 2006). Following OP exposure, it is estimated that 20% of people will go on to develop intermediate syndrome, and the symptoms usually occur within 24 to 96 hours after exposure (Karalliedde, 2006; Yang and Deng, 2007). This was seen in a clinical case study of intermediate syndrome described in a 16-month old child who ingested CPF and developed flaccid paralysis and respiratory arrest after 27 hours (Mattingly et al., 2003).

The precise underlying mechanism for the development of intermediate syndrome remains unclear, but there have been a number of mechanisms proposed, including failure of ACh release at neuromuscular junctions, the down regulation of ACh receptors, damage to muscles (myopathy), and prolonged inhibition of AChE (Yang and Deng, 2007; Abdollahi and Karami-Mohajeri, 2012).

The treatment of intermediate syndrome depends on the progression and symptoms involved; the clinical signs (e.g. severe respiratory muscle weakness) can be treated by monitoring respiratory functions and giving mechanical ventilation if necessary (Karalliedde, 2006). Other symptoms can be treated in a similar way to acute cholinergic syndrome by the administration of oximes; however, timing is critical, as these drugs were found to prevent myopathy in animal studies if they were administered immediately after CPF exposure, but they had no effect if they were administered more than two hours or more after poisoning (Karalliedde, 2006).

1.9 Organophosphate-induced delayed neuropathy (OPIDN)

OPIDN is another delayed peripheral neuropathy caused by OP poisoning. It is a rare neuropathic condition which can result following a single or repeated exposure to certain OPs such as diisopropylfluorophosphate, o-tolyl saligenin phosphate diocyl dichlorovinyl phosphate, mipafox, and dibutyryl dichlorovinyl phosphate, (Abou-Donia and Lapadula, 1990; Ehrich et al., 1997). OPIDN is characterised by shaking in hands and feet, an initial delay in the onset of ataxia, which is followed by degeneration of the distal end of long axons and large peripheral nerves, and finally there is degeneration of the myelin sheath in
both the CNS and PNS (Abou-Donia and Lapadula, 1990; Lotti, 1992; Ehrich and Jortner, 2001).

Studies into the prediction of the ability of OPs to induce OPIDN have been carried out in *vitro* in cell lines, and also *in vivo* using hens, as these have proved to be reliable animal model as they readily show lesions and other clinical signs of OPIDN (Glynn, 1999).

Studies have shown that it is possible to use cell cultures to screen for OPIDN inducing OPs, as NTE activity is found in both human and mouse differentiated and undifferentiated neuronal cell lines (Fedalei and Nardone, 1983; Carrington et al., 1985). There have been several studies measuring NTE inhibition in cultured neuronal cells, with mixed results when compared to animal studies (Nostrandt and Ehrich, 1992; El-Fawal and Ehrich, 1993). The majority of the early studies of OPIDN in cell cultures that measured parameters other than NTE, used the cell lines to try to predict the ability to induce OPIDN, instead of using them to investigate the underlying mechanism of OPIDN (Veronesi, 1992). By using a controlled environment such as a cell line it is possible to study how the molecular initiating and other key events occur, beginning with phosphorylation, then ‘ageing’ of NTE and finally the production of axonal degeneration, which has been described *in vivo* (Johnson, 1990; Abou-Donia et al., 1988; 1990; 1993). To investigate these important details, it is necessary to use a relevant cell model, which will allow for the clarification of the biochemical mechanisms involved in development of OPIDN, especially as this could lead to the identification of novel endpoints for applied testing purposes (Flaskos, 1995).

After CPF exposure, OPIDN clinical effects usually manifest after cholinergic toxicity and intermediate syndrome, but the progression may not but immediate; clinical onset of OPIDN can occur 6 to 14 days after OP exposure (Abou-Donia, 2003; Eaton et al., 2008; Jokanovic et al., 2011). With some OPs, the clinical onset can take even longer to occur; for the poor AChE inhibitor TOCP, it can take several weeks for the metabolism to the active SCOTP to produce clinical symptoms of OPIDN (Nomeir and Abou-Donia, 1986; Abou-Donia and Lapadula, 1990). The early signs of OPIDN in humans include vomiting and diarrhoea, which is followed by progressive weakness of the lower limbs after the latency period (Abou-Donia, 1981; Abou-Donia and Lapadula, 1990; Abou-Donia, 1993; Jokanovic et al., 2011). In the later stages of OPIDN, weakness of the limbs may affect the arms and hands, resulting in reflex deterioration of certain limbs and abnormal balance; OPIDN eventually causes a flaccid paralysis, which means there is nerve damage in the muscles.
and this results in prolonged spasms (Abou-Donia, 1981; Abou-Donia and Lapadula, 1990; Abou-Donia, 1993; Jokanovic et al., 2011).

Studies of the clinical onset of OPIDN in hens have revealed that this process occurs in two main steps; the first involves the inhibition of NTE enzymatic activity by phosphorylation, which significantly decreases enzyme hydrolysis, and the second step is the ageing of the phosphorylated NTE, which allows OPIDN to be initiated (Glynn, 1999). Studies have shown that the NTE inhibition alone is not associated with neural degeneration; OPs which can inhibit NTE but do not induce ageing of phosphorylated NTE cannot generate neuropathic effects (Costa, 2006). The NTE ageing process occurs when a negatively charged group of an OP covalently binds to the OH group in the side chain of the serine residue in the NTE active site. This ageing of the NTE means the enzyme’s activity becomes permanently (irreversibly) inhibited, and this allows OPIDN to occur (Johnson, 1990; Glynn, 1999). The importance of NTE ageing has also been shown in the work of du Toit et al. (1981) and Johnson (1969), who demonstrated that NTE inhibition in the spinal cord resulted in only spinal syndrome with no associated neuropathy, whereas the development of an axonopathy such as OPIDN also required NTE ageing (Johnson, 1969; du Toit et al., 1981). This suggests that only OPs that can inhibit and age NTE enzymatic activity can induce OPIDN. After NTE inhibition and ageing, there are then several alterations in the peripheral nerves, including myelin sheath loss, degeneration of long axons, accumulation of macrophage in nerves, and proliferation of Schwann cells (Singh and Sharma, 2000). Studies have also suggested that the susceptibility of NTE towards different OPs is associated with the age of the subject, as younger animals have a higher resistance to OPs than adults (Peraica et al., 1993).

Further work in hen experimental models has suggested that CPF can induce OPIDN if there was over 50% inhibition of NTE activity (Johnson, 1990; Lotti, 1992), which agrees with the known CPF-induced OPIDN cases in humans, mainly from accidental exposure (Eaton et al., 2008). This can be seen in the study by Osterloh et al. (1983) which demonstrated there were only low levels of NTE activity and plasma cholinesterase in a patient who had ingested CPF; in addition the patient presented with minimal acute cholinergic syndrome, cardiac arrhythmia, coma, and they eventually died 30 h after poisoning (Osterloh et al., 1983; Lotti et al., 1986) studied a male patient who had accidental oral CPF poisoning (<300 mg/kg); the patient developed mild axonal neuropathy after 43 days, and the authors concluded that, in this case, CPF induced OPIDN with a lower inhibition of NTE than is usually required in animals (Lotti et al., 1986).
Introduction

The administration of PSP has also been shown to induce OPIDN in animal models (Nomeir and Abou-Donia, 1986). Studies have shown that PSP exposure can cause an increase in phosphorylation of the neurofilament heavy chain and tubulin and inhibit neurite outgrowth (Hargreaves et al., 2006; Flaskos et al., 2006). This suggests the phosphorylation of cytoskeletal proteins is a crucial process in the development of OPIDN (Abou-Donia, 1993).

1.10 Other chronic neurological conditions associated with OP exposure

Alongside the classical neurological syndromes, certain OPs including CPF, are able to cause other long lasting, persistent, and chronic neuropsychiatric and neurobehavioral disorders, which are collectively known as chronic OP induced neuropsychiatric disorder (COPIND), and these are commonly observed after an acute single dose or repeated sub-chronic exposure to an OP (Sanchez-Santed et al., 2004). The key characteristics of COPIND are behavioural changes, including irritability, confusion, anxiety, drowsiness, insomnia, depression, anorexia, fatigue, emotional lability, and lethargy (Salvi et al., 2003). Symptoms that could be classified as COPIND have been observed after accidental exposure of agricultural workers to a single dose of CPF; the workers had impaired cognitive functions, memory and attention deficits, and abnormalities in neuropsychological tests (Savage et al., 1988; Rosenstock et al., 1991; Steenland et al., 1994).

Studies of long term OP use have shown there are neurological changes in adults; for example, Stephens et al. (1995) studied the performance of farm workers after repeated OP exposure; they found in neurobehavioral tests that there was a relatively slow speed for information processing, memory problems, greater susceptibility to psychiatric disorders, and an impaired attention span. These results were supported by the work of Fiedler et al. (1997), who observed schizophrenia and dystonic reactions in people who had been exposed to CPF over long periods. Studies have also shown that low level exposure to CPF can induce neurobehavioral effects; there have been high levels of anxiety observed in insecticide sprayers, but these results were not found in farmers (Levin et al., 1976). This is further supported by studies which have shown there was impaired cognitive function after exposure of weaning rats to sub-acute doses of CPF (Jett et al., 2001).

There have also been investigations into the impact of CPF insecticides on children to determine whether they cause cognitive defects; several epidemiological studies on children and adolescents that have worked as pesticide applicators on crops including cotton, have
established that they have a significantly lower neurobehavioral performance and more neurological symptoms compared to non-OP workers (Rohlman et al., 2001; 2005; Rasoul et al., 2008). The results of these studies confirm the previously detected association between the duration and period of CPF application in an agriculture setting and the extent of developmental and cognitive disorders, but research is yet to determine the precise mechanisms that cause COPIND clinical symptoms in humans (Kamel et al., 2003; Rohlman et al., 2007).

1.11 Effects of OPs on cytoskeletal proteins

Although there are many studies highlighting the fact that CPF can cause poisoning effects based on CPO mediated AChE activity inhibition, there are several other cellular proteins that are proposed targets for CPF, CPO and PSP neurotoxicity, including cytoskeletal proteins, axon growth associated proteins and those involved in cell signalling pathways (Flaskos, 2014).

As the disruption of cytoskeletal proteins can result in serious damage at different phases of neural development, how these key proteins are involved will be considered in the next sections.

1.11.1 Cellular and cytoskeletal proteins as molecular targets of CPF, CPO and PSP toxicity

Some of the developmental processes of the nervous system are controlled by the neuronal cytoskeleton, including cell migration, proliferation, morphogenesis, differentiation, neurite outgrowth, branching of dendrites, elongation of axons, steering of growth cones, and also apoptosis (Hargreaves, 1997; Flaskos, 2014). Due to their involvement in all these processes, disruption of cytoskeletal proteins can result in serious damage to neural development (Flaskos, 2014). The cytoskeleton itself is a complex structure, which is made up of three main classes of filamentous proteins, microfilaments (MFs), microtubules (MTs), and intermediate filaments (IFs). These cytoskeletal networks play an important role in axon growth regulation and stability and so they represent potential targets of neurotoxicity (Hargreaves, 1997). Different OPs produce a variety of effects on cytoskeleton filaments in human neuroblastoma cells, depending on the OP structure and potency (Carlson and Ehrich, 2001). Therefore, future studies need to focus on the identification of non-cholinergic targets of these OP compounds, as this will help to identify the molecular mechanisms involved in OP-induced toxicity.
1.11.2 Microtubules

Microtubules (MTs) have been shown to have important roles in growth and physiology; they are cytoplasmic elements composed of tubulin heterodimers and microtubule associated proteins (MAPs); they are involved in the regulation of intracellular transport, neuronal morphology, and the outgrowth of dendrites and axons (Cambray-Deakin, 1991; Ginzburg, 1991; Lodish et al., 2000a). MTs are the largest cytoskeletal structures in diameter being made of hollow, straight cylindrical polymers that are made of a ring of thirteen protofilaments, with an internal diameter of approximately 14 nm, and an external diameter of approximately 25 nm (Figure 1.7) (Okabe and Hirokawa, 1988; Hargreaves, 1997). Protofilaments are formed by the assembly of heterodimers of the two tubulin subunits (α- and β-tubulin) in a staggered fashion (Figure 1.7), assisted by the interaction with MAPs (Tilney et al., 1973; Hargeaves, 1997). The evidence for the presence of MAPs in MTs comes from the fact that they co-purify with tubulin in vitro, the ability of MAPs to stimulate MT assembly in vitro and the observation that MTs are stained by indirect immunofluorescence with anti-MAP antibodies (Shelanski et al., 1973; Murphy and Borisy, 1975; Sloboda, 1976; Lodish et al., 2000a).

MTs originate from specific regions in most mammalian cell types; these are called the centrosomes or microtubule organising centres (MTOCs) (Heidemann et al., 1981). They are organised in a polar orientation, with depolymerisation and polymerisation occurring at the ends of the structure (Heidemann et al., 1981). The name for the ends of the MTs are
defined by the rate of growth in vitro; the ‘minus end’ is known slow growing end and the ‘plus end’ is known as the fast-growing end (Figure 1.7) (Heidemann et al., 1981). In neuronal cells, axonal MTs are oriented with their minus ends anchored at the MTOCs of the axon, with the plus end extending along the axon toward the tip (Heidemann et al., 1981; Bamburg et al., 1986; Lodish et al., 2000b). In non-neuronal cells, for example glia, centrioles, basal bodies, and centrosomes of chromosomes, the MTOCs are associated with the minus ends, and it is from here that MTs assemble, which means the polarity of MTs become fixed with the plus end extending outwards to the extremities of the cell (Lodish et al., 2000b). In dendrites the polarity of the MTs is mixed, with both ends being distal to the cell body (Lodish et al., 2000a).

1.11.2.1 Biochemical properties of MTs

1.11.2.1.1 Tubulin

Tubulin is the main component of MTs and it contains α- and β- subunits, with the molecular weight each subunit being approximately 50 kDa. Each tubulin subunit has several isoforms encoded by different genes. A third subunit, γ-tubulin, is not part of MTs but instead is present in the MTOC, where it plays an important role in MT polar orientation and nucleation (Martin et al., 1997; Tischfield and Engle, 2010). Tubulin is a highly acidic, conserved protein and can bind a variety of MAPs (Hargreaves, 1997).

Both α- and β- tubulin isoforms play important roles during the development of the nervous system. For example, the class III β-tubulin isotype (βIII-tubulin) has an essential role in neurite growth and cell differentiation; it is almost exclusively distributed in neuronal cells and is also one of earliest cytoskeletal proteins expressed in neural development (Easter et al., 1993).

The presence of a strongly acidic carboxyl terminal domain allows both α- and β-subunits of tubulin to bind a variety of MAPs (Hargreaves, 1997). Within this domain there is an acidic region of 40 amino acids that contains phosphorylation sites (serine residues) for regulation, and binding sites for calcium and proteins such as MAPs that stabilise the MTs (Cleveland, 1993) (Table 1.2).

The regulation of tubulin polymer formation is also controlled by several post-translational modifications, including phosphorylation of a serine at residue 444 (Ser-444) in the β-tubulin subunit, acetylation of the lysine at position 40 (Lys40) in α-tubulin, detryosination/tyrosination (removal/addition) of C-terminal tyrosine (Tyr) residues in α-subunits, and the
addition of multiple glutamate residues in both α- and β-subunits (LeDizet and Piperno, 1987; Barra et al., 1989; Diaz-Nido et al., 1990; Alexander et al., 1991; Ludueña, 1993; Fourest-Lieuvin et al., 2006; Janke, 2014) (Table 1.2). Such modifications may affect MT stability and locations (Janke and Kneussel, 2010).

Tubulin synthesis can also be auto-regulated by a pool of unpolymerized tubulin, which is used up during MT assembly and in turn, then stimulates tubulin synthesis to increase (Cleveland, 1993).

Table 1.2. Major microtubule cytoskeleton proteins of the nervous system and their regulation (Adopted from Luduena, 1993).

<table>
<thead>
<tr>
<th>Protein</th>
<th>Expression pattern and distribution</th>
<th>Post-translational modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-tubulin</td>
<td>In all cells, but some isoforms preferentially expressed in brain</td>
<td>Acetylation, tyrosination, polyglutamylation</td>
</tr>
<tr>
<td>β-tubulin</td>
<td>In all cells, but some isoforms preferentially expressed in brain</td>
<td>Phosphorylation, polyglutamylation</td>
</tr>
<tr>
<td>γ-tubulin</td>
<td>In MTOC of all cells</td>
<td>Phosphorylation</td>
</tr>
<tr>
<td>MAP 1a</td>
<td>Appears late, widely distributed</td>
<td>Phosphorylation</td>
</tr>
<tr>
<td>MAP 1b</td>
<td>Appears early, then declines; enriched in axons</td>
<td>Phosphorylation</td>
</tr>
<tr>
<td>MAP 2a</td>
<td>High molecular weight; expressed in dendrites in mature neurons</td>
<td>Phosphorylation</td>
</tr>
<tr>
<td>MAP 2b</td>
<td>High molecular weight; expressed in dendrites</td>
<td>Phosphorylation</td>
</tr>
<tr>
<td>MAP 2c</td>
<td>Low molecular weight; expressed in dendrites in developing neurons</td>
<td>Phosphorylation</td>
</tr>
<tr>
<td>Tau</td>
<td>Enriched in axons</td>
<td>Phosphorylation</td>
</tr>
</tbody>
</table>

OPs have been found to target tubulin, interfering with assembly and causing impairment of MT function (Prendergast et al., 2007). Studies have shown low concentrations (0.005 and 0.01 mM) of CPO bound to tubulin and prevented polymerization, and dichlorvos increased tubulin phosphorylation, which resulted in synaptic dysfunction and axon dissociation (Choudhary et al., 2006; Grigoryan and Lockridge, 2009).
1.11.2.1.2 Microtubule-associated proteins

The stability and assembly of MTs has been shown to be strongly dependent upon MAPs, as they regulate the dynamics of tubulin heterodimer formation, and help determine the balance between plasticity and rigidity in neuronal processes (Doering, 1993; Lodish et al., 2000a; 2000b). MAPs are known to modulate MT dynamics, assembly and disassembly and are also involved in the interaction of MTs with IFs, actin filaments and other organelles (Matus, 1988; Nixon et al., 1990; Hargreaves, 1997). The MAP family members which are important in central nervous system development include MAP 1, MAP 2, Tau and stathmin (Schoenfeld and Obar, 1994). The main function of these proteins during neuronal development are to maintain the growth cone’s stability, by precise modulation of axonal and dendritic MT dynamics (Schoenfeld and Obar, 1994). For example, MAP 1, MAP 2 and Tau stimulate MT assembly, cross-link MTs with other cytoskeletal elements, and modulate interactions of MTs with IFs and actin filaments (Murphy et al., 1977; Griffith and Pollard, 1978; Sattilaro et al., 1981; Leterrier et al., 1982; Olmsted, 1986; Nixon et al., 1990). Other groups of MAPs, for example dynein and kinesin, can function as motor proteins (ATPases) and drive the intracellular transport of proteins and organelles from the cell body to the extending synapses and axons (Vallee and Bloom, 1991).

MAPs 1 and 2 have three different isoforms each (MAP 1a, 1b, 1c, and MAP 2a, 2b, 2c), which can be detected based on their molecular weights; MAP 1a, MAP 1b, and MAP 1c have molecular weights of 350 kDa, 330 kDa, and 230 kDa, respectively (Olmsted, 1986; Nixon et al., 1990). MAP 2a and 2b are thermostable, elongated molecules that are expressed through the life of the neuron (MAP 2b), or during synaptic formation (MAP 2a), have a molecular weight of 280 kDa, and an estimated length of 185 nm (Vallee, 1980; Caceres et al., 1984; De Camili et al., 1984; Olmstead, 1986). MAP 1 and 2 are found in neuronal cell bodies and dendrites (Table 1.2), where they protect radially from the MT surface and form cross-bridges between MTs and NFs (Vallee, 1980; Leterrier et al., 1982; Heimann et al., 1985).

1.11.2.1.3 Kinesin

Kinesins are important motor proteins that mediate the transport of organelles, vesicles and other cellular proteins through the axon along microtubules (Pernigo et al., 2013). Studies of OP toxicity have shown significant effects on axonal transport through inhibition of motor proteins such as kinesin, for example administration of 10 μM CPF and 0.59 nM diisopropylfluorophosphate in bovine brain cortex cells reduced kinesin function and
axonal transport and increased axonal swelling (Inui et al., 1993; Massicotte et al., 2003; Gearhart et al., 2007). Axonal swelling results in decreased transportation, resulting in protein aggregation along the axon (Abou-Donia, 1993).

1.11.2.1.4 Tau

Tau is primarily found in axons (Cleveland, 1993) (Table 1.2), so it is considered as an axonal marker (Binder et al., 1985). It is formed of several polypeptides with molecular weights ranging between 45-60 kDa (Nixon et al., 1990). These proteins have calmodulin binding sites and can be phosphorylated, which modulates their role in promoting assembly of MTs, and stabilizing MTs (Weingarten et al., 1975; Black and Greene, 1982; Drubin and Kirschner, 1986; Olmsted, 1986; Kosik et al., 1988). Evidence for these roles of Tau comes from the work of Drubin and Kirschner (1986); they microinjected Tau into fibroblasts and observed that Tau could stabilize existing MTs and induce assembly of new MTs, which fits with the proposed roles of Tau in axonal MTs stability (Drubin and Kirschner, 1986). Studies have also shown that Tau abnormalities strongly correlate to the pathophysiology of neurodegenerative diseases, including AD (Kolarova et al., 2012).

MT assembly dynamics are controlled by processes such as treadmilling and dynamic instability which maintain a constant polymer mass (Margolis and Wilson, 1978; Kirschner and Mitchison, 1986; Kerssemakers et al., 2006). Treadmilling involves producing a net gain or loss at the plus end of the MTs, with the minus being stabilised at the MTOC (Bergen and Borisy, 1980). The growing end of an MT can be stabilized by different factors including MAP binding, the presence of a GTP cap, or interaction with other cytoskeletal membrane elements (Kirschner and Mitchison, 1986; Gelfand and Bershadsky, 1991).

The stability and assembly of MTs is highly dependent upon MAPs, which help regulate the dynamics of the tubulin heterodimers (Lodish et al., 2000a; 2000b). MAPs can stimulate MT assembly and they are involved in the interaction of MTs with actin filaments and IFs (Cleveland, 1993).

The ability of MTs to help organise axonal development and growth is well established; as the developing neurites begin to extend, MTs are assembled and begin to be modulated by specific post-translational modifications of the tubulin subunits (Cambray-Deakin, 1991). MAPs play essential roles in this process, as they help to maintain the structure, function, and orientation of MTs involved (Heidemann et al., 1981; Craig and Banker, 1994; Mandell and Banker, 1995). Due to the important roles of MTs in different aspects of neuronal development and functions, any disruption or alterations to MT protein
phosphorylation by toxic agents can lead to problems with brain development, and these types of changes may also be involved in the pathophysiological mechanisms of some neurodegenerative diseases (Millecamps and Julien, 2013).

A number of studies have investigated the ability of CPF and CPO to disrupt the MT cytoskeleton and therefore cause developmental neurotoxicity. One study exposed differentiating rat C6 glioma cells to sub-cytotoxic (1-10 μM) doses of CPF and CPO that inhibited neurite outgrowth, and these doses reduced the protein levels of α-tubulin and MAP 1b in this cell line (Sachana et al., 2008). These results are further supported by the in vivo work of Abou-Donia (1993), who found after exposure to OPs, hens exhibited increased phosphorylation of cytoskeletal proteins including MAPs and tubulin, which would result in lower active protein levels, and also an increase in autophosphorylation of calcium/calmodulin kinase II (Abou-Donia, 1993). In addition, work in cultured rat brain slices showed exposure to doses of CPO between 0.1 to 10 μM induced alterations in the MAP-2 immunoreactivity (Prendergast et al., 2007). All of this suggests that alterations to MTs could be a useful biomarker of CPF-induced neurodegeneration.

1.11.3 Intermediate filaments
Intermediate filaments (IFs) are important components of the eukaryotic cytoskeleton, and they are can be useful markers of cell differentiation (Omary et al., 2006). They include an array of proteins expressed in different cell types and are classified as type I to VI based on gene sequence homology (Table 1.3) (Lewis and Cowan, 1986; Osborn and Weber, 1986; Robson, 1989; Strelkov et al., 2003; Eriksson et al., 2009). IFs are more biochemically stable and smaller in diameter than MTs, which allows them to provide structural support to many different types of cells, including neurons (Omary et al., 2006).
Table 1.3. Intermediate filament classification.

(Lewis and Cowan, 1986; Osborn and Weber, 1986; reviewed by Robson, 1989; Strelkov et al., 2003; Eriksson et al., 2009).

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Tissue/Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Acidic cytokeratins</td>
<td>Epithelial cells</td>
</tr>
<tr>
<td>II</td>
<td>Basic cytokeratins</td>
<td>Epithelial cells</td>
</tr>
<tr>
<td>III</td>
<td>Vimentin, Glial fibrillary acidic protein (GFAP), Desmin, Paranemin, Synemin, Peripherin</td>
<td>Mesenchymal cells, Glial cells, Muscle cells, Muscle cells, Muscle cells, Neuronal cells</td>
</tr>
<tr>
<td>IV</td>
<td>Neurofilaments, Internexin, Nestins, Syncoilin</td>
<td>Neuronal cells, Neuronal cells, Pluripotent cells, Muscle cells</td>
</tr>
<tr>
<td>V</td>
<td>Nuclear lamins</td>
<td>All cell types</td>
</tr>
<tr>
<td>VI</td>
<td>Phakinin, Filensin</td>
<td>Eye lens cells, Eye lens cells</td>
</tr>
</tbody>
</table>

All IF proteins have a conserved α-helical rod domain, which is flanked by a carboxy-terminal tail, and an amino-terminal hypersensitive head domain (Figure 1.8) (Cooper and Hausman, 2000). The central rod domain contains a highly homologous 310 aa residue region that is conserved amongst the main IF types, and the variations in molecular interactions and molecular weight of all the IF subunits are determined by the sequence of the two end domains (Cooper and Hausman, 2000). IFs are constructed initially from two polypeptide chains that are wound together in a parallel form that then make a helical coiled-coil dimer; two of these then form a staggered tetramer (two anti-parallel dimers), which then form octamers, then protofilaments, and finally large complex IFs that contain 16 to 32 polypeptides (Lodish et al., 2000b).
Figure 1.8. Structure of intermediate filament protein subunits.
The diagram demonstrates the structure of IF protein monomer that contains an α-helical rod domain composed of 310 amino acid residues, an amino-terminal head domain and the carboxy-terminal domain at the tail.

Within the family of IF proteins, more than 50 different proteins have been identified that can be classified into six main groups based on aa sequence homology (Cooper and Hausman, 2000). There are types classes of IFs specific to the nervous system and these include neurofilament (NF) proteins, glial fibrillary acidic proteins (GFAP) and nestins, which are mainly expressed in astroglial and neuronal cells, respectively (Cooper and Hausman, 2000; Eriksson et al., 2009).

1.11.3.1 Neurofilaments

The axonal cytoskeleton contains MTs, MFs and NFs that form ordered networks of interconnected filaments linked by cross-bridges (Black and Lasek, 1980). After synthesis, NFs are initially assembled and transported from the neuronal cell body into the axonal space slowly, in a non-diffuse manner, then they are rapidly incorporated into the axonal cytoskeleton (Black and Lasek, 1980).

NFs are made of three polypeptides chains called neurofilament light (NFL), medium (NFM), and heavy (NFH) chains, that can be categorised based on their molecular weights, which are approximately 70, 145 and 200 kDa, respectively (Ackerley et al., 2003). In mammals, these three protein types are found in mature neurons, and they are also highly expressed in axons (Lee and Cleveland, 1994). During axonal extension NFs can provide support, and they also have major roles in the regulation of axonal development and growth which is carried out in a complex series of interactions (Lee and Cleveland, 1994).

NFs have a similar structure to the other IF proteins; each subunit of NF contains a head, a central rod and a tail domain (Yuan et al., 2012). During NF polymerization, the central rod domain (310 amino acids) plays an important role, whereas in NFM and NFH the tail domains have an important role in fine lateral projection formation (Yuan et al., 2012). NFs can form filaments 10 nm in diameter via the central rod domain of each NF being co-assembled with the other NFs (Rao et al., 2003). NFM and NFH subunits are found on the
surface of the filament and form radial projections to interconnect NFs with other cytoskeletal elements, and NFL forms the central core (Rao et al., 2003). This filament structure allows cross bridges to form between extensions of the NF tail domains and other cytoplasmic organelles, and this stabilizes the axonal outgrowth (Hirokawa et al., 1984).

Studies on the effect of OPs on IFs have found an alteration in expression or activity of different types of IFs, all of which can affect neural development. Studies in differentiating N2a cells that used exposure of CPF at levels that were sub-cytotoxic, but still inhibitory to neurite outgrowth (3 µM), showed there was a significant reduction in the concentration of total NFH (Sachana et al., 2001). This change in NFH is further supported by the work of Flaskos et al. (2011), who used neurite inhibitory concentrations of CPO in differentiating N2a cells and then detected changes in protein levels using densitometric analysis of Western blots; they found there was a reduction in total NFH levels, which occurred in a concentration-dependant manner (Flaskos et al., 2011). These results are also similar to those found by Hargreaves et al. (2006), who showed that using PSP at neurite inhibitory sub-cytotoxic concentrations resulted in reduced total NFH concentrations, after exposure of differentiating N2a cells for 4 and 24 hours, and Sindi et al., (2016) that found CPO and CPF induced transient changes in NFH phosphorylation after differentiation (Hargreaves et al., 2006; Sindi et al., 2016). Overall, these alterations in NFH levels suggest that OP compounds, such as CPF and CPO, can interfere with the expression of important axonal cytoskeletal proteins, and this can affect the arrangement within the cell of the cytoskeletal networks (Flaskos et al., 2007; Harris et al., 2009a).

1.11.4 Glial fibrillary acidic proteins

Within mature astrocytes in the nervous system the major IF protein is GFAP (Yang and Wang, 2015). It is also found in other types of cells, including the non-myelinating Schwann cells in the PNS (similar to astrocytes), and the glial cells of the digestive system (Yang and Wang, 2015). GFAP plays important roles in providing structural support to astrocytes, and it helps to modulate their motility and shape during their different processes (Eng et al., 2000). Astrocytes can be activated via reactive astrogliosis or astrocytosis in response to neuronal toxicity, brain injury, neural damage, or in genetic disorders (O’Callaghan, 1988). OP intoxication of astrocytes can be detected by the characteristics of increased GFAP expression levels and astroglial cells number; early studies into the effect of OP toxicity on astrocytes suggested GFAP expression and astro-glial cell levels were both increased in response to exposure (O’Callaghan, 1988). This was supported by studies
into the production of GFAP-deficient-mice, which showed there was an association with behavioural and neurological abnormalities, reduced spinal cord myelin thickness, and abnormal myelination (Gomi et al., 1995; Liedtke et al., 1996).

During brain development, glial development and differentiation can be detected by an increase in GFAP expression; they start as neural precursor cells and form astrocytes, and this process usually reaches a peak in the second or third postnatal week (Bramanti et al., 2010). Due to this change GFAP is recognised as a biomarker for astrocyte differentiation, and as glial development continues into adolescence, the effects of CPF and CPO exposure on developing glia may contribute to developmental neurotoxicity (Bramanti et al., 2010).

In vivo studies in developing rats by Garcia et al. (2002) showed that after 4 days of subcutaneous CPF administration, which corresponded to the peak of glial differentiation and gliogenesis, there was a decrease in GFAP levels (Garcia et al., 2002). Studies in differentiating rat C6 glioma cells have found similar results of a decrease in GFAP expression after treatment with sub-cytotoxic concentrations (1-10 μM) of diazinon oxon (DZO) for 24 hours, which suggests that the OPs can interfere with the development of astro-glial cells (Sidiropoulou et al., 2009b).

Further evidence of the importance of GFAP in neurodevelopment and neurotoxicity comes from studies that have detected increased levels of this protein in the brains of humans suffering from neurodegenerative conditions including Parkinson’s and Alzheimer’s disease (Zhang et al., 2014). Overall, the results of these studies suggest that GFAP could be a useful protein marker for detecting alterations in neurological pathophysiology and developmental neurotoxicity (Liu et al., 2012).

1.11.5 Microfilaments and GAP-43

Another class of cytoskeletal network proteins are the MFs; the core filament is formed by polymerisation of actin, which has an approximate molecular weight of 43 kDa (Theriot, 1994; Hargreaves, 1997). The polymerisation of two globular strands of actin (G-actin) monomers forms MFs; the actin strands twisted around each other to produce F-actin, and this occurs through adenosine triphosphate (ATP) binding (Theriot, 1994; Hargreaves, 1997).

The dynamics of MF production occur through the exchange (incorporation and release) of G-actin monomers at the polymer ends (Zhang et al., 2005). The process of exchange is
regulated by the binding/hydrolysis of ATP and interactions with specific actin binding proteins including growth associated protein-43 (GAP-43) and actin depolymerizing factor (ADF, also known as cofilin) (McGough and Chiu, 1999).

GAP-43 has been suggested to also play an important role in neurite outgrowth regulation (Skene, 1989; Pekiner et al., 1996). It is found mainly in the elongating axons and growth cones in neurons (Das et al., 2004). GAP-43 regulates a number of processes during neuronal development, including the plasticity of synapses, the development of axons, and the formation of growth cones (Benowitz and Routtenberg, 1997). During axonal outgrowth, studies have shown an increase in GAP-43 synthesis, which means disruption of neurite outgrowth could be indicated by an altered expression of GAP-43 (Skene, 1989; Pekiner et al., 1996; Das et al., 2004).

Studies on the effects of OPs on MFs have suggested that OP toxicity may be linked to a disruption in MF regulation. For example, a study by Harris et al. (2009b) in N2a cells found there was increased levels of cofilin after the cells were induced to differentiate in the presence of 10 µM diazinon (DZ) for 24 hours. These changes in the observed cofilin levels could indicate a disruption in MF polymerisation and dynamics, which would affect the organisation of the MF network (Harris et al., 2009b).

Numerous studies have evaluated the effect of exposing differentiating N2a cells to neurite inhibitory concentrations of CPF, CPO and other OPs, and the results show an association with reduced levels of GAP-43 (Fowler et al., 2001; Sachana et al., 2001; 2003; 2005; Sidiropoulou et al., 2009a; Flaskos et al., 2011). These findings indicate that a reduction in GAP-43 synthesis may lead to a loss of transport of GAP-43 from the cell body to dendrites and axons, which would inhibit neurodevelopment. Overall, this suggests GAP-43 could be used as a molecular marker to detect OPs-induced inhibition neurite outgrowth (Sachana et al., 2005).

1.12 Genotoxic effects of organophosphorus compounds

Studies on the long-term effects of OP pesticide use suggest there is an association with increased incidence of certain cancers, such as non-Hodgkin’s lymphoma, in individuals who are occupationally exposed to OPs (Dreiher et al., 2005). This suggestion of OPs causing DNA damage is supported by the work of Atherton et al. (2006), who used the in vitro comet assay to demonstrate the ability of the concentration 2.7 nM of dichlorvos to cause DNA damage in freshly isolated human lymphocytes from six healthy individuals.
Additional studies of OP exposed workers, such as that by Atherton et al. (2009), who studied lymphocytes from horticultural farm workers in Spain immediately after application of OP to crops, provide a better picture of the extent of DNA damage. The results of this study showed there was an increase in oxidative stress linked to DNA damage, and increased levels of 8-oxodeoxyguanosine which correlated with increased concentrations of urinary OP metabolites, even though the sample number was low (Atherton et al., 2009). Further studies of OP exposed workers and studies on OP exposed cultured cells is needed to fully understand the mechanisms of OP associated DNA damage or altered gene expression (Paz-y-Mino et al., 2002). Of particular interest to the present study were the effects of CPF, CPO and PSP on gene expression and its regulation.

1.12.1 CPF, CPO and PSP associated genotoxicity

Early studies in the developing rodent brain, suggested that CPF exposure is associated with inhibition of protein and DNA synthesis, thereby affecting the normal brain development after the treatment by subcutaneous administration of 2 mg CPF/kg body weight (Whitney et al., 1995). Moreover, CPF exposure has also been associated with the inhibition of DNA synthesis, neuronal cell replication as well as neurite outgrowth in studies with neural cell lines (Song et al., 1998; Das and Barone, 1999; Qiao et al., 2001; Sachana et al., 2001).

Exposure to in vivo (neonatal rats and female Sprague-Dawley rats) and in vitro (N2a, PC12 and HeLa cells) CPF can also stimulate increased ROS production, in a reversible manner, which may affect DNA and proteins within cells (Bagchi et al., 1995; Bagchi et al., 1996; Crumpton et al., 2000a).

In vitro studies in PC12 and C6 mammalian cell lines have suggested that CPF may also interfere with the cell replication and differentiation of glial cells in the brain (Qiao et al., 2001). Other studies have indicated that CPF and CPO at sub lethal concentrations 1-10 µM can inhibit the induction of glial cell differentiation in the presence of sodium butyrate (Sachana et al., 2008). Exposure of glial cells to CPF is linked with increased ROS production; however, the ROS production is not a result of a direct chemical action, rather it is associated with the ability of CPF to interfere with cell metabolism (Crumpton et al., 2000b).

In vitro studies have suggested that CPF does not cause DNA damage; for example, the work by Gollapudi et al. (1995) in rat lymphocytes and Chinese hamster cells (CHO) using
the chromosome aberration test showed 0.35 to 35.0 µg/ml CPF for 24 h did not cause DNA damage. Muscarella et al. (1984) also worked with CHO cells exposing them to 1, 10 and 100 µg/ml of CPF, and a no increase in the rate of chromosome aberration or sister chromatid exchange. This is further supported by the work of Cui et al. (2006) who used mouse hepatocytes to evaluate the potential of cypermethrin and CPF to form DNA adducts, and their results suggested CPF caused an increase in micronuclei incidence but that CPF could not form DNA adducts. In contrast, Rahman et al. (2002) used the alkaline comet assay to measure DNA damage in mice leucocytes, and concluded that CPF could cause damage in a dose-dependent manner. They also found that any damage to the DNA was repaired 48 hours after exposure, which could explain was it was not detected in the other studies.

However, it is important to consider both CPF and CPO for in vivo studies, as CPF is readily metabolised to the active oxon form in animals, due to the abundance of cytochrome P450s (Costa, 2006). There is some evidence from in vivo studies that CPF does have an effect, for example Amer et al. (1982) demonstrated significant increase micronuclei in the bone marrow of mice after repeated or dietary administration of CPF. They found that after two injections in one week of 45 mg/kg body weight (interval between dosing not stated), mice had a mean of 23 micronuclei (MN) per 1000 polychromatic erythrocyte (PCE), compared to 10.8 MN-PCE for the control. This MN-PCE background has been questioned as being quite high, with suggestions of a normal background being approximately 4 MN-PCE, suggesting the results may not be valid. The same group in 1996 found that dosing mice with and intra peritoneal injection of CPF at 4 mg/kg resulted in 57 chromosomal aberrations (aberrant metaphase 22.8 ± 0.79 % including gaps (P < 0.01), 14.8 ± 1.35 % excluding gaps (P < 0.05)) 24 hours after exposure (Amer et al., 1996). In contrast Gollapudi et al. (1995) found there was no significant increase in MN in bone marrow after using a dose of 111 mg/kg that was 80 % of the estimated lethal dose (LD50) for CPF. Further in vivo studies in mice have been carried out by Rahman et al. (2002), who used Swiss albino mice to investigate the DNA damaging capacity of CPF, using cyclophosphamamide as a positive control. The mice were administered 24, 48, 72, and 96 hours using whole blood samples. They found a dose related statistically significant increase in DNA damage after 24 hours, when compared to the positive control, and the DNA damage decreased over time due to DNA repair pathways.

Other groups have used Drosophila melanogaster to study DNA damage and apoptosis caused by CPF, for example Gupta et al. (2010) treated third instar Drosophila larvae with
different concentrations of CPF (0.015-15.0 µg/L) for 24-48 hours. To determine the damage caused, oxidative stress markers, ROS generation, apoptotic cell death and DNA damage end points were measured, and they found that in 15.0 µg/L CPF-treated organisms, there was a significant increase in DNA damage, which was associated with the apoptotic mode of cell death for both 24 and 48 hour treatments. The study also found that CPF exposure induced depolarisation of the mitochondrial membrane potential, and an increase in the activity of caspase-9 and caspase-3, suggesting that ROS may be involved in inducing DNA damage and apoptosis in Drosophila larvae (Gupta et al., 2010).

Another type of study to evaluate the DNA damaging potential of CPF was carried out by Salazar-Arredondo et al. (2008), who evaluated the effect of different OPs on sperm DNA using the sperm chromatin structure assay. The damage was assessed in human spermatozoa from healthy volunteers after incubation with the non-cytotoxic (evaluated by eosin-Y exclusion) doses of 50-750 µM CPF and CPO. The results showed that CPO was 15 % more toxic than CPF to sperm DNA.

Other studies have investigated the toxicity of TOTP and PSP in SH-SY5Y human neuroblastoma cell cultures, using the fluorescent stain Hoechst 33342 to investigate whether OP-induced cell death was via apoptosis or necrosis (Carlson et al., 2000). The results showed that exposure to PSP (10 and 100 µM) resulted in significant (p < 0.05) increases in apoptosis in a time-dependent manner, with increases in budding and nuclear condensation at1 mM (Carlson et al., 2000). This study also investigated caspase-3 activity and found that exposure to all 3 concentrations of PSP resulted in significant (p < 0.05) increases in caspase-3 activation, again in a time-dependent manner (Carlson et al., 2000). To further elucidate the mechanisms involved, the cells were pre-treated with cyclosporin A (to inhibit apoptosis) or the serine esterase inhibitor PMSF (to help detect the method of inhibition) resulting in significantly (p < 0.05) decreased caspase-3 activation after treatment with 1 mM PSP and TOTP, which suggested that the OP-induced cytotoxicity could be modulated through different mechanisms, such as receptor-mediated caspase. In addition, they found that the exposure to 1 mM PSP induced random DNA fragmentation, and necrotic morphological changes (Carlson et al., 2000).

Overall, these results suggest OPs like CPF, CPO and PSP do have the ability to induce DNA damage, but the questions remain as to the exact mechanisms involved in different cell types. The previous studies into OP, and specifically CPF, toxicity have highlighted changes in key neuronal proteins, which are good starting point for determining the actual
mechanism behind the toxicity. Moreover, as the effects of OPs on gene expression are still not fully understood, further study is needed to elucidate the actual mechanisms of toxicity, which will help to prevent and detect toxicity of OP.

1.13 The use of in vitro mammalian cell line models for assessment of organophosphate induced neurotoxicity

Animal experimentation is now associated with a high economic and ethical impact, combined with the time consuming, laborious, and complex processes required for neurological experiments due to the complexity and relative inaccessibility of the nervous system, which has meant that investigators are keen to identify alternative methods for use to assess both pathological and physiological processes. One such method is the use of in vitro cellular models; the main advantages of mammalian cell lines comes from their ability to grow and reproduce quickly. They form homogenous cells in large numbers using relatively simple preparation methods, which means they can be grown and maintained for extended periods, cryopreserved, and reanimated easily to re-test at different intervals with the same cells (Radio and Mundy, 2008; Flaskos, 2012). In addition, in vitro models can provide invaluable information as they are a simplified tool that can be used for studying OP induced neurotoxicity at both molecular and cellular levels in a specific cell type (Silva et al., 2006). There are some limitations for neurotoxicity assessment with cell culture models including partial involvement of pharmacokinetic factors, lack of cell to cell interaction, such as between glial and compromise their ability to reliably predict or model in vivo toxicity (Rice and Barone, 2000; Flaskos, 2012). However, there are important advantages of these culture systems which make them an appropriate approach in this project.

The advantages of cell lines over in vivo studies include the ability to screen or study the effects of multiple doses of toxins or mixtures of toxins on specific cell models at relatively low cost compared to animal models, which has led to an increasing number of publications using different cell lines to study the effects of OPs. Another key advantage for the current study is the ability to allow different concentrations of CPF and CPO to be tested on glial cells and neuronal separately, which means the different contributions of the toxicity on these cells types can be determined (Flaskos, 2012). Using cell lines can result in not only qualitative assessment of cytotoxic effects, but also the quantitative detection of any cellular alterations, such as molecular changes within specific neuronal cells expressing specific neurite morphological features, such as dendrites and axons. This level of control
means the research methodology can be adjusted by controlling the onset and timing of
development to fit the requirements of the study (Banker and Goslin, 1998). These
advantages of cell lines mean that are suitable models for using in high throughput
screening methods, which allows studies into the primary screening of compounds
(Giacomotto and Ségalat, 2010). One of the key disadvantages of the using a cell culture
system is the lack of replication of systemic effects, such as cell-cell interactions in tissues,
the input of other organs including the liver where toxic agents are degraded or
bioactivated, bio-eliminated, and excreted form the body, or appropriate supply and balance
of growth factors (Sprague and Castles, 1985; Sachana and Hargreaves, 2012). The
availability of growth factors can be partially addressed by inclusion of suitable growth
factors in the media, and cell-cell interactions can be tackled to some extent by using organ
culture or co-culture systems (Sachana and Hargreaves, 2012). Some of the effects of the
liver can be mimicked by using processes to bioactivate or inactivate the toxin being
investigated using microsomal activation (Sprague and Castles, 1985). The systemic effects
can also be addressed by using other metabolic activation systems, such as hepatic cells or
microsomes that are nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)
activated contained in a cell culture well with a filtered-insert (Sachana and Hargreaves,
2012). The insert allows the toxin to be introduced to the cells or microsomes and then the
non-metabolized and metabolized toxin diffuses into the growth medium below where it
can be accessed by the cell line of interest (Sachana and Hargreaves, 2012).

A large proportion of OP neurotoxicity studies have used neuroblastoma cell lines from
different species, including mouse N2a neuroblastoma, rat PC12 pheochromocytoma, and
human neuroblastoma clones SH-SY5Y, IMR32, C-1300, and N-18, and there have also
been many studies using the rat C6 glioma cell line. Some of these studies have used the
cell lines to evaluate NTE inhibition after OP exposure, as a potential replacement for the
use of homogenates from hen brains after OP exposure in vivo (Fedalei and Nardone, 1983;
Ehrich, 1995; Ehrich et al., 1994).

Other studies have focused on the effects of OPs on the cellular mechanisms in both glioma
and neuroblastoma cell lines; for example, studies by Henschler et al. (1992) and Schmuck
and Ahr (1997) both investigated a large number of OPs in rat C6 glioma and human N-18
neuroblastoma cell lines. These cell lines were cultured, differentiated and then treated with
a panel of OPs for up to three weeks. One of the major drawbacks of this experimental
design was the lengthy incubation period, which would have resulted in high levels of
cytotoxicity, which could affect the usefulness of the results observed. These culture
conditions were also very different from the conditions seen for OPIDN induction in vivo, studies have shown NTE and cytoskeletal protein inhibition occurs within 24 hours of OP exposure, which suggests these studies may have missed key early cellular changes based on their design (Abou-Donia 1993; 1995).

A more mechanistic approach was developed by Flaskos et al. (1994; 1998), which used sub-lethal concentrations of OPs given to cultured cell lines, which were then studied for short time periods. As PC12 cells can be effectively cultured for several weeks before cell loss, they used them to study axon maintenance and found sub-cytotoxic levels of TCP (1 µg/ml) inhibited neurite maintenance (Flaskos et al., 1994). The studies also used glioma and neuroblastoma cell lines to investigate the early OP effects, and they found there was no effect on cell viability even after 48 hours with the doses used (Flaskos et al., 1994; 1998). These sub-cytotoxic conditions were also used in cell lines to investigate the effects of OPs on the nervous system, mainly the glial and neurons, neurite outgrowth, and the effects on expression of cytoskeletal proteins. The studies found CPF, CPO and PSP caused alterations neurite outgrowth, cytoskeletal protein expression, axon growth associated proteins and those involved in cell signalling pathways (Sachana et al., 2001; Sachana et al., 2008; Flaskos et al., 2011; Flaskos, 2014; Sindi et al., 2016).

The use of human derived neural stem cells may enhance the ability to predict CPF and CPO neurotoxicity with more human relevant results, but currently there is not enough evidence to clearly show an advantage of these stem cells over rodent derived cell lines in terms of predicting human neurotoxicity (Radio and Mundy, 2008). Three mammalian cell lines that are commonly used to investigate CPF and CPO developmental neurotoxicity are further described below.

1.13.1 N2a neuroblastoma cell line

One of the most widely used cell lines for studying OP toxicity is the N2a cell line, especially for studies to investigate neurite outgrowth and neuronal differentiation (Henschler et al., 1992; Flaskos et al., 1998; 2011; Sachana et al., 2001; 2003; 2005; 2014; Hargreaves et al., 2006; Sidiropoulou et al., 2009a). The N2a cell line was originally derived from a C1300 mouse tumour (neuroblastoma); these cells are able to be differentiated into cells with a neuron-like morphology, and they can then express many neuronal markers, including cholinergic and adrenergic markers, and AChE, which is important for studying OP toxicity (Klebe and Ruddle, 1969). N2a cells grow under normal mitotic conditions as round neuroblasts. The differentiation process for N2a cells starts by
serum removal from the medium; this helps to form the non-dividing differentiating cells which have the morphological characteristics of neurons. This serum free medium is supplemented by the addition of dibutyl cyclic 3',5'-monophosphate (dbcAMP), which mimics cAMP action to promote N2a cell differentiation (Schubert et al., 1969; Haffke and Seeds, 1975). During differentiation, N2a cells undergo morphological changes including the formation of dendrite- and axon-like processes contain have high concentrations of cytoskeletal proteins, including MTs and NFs, which makes them an ideal cell line for studying the effect of OPs on these types of proteins (Schubert et al., 1969).

One of the main disadvantages of using the N2a cell line for OP toxicity studies is the fact that the dendrites and axons produced by these cells may not be able to reproduce some of the more complex characteristics that are observed in neurites from primary neurons, meaning that some effects of the toxicity may be missed or reduced due to the lack of connections (Radio and Mundy, 2008). Overall, these cells are a suitable model for investigating CPF neurotoxicity as they express some of the key targets for toxicity, including AChE, MTs and NFs, they grow quickly and reproducibly, and they are commercially available, which outweighs the disadvantages.

1.13.2 C6 rat glioma cell lines

The C6 rat glioma cell line has also been widely used to study the effect of OPs, with differing results between the studies (Sachana et al., 2008). The C6 cell line was originally derived from glioma cell line was originally derived from an N-nitrosomethyl-urea-induced rat brain tumour, and have been used as an in vitro model for the investigation of glial properties for many years, including expression of GFAP, 2':3'-cyclic nucleotide 3'-phosphohydrolase, glycerol phosphate dehydrogenase by glucocorticoid hormones, and S-100 protein (Wolfe et al., 1980).

Schmuck and Ahr (1997) and Henschler et al. (1992) used C6 glioma and human N-18 neuroblastoma cell lines to investigate the effects of many OPs by treating the cells for three weeks, and the results showed high levels of cytotoxicity due to the long exposure period. The C6 cell line has been used to study the effect of OPs neurite outgrowth, and the results of the studies have shown that sub-cytotoxic concentrations, OPs including CPF and CPO, inhibit neurite outgrowth (Henschler et al., 1992; Schmuck and Ahr, 1997; Flaskos et al., 1998). These cell lines are suitable for use in conjunction with the N2a cell line as they provide more information about how OPs cause neurotoxicity in different key cell types within the brain.
1.13.3 Human neural progenitor stem cells (ReNcell CX)

Although N2a and C6 cell lines have many advantages for investigation the process of OP toxicity, they are both monocultures that lack neuronal-glial interactions and both of them are rodent cell lines. There is, however, a neural progenitor stem cell line that could offer different advantages for these types of studies, namely the ReNcell CX cell line. This cell line, is can be induced to differentiate to form a co-culture of different neuronal and glial cell types, such as cholinergic and dopaminergic neurons, astrocytes and oligodendrocytes, and is commercially available (Merck Millipore) (Seaberg and van der Kooy, 2003). The origin of the ReNcell X cells was a 14-week gestation human foetus with a normal male karyotype, specifically the cortical region of brain, which was then immortalized using c-myc oncogene retroviral transduction and this produced unlimited growth of clonal human neural stem cells (Donato et al., 2007; Kornblum, 2007). The morphology of these cells on uncoated tissue culture flasks starts as round neurospheres when they are undifferentiated, but when they are grown on laminin coated surfaces as a monolayer, with the appropriate growth factors, they produce a normal diploid karyotype, which is maintained even after prolonged passage (Jakel et al., 2004). When grown on a laminin coated surface in the absence of mitogens these cells differentiate into a mixed population of three main nervous system cell types, astrocytes, oligodendrocytes, and neurons (Figure 1.9), which are identical to those found in the human nervous system (Kornblum, 2007). One key advantage of these cells over N2a and C6 cells is the fact the dendrites and axons produced in this cell line form the same level of complex interactions as neurons in humans, making them an ideal choice for studying OP toxicity in a more relevant human model (Bal-Price et al., 2008; Radio and Mundy, 2008).
Introduction

Chapter 1

Figure 1.9. Schematic representation of neural stem cell differentiation.

1.14 Summary

Historically, OPs have been used in a number of industrial, agricultural and domestic settings, with a wide range of applications, but as more investigations were carried out it became clear that these types of compounds are toxic, causing different levels of neurotoxicity depending on the dose, age of patient and route of exposure. Due to this toxicity, many countries have put restrictions on their use in residential settings and limitations in place for their agricultural use, but these pesticides are still very widely used in developing countries. Despite the potential dangers to health and the imposed restrictions, CPF remains a popular pesticide to use especially in many developing countries (Salyha, 2010). The main OPs selected for this study were CPF, CPO and PSP; these were chosen because they are widely used, have been studied for toxicity, and can induce the different stages of OP toxicity (acute cholinergic syndrome, intermediate syndrome, OPIDN, and COPIND) depending on dose, age of the patient, and the duration of exposure. CPF has been shown to affect different parts of nervous system, including glial cells, neurons, key cellular and cytoskeletal proteins, neurite outgrowth, and it can also affect DNA, therefore studying the effects on gene expression could provide key insights into its method of action.

Studies of OP toxicity have shown that in vitro methods are suitable for studying the processes involved, and they have some advantages over in vivo methods, such as being able to produce large numbers of identical cells which will allow many OPs, or different
doses, to be screened at the same time. The main disadvantage of *in vitro* methods is that they lack the processing that occurs in the rest of the body, such as the bioprocessing that occurs in the liver, but some of these processed can be added into the methodology which will mimic the action of the liver, making the process more accurate.

There have been many studies showing that CPF, CPO and PSP can all disrupt cytoskeletal protein formation and inhibit outgrowth in differentiating neural cell lines. Studies have also shown that the toxicity produced by OPs depends on when exposure occurs; exposure in different developmental stages can result in different effects. Previous *in vitro* studies have mainly involved OP administration at the induction of cell differentiation, meaning the results do not explore the full range of potential toxicities that could be produced. Currently, not many investigations have involved studying the genotoxic effects of OPs on cells, therefore this thesis has investigated this aspect of toxicity to increase the knowledge in this area, by examining the toxic effects of the selected OPs at different time points in 3 different models of neural cell differentiation.
1.15 Project Aims

Studies conducted by research colleagues have shown that treatments of sub-lethal concentration of CPF and CPO in differentiating mouse N2a neuroblastoma cells inhibited axon outgrowth and disrupted the cytoskeleton (Sachana et al., 2001; Sindi et al., 2016). Therefore, by replicating these culture conditions, the aims of this thesis were to:

1. Determine the effects of CPF, CPO and PSP (1, 3 and 10 µM) on cell viability in differentiating N2a, C6 and human ReNcell CX stem cells, after treatment for 24 h.

2. Determine the effects of sub-lethal exposure to all 3 OPs on different parameters of neurite outgrowth and the underlying effects on cytoskeletal proteins by high content analysis, cell ELISA and quantitative Western blotting.

3. Generate oligonucleotide probes for neural marker genes for quantitative PCR in order to quantify the effects of sub-lethal concentrations of OPs on the expression of genes encoding key cytoskeletal proteins affected by OP exposure in these cell models.

4. Investigate the effects of sub-lethal concentrations of CPF, CPO and PSP on the epigenetic regulation of gene expression focussing on histone deacetylase activity
Chapter 2
Materials and Methods
2.1 Materials

2.1.1 General laboratory reagents

All laboratory reagents were of the highest grade and purchased from Sigma-Aldrich Chemical Company (UK) unless otherwise specified in the text. They are listed in tables 2.1 and 2.2.

Table 2.1. List of cell culture reagents

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Code number</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dulbecco’s Modified Eagle’s Medium (DMEM) with 4.5 g/L glucose and 2 mM L-glutamine</td>
<td>BE12-614F</td>
<td>Lonza (Slough, UK)</td>
</tr>
<tr>
<td>Penicillin/streptomycin (penicillin 10,000 units/ml, streptomycin 10,000 units/ml)</td>
<td>DE17-602F</td>
<td></td>
</tr>
<tr>
<td>Trypsin 10x</td>
<td>17-160E</td>
<td></td>
</tr>
<tr>
<td>Foetal bovine serum (FBS) South American origin</td>
<td>FB-1001</td>
<td>Biosera</td>
</tr>
<tr>
<td>N6,2’-ODibutyryladenosine 3’,5’-cyclic monophosphate sodium salt (dbcAMP)</td>
<td>D0627</td>
<td></td>
</tr>
<tr>
<td>Sodium butyrate (NaB)</td>
<td>B5887</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Dimethylsulphoxide (DMSO) sterile-filtered, BioReagent, suitable for cell culture - hybridoma tested</td>
<td>D2650</td>
<td></td>
</tr>
<tr>
<td>Trypan Blue Solution 0.4% (w/v)</td>
<td>1450021</td>
<td>Bio-Rad</td>
</tr>
<tr>
<td>Laminin from Engelbreth-Holm-Swarm murine sarcoma basement membrane</td>
<td>L2020</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>StemPro® Accutase® cell dissociation reagent</td>
<td>A11105-01</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>StemPro® Neural supplement</td>
<td>A10508-01</td>
<td></td>
</tr>
<tr>
<td>KnockOut™ DMEM/F-12 (1X)</td>
<td>12660-012</td>
<td></td>
</tr>
</tbody>
</table>
Materials and Methods

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Code number</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurobasal®-A medium, no L-glutamine, L-glutamic acid or aspartic acid</td>
<td>10888-022</td>
<td></td>
</tr>
<tr>
<td>Recombinant human epidermal growth factor (EGF) (10 µg)</td>
<td>1380077C</td>
<td></td>
</tr>
<tr>
<td>Recombinant human fibroblast growth factor b (FGFb) (10 µg)</td>
<td>1424760B</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.2. List of other reagents and materials.

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Code number</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,3',5,5'-Tetramethylbenzidine (TMB)</td>
<td>T0440</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>3-(4,5-Dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT)</td>
<td>M2128</td>
<td></td>
</tr>
<tr>
<td>AccuGel 29:1 acrylamide (40% (w/v) acrylamide/bisacrylamide 29:1)</td>
<td>EC852</td>
<td>Geneflow</td>
</tr>
<tr>
<td>StemPro Accutase Cell Dissociation Reagent</td>
<td>A1110501</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Acetone</td>
<td>121403/0031</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Amersham Protran 0.2 µm pore size nitrocellulose membrane</td>
<td>10600001</td>
<td>General Electric</td>
</tr>
<tr>
<td>Ammonium persulphate (APS)</td>
<td>A3678</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Bicinchoninic acid (BCA)</td>
<td>23223</td>
<td></td>
</tr>
<tr>
<td>Bovine serum albumin (BSA)</td>
<td>A1302</td>
<td>Melford</td>
</tr>
<tr>
<td>Copper (II) phthalocyanine</td>
<td>C2284</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Dimethylsulphoxide (DMSO)</td>
<td>CHE1854</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Enhanced chemiluminescence reagent (ECL)</td>
<td>ME157124</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Ethanol</td>
<td>652261</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Glacial acetic acid</td>
<td>200.580-7</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Glycerol 10% (v/v)</td>
<td>15892001C</td>
<td>ACROS organics</td>
</tr>
</tbody>
</table>
Materials and Methods

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Code</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochloric acid</td>
<td>H1000PB17</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Hydrogen peroxide (H2O2)</td>
<td>H1009</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Methanol</td>
<td>M400/17</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>β-Mercaptoethanol</td>
<td>M3148</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>N,N,N,N-Tetramethylethylenediamine (TEMED)</td>
<td>T9281</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Paraformaldehyde 4% (w/v)</td>
<td>HT501128</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Protogel® resolving buffer (4x) (1.5 M Tris-HCl buffer pH 8.8, 0.4% (w/v) SDS)</td>
<td>EC892</td>
<td>Geneflow</td>
</tr>
<tr>
<td>Protogel® stacking buffer (4x) (0.5 M Tris-HCl buffer pH 6.8, 0.4% (w/v) SDS)</td>
<td>EC893</td>
<td></td>
</tr>
<tr>
<td>Sodium acetate</td>
<td>S2889</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sodium azide</td>
<td>S2002</td>
<td>Thermo Fisher Scientific</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>B22297</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sodium dodecyl sulphate (SDS)</td>
<td>18299</td>
<td>Melford</td>
</tr>
<tr>
<td>Sodium hydroxide (NaOH)</td>
<td>1823</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Sulphuric acid (H2SO4)</td>
<td>339741</td>
<td></td>
</tr>
<tr>
<td>Tris (hydroxymethyl) aminomethane</td>
<td>C22561</td>
<td></td>
</tr>
<tr>
<td>Tween 20</td>
<td>P1379</td>
<td></td>
</tr>
<tr>
<td>VectaShield® mounting medium for fluorescence containing 4’,6-diamidino-2-phenylindole (DAPI)</td>
<td>H1400</td>
<td>Vector Laboratories Ltd</td>
</tr>
</tbody>
</table>

2.1.2 Plastic ware

All sterile cell culture flask sizes (T25 and T75) were supplied by Scientific Laboratory Supplies Nottingham, UK. Nunc brand Cryotube vials were purchased from Merck Ltd., Leicester, UK. NUNC-immuno 96-well and 24-well cell culture plates were purchased from Thermo Scientific, UK. IbidiTreat 8-well 15µ-slides were purchased from Thistle Scientific, UK. Counting slides with dual chambers (Cat#1450015) were from Bio-Rad Laboratories Inc., UK. Serological pipettes (5 ml, 10 ml and 20 ml), Gilson pipettes (P10, P1000, P200, P100, P20, P10, P2 and Integra pipettes were obtained from Scientific Laboratory Supplies, Nottingham, UK.
2.1.3 Test compounds

Chlorpyrifos (CPF) and its metabolite, chlorpyrifos oxon (CPO) (purity 97.6 %) from Chem Service Inc. (West Chester, PA, USA), were supplied by Greyhound Chromatography (Birkenhead, UK). Phenyl saligenin phosphate (PSP) was synthesized by Dr Chris Garner (Department of Chemistry) at Nottingham Trent University and obtained at 98 % purity. Sterile filtered DMSO was used as control (purity 97.7 %). The final concentrations of the compounds 1, 3 and 10 µM were prepared freshly from the stocks 0.2, 0.6 and 2 mM.

2.1.4 Cell lines

Three different cell lines were used in the current study and these were mouse neuroblastoma 2A (N2a), Rat C6 glioma and human neural progenitor stem cells (ReNcell CX).

2.1.4.1 Mouse neuroblastoma 2A

N2a is a well-established fast growing mouse neuroblastoma cell line derived from mouse neural crest (Klebe and Ruddle, 1969). N2a cells have been cultured and extensively used in research to study neural differentiation, neurofilament characteristics including neurite outgrowth and morphology, as well as signalling pathways involved in neurotoxicity, Alzheimer’s disease and asymmetric division of mammalian cells (Ogrodnik et al., 2014; Salto et al., 2015). It was purchased from the American Type Culture Collection (product no. CCL-131TM, Middlesex, UK).

2.1.4.2 Rat C6 glioma

The C6 glioma cell line was established after culturing a clone of a rat glial tumour induced by N-nitrosomethylurea (Benda et al., 1968). The C6 astrocyte cell line is fibroblast-like in morphology. It was purchased from the European Collection of Animal Cell Cultures (ECACC). The C6 astrocyte cell line, stains strongly positive for glial fibrillary acidic protein (GFAP). After 100 passages they can be used to study astrocytic functions including parameters of oxidative stress (Quincozes-Santos et al., 2009).
2.1.4.3 Human ReNcell CX

The human neural progenitor stem cell line (ReNcell CX) was established by retroviral transduction of stem cells obtained from the cortical region of the brain from a 14-week gestating human foetus following normal termination and in accordance with nationally approved UK ethical and legal guidelines as described (Donato et al., 2007). It was purchased from Merck Millipore (catalogue no. SCC007, UK). ReNcell CX is an immortalized multipotent human neural progenitor cell line with the ability to differentiate into neurons, astrocytes and oligodendrocytes (Breier et al., 2010). ReNcell CX can be used for a variety of research applications including studies of neurotoxicity, neurogenesis, electrophysiology, neurotransmitter and receptor functions (Choi et al., 2014).

2.2 Methods

2.2.1 Cell culture and maintenance of N2a neuroblastoma cells and rat C6 glioma cells

Mouse N2a and C6 glioma cell lines were grown and maintained as monolayer cultures in growth medium consisting of Dulbecco's modified Eagle’s medium (DMEM) containing 4.5 g/L glucose and 2 mM L-glutamine, and supplemented with 10% (v/v) foetal bovine serum (FBS), penicillin (100 units/ml) and streptomycin (100 units/ml) at 37°C, in a humidified atmosphere of 95% air /5% CO₂. All experiments were performed using plastic tissue culture treated flasks, dishes, microplates or chamber slides. Culture medium was changed every 2-3 days.

2.2.1.1 Sub culture and maintenance of N2a neuroblastoma cells and rat C6 glioma cells

Mouse N2a neuroblastoma and rat C6 glioma cells were passaged when growth was 80% confluent (i.e. every 3-5 days) as follows. In N2a cell monolayers, half of the growth medium was carefully removed from the culture flask without disturbing the attached cell monolayer. Cells were mechanically detached from the flask surface using a sterile extra-long plastic Pasteur pipette to aspirate the rest of the growth medium and squirting it out on over the monolayer surface of the cell culture flask. C6 cells were mechanically detached from the flask by using the scraper in 5 ml of growth medium, and this method was shown to be effective and fast. In addition, there was an alternative method to maintain C6 cells,
after cell growth reached 80 % confluence in T75 culture flask before passage (i.e. every 3-4 days). The spent medium was discarded from the culture flask, then the cell monolayer was washed with phosphate buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na₂HPO₄, 2 mM KH₂PO₄ pH 7.4) to remove all traces of serum. Cells were chemically detached from the flask surface by adding 2 ml of 1 % (v/v) trypsin solution to cover the cell monolayer and the flask was then placed in the 37 °C incubator for approximately 2 min. The enzymatic reaction was stopped by adding 5 ml of pre-warmed fresh growth medium.

N2a or C6 cells were then harvested by centrifugation at 300 × g at room temperature for 5 min. The supernatant was carefully discarded and the resultant pellet was re-suspended in 1 ml of growth medium by passing it 21 times through a P1000 micropipette tip to break up the pellet. About 1/5 of the cell suspension was then placed in a new T75 flask containing 40 ml fresh growth medium and incubated in a humidified atmosphere containing 5 % CO₂/95 % air at 37 °C until the growth reached 80 % confluent. All experiments were replicated at least 4 times, and controlled for passage number (less than 21), in order to avoid genetic drift, which may occur at higher passage.

2.2.2 Human neural ReNcell CX stem cell culture and maintenance

2.2.2.1 ReNcell CX maintenance medium

ReNcell CX cells were maintained in KnockOut™ DMEM: nutrient mixture F-12 (DMEM/F-12) low osmolality medium without HEPES buffer. The growth medium (500 ml) was supplemented with recombinant human epidermal growth factor (EGF) (20 ng/ml; Gibco), basic fibroblast growth factor (FGFb) (20 ng/ml; Gibco), StemPro neuro supplement (2 % v/v; Gibco), L-glutamine (0.5 mM), penicillin (100 units/ml) and streptomycin (100 units/ml).

2.2.2.2 ReNcell CX culture

All plastic tissue culture ware used for ReNcell CX cells culture was pre-coated with laminin from Engelbreth-Holm-Swarm murine sarcoma basement membrane (Sigma-Aldrich) prior to use. Laminin is an extracellular matrix (ECM) protein, which enhances neural progenitor stem cell adhesion, proliferation differentiation and neurite outgrowth (Flanagan et al., 2006). In brief, 1 mg/ml laminin was thawed at room temperature and
diluted to 20 µg/ml final concentration in Neurabasal medium (Gibco) that contained no L-glutamine, L-glutamic acid, or aspartic acid. Laminin solution was added to cover the surface of the required tissue culture vessels and left on a shaker for 4 h at room temperature if required to use on the same day, or afterwards stored at 4 °C until needed. The laminin solution was removed and the flask was rinsed with sterile PBS just before using a coated flask for culturing ReNcell CX cells. Cells were chemically detached from the flask surface by adding 1 ml of Accutase™ cell detachment solution which contains 1x Accutase enzyme in Dulbecco’s PBS (0.2 g/l KCl, 0.2 g/l KH₂PO₄, 8 g/l NaCl, and 1.15 g/l Na₂HPO₄) containing 0.5 mM EDTA-4Na and 3 mg/l Phenol Red). The flask was allowed to stand for 5 min at room temperature. The enzymatic reaction was stopped by adding 4 ml of pre-warmed fresh growth medium and the cell suspension was centrifuged at 300 g for 5 min at 22 °C. The pellet was resuspended by 10 passes up and down through a 1000 µl pipette tip in 1 ml of fresh growth medium. About 200 µl (i.e. ~ 1/5 of the total cells) of cell suspension were then placed in a new laminin coated T75 flask containing 40 ml fresh growth medium and incubated in a humidified atmosphere containing 5 % CO₂/95 % air at 37 °C until the growth reached 80 % confluence.

2.2.3 Cryopreservation of cell lines

For cell storage and preservation, cells were stored under liquid nitrogen in cryovessels until needed. Briefly, the confluent cells from a T75 flask were detached, harvested and resuspended in 1 ml of freezing medium (DMEM for C6 and N2a or knockout DMEM/F-12 medium for ReNcell CX, supplemented with 5 % (v/v) DMSO). Addition of DMSO to media prevents intracellular and extracellular crystals from forming in cells during the freezing process (Chen et al., 2017). This cell suspension was placed into 1 ml cryo vials, which were transferred to cell freezing container and incubated overnight at -80°C for a minimum of 8 h. The cryo vials were then transferred to a liquid nitrogen container (-196°C) and stored until needed.

2.2.4 Cell recovery from liquid nitrogen storage

For continuous growing, cells were thawed from liquid nitrogen and added to pre-warmed growth medium in culture flaks. In brief, a vial of cells was removed from the liquid nitrogen storage and held in a 37 °C water bath for 1-2 min. The outside of the vial was quickly wiped with 70 % v/v ethanol in distilled water to sterilise and the cells were
transferred into centrifuge tube using a 1 ml sterile pipette. A volume of 9 ml maintenance medium (pre-warmed to 37 °C) was gently added to avoid osmotic shock which may result in decreased viability. The cell suspension was centrifuged at 300 g for 5 min. The supernatant was completely discarded following centrifugation in order to remove any residual cryopreservation medium. The resultant pellet was resuspended in 1 ml of pre-warmed growth medium. The cell suspension was then plated onto T75 tissue culture flask containing 40 ml of pre-warmed fresh maintenance medium for N2a and C6 glioma cell lines or onto a laminin coated T75 flask containing 20 ml of pre-warmed fresh growth medium for ReNcell CX.

2.2.5 Cell plating for experimentation

All experiments were preceded by cell seeding and counting in order to determine a specific cell density. In brief, cell monolayers were grown to reach 80 - 90 % confluence, then detached and harvested at 300 g by centrifugation for 5 min as described (sections 2.2.1.1 and 2.2.2.2). Cell pellets were resuspended in 1 ml of growth medium. Cell dilutions were prepared depending on the pellet size and cell counting method. The initial cell count was performed either manually using a haemocytometer chamber slide, or automatically using an automated cell counter.

2.2.5.1 Manual cell counting

A volume of 10 µl was transferred to the chamber from a dilution of 10 µl cell suspension with (1:20 dilution) 190 µl of growth medium, and the cell number determined by using a haemocytometer. Chamber cell counts were performed in five fields of a Neubauer haemocytometer (each field has a volume of 10⁻⁴ cm³) by using an inverted light microscope (Inverso 3650 Fisher Scientific Ltd., UK). Cell density was calculated as follows:

\[
\text{Cells / ml} = \text{cell number (average from five fields)} \times 10^4 \times \text{(volume correction factor)} \times \text{dilution factor}
\]

The formula was used to calculate the volume necessary to achieve a specific cell density. The cells were allowed to recover for 24 h in a humidified atmosphere of 95 % air / 5 % CO₂ at 37°C.
2.2.5.2 Automated cell counting

Automated cell counting has recently become the robust alternative method to manual haemocytometer cell counting because it can provide total cell count and assess cell viability in one simple step. Moreover, automated cell counting produces an accurate, reproducible result with rapid performance. The results of the current study were achieved by using the Trypan blue exclusion procedure coupled with a TC20™ automated cell counter (BioRad, USA). The TC20™ automated cell counter can count cells with a 6-50 µm diameter and within a broad concentration range of 5 x 10⁴ to 1 x 10⁷ cells/ml, which often eliminates the need to dilute cells, thus reducing the error associated with sample dilutions prior to counting. The device utilises already made Trypan blue dye (BioRad, USA) composed of 0.4 % (w/v) Trypan blue in 0.8 % (w/v) sodium chloride and 0.06 % (w/v) potassium phosphate dibasic solution. Trypan blue is a vital stain that differentiates between live and dead cells (Tran et al., 2011). The principle of this staining is based on the blue acid dye chromophores which are taken up by dead cells and excluded from viable cells.

Briefly, depending on the size of the cells pellets which were resuspended in 2 ml pre-warmed fresh growth medium and a volume of 10 µl from the suspended cells was added onto the same equal volume of Trypan blue solution in an Eppendorf tube and mixed gently by 10 passes through a P10 pipette tip. This was then left to stand for 4 min for cells to be exposed to the stain. A volume of 10 µl of the mixture was then loaded onto a dual-chambered cell counting slide (BioRad, Watford, UK) using a pipette tip. The slide was inserted into the TC20 cell counter and counting was automatically initiated as soon as the presence of slide and Trypan blue dye were detected by the cell counter. When Trypan blue is detected in a sample, TC20 takes the dilution into account and multiplies results by 2. The result was adjusted to account for 1 to 1 cell dilution and was reported on the monitor as estimated concentration of the undiluted sample. For example, a 1 x 10⁶ cells/ml mixed 1 to 1 with Trypan blue was at a concentration of 5 x 10⁵ cells/ml. The total cell counts, live cell counts and the percentage of live cells appear on the count screen. The live cell counts per ml were used to determine the volume of cell suspension necessary to seed the cells at a required cell density in growth medium. A cell density of 50,000 cells/ml was used to plate out mouse N2a cells, rat C6 glioma cells and 100,000 cells/ml was used to plate out ReNcell CX cell according to the required size of flask or plate (Table 2.3).
Materials and Methods

Flasks were incubated in a humidified atmosphere containing 5% CO₂/95% air at 37°C for 24 h to allow for cell recovery.

Table 2.3. The cell density of N2a, C6 and ReNcell CX cell lines for the experiments of current study.

<table>
<thead>
<tr>
<th>Type of cell culture ware</th>
<th>N2a</th>
<th>C6</th>
<th>ReNcell CX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medium volume</td>
<td>Total cell number</td>
<td>Medium volume</td>
</tr>
<tr>
<td>T75 flask</td>
<td>40 ml/flask</td>
<td>2,000,000</td>
<td>40 ml/flask</td>
</tr>
<tr>
<td>T25 flask</td>
<td>10 ml/flask</td>
<td>500,000</td>
<td>10 ml/flask</td>
</tr>
<tr>
<td>8 well slide</td>
<td>300 µl/well</td>
<td>15,000</td>
<td>300 µl/well</td>
</tr>
<tr>
<td>24 well plate</td>
<td>500 µl/well</td>
<td>25,000</td>
<td>500 µl/well</td>
</tr>
<tr>
<td>96 well plate</td>
<td>200 µl/well</td>
<td>10,000</td>
<td>200 µl/well</td>
</tr>
</tbody>
</table>

2.2.6 Induction of cell differentiation

For differentiation, cells were cultured in maintenance medium devoid of mitogens or serum. Prior to differentiation, all cells were passaged as described previously. Cells were plated out according to the required plating density (Table 2.3) in culture flasks or plates and incubated for 24 h to allow for recovery, after which growth medium was carefully removed without disturbing the monolayer and replaced with an equal volume of serum free medium. In N2a and C6 cells, differentiation was induced by replacing growth medium with serum free medium (i.e. DMEM containing 4.5 g/l glucose, 2 mM L-glutamine, supplemented with penicillin (100 units/ml) and streptomycin (100 units/ml) and 0.3mM dibutyryl dbcAMP (for N2a) or 2mM sodium butyrate (for C6), which was diluted in serum free medium (Flaskos et al., 1998). For this study, a volume of 100 µl of dbcAMP stock solution (30 mM) or sodium butyrate (200 mM stock solution) were dissolved in 10 ml serum free medium and sterile-filtered to give final concentrations of 0.3 mM and 2 mM respectively.

ReNcell CX differentiation was initiated by replacing the growth medium with mitogen free medium, consisting of knockout DMEM/F-12 medium plus all supplements except the
growth factors EGF and FGFb (section 2.2.2). The removal of growth factor EGF and FGFb from the maintenance culture medium induces ReNcell CX cells differentiation by stopping cell proliferation (Donato et al., 2007). All cell lines were being treated with or without the OP compounds at the same time when they were induced to differentiate at 37°C in a humidified atmosphere of 95% air / 5% CO₂ for 24 h.

2.2.7 Measurement of cell viability in cells exposed to OPs

The measurement of cell viability plays a fundamental role in most in vitro studies of cellular response to toxic substance and sometimes forms the main purpose of the experiment, such as in toxicity assays. The effects of CPF, CPO and PSP on the viability of N2a cells, C6 cells and ReNcell CX in the present study were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay which was previously described by Mosmann (1983). The MTT assay is a test for enzymatic activity characteristic of a viable cell based on the ability of cellular dehydrogenase enzymes (mainly succinate dehydrogenase) from viable cells to cleave the tetrazolium rings of the pale yellow MTT and form purple formazan crystals that can be seen in a bright field microscope (Nikkhah et al., 1992; Liu et al., 1997). As these crystals are largely impermeable to the cell membrane, they accumulate within healthy cells. Addition of DMSO to the cells causes solubilisation of crystals resulting in their liberation which can be detected and quantified using a microliter plate reader. The ability of the cells to reduce MTT provides an indication of metabolic activity and the quantified level of the formazan product is directly proportional to the number of surviving cells; when compared to the amount produced by a control cell population, it can be used as a measure of cell viability. However, although often associated with the activity of mitochondrial dehydrogenases, it has also been shown that MTT can be reduced by other cellular dehydrogenases such as those found in cytoplasmic vesicles (Liu et al., 1997). Reduction of MTT can also be mediated by NADH or NADPH within other cellular compartments (Berridge and Tan, 1992; Fotakis and Timbrell, 2006).

2.2.7.1 Assay buffers and reagents

PBS was prepared in a total volume of 1L containing 137 mM NaCl, 2.7 mM KCl, 8.1 mM Na₂HPO₄, 2 mM NaH₂PO₄ at pH 7.4.
MTT was prepared by dissolving 5 mg of MTT per ml of PBS. Aliquots (1 ml) were stored frozen at -20°C until required.

2.2.7.2 Assay procedure

Cells were plated out at the required density in Corning 24 well plates (Table 2.3) in 0.5 ml growth medium, and then incubated for 24 h to allow recovery before the induction of differentiation. Differentiating cells were treated without or with CPF, CPO or PSP. Briefly, growth medium was carefully aspirated from the wells and replaced with fresh differentiation medium (sections 2.2.1 and 2.2.2) containing different concentrations (0, 1, 3, 10 µM) of CPF, CPO or PSP for 24 h. A volume of 50 µl of MTT was added to each well 30 min prior to the end of the experimental incubation time and cells were incubated for a further 30 min at 37°C. Differentiation medium was then carefully aspirated from the well, 500 µl of DMSO were added to each well and the plates were gently agitated on a flat-bed shaker to dissolve the reduced formazan product. A total of 200 µl of each of the resulting solutions was transferred into a 96-well plate and the absorbance of the solubilised reduced MTT was then read at a wavelength of 570 nm using an ASYS Expert 96 microliter plate reader (Biochrom, UK). The absorbance was expressed as a percentage of MTT reduction relative to the corresponding control ± SEM.

2.2.8 Morphological measurements of fixed differentiated N2a and C6 cells

The cells were induced to differentiate in 8-well chamber slides and then fixed in pre-warmed 4 % (w/v) paraformaldehyde (Sigma-Aldrich, UK) for 15 min at room temperature. They were then stained for one min with Coomassie Brilliant Blue stain (1.25 g Coomassie blue-R250, 10 % (v/v) glacial acetic acid, 40 % (v/v) methanol, 50 % (v/v) distilled water). Stained cells were washed with distilled water and left to dry overnight. Next day, the stained cells were checked by inverted light microscopy.

After staining, the total number of the cells and the amount of round versus flat cells were determined in five fields of each well. Neurites (cellular processes produced on differentiated cells) were also measured as mentioned below. The microscope used was an Olympus CKx41 inverted light microscope (Olympus Optical Company Ltd, London, UK).
In the case of N2a cell lines, neurites were divided into two categories which were (a) extensions of 0.5-2 cell body diameters in length, and (b) axon-like processes, defined as processes more than 2 cell body diameters in length with an extension foot (Keilbaugh et al., 1991).

2.2.9 Indirect immunofluorescence staining

Morphological changes and the distribution of the structural proteins of cell lines were monitored by indirect immunofluorescence staining. This technique is based on the principle of the antibody-antigen binding when fluorescently labelled antibodies are used to detect particular target antigens by two steps. First, cells are stained with unconjugated primary antibody which binds to the antigen. Then a fluorescently labelled secondary antibody is used to detect the primary antibody (Odell and Cook, 2013). The fluorescent probe allows visualisation and study of the intracellular distribution of structures and proteins including neurofilament and microtubule proteins. Further analysis of such structures and proteins can be done by using fluorescence or confocal microscopy.

2.2.9.1 Immunofluorescence materials

2.2.9.1.1 Primary antibody

Table 2.4. List of primary antibodies used for indirect immunofluorescence staining

<table>
<thead>
<tr>
<th>Target antigen</th>
<th>Clone</th>
<th>Dilution</th>
<th>Species</th>
<th>Approximate molecular weight of interest (kDa)</th>
<th>Code</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Antibodies for N2a cell lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β III tubulin</td>
<td>2G10</td>
<td>1:500</td>
<td>Mouse</td>
<td>55</td>
<td>T8578</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Neurofilament heavy polypeptide (NFH)</td>
<td>SMI 33</td>
<td>1:500</td>
<td>Mouse</td>
<td>200</td>
<td>N0142</td>
<td>Merck-Millipore</td>
</tr>
<tr>
<td>Primary Antibodies for C6 cell lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glial fibrillary acidic protein (GFAP)</td>
<td>GA5</td>
<td>1:500</td>
<td>Mouse</td>
<td>50</td>
<td>G3893</td>
<td>Sigma-Aldrich</td>
</tr>
</tbody>
</table>
2.2.9.1.2 Secondary antibody

Table 2.5. Secondary antibodies for indirect immunofluorescence staining

<table>
<thead>
<tr>
<th>Secondary Antibody</th>
<th>Species</th>
<th>Dilution</th>
<th>Code</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexa Fluor® 568 IgG</td>
<td>Rabbit</td>
<td>1:500</td>
<td>A21069</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>Alexa Fluor® 488 IgG(H+L)</td>
<td>Mouse</td>
<td>1:500</td>
<td>A21204</td>
<td>Invitrogen</td>
</tr>
</tbody>
</table>

2.2.9.2 Immunofluorescence methods

Both N2a and C6 cells were plated out at 50,000 cells/ml in 8-well chamber Ibidi µ-slides (Ibidi(R), Thistle Scientific Ltd. UK) in 0.3 ml growth medium and left for 24 h to recover. Cells were induced to differentiate in the presence (1, 3 and 10 µM) and absence of CPF, CPO and PSP for 24 h as described in section 2.1.3. After 24 h exposure time, the medium was carefully removed from each well and cells were fixed to keep the shape and locations of all cellular proteins by using 500 µl/well of pre-warmed 4% (w/v) paraformaldehyde (Sigma-Aldrich, UK) for 15 min at room temperature. Then, cells were washed three times with PBS for 5 min each rinse. Cell permeabilization was performed by incubating the cells for 15 min at room temperature with 0.05% (v/v) Tween-20 in PBS, after which cells were washed 3 times with PBS allowing 10 min each rinse. The Tween-20 detergent solution permeabilized fixed cell membrane, which allowed the antibody to access the cytoplasm. After rinsing, blocking with 3% (w/v) BSA in PBS was used to prevent non-specific binding for 1 h at room temperature. After blocking, cells were then incubated overnight at 4 °C in humidified chamber with 200 µl of primary antibodies (diluted 1:500 in BSA/TBS) against βIII tubulin and NFH in N2a, GFAP in C6 cells. Negative control cells were also included to confirm the specificity of the primary antibody and this involved incubating non organophosphate-treated cell with the secondary antibody only. Unbound primary antibodies were removed by three subsequent washes (10 min each wash) with TBS/Tween 20. Cells were then incubated for 2 h at room temperature with either Alexa fluor 488 goat anti-mouse IgG, or fluorescein isothiocyanate (FITC)-conjugated secondary antibody (both diluted 1:500 in blocking buffer) (Invitrogen), after which a second series of washes was performed. For nuclei visualisation, cells were labelled with 4', 6-diamidino-2-phenylindole (DAPI) counterstain for 1 min after careful aspiration of excess TBS, followed by a further TBS wash. Slides were filled with TBS containing 0.01% (w/v) sodium azide as a preservative and stored at 4 °C prior to image acquisition and analysis.
2.2.10 Image acquisition and analysis

The effects of CPF, CPO and PSP on neurite outgrowth of N2a and C6 were further determined by using the ImageXpress Micro Widefield High Content Analysis System (Molecular Devices, USA). This is a high throughput system that allows rapid evaluation of the effects of a wide range of toxins at different concentrations on multiple parameters of neurite outgrowth. The screening system uses an inverted fluorescence microscope which combined with automated image acquisition and analysis software to quantify different measurements of neurite outgrowth such as cell count, cell body area, neurite count, neurite length (Smith and Eisenstein, 2005; Dragunow, 2008).

For image analysis, the slides were loaded into the high content screening system plate holder for image acquisition and analysis. The system in the host laboratory is equipped with an automated microscope capable of fluorescence imaging of fixed-cells. Images were automatically focused and recorded from four different sites in each individual well. The size of each well was 9.4 x 9.4 mm, and the acquired image field was 741.6 x 587.6 µm. Fluorescence images were produced using matched laser excitation filters and multiple emission filter for two different channels, DAPI for nuclei (ex=377/50 nm, em=447/60 nm) and FITC for cell body and neurites (ex=482/35 nm, em=536/40 nm). Images were acquired using a Nikon 10x objective lens and 1.4 megapixel cooled CCD camera, with a stand-alone illuminator (Lambda LS) connected to the system, which involves a 175W Xenon-arc lamp (Sutter Instrument, USA). The 10x objective lens was used in order to acquire all cell bodies and neurites in one field of view, hence enabling more reliable morphological analysis. The acquired images were segmented by multi-coloured tracing masks on neurites and cell bodies, where each neurite segment was given the same coloured mask as that of their parent neuronal cell bodies. Segmentation masks were produced using the MetaXpress imaging and analysis software (version 5.1.0.46; Molecular devices, USA). The segmentation images were analysed by the MetaXpress imaging and analysis software, using integrated neurite outgrowth settings to measure a number of morphological parameters including average number of cells/field, average cell body area/field, neurite length/cell, percentage of cells with significant outgrowth and average intensity of staining within the stained cells. Particles from each image were identified as cells if the cell body width ranged from 15 to 20 µm and valid nuclei width between 5 to 10 µm were detected. Neurite outgrowth was recorded as significant when
minimum cell outgrowth was more than 10 µm (approximately half a cell body diameter in length). The measurement ranges for cell bodies and outgrowth were determined in preliminary studies using untreated cells from multiple cultures to develop the settings to exclude non-cellular particles from the analysis. Using a 10x objective, 4 fields/well from four independent experiments were acquired for the analysis of at least 200 cells/well. The obtained results by the image analysis software were then analysed by using a Graphpad Prism spread sheet and results were presented as mean ± standard error of mean (SEM) for each OP treatment and compared statistically to its corresponding control.

2.2.11 Preparation of N2a and C6 cell lysates for one dimensional polyacrylamide gel electrophoresis (SDS-PAGE)

Molecular changes to both cell lines were studied in total protein extracts. Initially, cells were plated out in T75 flasks at a density of 50,000 cells/ml in 40 ml growth medium and allowed 24 h recovery. Growth medium was carefully removed from the flask and replaced with 40 ml fresh differentiation medium, containing 0, 1, 3 or 10 µM CPF, CPO or PSP. Cells were re-incubated for 24 h. At the end of the exposure time, differentiation medium was carefully discarded from the flasks and cell monolayers washed twice gently with pre-warmed PBS. A volume of 2 ml of boiling PBS containing 0.5 % (w/v) sodium dodecyl sulphate (SDS) was added to the flask to solubilise the cell monolayers. The resultant suspension was transferred to micro centrifuge tubes, heated at 100°C for 5 min and then allowed to cool at room temperature for 5-15 min. The insoluble materials such as nucleic acids that could affect the performance of the gel electrophoresis assay were then extracted from each lysate by placing 500 µl of cell lysate into a spin column (Dutscher Scientific, catalogue no. 789068) and centrifuged for few seconds at 10,000 g at room temperature. The filter with the captured DNA was carefully removed and discarded. The supernatants were collected from the lower chamber, placed into a clean micro centrifuge tube and stored at -20°C for future electrophoretic and western blotting analysis. The amount of protein available in the samples was then estimated by bicinchoninic acid (BCA) assay, as described in the following section.

2.2.11.1 Sample protein determination

The protein concentration of the samples was measured by the BCA assay, using BSA as the standard (Walker, 2002). The principle of the BCA assay is based on the formation of
a Cu2+ -protein complex under alkaline conditions, followed by reduction of the Cu2+ ions from cupric sulphate to Cu+ by the peptide bonds in a protein. The molecules of BCA then bind with Cu+ forming a purple-blue product, which can be detected and its absorbance measured at 570 nm. The absorbance is equivalent to the amount of protein present in the sample.

2.2.11.1.1 Assay materials

Microtitre 96-well plates were obtained from Sarstedt, (Leicester, UK). BCA Kits which comprised of reagents A (1 % (w/v) bicinehinonic acid sodium salt, 2 % (w/v) sodium carbonate, 0.16 % (w/v) sodium tartrate and 0.95 % (w/v) sodium bicarbonate in 0.1 M sodium hydroxide at pH 11.5) and reagent B (4 % (w/v) copper (II) sulphate pentahydrate solution) were obtained from Sigma-Aldrich.

2.2.11.1.2 Assay procedure

Using a BCA assay kit, a linear range of BSA standard concentrations from 0 to 1 mg/ml (Table 2.6) was prepared in the same buffer as with cell lysates, to produce a calibration curve to ensure that the relationship between protein content and absorbance was linear. A volume of 25 µl from each concentration of standard or from each cell lysate was pipetted into a clean, dry 96-well plate in four replicates and mixed with 200 µl of BCA working reagent. BCA working reagent was obtained by mixing BCA assay kit reagent A with reagent B in a volume ratio of 50:1. The samples were then incubated for 30 min at 37°C in an LEEC incubator (LSC 2933) and absorbance was read at a wavelength of 570 nm. The concentration of protein in the samples was then estimated from the linear correlation obtained from the BSA standard curve.
Table 2.6. BSA protein standards for protein estimation.

<table>
<thead>
<tr>
<th>Volume of 1 mg/ml BSA (µl)</th>
<th>Volume of assay buffer (µl)</th>
<th>Final concentration of BSA (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1000</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>800</td>
<td>0.2</td>
</tr>
<tr>
<td>400</td>
<td>600</td>
<td>0.4</td>
</tr>
<tr>
<td>600</td>
<td>400</td>
<td>0.6</td>
</tr>
<tr>
<td>800</td>
<td>200</td>
<td>0.8</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

When cell lysates showed very low protein concentration, the samples were precipitated by ice-cold acetone. This was achieved by mixing 9 volumes of acetone with 1 volume of protein sample in a micro centrifuge tube, which was vortex-mixed and incubated at -20°C overnight. Precipitated proteins were pelleted by centrifugation at 12,000 × g for 30 min at 4 °C. The supernatant was then carefully decanted and the resultant pellet air dried at room temperature for 30 min. Following complete acetone evaporation, the pellets were dissolved and resuspended with 100 µl of 0.5 % (w/v) SDS in TBS. BCA assays was also performed on the samples obtained after acetone precipitation in order to estimate the amount of protein present.

Once the protein concentration was determined, samples were prepared for polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate (SDS-PAGE) and Western blotting.

2.2.12 One dimensional polyacrylamide gel electrophoresis (SDS-PAGE)

Protein samples from whole cell lysates were separated according to their molecular weight by Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE).

2.2.12.1 SDS-PAGE materials

Sample loading buffer (4x Laemmli buffer) was prepared in a total volume of 10.2 ml containing 40 % (v/v) glycerol, 8 % (w/v) SDS, 20 % (w/v) β-mercaptoethanol, 0.01 % (w/v) Bromophenol blue and 0.1 M Tris HCl, at pH 6.8.
Ammonium persulphate (APS) was purchased from Sigma-Aldrich and prepared by dissolving 0.1 mg of APS in 1 ml of dH$_2$O.

Electrophoresis running buffer (RB) was obtained from Geneflow Ltd. (UK) and was prepared in a total volume of 1 L containing 25 mM Tris base; 192 mM glycine; 0.1 % (w/v) SDS, pH 8.3.

Tris-buffered saline (TBS) was prepared in a total volume of 1 L containing 10 mM Tris and 140 mM NaCl at pH 7.4.

Blocking buffer was prepared in TBS containing 3 % (w/v) BSA and 0.01 % (w/v) sodium azide.

AccuGel™ 29:1 was purchased from Geneflow Ltd. (UK) and contains 40 % (w/v) acrylamide:bisacrylamide (29:1).

4x Protogel® Resolving buffer was purchased from Geneflow Ltd. (UK) and contains 1.5 M Tris-HCl buffer pH 8.8 and 0.4 % (w/v) SDS.

Protogel® Stacking buffer was purchased from Geneflow Ltd. (UK) and contains 0.5 M Tris-HCl buffer pH 6.8 and 0.4 % (w/v) SDS.

N,N,N’,N’- tetramethylethylenediamine (TEMED) was obtained from Geneflow Ltd. (UK).

Precision Plus Protein™ Blue Colour Standards was acquired from Bio-Rad.

2.2.12.2 SDS-PAGE methods

2.2.12.2.1 Preparation of polyacrylamide gels

Typically, protein samples were separated by 10 % (w/v) polyacrylamide resolving gel (Table 2.7) overlaid with a 4 % (w/v) polyacrylamide stacking gel (Table 2.8) before being blotted onto nitrocellulose membranes (Towbin et al., 1979). Resolving gels of 10 % polyacrylamide were selected for use as they provided optimal separation over a broad range of molecular weights from 10 to 250 kDa. The protein separation was performed on 1.5 mm thick polyacrylamide gels, in a Bio-Rad mini PROTEAN III™ Cell electrophoresis chamber. Two glass plates of 1.5 mm thickness and spacer combs were
wiped first with dH$_2$O and then with 70 % (v/v) ethanol prior to assembly. Glass plates were assembled evenly into the plate holders and then mounted on the casting stands. While on the casting stands, the plates were first filled with dH$_2$O to check for any leakage and the water was then removed and replaced with the gel mixture. The 10 % (w/v) acrylamide resolving gel mixture was prepared according to the number of gels that were going to be used as indicated in table 2.7. This was made by mixing AccuGel™ 29:1 acrylamide, 4x Protogel® Resolving buffer and distilled water as indicated in table 2.7. Acrylamide polymerisation was initiated by adding the indicated volume of APS and TEMED to the gel casting solution, mixed gently. Then 8 ml of the resolving gel casting solution were transferred into the gel casting cassette. Distilled water was carefully overlaid on top of the freshly poured resolving gel solution to create a smooth interface and prevent gel shrinkage. Resolving gels were allowed to polymerise at room temperature for approximately 30 to 40 min.

In the meantime, the required amount of 4 % (w/v) polyacrylamide stacking gel mixture was prepared by mixing, AccuGel™ 29:1 acrylamide, Protogel® Stacking buffer and distilled water in the indicated volumes (Table 2.8). Once the resolving gel was polymerised, the distilled water above it was poured away. The indicated volume of APS and TEMED (Table 2.8) were added to the stacking gel solution to initiate polymerisation. The stacking gel solution was mixed gently and applied on top of the polymerised resolving gel. The stacking gel allows protein accumulation at the interface of the resolving gel (Laemmli, 1970). Once the chamber had been filled with stacking gel solution, a comb of the correct thickness was quickly inserted into the non-polymerised gel mixture to generate the wells into which the samples would be loaded. The gel mixture was allowed to polymerise for 45 min, after which the comb was carefully removed and the wells were rinsed by flushing with running buffer to remove any trapped air bubbles prior to sample loading.
Table 2.7. Reagent volumes required for preparation of SDS-PAGE resolving gel for two mini gels

<table>
<thead>
<tr>
<th>10 % (w/v) acrylamide resolving gel reagents</th>
<th>Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% (w/v) 29:1 AccuGel™ (Acrylamide stock)</td>
<td>5.0 ml</td>
</tr>
<tr>
<td>4x Protogel® Resolving buffer or (1.5 M Tris buffer, pH8.8 (5 ml), 10 % (w/v) SDS (100 µl))</td>
<td>5 ml</td>
</tr>
<tr>
<td>Distilled water</td>
<td>9.8 ml</td>
</tr>
<tr>
<td>10 % (w/v) APS</td>
<td>200 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>20 µl</td>
</tr>
<tr>
<td>Total volume</td>
<td>20 ml</td>
</tr>
</tbody>
</table>

Table 2.8. Reagent volumes required for preparation of SDS-PAGE stacking gel for two mini gels

<table>
<thead>
<tr>
<th>4 % (w/v) acrylamide stacking gel reagents</th>
<th>Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>40% (W/V) 29:1 AccuGel™ (Acrylamide stock)</td>
<td>1 ml</td>
</tr>
<tr>
<td>Protogel® Stacking buffer</td>
<td>2.5 ml</td>
</tr>
<tr>
<td>Distilled water</td>
<td>6.4 ml</td>
</tr>
<tr>
<td>10 % (w/v) APS</td>
<td>100 µl</td>
</tr>
<tr>
<td>TEMED</td>
<td>20 µl</td>
</tr>
<tr>
<td>Total volume</td>
<td>10 ml</td>
</tr>
</tbody>
</table>

2.2.12.2.2 Preparation of protein samples for loading

Once the protein concentration had been determined (section 2.2.11.1), each cell lysate was mixed with sample loading buffer (4x Laemmli) in the ratio 1:3 and boiled at 100°C for 5 min prior to loading on the polyacrylamide gel. Precision Plus Protein™ Blue Colour Standards (2.5 µl) were applied to the first well to estimate the molecular weights of the separated proteins. This protein ladder comprised a three colour protein marker with 12 pre-stained proteins, in which the molecular weights ranged from 10 to 250 kDa. Equal amounts (µg) of protein from each sample were then loaded in order to obtain comparable results.
2.2.12.2.3 Separation of proteins in cell lysates by gel electrophoresis

Once the sample loading was complete, gels were placed vertically in the electrophoresis chamber which was then filled with running buffer to the required levels. The system was run first at 50 volts using a Bio-Rad PowerPac 300 for 10 min in order to organise the samples in the stacking gel. The voltage was then changed to 150 volts, allowing electrophoresis to continue until the dye front (bromophenol blue) reached the base of the resolving gel. After that, the power was switched off and the gel was carefully removed to avoid damage.

2.2.13 Western blotting

2.2.13.1 Western blotting materials

2.2.13.1.1 Primary antibodies
Table 2.9. List of primary antibodies used for Western Blot and ELISA assay

<table>
<thead>
<tr>
<th>Target antigen</th>
<th>Clone</th>
<th>Dilution</th>
<th>Species</th>
<th>Approximate molecular weight of interest (kDa)</th>
<th>Code</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP-2</td>
<td>H-300</td>
<td>1:1000</td>
<td>Mouse</td>
<td>140-200</td>
<td>sc-20172</td>
<td>Santa Cruz Biotechnology</td>
</tr>
<tr>
<td>β III tubulin</td>
<td>2G10</td>
<td>1:1000</td>
<td>Mouse</td>
<td>55</td>
<td>T8578</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Tau (a.a. 210-241)</td>
<td>TAU-5</td>
<td>1:1000</td>
<td>Mouse</td>
<td>45-68</td>
<td>MAB361</td>
<td>merckmillipore</td>
</tr>
<tr>
<td>Neurofilament heavy polypeptide, NF-H,</td>
<td>SMI 33</td>
<td>1:1000</td>
<td>Mouse</td>
<td>200</td>
<td>N0142</td>
<td>merckmillipore</td>
</tr>
<tr>
<td>Growth associated protein-43 (GAP43)</td>
<td>GAP-7B10</td>
<td>1:1000</td>
<td>Mouse</td>
<td>43</td>
<td>G-9264</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Glial fibrillary acidic protein (GFAP)</td>
<td>GA5</td>
<td>1:1000</td>
<td>Mouse</td>
<td>50</td>
<td>G3893</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>GAPDH</td>
<td>6C5</td>
<td>1:1000</td>
<td>Mouse</td>
<td>37</td>
<td>sc-32233</td>
<td>Santa Cruz Biotechnology</td>
</tr>
</tbody>
</table>

2.2.13.1.2 Secondary antibodies

Table 2.10. Secondary antibodies for probing Western blot

<table>
<thead>
<tr>
<th>Secondary Antibody</th>
<th>Type</th>
<th>Dilution</th>
<th>Code</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti- mouse IgG</td>
<td>HRP</td>
<td>1:1000</td>
<td>A9044</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Anti- rat IgG</td>
<td>HRP</td>
<td>1:1000</td>
<td>P0450</td>
<td>DAKO-Cytomation</td>
</tr>
<tr>
<td>Anti- rabbit IgG</td>
<td>HRP</td>
<td>1:1000</td>
<td>A6154</td>
<td>Sigma-Aldrich</td>
</tr>
</tbody>
</table>

2.2.13.1.3 Other consumables

Hybond C nitrocellulose membrane of 0.45 µm pore size and purchased from Amersham (Buckinghamshire, UK).
Continuous transfer buffer (CTB) was obtained from Geneflow Ltd. (UK), and consists a mixture of 0.25 M Tris and 1.92 M glycine at 10 times the making concentration, which is diluted with 7 volumes of water and 2 volumes of methanol prior to its use for electrophoretic transfer.

Enhanced chemiluminescence (ECL) reagent was purchased from Insight Biotechnology, Wembley, U.K. and was used to detect the binding of horseradish peroxidase (HRP) secondary antibody conjugate to primary antibodies on probed Western blots.

Whatman® filter paper of grade 3 MM filter paper was obtained from Sigma Aldrich.

2.2.13.2 Western blotting methods

2.2.13.2.1 Electroblotting

Once the protein separation by SDS-PAGE was complete, the separated proteins contained on the resolving gel were electrophoretically transferred onto the nitrocellulose membrane to facilitate binding of antibody to the investigated proteins (Towbin et al., 1979). Briefly, the resolving gel was removed from the glass plate whilst the stacking gel was cut off.

Three pieces of filter paper (9 cm x 6 cm), nitrocellulose membranes and 6 mm thick sponges were soaked in CTB working solution (192 mM glycine, 25 mM Tris and 20 % (v/v) methanol) for 5 min to equilibrate. Methanol is a necessary component of CTB which removes any non-protein-bound SDS and also enhances the adsorption of protein to the nitrocellulose membrane. A transfer sandwich was built on the side of the transfer cassette with the membrane oriented between the gel and the anode plate (+), starting with a wet sponge, followed by three wetted filter papers, nitrocellulose membrane, the resolving gel, three additional pieces of pre-soaked filter papers and finally a second sponge. Any air bubbles between the different layers of the sandwich were removed by rolling a glass rod lightly across the sandwich assembly. When air bubbles are trapped between sandwich components, they can create blank spots on the membrane and impede protein transfer. The assembled sandwich was securely fixed in the transfer cassette, which was closed and immersed in the blotting chamber (Mini Trans-Blot(R) Electrophoretic Transfer cell; Bio-Rad), containing CTB. The cell was connected to the power supply and the electrophoretic transfer performed at 30 volts overnight at room temperature.
2.2.13.2.2 Immunoprobing of Western blots

Nitrocellulose membranes containing the electrophoretically transferred proteins were incubated in 3 % (w/v) BSA in TBS for 1 h at room temperature to block all remaining protein binding sites on the membrane.

After that, membranes were incubated with appropriate dilutions of primary antibodies prepared in 3 % (w/v) BSA/TBS at 4°C overnight (Table 2.9). After incubation, probed membranes were washed to remove excess primary antibody which can otherwise cause high background. This washing was performed 6 times with constant agitation at room temperature using TBS containing 0.05 % (w/v) Tween-20 pH 7.4 over a period of 1 h, allowing 10 min each wash. Blots were then probed with appropriate dilution of the horseradish peroxidase (HRP) conjugated secondary antibodies diluted in 3 % (w/v) BSA/TBS (Table 2.10) for at least two hours at room temperature. This was followed by a further series of 6 washes to remove unbound secondary antibodies from the membrane as described above, with a final wash of TBS to remove possible traces of Tween 20.

2.2.13.2.3 Antibody reactivity visualisation

Antibody reactivity on the membrane was visualised with the enhanced chemiluminiscense (ECL) Western blotting detection reagent (Thermo Scientific, USA). The ECL reagents A and B were allowed to equilibrate at room temperature before they were mixed freshly in equal volumes and applied onto the blotted membranes to detect the band of interest. Digital images were captured using a G:BOX Chemi XT4 imager dark system (Syngene, Cambridge, UK), and band density was quantified by densitometric analysis using Advanced Image Data Analyser (AIDA) software (version 4.03) (Raytek GmbH, Straubenhardt, Germany). This software analyses band volumes, based on constant lane width and automatic band selection, from the raw data of pixel area and intensity that are independent of operator-altered contrast or brightness. All band densities were measured and corrected for background, then normalised to band densities for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) reactivity, which was used as internal control for normalisation. Data are expressed as a percentage of the average value of the peak area compared to its corresponding control ± SEM.
2.2.14 Enzyme linked immunosorbent assay (ELISA)

The effects of OPs on the levels of cytoskeletal proteins in N2a and C6 cell lines was further examined by using a cell-based enzyme linked immunosorbent assay (ELISA). This was based on the previous approach (Schmuck and Ahr, 1997) with modifications. The assay is based on the principle that antibodies will bind to very specific antigens to form antigen-antibody complexes, and an enzyme linked to an antibody can be used as a marker for the detection of a specific antigen or protein in sample. The conjugated enzyme reaction is stopped by the addition of H₂SO₄ producing a yellow colour product, which can be detected and measured at 405 nm by spectrophotometer. The intensity of the colour change is related to the amount of protein or antigen present in the sample.

2.2.14.1 Preparation of buffer and reagents

100 mM Sodium acetate buffer was prepared by dissolving 8.2 g sodium acetate in 900 ml of dH₂O at pH 6. The final volume made up to 1 litre with dH₂O

5 M Sulphuric acid (H₂SO₄) was prepared by adding a volume of 50 ml pure H₂SO₄ was added to 200 ml of dH₂O

3,3,5,5'-Tetramethylbenzidine (TMB)

A total of 10 mg of TMB was dissolved in 1 litre of DMSO (stock).

3 % (v/v) Hydrogen peroxide (H₂O₂)

Volume of 10 µl of 30 % (v/v) H₂O₂ (stock) was added to 90 µl of dH₂O

Developing substrate

The developing substrate was prepared by the addition of 150 µl of TMB stock solution and 30 µl of 3 % (v/v) H₂O₂ into 20 ml of 100 mM sodium acetate pH 6.

2.2.14.2 Assay procedure

The assay was performed in a sterile flat bottom 96-well plate. Cells were plated out at the density of 50, 000 cells/ml for N2a and C6 cell lines in a total volume of 200 µl growth medium per well in four replicates and incubated overnight at 37°C in 5 % CO₂. After 24 h recovery, cells were induced to differentiate in the presence (1, 3, and 10 µM) and absence
of CPF, CPO and PSP for 24 h as described in section 2.2.6. After 24 h exposure time, the medium was carefully removed from each well and cells were fixed using 200 µl/well of prewarmed 4 % (w/v) paraformaldehyde (Sigma-Aldrich, UK) for 10 min at room temperature. Fixative was removed and cells were washed 3 times with TBS allowing 5 min each wash. Cells were permeabilized by incubating with 0.05 % (v/v) Tween-20 in PBS for 15 min at room temperature, after which they were rinsed 3 times with TBS allowing 5 min each rinse. After rinsing, a volume of 300 µl/well of 3 % (w/v) BSA/TBS (blocking buffer) was added for 1 h at room temperature to prevent non-specific binding. The blocking buffer was then removed and 100 µl/well of primary antibodies diluted 1 to 1000 in blocking solution (Table 2.9) were added and incubated overnight at 4ºC.

After that, the primary antibodies were removed and wells were washed three times with TBS/Tween20, followed by at least 2 h incubation at room temperature in 200 µl/well of HRP conjugated secondary antibodies (diluted at 1:2000) in blocking buffer (Table 2.10). Following that, the antibodies were removed and the cells were washed with TBS/Tween20 three times allowing 5 min in each wash. Any remaining wash solution was removed completely from wells, as complete removal of liquid at each step is essential to good performance. The reaction was initiated by the addition of 100 µl of developing substrate buffer into each well. After 5 min incubation at room temperature, a blue colour product was developed as a result of the reaction, which was then stopped by adding 100 µl of 5 M H₂SO₄. The resultant yellow colour was detected and absorbance was measured spectrophotometrically using a micro plate reader (ASYS Expert 96, Biochrom, UK) set at 405 nm. Results were expressed as antibody binding in treated cells and presented as a percentage compared to untreated cells (set as 100 %) ± SEM. The background level was estimated for correction by blank non populated wells. The specificity of antibody bindings was confirmed by non OP-treated cells incubated with the secondary antibody only.

2.2.15 Reverse transcription polymerase chain reaction (RT-PCR)

To investigate possible transcriptional responses to OP exposure, the expression of a few genes of interest was analysed in N2a, C6 and ReNcell CX cell lines after single treatment with the three OPs used throughout this study. Molecular biology grade laboratory reagents were used and they are listed in table 2.11.
Table 2.11. List of reverse transcription polymerase chain reaction reagents

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Code number</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolutely RNA Miniprep Kit.</td>
<td>400800</td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>SYBR™ Safe™ DNA Gel Stain.</td>
<td>VXS33102</td>
<td>Fisher Scientific UK Ltd</td>
</tr>
<tr>
<td>Quick-Load® 100 bp DNA Ladder (125 lanes).</td>
<td>N0467S</td>
<td>New England Biolabs Ltd.</td>
</tr>
<tr>
<td>Wizard®SV Gel and PCR Clean-Up System and x-tracta™ Gel Extraction Bundle.</td>
<td>A9283</td>
<td>Promega, UK.</td>
</tr>
<tr>
<td>PrimePCR™ SYBR® Green Assay: Rps18, Mouse, Rat.</td>
<td>100-25636</td>
<td>Bio-Rad, UK</td>
</tr>
<tr>
<td>PrimePCR™ SYBR® Green Assay: Gapdh, Mouse,Rat,Human.</td>
<td>100-25636</td>
<td>Bio-Rad, UK</td>
</tr>
<tr>
<td>dNTP Mix is a premixed solution containing sodium salts of dATP, dCTP, dGTP and dTTP at 100 mM each.</td>
<td>U1330</td>
<td>Promega, UK.</td>
</tr>
<tr>
<td>M-MLV Reverse Transcriptase kit.</td>
<td>M1701</td>
<td>Promega, UK</td>
</tr>
<tr>
<td>iTaq™ Universal sybr green supermix.</td>
<td>172-5120</td>
<td>Bio-Rad, UK</td>
</tr>
</tbody>
</table>

2.2.15.1 Primer design for the genes of interest

To design specific primers, the cDNA sequences for each gene of interest were obtained from the Genome Browser (University of California, Santa Cruz (UCSC)). When a gene had more than one isoform, their sequences were aligned using the Multalin software and primers were designed in the common nucleotide regions between all the variants. The primers were designed using Primer-3 software (Untergasser et al., 2012) and their qualities, including annealing temperature, size, presence of hairpins and GC content were checked before ordering. The BLAST software was used to select those primers which had the highest specificity with the desired gene.
2.2.15.1 Primer design criteria

a) A ‘GC’ content between 40-60%.

b) Melting temperature (Tm) between 55-80°C.

c) Primer size between 100-150bps.

d) A and T mismatches were to be avoided at 3’ ends.

e) Self-complementarity of the sequences between forward and reverse primers was to be avoided.

f) Self-hairpins of the sequences between forward and reverse primers were to be avoided.

2.2.15.2 Disruption and homogenization of brain tissues

Mouse and rat brains were used as positive controls to optimise the polymerase chain reaction (PCR) and to check the specificity of the designed primers to amplify the genes of interest. Total RNA was extracted from frozen rat and mouse brain tissue. After cleaning all equipment with 70% (v/v) ethanol, the brain tissues were removed from dry ice and approximately 40 mg were weighed and placed in a tube containing prepared Lysis Solution. A volume of 4.2 µl β-mercaptoethanol (β-ME) had been freshly added to 600 µl of lysis buffer, which was included in the Absolutely RNA Miniprep Kit. Then, the tissue was homogenised in the homogenizer Ultra Turrax (TR50) (Janke and Kunkel, IKA labortechnik). The homogenised samples were kept at -80°C for RNA isolation.

2.2.15.3 RNA extraction from cells and homogenised tissues

A T75 flasks were contained 40 ml of growth medium at cell density of 50,000 cells/ml of N2a cells and rat C6 glioma cells, or 100,000 cells/ml of ReNcell CX cell. When the cell monolayers were 80 - 90% confluence, RNA extraction was performed according to the manufacturer’s protocol (Absolutely RNA Miniprep Kit. Code number, 400800, Agilent Technologies) by the RNA binding column through a series of centrifugations then eluted in RNase free water as shown in figure 2.1. A volume of 4.2 µl β-mercaptoethanol (β-ME) had been freshly added to 600 µl of lysis buffer, which was included in the Absolutely RNA Miniprep Kit.
Materials and Methods

Chapter 2

I. Sample preparation

![Graphical protocol of the steps involved in RNA extraction.](image)

II. RNA Extraction

![Graphical protocol of the steps involved in RNA extraction.](image)

Figure 2.1. Graphical protocol of the steps involved in RNA extraction.

2.2.15.4 Quantification of RNA

The concentration of RNA in the samples was determined using a NanoDrop 8000 spectrophotometer (Thermo Fisher Scientific Inc). First, the samples pedestal of the
spectrophotometer were cleaned with wet lens tissue before setting the blank using either distilled water or elution buffer. For each RNA extract, 1 µl was loaded into the pedestals and the absorbance readings taken at 260 and 280 nm. The NanoDrop then provides a value for the concentration and a ratio measurement that reflects the purity of the samples. According to the Beer-Lambert (or Beer’s) Law, absorbance is proportional to concentration and nucleic acids concentrations can be determined with values of absorbance at 260 nm (Mayerhöfer et al., 2016). RNA concentrations were adjusted to 1 µg/µl to use in the reverse transcription reactions.

2.2.15.5 cDNA synthesis

First-strand cDNA synthesis from RNA samples was performed following the manufacturer’s instructions (Promega, UK). A total of 2µg RNA, 0.5 µg random primer and ddH2O were added to a final volume of 15µl. Samples were then heated using a thermal cycler (Bio-Rad, T100) to 70°C for 5 min to melt secondary structures that could be present in the RNA. Then, samples were put on ice before the following components were added to each sample (Table 2.12).

Table 2.12. Final volumes and amounts of cDNA synthesis components

<table>
<thead>
<tr>
<th>Components</th>
<th>Final volume (µl)</th>
<th>Final amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>5x M-MLV buffer</td>
<td>5</td>
<td>200 units</td>
</tr>
<tr>
<td>dNTPs</td>
<td>2</td>
<td>10mM</td>
</tr>
<tr>
<td>M_MLV RT</td>
<td>1</td>
<td>200 units</td>
</tr>
<tr>
<td>RNasin ribonuclease inhibitor</td>
<td>0.5</td>
<td>25 units</td>
</tr>
<tr>
<td>Nuclease Free water</td>
<td>6.5</td>
<td>-</td>
</tr>
</tbody>
</table>

Samples were mixed gently and incubated for 70 min at 37°C in a thermal cycler. After incubation, samples were heated at 95°C for 5 minutes and immediately stored at -20°C to be ready for qPCR.

2.2.15.6 Optimisation of annealing temperature for the polymerase chain reaction (RT-PCR)

A volume of 1 µl cDNA was added into PCR tubes containing 12.5 µl Go taq green master mix (Promega, Catalogue no. M7122), upstream and downstream primers for the gene of
interest and nuclease free water (Table 2.13). PCR tubes were placed in a T100 thermal cycler (Bio-Rad, UK) to perform gene amplification under a gradient of temperature ranging from 55 to 62 °C. Thermal cycler settings are shown in the table 2.14.

Table 2.13. Volumes and final concentrations of the components for RT-PCR

<table>
<thead>
<tr>
<th>Components</th>
<th>Volume (µl)</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>GoTaq® Green Master Mix, 2X</td>
<td>12.5 µl</td>
<td>Provided</td>
</tr>
<tr>
<td>Upstream primer, 10 µM</td>
<td>0.25–2.5 µl</td>
<td>0.1–1.0 µM</td>
</tr>
<tr>
<td>Downstream primer, 10 µM</td>
<td>0.25–2.5 µl</td>
<td>0.1–1.0 µM</td>
</tr>
<tr>
<td>DNA template</td>
<td>1–5 µl</td>
<td><250 ng</td>
</tr>
<tr>
<td>Nuclease-free water to</td>
<td>25 µl</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2.14. Settings of thermal cycler for PCR.

<table>
<thead>
<tr>
<th>Denaturation</th>
<th>Annealing</th>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>95 °C</td>
<td>95 °C</td>
<td>Variant</td>
</tr>
<tr>
<td>3:00 min.</td>
<td>0:30 sec.</td>
<td>0:30 sec.</td>
</tr>
</tbody>
</table>

2.2.15.7 Agarose gel electrophoresis

Agarose (1.5g) from Melford Biolaboratories Ltd, was added to 100 ml of 1x TAE buffer. The solution was boiled twice in order to improve the resolution of the gel. Syber safe (10 µl of a 10,000x stock) was then added to be able to visualise the DNA later. The solution was poured into a casting tray and a well comb was placed in it and left to cool down. After the gel had formed, it was covered by 1xTAE buffer which was prepared from 50x TAE buffer (242g Tris base, 57.1 ml glacial acetic acid, 0.5 M EDTA at pH8 and adjust pH of the buffer at 8.5). After 45 min, 20 µl of the PCR samples were loaded into the
wells, placing 10μl of the DNA ladder standard (Quick-Load® 100 bp DNA Ladder, NEB) in the first well, and the gel was run for 60 min at 85 V.

2.2.15.8 Visualization of bands on agarose gels

The agarose gel was removed from the tank when the electrophoresis was finished and placed in the G:BOX iChemi dark system (Bio-Rad, UK). The gel was exposed to ultraviolet light to reveal Sybr Safe-stained DNA bands and the images were captured by the camera. The sizes of the amplified band were determined by comparison to the DNA ladder used. The PCR conditions for those lanes showing single bands of the expected size product were considered positive and optimised.

2.2.15.9 PCR product confirmation by DNA sequencing

PCR products of the expected size were cut from the agarose gel and cleaned using Wizard® SV Gel and PCR clean-up system, A9281, Promega, following the manufacturer’s guidelines. The extracted DNA was sent for sequencing to Source Bioscience, Nottingham, UK. The string of nucleotides received from the company was introduced in the Blast software to look for alignments with just the sequencing of our gene of interest. Those primers that amplified specific fragments of the expected size were then used in the quantitative PCR (qPCR) experiments.

2.2.16 Quantitative PCR (qPCR)

cDNA was obtained as described before and the reactions for qPCR were prepared in 0.1 ml of capped qPCR microtubes using the volumes and reagents described in table 2.15. The concentration of primers used was determined after the optimisation through the use of a primer matrix.
Table 2.15. Volumes and amounts of the components used in qPCR.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µl)</th>
<th>Final concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>iTaq™ universal SYBR® Green supermix is 2x concentrated</td>
<td>6.5</td>
<td>Master mix</td>
</tr>
<tr>
<td>cDNA</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Forward primer</td>
<td>0.5</td>
<td>10 mM</td>
</tr>
<tr>
<td>Reverse primer</td>
<td>0.5</td>
<td>10 mM</td>
</tr>
<tr>
<td>Nuclease free water</td>
<td>4.5</td>
<td></td>
</tr>
</tbody>
</table>

Then the qPCR mirotubes (strips of four) were placed in the blue 72 rotor disc of Rotor Gene Q (Qiagen, 115H). Gene expression was obtained under the conditions in table 2.16.

Table 2.16. Quantitative RT-PCR protocol

<table>
<thead>
<tr>
<th>Polymerase activation and DNA denaturation</th>
<th>Amplification</th>
<th>Melt curve analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denaturation</td>
<td>Annealing/Extension</td>
<td>Cycles</td>
</tr>
<tr>
<td>95 °C 2 min</td>
<td>60 °C (or depending on annealing temperature of gene of interest) for 30 sec</td>
<td>40</td>
</tr>
<tr>
<td>95 °C 5 sec</td>
<td>95 °C 5 sec</td>
<td>95 °C 5 sec</td>
</tr>
</tbody>
</table>

When amplification was complete, Ct values were obtained and analysed following the delta-delta Ct method of Rao et al. (2013) as indicated below.

\[\Delta \text{Ct} = \text{Ct} \text{(Sample A -treated)} - \text{Ct} \text{(House keeping B-treated)} \]
\[\Delta \text{Ct} = \text{Ct} \text{(Sample A-control)} - \text{Ct} \text{(House keeping B-control)} \]
\[\Delta \Delta \text{Ct} = \Delta \text{Ct} \text{(treated)} - \text{Ct} \text{(control)} \]

\[\text{Normalized target gene expression level} = 2^{\Delta \Delta \text{Ct}} \]
2.2.17 Histone deacetylases assay (HDAC)

2.2.17.1 Nuclei extraction buffers

Molecular biology grade reagents were used to prepare the buffers for the extraction (Table 2.17).

Table 2.17. List of nuclei extraction buffers for HDAC assay

<table>
<thead>
<tr>
<th>Buffer</th>
<th>Reagents</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10 mM HEPES (pH7.9 at 4°C)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>1.5 mM Magnesium chloride (MgCl₂)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>10 mM Potassium chloride (KCl)</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>0.5mM 1,4-Dithiothreitol (DTT) [Add fresh]</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>B</td>
<td>0.3 M HEPES pH 7.9</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>1.4 M KCl</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>0.03 M MgCl₂</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>C</td>
<td>20 mM HEPES pH 7.9</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>25% v/v Glycerol</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>0.42 M NaCl</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>1.5 mM MgCl₂</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>0.2 mM EDTA</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>0.5mM PMSF [Add fresh]</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>0.5 mM DTT [Add fresh]</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>D</td>
<td>20 mM HEPES pH 7.9</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>20% v/v Glycerol</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>0.1 M KCl</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>0.2 mM EDTA</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>0.5 mM DTT [Add fresh]</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td></td>
<td>0.5 mM PMSF [Add fresh]</td>
<td>Sigma-Aldrich</td>
</tr>
</tbody>
</table>

2.2.17.2 Preparation of nuclear extraction for HDAC

According to Dignam et al. (1983), after washing the cells with ice cold PBS, they were scraped off the culture flask in 5 ml PBS ice-cold per flask. Then, cells were centrifuged at 448 x g for 10 min. The pellet was resuspended in 5 x volumes of Buffer A and kept on ice
for 10 min. and then centrifuged at 448 × g for 10 min at 4°C. The pellet was resuspended in 2 volumes of buffer A. The mixture was homogenized with a glass Teflon homogeniser using around 20 strokes to break any intact plasma membranes. The destruction of the membranes was confirmed using a light microscope (Figure 2.2). Then, the extract was centrifuged at 448 × g for 10 min at 4°C. The resultant pellet contained nuclei and was resuspended in 1 ml buffer B, then transferred to ultracentrifuge tubes and centrifuged at 25,000g at 4°C for 30 min. After resuspending the pellet in 0.6 ml buffer C, the mixture was homogenized, then, stirred with a magnet for 30 min at 4°C. It was then centrifuged at 25,000g for 30 min. The supernatant (~1ml) was dialysed against buffer D for 5 hours and then centrifuged at 25,000g, 4 °C for 20 min. Then, the supernatant containing the nuclear proteins was kept at -20°C.

![Figure 2.2. Phase contrast microscopy images of homogenised cells for nuclear extraction.](image)

2.2.17.3 Histone deacetylation (HDAC) protocol

Total HDAC activity was performed in a microliter plate, and it was determined by using HDAC activity colorimetric assay kits (Catalogue No. 17-374, EMD Millipore, UK). HDAC assay was based on a two-step of colorimetric reaction. The first step was deacetylation of the incubated substrate with the samples. Then the substrate was sensitized as consequence of the activator solution that releases p-nitroanilide from the deacetylated substrate. Briefly, the protein was extracted after the fractionation of the
nucleus using the procedure mentioned above. Following BCA assay, as mentioned in 2.2.11.1, 20 µg of cell lysate of test sample, 20µg of HeLa nuclear extract (positive control), and 20µl of water (negative control) were each incubated with HDAC colorimetric substrate for 1 h at 37 °C, following the manufacturer’s instructions (Table 2.18). The absorbance was set at 405 nm by using a micro plate reader (ASYS Expert 96, Biochrom, UK), and it expressed as the relative O.D value per µg of protein.

Table 2.18. Assay incubation setup

<table>
<thead>
<tr>
<th></th>
<th>Negative Control</th>
<th>Positive Control</th>
<th>Test Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X HDAC Assay Buffer</td>
<td>10 µl</td>
<td>10 µl</td>
<td>10 µl</td>
</tr>
<tr>
<td>Test sample/ µg the(s)</td>
<td>0 µl</td>
<td>20 µl</td>
<td>20 µl</td>
</tr>
<tr>
<td>4mM Substrate, colorimetric detection</td>
<td>10 µl</td>
<td>10 µl</td>
<td>10 µl</td>
</tr>
<tr>
<td>Water</td>
<td>20 µl</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Activator Solution</td>
<td>20 µl</td>
<td>20 µl</td>
<td>20 µl</td>
</tr>
<tr>
<td>Total Assay Volume</td>
<td>60 µl</td>
<td>60 µl</td>
<td>60 µl</td>
</tr>
</tbody>
</table>

2.2.18 Statistical analysis

All data sets were generated from a minimum of 4 independent experiments and expressed as mean ± SEM. GraphPad Prism (version 7) (GraphPad software, California, USA), was used for all statistical analysis. The significance of the differences between the average values for each treatment were compared to the corresponding controls or other treatment group by one-way analysis of variance (ANOVA) and comparison between means was analysed by a Sidak post hoc test, which takes into account multiple comparisons, with 95 % confidence interval. Results were considered to be significantly different when P < 0.05.
Chapter 3

Cytotoxic Effects of Organophosphate Compounds on Differentiating Mouse N2a Neuroblastoma and C6 Glioma Cells
3.1 Introduction

Organophosphate compounds are widely used as pesticides, but because they are non-selective for the target organism, their use has caused severe health damage and even death in humans and domestic animals (Murray et al., 2005).

CPF remains one of the most commonly used OP insecticides around the world (Coronado et al., 2006). In spite of its potential dangers to health and the imposed restrictions, CPF remains a major pesticide to use in both residential and in the industrial settings especially in many developing countries (Salyha, 2010). Moreover, tricresyl phosphate (from which the analogue of PSP is derived) has long been used in jet engine oils and jet hydraulic fluid, due to its anti-wear properties under extreme conditions (Liyasova et al., 2011). It was linked to toxicity in both passengers and aircrew, with symptoms including muscle weakness, dizziness, nausea, disorientation and memory loss (Schopfer et al., 2010; Liyasova et al., 2011). A considerable effort has been made by the government, advocating control measures for prevention of potentially toxic organophosphate exposure, particularly amongst employees in manufacturing industries or those using or exposed to the compounds and in the most susceptible groups of the population, such as the young and the elderly. However, in a recent study, despite the suggestion by EPA that the use of all OPs should be banned not only in households but also in agriculture, it has not been well accepted, and OPs are still being used extensively (EPA, 2016; 2017).

As discussed previously in section 1.1.2, glial cells are specialized cells that do not transmit electrical signals but they are of major importance, in that they provide structural and metabolic support in the nervous system. They also play a key role in antioxidant activity, which is important for protection against potential effects of OPs on neural cells (Bagchi et al., 1995). However, the cytotoxic effects of OPs may vary between neural and glial cells, the precise reasons remaining elusive as evidence keeps accumulating. One study has, however, suggested that, as glial cell development takes longer than that of neurons, the former may be more susceptible to prolonged exposure to CPF (Garcia et al., 2002).

Substantial evidence has emerged from a number of epidemiological studies demonstrating that both CPF and CPO have the ability to induce neurotoxicity in developing organisms through their effects on developmental processes in the nervous system, such as neurite outgrowth (Campbell et al., 1997; Crumpton et al., 2000a; Flaskos, 2012).
Results

Many studies have shown that OPs adversely affect most cell types in the nervous system, especially the neurons and glial cells (Sachana *et al.*, 2008; Flaskos *et al.*, 2011). The molecular basis of OP-induced neurotoxicity has been extensively studied and reported in both *in vivo* and *in vitro* models, as discussed in chapter 1 (Timofseeva and Gordon, 2002; Coronado *et al.*, 2006). The understanding of OP associated acute toxic effects, resulting from the inhibition of cholinesterase activity thereby causing accumulation of acetylcholine at nerve endings, has played a major part in providing a rationale for therapeutic and diagnostic approaches. Many *in vitro* studies on neural cell lines such as N2a and C6 have facilitated a better understanding of the cellular mechanism(s) involved in OP-induced cytotoxicity. For example, in viability assays such as MTT reduction, the IC$_{50}$ values for CPF and CPO were approximately 50 and 40 µM, respectively, and it was established that concentrations of 1-10 µM had no significant effect on the viability of differentiating C6 cells under the same experimental conditions as those used in the current study (Sachana *et al.*, 2008). Likewise, PSP was shown to inhibit the reduction of MTT in cultured mitotic N2a and hepatic (HepG2) cell lines, as indicated by their IC$_{50}$ values which were estimated to approximately 10-15 µM (Harris *et al.*, 2009a). This showed that the two cell lines exhibited similar trends in their sensitivity to PSP. Subsequent studies assessed the effects of PSP on MTT reduction in mitotic H9c2 cells at shorter time points than in the previous study (1, 2, 4, and 8 h) (Felemban *et al.*, 2015). The results showed that PSP-induced inhibition of MTT reduction was first evident at 4 h (IC$_{50} = 8.5 \pm 5.5$ µM), with comparable results obtained at 8 h exposure (IC$_{50} = 7.1 \pm 4.7$ µM). This suggests that PSP displays marked cytotoxicity towards mitotic H9c2 cells.

According to Sindi *et al.* (2016), the concentration of 3 µM CPF and CPO was chosen for studies of neurite retraction based on its ability to induce approximately 50 % reduction in both neurite outgrowth and in the number of pre-formed neurites in differentiating N2a cells. CPF at the sub-lethal concentration of 3µM had the ability to induce retraction of approximately 50 % of axon-like processes formed by differentiating N2a cells, as determined by light microscopy of Coomassie Brilliant Blue stained cells (Sachana *et al.*, 2001). In previous work by the same research group, it was found that the sub-lethal concentrations of OP pesticides such as CPF and diazinon (DZ) inhibited the outgrowth of axon-like processes in differentiating N2a cells (Sachana *et al.*, 2001; 2003; Flaskos *et al.*, 2007). Accordingly, a concentration range of (1-10 µM) was adopted for subsequent experiments in the current study.
Several *in vitro* and *in vivo* studies have shown that the adverse effects of CPF and CPO on the developing brain are not limited to inhibition of cholinesterase activity, but that it involves other potential targets (Slotkin, 2004). For example, CPF and CPO were found to interfere with the unique developmental process of the brain and the nervous system by causing several morphological changes in the formation of neurites, as discussed above. These neurites play key roles in axonal plasticity (Andrieux *et al*., 2002; Wall, 2005). Neurite outgrowth is a unique morphological feature of neural development and has been investigated in several *in vitro* studies. Extension of neurites (axons and dendrites) during brain development is a crucial factor that determines neuronal connectivity (Radio *et al*., 2008). Any interference with this critical cellular process, for example by OP exposure, may cause severe damage or could lead to neurodegenerative effects in developing organisms (Rice and Barone, 2000; Costa, 2006; Grandjean and Landrigan, 2006). As shown by *in vitro* studies, neurite outgrowth reflects many of the morphological and molecular changes that occur in axon outgrowth during nerve regeneration *in vivo* (Burgoyne, 1991; Berger-Sweeney and Hohmann, 1997). Neurotoxin-induced changes in this phenomenon may also reflect the ability of xenobiotics to cause axon retraction and/or inhibit nerve regeneration in adult animals (Burgoyne, 1991; Berger-Sweeney and Hohmann, 1997). Sub-lethal concentrations of PSP inhibited the outgrowth of axon-like processes in differentiating N2a cells (Hargreaves *et al*., 2006). The mechanisms involved in OP-induced neurotoxicity may vary depending on the differentiation conditions used (Sachana *et al*., 2001). Several developmental studies of OPs have been carried out under similar cell differentiation conditions, in which cells were treated with OPs at the point of induction of cell differentiation (Sachana *et al*., 2008; Flaskos *et al*., 2006; 2011; Sindi *et al*., 2016). This method, also known as co-differentiation, forms a platform whereby the ability of OPs to inhibit the outgrowth of neurites can be studied. Also, reports have shown that CPF not only has the ability to inhibit neurite outgrowth but it can also cause the retraction of pre-formed neurites (Sachana *et al*., 2001). This was demonstrated in a study that involved exposure of pre-differentiated N2a cells to a non-cytotoxic concentration of CPF at two different time points. The results showed that CPF caused a significant reduction in the number of axon-like processes in pre-differentiated N2a cells following 4 and 8 h exposure (Sachana *et al*., 2001; Sachana *et al*., 2005).

In the present study, in order to study the neurotoxic effects of CPF, CPO or PSP on neurite outgrowth in differentiating N2a cells, they were stained with Coomassie blue, after which neurites were quantified using manual counting. Although this method demonstrated
the ability of the compounds to induce changes in the process of neurite outgrowth, the limitation of this method is that the manual counting of neurite outgrowth is time-consuming. Therefore, high throughput screening (HTS) system was used to further measure the extent of neurite outgrowth in differentiating N2a cells exposed to CPF, CPO or PSP. This screening system was developed using fully automated integrated systems for cell imaging and data analysis (Abraham et al., 2004; Smith and Eisenstein, 2005), which provides rapid measurements, time efficient and reliable of neurite outgrowth overcoming the common limitations of manual methods used in the earlier part of the current study and in previous research carried out at Nottingham Trent University. Additionally, HTS can assess the effects of a wide range of various chemicals and neurotoxicants on multiple parameters of neurite outgrowth including neurite number, neurite length, cell body area and the extent of neurite branching. Furthermore, high throughput assays can be used with different cellular models in order to compare and characterise the effects of several OPs or other chemicals on neurite outgrowth in multiple cell types (Mundy et al., 2010). Earlier studies have validated the feasibility of this approach to evaluate the neurotoxicity potential of various chemicals on neurite outgrowth in neural cell lines under different exposure conditions (Radio et al., 2008; Radio et al., 2010; Harrill and Mundy, 2011; Wilson et al., 2014; Sindi et al., 2016).

3.2 Aims

The main aims of the present work were:

(a) to investigate the cytotoxic effects of CPF, CPO and PSP on the viability of differentiating N2a and C6 cell lines. Cell viability was assessed by MTT reduction assay following exposure to the three OPs at 24 h. This was a preliminary study carried out to determine the time point of potential cytotoxicity.

(b) to determine the effects of sub-lethal concentrations of the same 3 compounds on neurite outgrowth.

It was of particular interest to develop high throughput assays in order to examine the effects of a range of sub-lethal concentrations of OPs on multiple parameters of neurite outgrowth in a rapid quantitative analysis. Therefore, cells were fixed and stained by indirect immunofluorescence with antibodies against β-tubulin III (clone 2G10) and NFH (clones SMI 33) and monoclonal antibody of GFAP (clone GA5) and subsequently analysed by HTS.
3.3 Effects of CPF, CPO and PSP on the viability of differentiating N2a cells

The toxic effects of organophosphates of the current study on the two cell lines were further compared in terms of their IC$_{50}$ values, which is the concentration required to decrease the level of MTT reduction by 50 % compared to the non-organophosphate control. After 24h, an IC$_{50}$ value was not reached in both at 1-25 µM (Appendix 8.1, 8.2).

Mouse N2a neuroblastoma cells were induced to differentiate by the addition of 0.3 mM dbcAMP in the absence (0.5 % v/v DMSO control) or presence (1, 3, and 10 µM) of CPF, CPO or PSP for 24 h. To examine the viability of differentiated N2a cells after being exposed to the OPs, MTT reduction assays were performed, as described in section 2.2.7. As indicated in figures 3.1, the results showed no effect on the reduction of MTT by differentiating N2a cells when compared to its corresponding control after 24 h exposure to all three concentrations of CPF, CPO and PSP.

3.4 Effects of CPF, CPO and PSP on the viability of differentiating C6 cells

Similarly, mouse C6 glioma cells were induced to differentiate by the addition of 2 mM sodium butyrate in the absence (0.5 % v/v DMSO control) or presence (1, 3, and 10 µM) of CPF, CPO or PSP for 24 h. To determine the viability of differentiated C6 cells after being exposed to the OPs, MTT reduction assays were performed, as described in section 2.2.7. As indicated in figures 3.2, there was no significant change in the reduction of MTT by differentiating C6 cells when compared to its corresponding control after 24 h exposure to all the three concentrations of CPF, CPO or PSP.
Figure 3.1. Effects of CPF, CPO and PSP on MTT reduction in differentiating N2a cells after 24 h.

N2a cells were induced to differentiate in the absence and presence of different concentrations of CPF (panel A), CPO (panel B) and PSP (panel C) of induction of cell differentiation, and the levels of MTT reduction were measured to evaluate cell viability. Results are expressed as a mean percentage of the corresponding untreated control ± SEM from five separate experiments. Statistical significance of data was analysed by using one way ANOVA.
Figure 3.2. Effects of CPF, CPO and PSP on MTT reduction in differentiating C6 cells after 24 h.

C6 cells were induced to differentiate in the absence and presence of different concentrations of CPF (A), CPO (B) and PSP (C) of induction of cell differentiation, and the reduction of MTT levels were measured to evaluate cell viability. Data are expressed as a mean percentage of the corresponding untreated control ± SEM from five separate experiments. Statistical significance of data was analysed by using one way ANOVA. When SEM bar is not apparent means that error is smaller than the symbol size.
3.5 Effects of CPF, CPO and PSP on N2a and C6 cell growth

In order to further explore OP cytotoxicity on the growth of N2a and C6 cells, cell number and viability number were monitored at 24 h using a Trypan blue exclusion assay, and measured with the aid of an automated cell counter (TC20TM, Bio-Rad Laboratories Inc., Hemel Hempstead, UK) as described in materials and methods.

The results showed that neither the total cell number nor the percentage of viable cells was affected after 24 h exposure to all concentrations of CPF, CPO or PSP in N2a cells (Figure 3.3). Similarly, both cell number and viable cells were unaffected by all concentrations of CPF, CPO and PSP in C6 cells. However, the overall viable cell percentage was slightly but not significantly reduced under the same condition in C6 cells compared to the corresponding non CPO-treated control (Figure 3.4).
Figure 3.3. Effects of CPF, CPO or PSP on the cell number and viability of differentiating N2a cells.

N2a cells were induced to differentiate for 24h in the presence or absence of 1,3,10 µM CPF, CPO or PSP, before assessment of cell viability via the Trypan blue exclusion assay, as described in Materials and Methods. An average of four separate experiments is shown, and the results are presented as total cell count per ml, live cell count per ml and percentage (%) of live cell relative to the corresponding control. Statistical significance of data was analysed by using one way ANOVA. When SEM bars are not apparent means that error is smaller than the symbol size.
Figure 3.4. Effects of CPF, CPO or PSP on the number and viability of differentiating C6 cells.

C6 cells were induced to differentiate for 4h in the presence or absence of 1,3,10 µM CPF, CPO or PSP, before assessment of cell viability via the Trypan blue exclusion assay, as described in Materials and Methods. Four separate experiments are shown, and the results are presented as total cell count per ml, live cell count per ml and percentage (%) of live cell relative to the corresponding control. Statistical significance of data was analysed by using one way ANOVA.
3.6 Effects of CPF, CPO and PSP on N2a cell morphology

Morphological changes in differentiating N2a cells were assessed after 24 h exposure to different concentrations of CPF, CPO and PSP. Cells were incubated in the absence (0) or presence (1, 3 or 10) µM of CPF, CPO and PSP. They were then fixed and stained with Coomassie Brilliant Blue dye (Figure 3.5). By using light microscopy, the structural features that were studied included the 1) Extensions between half and 2 cell body diameters in length 2) axon, the latter being defined as a neurite outgrowth that is double the cell body diameter or longer. There were differences in the morphological changes in N2a cells exposed to varying concentrations of CPF, CPO and PSP after 24 h. The proportion of cells exhibiting clearly discernible extension was decreased with all concentrations of CPF and PSP after 24 h in N2a cells. The number of cell extensions was however unaffected by CPO.

Similarly, there was a decrease in axon-like neurite formation with all concentrations of CPF, CPO and PSP after 24 h exposure. The decrease was statistically significant except with 1 µM and 3 µM CPF and CPO, and the decrease was highly significant with 10 µM PSP (Table 3.1).
Table 3.1. Quantification of neurite outgrowth in differentiating N2a cells

<table>
<thead>
<tr>
<th>OPs</th>
<th>Concentrations (µM)</th>
<th>Extension (%)</th>
<th>Axon (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>45±1.2</td>
<td>15±0.4</td>
</tr>
<tr>
<td>CPF</td>
<td>1</td>
<td>24±0.3*</td>
<td>14±1.00</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>27±1.2*</td>
<td>14±1.2</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>15±2.5**</td>
<td>7±0.8*</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>31±2.00</td>
<td>10±0.8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>26±0.3</td>
<td>7±0.3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>26±4.9</td>
<td>9±1.00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>23±1.4</td>
<td>6±0.5*</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>58±0.5</td>
<td>20±0.5</td>
</tr>
<tr>
<td>PSP</td>
<td>1</td>
<td>26±3.2*</td>
<td>11±0.5**</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>24±3.6*</td>
<td>11±0.7**</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>21±4.2*</td>
<td>3±1.2***</td>
</tr>
</tbody>
</table>

N2a cells were induced to differentiate for 24 in the presence of a range of CPF, CPO or PSP concentrations. Cells were fixed and stained with Coomassie blue prior to morphological measurements. Data are indicated to the number recorded per hundred cells ± standard error from an average of four wells of cells cultured on four separate occasions for 24 h exposure.
Figure 3.5. Effects of CPF, CPO or PSP on the morphology of differentiating N2a cells.
N2a cells were induced to differentiate for 24 h in the presence or absence of 1,3,10 μM CPF, CPO or PSP, as described in Materials and Methods. Shown are images of typical fields of cells viewed by phase contrast microscopy after 24 h differentiation by using an inverted light microscope following methanol fixation and staining with Coomassie blue after 24 h differentiation. Projecting from each individual N2a cell are outgrowth processes defined as (a) axon-like processes (if greater than 2 cell body diameters in length) (black arrows) or (b) extensions (shorter processes that are between 0.5 -2 cell body diameters in length) (red arrows) . Bar represents 25 μm.

3.7 Development of high content screening assay of neurite outgrowth

The neurotoxic effects of CPF, CPO and PSP on neurite outgrowth in differentiating N2a and C6 cells observed in the previous assay (sections 3.5, 3.6) were assessed using manual laboratory techniques, by which the number of axon-like processes was quantified per 100 cells following Coomassie and Trypan blue staining. Consistently, these methods demonstrated the ability of these compounds to impair the process of neurite outgrowth. However, the acquisition of microscopic images as well as the quantitative analyses was time-consuming and gave information only about neurites that were longer or shorter than two cell body diameters in length. The key aims of the work presented in this chapter was to develop medium to high throughput assays in order to examine the effects of multiple concentrations of CPF, CPO and PSP at 24 h on neurite outgrowth in differentiating N2a and C6 cells in a rapid quantitative analysis. This would, in turn validate the previous findings obtained from analysis of Coomassie Brilliant Blue staining of N2a and C6 cells induced to differentiate in the presence and absence of sub-lethal concentration of CPF, CPO and PSP.

For quantitative analysis of multiple parameters of neurite outgrowth in differentiating N2a and C6 cells following CPF, CPO and PSP exposure, cells were fixed and stained by indirect immunofluorescence with antibodies against their specific proteins. Anti-βIII-tubulin (clone 2G10) and anti-neurofilament heavy chain NFH (clone SMI 33) antibodies were used for N2a cells while anti-GFAP (clone GA5) was used for C6 cells. The anti-tubulin antibody was expected to stain microtubules in axons, dendrites, cell bodies, and anti-NFH antibody was expected to preferentially stain mainly neurofilaments in axons of neuronal cells. These specific antibodies were used mainly because they detect neurite-enriched cytoskeletal proteins and thus facilitate the monitoring OP-induced effects on multiple parameters of neurite outgrowth to be investigated. Likewise, anti-GFAP was specifically selected for C6 cells because it detects a useful marker of astroglial neurotoxicity that is highly expressed by astrocytes (Harry et al., 1998). Images of stained cell monolayers were acquired using the ImageXpress Micro Widefield High Content Screening System and neurite outgrowth analysis was performed using MetaXpress imaging and analysis software, as described by Sindi et al. (2016) and in section 2.2.10.

Shown in figure 3.6 is the segmentation of acquired images obtained by high throughput assays as previously described (section 2.2.10). As shown, all representative images are from non OP-treated controls stained with antibodies to βIII tubulin, NFH and GFAP. The
procedure for image acquisition included using two fluorophores; FITC to detect cell body and neurites (green) and DAPI for all nuclei visualisation in a field (blue). The composite merged images showed staining distribution of FITC and DAPI within each neuronal cell. Following the image acquisition, image segmentation was performed and displayed as multicoloured masks tracking the neurites and cell bodies in the acquired image. For accurate image segmentation, the analysis settings of the integrated neurite outgrowth application mode were configured and optimised to capture maximum relevant detail with reduced background noise. The measurement and analysis of neurite outgrowth parameters were achieved by the use of mathematical algorithms and included the following:

- Average number of cells/field (total number of neural cell bodies averaged by the number of fields).
- Average cell body area/field (total area of cell bodies in square micron averaged by the number of fields).
- Percentage of cells with significant outgrowth (cells with at least one neurite > 10 µm in length).
- Average number of neurites (total number of neurites produced from the cell bodies averaged by the number of fields).
- Maximum neurite length/cell (the length in microns of the longest neurite from the neuronal cell body to an extreme segment per cell).
- Average neurite length/cell (the total length in microns of all significant outgrowths averaged by the number of cells).
- Significant outgrowth (neurites longer than 10 µm in length).
Figure 3.6. Segmentation of stained differentiating N2a and C6 cells using high throughput screening assay.

Cells were induced to differentiate for 24 h in the absence of OPs for 24 h. Cells were fixed and stained with antibodies recognising the neuronal marker of N2a cells βIII-tubulin and NFH, and GFAP as glial neural marker for C6, followed by Alexa Fluor conjugated anti-IgG secondary antibodies, as described in Materials and Methods. The shown images were from a single field of view of untreated controls. Acquired images were obtained by using ImageXpress Micro system (10x objective) with two wavelengths; FITC to detect cell bodies and neurites and DAPI to detect nucleus counting. The multicoloured of segmented images with tracing masks on neurites and cell bodies were generated using the Neurite Outgrowth Module within the MetaXpress analysis software to monitor different parameters of neurite outgrowth including cell number, cell body area and outgrowth length for each identified cell.
3.8 Monitoring multi-parameters of neurite outgrowth in differentiating N2a cells

The sub-lethal effects of CPF, CPO and PSP on neurite outgrowth in co-differentiated N2a cells were investigated following 24 h exposure using high throughput assay. The results of multi-parametric analysis of neurite outgrowth achieved by quantitation of βIII tubulin and NFH staining are shown in Figures 3.7, 3.8, 3.9, 3.10.

Figure 3.7 shows the high content data for cell number and cell body area obtained by analysis of βIII tubulin and NFH staining at 24 h exposure. The presented data show that all concentrations of CPF, CPO and PSP had no significant effects on the average neuronal cell number/field after 24 h exposure compared to the untreated controls (Figure 3.7, panel A1-A4). Similarly, both βIII tubulin and NFH staining showed no significant effects on the measurements of cell body area/field of co-differentiated N2a cells following 24 h exposure to all the three OP treatments (Figure 3.7, panel B1-B4).

The effects of multiple concentrations of CPF, CPO and PSP on the average intensity of staining within the positive cells and the percentage of cells with significant outgrowth (neurites > 10 µm in length) are shown in figure 3.8. The presented data show that all concentrations of CPF had no effects on the average intensity of staining/field after 24 h exposure compared to the untreated controls (Figure 3.8, panel A1, A3). As indicated in figure 3.8, panel A1, A3, no effects were observed on the average intensity of staining in cells treated with 1 and 3 µM CPO. In addition, exposure to the highest concentration (10 µM) of CPO and PSP resulted in significantly reduced intensity (p< 0.05), as with both βIII tubulin and NFH staining. Exposure of cells to 3 µM PSP significantly reduced the average intensity of staining to 25 % of control values using anti-NFH stain (Figure 3.8, panel A4). The quantitative analysis of both stains for the average intensity of staining number of neurites/field in co-differentiated N2a cells showed that the exposure to 10 µM CPO and PSP caused 20 % and 25 % decline respectively, compared to the corresponding non OP-treated control (Figure 3.8).
Figure 3.7. Effects of CPF, CPO and PSP on cell number and cell body area in differentiating N2a cells as assessed by high throughput assays.

Cell were fixed and stained with antibodies to βIII tubulin and NFH, then data were acquired by using the ImageXpress Micro system, the cell number and cell body area were measured using MetaXpress imaging and analysis software. Data show the effects of CPF, CPO or PSP on the average cell number/field (panel A) and the average cell body area (µm2/field) (panel B). High throughput data are represented as mean values ± SEM from four independent experiments. Data were analysed using one-way ANOVA. The CPF effects are presented as red dashed lines; the CPO effects are presented as blue solid lines, whereas PSP effects are showed as green solid lines. When SEM bars are not apparent means that error is smaller than the symbol size.
Figure 3.8. Effects of CPF CPO or PSP on average intensity of staining and percentage of cells with significant outgrowth in differentiating N2a cells as assessed by high throughput analysis.

Cells were stained with antibodies to βIII tubulin and NFH, after which data were acquired using ImageXpress Micro system and measured using MetaXpress imaging and analysis software. Data show dose-related effects of CPF, CPO or PSP on the average intensity of staining/field (panel A) and the percentage of cells with significant outgrowth (panel B). Data are presented as mean values ± SEM from four independent experiments. Data were analysed using one-way ANOVA. The CPF effects are presented as red dashed lines; the CPO effects are presented as blue solid lines, whereas PSP effects are showed as green solid lines. Asterisks indicate changes that are statistically different from the non OP-treated controls (*p < 0.05), (**)p < 0.01). When SEM bars are not apparent, this means that error is smaller than the symbol size.
Figure 3.8 (panel B) quantitation of βIII tubulin staining showed lack of detectable changes on the number of cells with significant outgrowth in differentiating N2a cells treated with multiple concentrations of CPF and CPO for 24 h. In contrast, this staining showed dose dependent decreases in this parameter in PSP-treated cells which was statistically significant at the highest concentration (p<0.05). However, exposure to the highest concentration (10 µM) of CPO and PSP significantly reduced the number of cells bearing neurites stained with anti-NFH (p < 0.01) staining (Figure 3.8, panel B3, B4). The quantitative analysis of NFH stain for the significant outgrowth in differentiating N2a cells showed that the treatment of 10 µM CPF, CPO and PSP caused 20 %, 45 % and 65 % decline, respectively, compared to the corresponding non OP-treated control.

Further parameters of neurite outgrowth such as the maximum and average neurite length per neuronal cell were also assessed using high throughput assays. Following 24 h exposure, CPO (p < 0.05) and PSP (p < 0.01) significantly reduced maximum and average neurite length per neuronal cell, respectively, as indicated by anti-βIII tubulin staining (Figure 3.9, panel B1). There was a dose-dependent decrease in both parameters of neurite outgrowth in PSP-treated cells compared to the non-treated controls. A significant concentration-related reduction (p < 0.05, p<0.01) was observed in both parameters of neurite outgrowth at two concentrations (3 and 10 µM) of PSP respectively, as indicated with anti-βIII tubulin staining. Anti-NFH staining exhibited significant decreases in the maximum and average neurite length/cell following 10 µM CPO and PSP treatments for 24 h. With regard to the measurement of maximum neurite length per neuronal cell were similar for both antibodies at around 25-65 µm (Figure 3.9).
Figure 3.9. Effects of CPF, CPO or PSP on maximum and average neurite length/cell in differentiating N2a cells as assessed by high throughput analysis.

Cells were stained with antibodies to βIII tubulin and NFH, after which data were acquired using ImageXpress Micro system and measured using MetaXpress imaging and analysis software. Data show dose-related effects of CPF, CPO or PSP on the maximum neurite length/cell (panel A) and the average neurite length/cell (panel B). Data are presented as mean values ± SEM from four independent experiments. Data were analysed using one-way ANOVA. The CPF effects are presented as red dashed lines; the CPO effects are presented as blue solid lines, whereas PSP effects are showed as green solid lines. Asterisks show changes that are statistically different from the controls (*p < 0.05), (**p < 0.01). When SEM bars are not apparent, this means that error is smaller than the symbol size.
3.9 Monitoring multi-parameters of neurite outgrowth in differentiating C6 cells

Using high content throughput analysis, the effects of CPF, CPO and PSP were assessed over different concentrations (1, 3 and 10 µM) on the multi-parameters of neurite outgrowth in differentiating C6 cells after 24 h exposure. The parameters used to determine the impacts of these compounds on C6 cells were similar to those applied in N2a cell experiments, which included cell number, cell body area, and percentage of cells with significant outgrowth, maximum and average neurite length. Additionally, the average intensity of GFAP (clone GA5) staining within neurites and cell bodies of each antibody-positive cell were evaluated by high throughput assay, as described in section 2.2.10.

Figure 3.10 demonstrates the segmentation of acquired images obtained by high throughput assay employed for C6 cells in the current study. All procedures for image acquisition and image analysis were similar to those applied in N2a experiments. All representative images shown are from untreated control C6 cells from four single fields of view.

The high throughput data presented in Figure 3.10 show that all concentrations of CPF and PSP had no significant effect on either the average number of glial cells/field or on the average area of cell bodies/field after 24 h exposure compared to untreated controls, as indicated by the analysis of anti-GFAP staining (Figure 3.10, upper panels A1-B2). The average number of glial cells/field and the average area of cell bodies/field were, however, significantly (p < 0.05) reduced after 24 h exposure to the highest CPO concentration (Figure 3.10, panels A1 and B1). The average count of differentiated glial cells ranged between 110 to 150 cells/field in controls, as indicated by anti-GFAP staining (Figure 3.10, panels A1 and A2).

Figure 3.10 (lower panels C1-D2) displays the high throughput measurement of the average intensity of staining and the percentage of cells with significant outgrowth. The data demonstrated that CPF and CPO at all concentrations had no effect on either parameter following 24 h exposure, compared to non OP-treated controls. The average intensity of staining was, however, significantly (p < 0.05) reduced by all concentrations of PSP and the percentage of cells with significant outgrowth was significantly (p < 0.05) reduced following exposure to 10 µM PSP.
Measurements of glial cell extension length were also obtained using high throughput screening with GA5 staining. As illustrated in figure 3.11, while the maximum neurite length per cell in co-differentiated C6 cells was significantly (P < 0.01) reduced by 10 µM CPF and CPO following exposure for 24 h, there was a significant dose-dependent reduction in the average neural length per cell following PSP exposure for 24 h. As demonstrated in figure 3.11 (panels A1 and A2), the maximum length of astrocyte extensions/cell ranged between 35 to 58 µm in untreated controls. The data in figure 3.11 (panels B1 and B2) indicated that 24 h exposure to CPO at 1, 3 and 10 µM concentrations caused a significant reduction in the average neurite length/cell by 90 % at 10 µM (p<0.01) compared to the untreated controls. However, the data show that all concentrations of PSP had no statistically significant effect on either parameter following 24 h exposure compared to non OP-treated controls, except the average neurite length per cell which was significantly reduced (p<0.05) by exposure to 10 µM PSP.
Figure 3.10. Effects of CPF CPO or PSP on multiple parameters in differentiating C6 cells as assessed by high throughput analysis. Cells were stained with antibody to GFAP, after which data were acquired using ImageXpress Micro system and measured using MetaXpress imaging and analysis software. Data show dose-related effects of CPF, CPO or PSP on cell number (panel A), cell body area (panel B), the average intensity of staining (panel C) and percentage of cells with significant outgrowth (panel D). Data are presented as mean values ± SEM from four independent experiments. Data were analysed using one-way ANOVA. The CPF effects are presented as red dashed lines; the CPO effects are presented as blue solid lines, whereas PSP effects are showed as green solid lines. Asterisks indicate changes that are statistically different from the non OP-treated controls (*p < 0.05). When SEM bars are not apparent, this means that error is smaller than the symbol size.
Figure 3.11. Effects of CPF CPO or PSP on multiple parameters in differentiating C6 cells as assessed by high throughput analysis.
Cells were stained with antibody to GFAP, after which data were acquired using ImageXpress Micro system and measured using MetaXpress imaging and analysis software. Data show dose-related effects of CPF, CPO or PSP on the maximum neurite length/cell (panel A), the average neurite length/cell (panel B). Data are presented as mean values ± SEM from four independent experiments. Data were analysed using one-way ANOVA. The CPF effects are presented as red dashed lines; the CPO effects are presented as blue solid lines, whereas PSP effects are showed as green solid lines. Asterisks indicate changes that are statistically different from the non OP-treated controls (*p < 0.05), (**p < 0.01).
3.10 Effect of CPF, CPO and PSP on cytoskeletal organization in cultured differentiating N2a and C6 cells

In order to show whether the morphological changes observed in sections 3.6, and 3.7 reflected cytoskeletal disruption, cells from control and OP exposures were stained with antibodies to cytoskeletal proteins (βIII tubulin, NFH and GFAP) by indirect immunofluorescence as described in Materials and Methods (section 2.2.9). The images in figures 3.12 – 3.17 show the effects of treatment of differentiating N2a cells with 1, 3 and 10 µM CPF, CPO and PSP for 24 h on cytoskeletal networks as indicated by anti-βIII tubulin (Clone 2G10) and anti-NFH (clone SMI33) staining.

Exposure to all of the OP concentrations modified the cells’ cytoskeletal network after a 24 h treatment. This was mainly evident by some disruption in the microtubule and neurofilament networks in N2a cells showing cytoplasmic staining, which was reduced in intensity with treatments. Anti-tubulin staining was reduced and disrupted with OP treatments. The cytoplasmic staining was reduced compared to the control with CPF (Figures 3.12), CPO (Figures 3.13) and PSP (Figures 3.14) treatments, and the neurite outgrowth was visibly truncated in some cells with OP treatments.

Neurofilament staining intensity was also reduced in differentiating N2a cells with OP treatments, in particular with 3 and 10 µM CPF (Figures 3.15), CPO (Figures 3.16) and PSP (Figures 3.17). The proportion of N2a cells exhibiting a clearly discernible neural outgrowth was visibly reduced with both concentrations of all the OP concentrations in N2a cell lines.

The images in Figures 3.18, 3.19 and 3.20 show that changes were observed in the staining intensity of GFAP in differentiating C6 cells with CPF and CPO treatments. However, in PSP treated C6 cells there was disruption in the GFAP staining, showing cytoplasmic staining, which was reduced in intensity compared to the non OP-treated control.
Figure 3.12. Indirect immunofluorescence staining of CPF effects on βIII tubulin staining of differentiating N2a cells as detected by EVOS cell imaging system.

Shown are representative images of immunofluorescently stained cell monolayers with anti-βIII tubulin. Cells were induced to differentiate for 24 h in the presence of 1 µM (panel B), 3 µM (panel C) and 10 µM (panel D) or absence (panel A) of CPF for 24 h, then they were fixed and immunofluorescently stained for the neural marker of interest as described in Materials and Methods. The white arrow indicates to the axon. All Images shown were from a single representative field of view by using an EVOS FL cell imaging system (10x objective) with two channels; FITC for detecting cell bodies and neurites and DAPI for nucleus counting. Scale bar 400 µm.
Figure 3.13. Indirect immunofluorescence staining of CPO effects on βIII tubulin staining of differentiating N2a cells as detected by EVOS cell imaging system.

Shown are representative images of immunofluorescently stained cell monolayers with anti-βIII tubulin. Cells were induced to differentiate for 24 h in the presence of 1 µM (panel B), 3 µM (panel C) and 10 µM (panel D) or absence (panel A) of CPF for 24 h, then they were fixed and immunofluorescently stained for the neural marker of interest as described in Materials and Methods. The white arrow indicates to the axon. All Images shown were from a single representative field of view by using an EVOS FL cell imaging system (10x objective) with two channels; FITC for detecting cell bodies and neurites and DAPI for nucleus counting. Scale bar 400 µm.
Figure 3.14. Indirect immunofluorescence staining of PSP effects on βIII tubulin staining of differentiating N2a cells as detected by EVOS cell imaging system.

Shown are representative images of immunofluorescently stained cell monolayers with anti-βIII tubulin. Cells were induced to differentiate for 24 h in the presence of 1 µM (panel B), 3 µM (panel C) and 10 µM (panel D) or absence (panel A) of CPF for 24 h, then they were fixed and immunofluorescently stained for the neural marker of interest as described in Materials and Methods. The white arrow indicates to the axon. All Images shown were from a single representative field of view by using an EVOS FL cell imaging system (10x objective) with two channels; FITC for detecting cell bodies and neurites and DAPI for nucleus counting. Scale bar 400 µm.
Figure 3.15. Indirect immunofluorescence staining of CPF effects on NFH staining of differentiating N2a cells as detected by EVOS cell imaging system.

Shown are representative images of immunofluorescently stained cell monolayers with anti-NFH (Clone SMI 33). Cells were induced to differentiate for 24 h in the presence of 1 µM (panel B), 3 µM (panel C) and 10 µM (panel D) or absence (panel A) of CPF for 24 h, then they were fixed and immunofluorescently stained for the neural marker of interest as described in Materials and Methods. The white arrow indicates to the axon. All Images shown were from a single representative field of view by using an EVOS FL cell imaging system (10x objective) with two channels; FITC for detecting cell bodies and neurites and DAPI for nucleus counting. Scale bar 400 µm.
Figure 3.16. Indirect immunofluorescence staining of CPO effects on NFH staining of differentiating N2a cells as detected by EVOS cell imaging system.
Shown are representative images of immunofluorescently stained cell monolayers with anti-NFH (Clone SMI 33). Cells were induced to differentiate for 24 h in the presence of 1 µM (panel B), 3 µM (panel C) and 10 µM (panel D) or absence (panel A) of CPF for 24 h, then they were fixed and immunofluorescently stained for the neural marker of interest as described in Materials and Methods. All Images shown were from a single representative field of view by using an EVOS FL cell imaging system (10x objective) with two channels; FITC for detecting cell bodies and neurites and DAPI for nucleus counting. Scale bar 400 µm.
Figure 3.17. Indirect immunofluorescence staining of PSP effects on NFH staining of differentiating N2a cells as detected by EVOS cell imaging system.

Shown are representative images of immunofluorescently stained cell monolayers with anti-NFH (Clone SMI 33). Cells were induced to differentiate for 24 h in the presence of 1 µM (panel B), 3 µM (panel C) and 10 µM (panel D) or absence (panel A) of CPF for 24 h, then they were fixed and immunofluorescently stained for the neural marker of interest as described in Materials and Methods. The white arrow indicates to the axon. All Images shown were from a single representative field of view by using an EVOS FL cell imaging system (10x objective) with two channels; FITC for detecting cell bodies and neurites and DAPI for nucleus counting. Scale bar 400 µm.
Figure 3.18. Indirect immunofluorescence of CPF effects on anti-GFAP staining differentiating C6 cells as detected by EVOS cell imaging system.
Shown are representative images of immunofluorescently stained with anti-GFAP (GA5). Cells were induced to differentiate for 24 h in the presence of 1 µM (panel B), 3 µM (panel C) and 10 µM (panel D) or absence (panel A) of CPF for 24 h, then they were fixed and immunofluorescently stained for GFAP as described in Materials and Methods. All Images shown were from a single representative field of view by using an EVOS FL cell imaging system (10x objective) with two channels; FITC for detecting cell bodies and neurites and DAPI for nucleus counting. Scale bar 400 µm.
Figure 3.19. Indirect immunofluorescence of CPO effects on anti-GFAP staining differentiating C6 cells as detected by EVOS cell imaging system.
Shown are representative images of immunofluorescently stained with anti-GFAP (GA5). Cells were induced to differentiate for 24 h in the presence of 1 µM (panel B), 3 µM (panel C) and 10 µM (panel D) or absence (panel A) of CPF for 24 h, then they were fixed and immunofluorescently stained for GFAP as described in Materials and Methods. All Images shown were from a single representative field of view by using an EVOS FL cell imaging system (10x objective) with two channels; FITC for detecting cell bodies and neurites and DAPI for nucleus counting. Scale bar 400 µm.
Figure 3. 20. Indirect immunofluorescence of PSP effects on anti-GFAP staining differentiating C6 cells as detected by EVOS cell imaging system. Shown are representative images of immunofluorescently stained with anti-GFAP (GA5). Cells were induced to differentiate for 24 h in the presence of 1 µM (panel B), 3 µM (panel C) and 10 µM (panel D) or absence (panel A) of CPF for 24 h, then they were fixed and immunofluorescently stained for GFAP as described in Materials and Methods. All Images shown were from a single representative field of view by using an EVOS FL cell imaging system (10x objective) with two channels; FITC for detecting cell bodies and neurites and DAPI for nucleus counting. Scale bar 400 µm.
3.11 Discussion

There is a large amount of evidence highlighting the risks of OP exposure, which has led to restrictions being put in place over their use. However, CPF is still one of the most commonly used insecticides, especially in developing countries (Minton and Murray, 1988; Murray et al., 2005; Coronado et al., 2006; Salyha, 2010).

The current study investigated the effects of sub-lethal concentrations (1, 3 and 10 µM), confirmed by MTT reduction and Trypan blue exclusion assays, of CPF, CPO or PSP on neurite outgrowth in differentiating N2a and C6 cells in order to extend findings from previous studies and allow the development of a high throughput screening system to study changes in neurite outgrowth much more comprehensively. The morphological effects of OPs on axon-like neurites were investigated initially by staining cells with Coomassie Brilliant Blue and manual quantification, then by developing a fully automated, HTS system to measure multiple parameters of neurite outgrowth in cells that were fixed and stained by indirect immunofluorescence with antibodies against NFH (clone SMI33) and β III tubulin (clone 2G10) in N2a cells, and in C6 cells stained with the monoclonal antibody to GFAP (clone GA5).

The results of the MTT assays showed that in N2a and C6 cells there was no significant decrease in MTT reduction after 24 h treatment with all 3 compounds. This finding fits well with previous MTT reduction studies in N2a and C6 cells, which have shown that concentrations of 1-10 µM CPF and CPO had no effect over 24 h, (Sachana et al., 2008; Flaskos et al., 2011). The PSP results in this study match the findings of previous investigations, which found higher concentrations of PSP inhibited the reduction of MTT in cultured N2a cells, but concentrations up to 10 µM had no effect (Hargreaves et al., 2006; Harris et al., 2009a). Further confirmation that the MTT reduction assay data indicated no effect of 24 h treatments on cell viability was obtained by Trypan blue exclusion assay using an automated cell counter to assess the effect of CPF, CPO and PSP on cell number and viability of differentiating N2a and C6 cells. Overall, the MTT and Trypan blue exclusion data suggest that the 1-10 µM OP concentration range is suitable to investigate sub-lethal effects on neurite outgrowth in N2a and C6 cells if used in combination with a 24 h time point.

The initial investigation into changes in morphology used Coomassie Brilliant Blue staining to allow the cell features of neurite outgrowth to be monitored. The results indicated that all 3 OPs could inhibit neurite outgrowth in both cell lines. These results
correlate with previous studies in C6 glioma cells that were exposed to sub-cytotoxic (1-10 µM) doses of CPF and CPO (Sachana et al., 2008), studies in differentiating N2a cells that were exposure to sub-cytotoxic levels of CPF (Sachana et al., 2001), and studies of differentiating neuroblastoma N2a cells exposed to PSP, which all produced inhibited neurite outgrowth (Hargreaves et al., 2006; Flaksos et al., 2007; Pomeroy-Black and Ehrich, 2012). These results suggest that this manual counting method is suitable for measuring changes in the parameters investigated, and confirmed that the OP treatments used do cause changes in neurite outgrowth. However, the application of this technique is limited in the detail it provides, and it is also time consuming and labour intensive.

In order to overcome the limitations of the manual counting method, a HTS approach using advanced technology was investigated, which is considered to be a novel and more powerful approach to determine the effects of OPs on differentiating mammalian cell lines. Previous studies have shown that high throughput assays can be used to compare the effects of different chemicals on neurite outgrowth in different cellular models of neural differentiation under a range of exposure conditions (Radio et al., 2008; Mundy et al., 2010; Radio et al., 2010; Harrill and Mundy, 2011; Wilson et al., 2014; Sindi, 2015).

A HTS approach used in a previous study with pre-differentiated N2a cells that were treated with or without 1, 3 and 10 µM CPF and CPO. Cells were then fixed and stained by indirect immunofluorescence with antibodies against NFH, βIII tubulin, and GFAP. Anti-βIII tubulin was chosen to stain microtubules in cell bodies, dendrites and axons anti-NFH was chosen to stain neurofilaments in axons of neuronal cells, and anti-GFAP was selected for use in C6 cells as it is an astro-glial marker (Sindi, 2015). The results for the indirect immunofluorescence staining showed good staining for all the antibodies and qualitative differences could be seen after some of the treatments, suggesting these were suitable markers for use in this study. By using the HTS system, multiple parameters of neurite outgrowth could be measured. The results for both cell types showed that the treatments had no significant effect on cell number, and only 10 µM CPO reduced cell body area in C6 cells stained for GFAP in agreement with metabolic and viability assays, and further confirming that the treatments did not cause cell death. The results agree with previous HTS studies which also showed no major changes to the number cells or cell body area at sub lethal concentrations. The reductions in staining intensity observed for anti-βIII tubulin and anti-NFH after treatment with 10 µM of all OPs, 3 µM PSP for anti-NFH, and all concentrations of PSP for anti-GFAP, suggest that the OPs, and especially PSP, are having
an effect on these protein levels and that this could be related to reduced neurite length, which is different to the results of previous studies where no changes in staining intensity were observed for these cell types, which is possibly due to the difference in exposure time between these studies, and the fact that they used different exposure starting points, as this study used a longer exposure time which would allow the differences on staining intensity to develop (Sindi, 2015).

For the N2a cells, the reductions observed by HTS in neurite length and neurite number per cell and the percentage of cells bearing neurites suggest that treatment with all 3 OPs inhibits neuronal cell differentiation as indicated by reductions the outgrowth of neurites that are positive for anti-βIII tubulin and anti-NFH in a concentration dependent manner. For the C6 cells stained for GFAP, HTS analysis of differentiating C6 cells showed that the 3 OPs were also able to inhibit neurite outgrowth in glial cell differentiation, as indicated by concentration dependent reductions in the percentage of cells bearing neurites, the average number of neurites per cell and neurite length.

These results are in agreement with those found by Coomassie Brilliant Blue staining, and both approaches show impairment of neurite outgrowth due to treatment with the higher concentrations of all three OPs used. The HTS data also show that all of the OPs tested inhibited the formation of neurite extensions in neuronal and glial cells, which agree with previous studies that have shown outgrowth impairment in N2a cells after treatment at the point of induction with 3 µM CPF (Sachana et al., 2001; Sachana et al., 2005), a similar concentration dependent response after treatment with CPO for 24 h (Flaskos et al., 2011) and after treatment with PSP, with no significant effect on cell shape (Hargreaves et al., 2006; Flaskos et al., 2006). The results also agree with previous studies in glial cells which found an inhibitory effect on extension outgrowth of 24 h exposure to 1-10 µM CPF and CPO in C6 cells (Sachana et al., 2008).

Overall, the results correlate with the findings of previous studies that have shown that in differentiating neuronal cells, reduced neurite outgrowth is associated with neuronal degeneration and modification of axonal morphology, which are critical events in the development of OPIDN (Flaskos et al., 1994; Ehrich and Jortner, 2001; Hargreaves et al., 2006).

On the other hand, CPO caused the largest significant differences for some conditions, with the largest reduction in % cells with significant outgrowth for anti-NFH; the reduction
in maximum neurite length/cell was higher for CPO than PSP for NFH and CPO produced a similar response for NFH average neurite length/cell as PSP. The impairment of neurite outgrowth followed a similar pattern for anti-GFAP after treatment of C6 cells with CPO and CPF for maximum neurite length/cell; GFAP average neurite length/cell was affected more by CPO than PSP. These significant effects of CPO are mainly seen for anti-NFH and anti-GFAP staining, which suggests CPO exhibits potent effects on axon-like neurites and glial extensions more than cell bodies and dendrites, which is in agreement with previous studies which have shown CPO was more potent than CPF following 24 h exposure in pre-differentiated rat PC12 pheochromocytoma cells, and in differentiating N2a cells, causing inhibited neurite outgrowth, and a reduction in axonal length in embryonic derived primary cultures of sensory and sympathetic neurons (Das and Barone, 1999; Howard et al., 2005; Yang et al., 2008).

These results are also consistent with studies showing that CPO exposure can cause a reduction in NFH levels in vitro (Sidiropoulou et al., 2009b; Flaskos et al., 2011), that CPO can bind covalently to tubulin and disrupt polymerisation of bovine brain MT in vitro (Grigoryan and Lockridge, 2009), and disrupt the neurofilament network after 24 h treatment with non-cytotoxic neurite inhibitory concentrations of CPO (Flaskos et al., 2011). The morphological changes observed after treatment with CPO occur at similar concentrations found in vivo in developing humans (Gupta, 1995; Ostrea et al., 2002; Pelkonen et al., 2006) and therefore can be linked to the developmental neurotoxicity observed (Bramanti et al., 2010; Liu et al., 2012).

The reduction in the staining intensity for βIII tubulin and NFH after treatment with CPF, CPO and PSP could indicate a reduction in the protein levels of the neuron specific βIII tubulin isoform and the axon enriched protein NFH, and changes, or a breakdown, in the NF networks, which would result in reduced axon stability (Sindi, 2015). The effects on neurite length depend on the OP and concentration used, which can easily be measured the sensitive high throughput assay, and these axon extensions play a key role in connecting single and multiple neurons (Hjorth et al., 2014).

In summary, the data from this chapter show that sub-lethal concentrations of CPF, CPO and PSP impaired the outgrowth of neurites in differentiating N2a and C6 cells. The data also demonstrate that HTS was able to detect and quantify multiple changes in neurite outgrowth caused by the different OPs, and allowed a rapid analysis overcoming some of the disadvantages of manual methods, and validated the previous results obtained by the
Coomassie method both in this chapter and in other previous studies (Sachana et al., 2001; Sachana et al., 2005; Hargreaves et al., 2006; Flaskos et al., 2011). The results of this assay show there are inhibitory effects of all OPs on neurite number and length for the different markers measured, with each OP producing a slightly different pattern of effects. Based on the results of the studies presented in this chapter, further investigations into how CPF, CPO and PSP affected neurite outgrowth were planned. This included quantitative analysis of protein levels for a selection of key cytoskeletal and associated regulatory proteins MAP-2, βIII tubulin, Tau, GAP-43, NFH and GFAP, which would be analysed for changes in the levels of expression in N2a and C6 cell lines differentiated with or without 1, 3 and 10 µM of CPF, CPO or PSP by Western blotting analysis. The aims of this further study are to investigate how changes in expression of these key proteins are related to the morphological changes observed in this chapter, to help to elucidate the method of action of these OPs.
Chapter 4

Effects of Organophosphates on Cytoskeletal and Associated Regulatory Proteins in Differentiating N2a Neuroblastoma and C6 glial Cells
4.1 Introduction

Having observed from the previous chapter, that changes in morphology of the two cell lines occurred as a result of exposure to sub-cytotoxic concentrations (1, 3 and 10 µM) of CPF, CPO and PSP, it was hypothesised that this might involve changes in the levels of cytoskeletal and associated regulatory proteins in rodent neural cell lines.

The neuronal cytoskeleton, particularly microtubules (MTs) and neurofilaments (NFs), is one of the most important endogenous factors that control normal neurodevelopment and stability including the process of axonal/neurite outgrowth (Cambray-Deakin, 1991). Disruption of the axonal cytoskeleton by OPs has often been associated with changes in neuronal cell morphology, particularly in cases of toxic neuropathies in which NFH which is one of the potential targets of OPs (Lee and Cleveland, 1994).

Impairment of neurite outgrowth following exposure to OPs has been linked with disruption of the expression levels of cytoskeletal proteins (Flaskos et al., 1998; Sachana et al., 2001; Sachana et al., 2003; Sachana et al., 2005; Hargreaves et al., 2006; Flaskos et al., 2007; Flaskos et al., 2011; Sachana et al., 2014; Sindi et al., 2016).

Earlier reports evaluated the effects of CPF on a number of cytoskeletal and associated regulatory proteins in N2a cells under different differentiation and exposure conditions (Sachana et al., 2001; Sachana et al., 2005). Furthermore, the mechanisms underlying the ability of certain OPs to cause axon retraction and to inhibit axon outgrowth have been associated with some axon growth-associated proteins such as GAP-43, which is important in the regulation of axonal outgrowth and/or stabilization (Meiri et al., 1986; 1998; Knoops and Octave, 1997).

Sachana and colleagues (2005) showed reduced levels of GAP-43 in pre-differentiated N2a cells that were subsequently treated with CPF. However, exposure of N2a cells to CPF for 4h at the point of induction of cell differentiation had no impact on GAP-43 expression (Sachana et al., 2005). The findings of these previous studies suggest that the effects of CPF on the protein depend on the differentiation stage of the cells when exposure occurs. In another study, exposure of N2a cells at the point of induction of differentiation to 1-10 µM CPO caused reduced levels of GAP-43 and NF-H after 24 h (Flaskos et al., 2011).

Exposure to 10 µM diazoxon and after differentiation for 24 h (DZO) decreased the expression of βIII-tubulin and microtubule associated protein 1B (MAP1B) in
differentiating N2a cells. However, DZO had no effect on the expression of the microtubule associated protein Tau, NFL or NFM at the protein level. Thus, DZO disrupts the microtubule (MT) network affecting the expression and distribution of two specific MT proteins known to be important in neurite outgrowth (Sachana et al., 2014). However, the effects of CPF, CPO and PSP on the levels of MAPs in N2a cells are not known.

There is a lack of quantitative data in the case of PSP treatment of C6 cells, as in early work it was suggested that PSP had no effect on C6 cell differentiation, as measured by neurite (extension) number (Fowler et al., 2001). Given that the original data were preliminary and only involved a simple morphological assessment of Coomassie blue stained cells (i.e. a total count of extensions irrespective of length), further studies could be worthwhile. Moreover, the effects of PSP on cytoskeletal proteins in C6 cells have not been determined yet (Sachana et al., 2001; 2005; 2008; 2014; Harris et al., 2009a).

It was observed in a recent study that the levels of phosphorylated NFH (detected by the monoclonal antibody Ta51) were reduced significantly after 8 h exposure of pre-differentiated N2a cells to CPF and CPO, which corresponded to a collapse of the neurofilament network (Sindi et al., 2016). Likewise, CPF and CPO can exert toxic effects directly on glial cell differentiation through disruption of the cytoskeleton and its associated proteins, and CPO in particular has a potent effect on the microtubule network (Sachana et al., 2008). CPO was found to cause significant decreases in the levels of tubulin and MAP-1B in differentiating C6 cells after 24 h exposure by western blot analysis (Sachana et al., 2008).

Inhibition of outgrowth of axon-like processes in differentiating N2a cells has been associated with exposure to sub-lethal concentrations of PSP (Hargreaves et al., 2006). These morphological changes were associated with altered phosphorylation and levels of NFH protein detected on Western blots. Exposure of differentiating N2a cells to 2.5 µM PSP increased the phosphorylation of NFH after 4 h as indicated by a relative increase in reactivity of the lysates with monoclonal antibody Ta51 (which recognises the phosphorylated form of NFH) compared to N52 (total NFH). However, 24 h exposure of differentiating N2a cells to the same compound resulted in decreases in both total and phosphorylated forms of NFH (Hargreaves et al., 2006). Thus, there is clear evidence for cytoskeletal effects of the three OPs used in the current study on N2a cells but little data regarding molecular effects of PSP on cultured glial cells. As the current work is focussed on the cytoskeletal gene expression changes that might be associated with exposure to the
OPs it was important to show that known OP-induced protein changes could be reproduced in the N2a cells and to determine whether novel protein changes could be detected particularly in PSP-treated C6 cells.

4.2 Aims

Since a number of MT, NF and associated regulatory proteins are important in neurodevelopment and may be involved in neurite outgrowth and stability, a key aim of the work presented in this chapter was to examine the effects of CPF, CPO and PSP on the levels of expression of cytoskeletal and associated regulatory proteins involved in neural cell differentiation and survival in differentiating mouse N2a neuroblastoma cells and C6 glioma cells.

The molecular changes underlining the morphological effects of OPs on neurite outgrowth in N2a and C6 cell lines differentiated in the absence and presence of CPF, CPO and PSP (during differentiation) were studied by quantitative Western blotting. For immunoblotting, Western blots of lysates of N2a and C6 cells induced to differentiate in the absence and presence (1, 3 and 10 µM) of CPF, CPO or PSP for 24 h were probed with antibodies against a range of proteins, including MAP-2, βIII tubulin, Tau, GAP-43, NFH and GFAP, as described in section 2.2.13 and table 2.9.
4.3 Effects of CPF, CPO and PSP on the expression level of GAPDH in N2a and C6 cell lines

GAPDH levels were quantified by Western blot analysis. Western blots of lysates prepared from N2a and C6 cells differentiated in the presence (1, 3 and 10) µM of CPF, CPO or PSP for 24 h were probed with antibodies against GAPDH, after which reactivity was detected using ECL reagent and was quantified densitometrically as described in Materials and Methods, section 2.2.13.

As indicated in figure 4.1 and table 4.1, the reactivity of anti-GAPDH with protein lysates from both cell lines showed no significant changes following exposure of cells to all the OPs and concentrations tested at 24 h. Therefore, the band intensities of all studied proteins were normalised to that for GAPDH in the same sample, which was used as internal control.
Results

Chapter 4

Table 4.1. Densitometric analysis of Western blots probed with antibody to GAPDH protein in N2a and C6 cell lines.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Toxin (µM)</th>
<th>Densitometric peak (% control ± SEM)</th>
<th>CPF</th>
<th>CPO</th>
<th>PSP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH of N2a cells</td>
<td>1</td>
<td>90 ± 2</td>
<td>84 ± 4</td>
<td>93 ± 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>103 ± 7</td>
<td>86 ± 13</td>
<td>92 ± 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>103 ± 13</td>
<td>102 ± 16</td>
<td>96 ± 4</td>
<td></td>
</tr>
<tr>
<td>GAPDH of C6 cells</td>
<td>1</td>
<td>105 ± 2</td>
<td>101 ± 7</td>
<td>99 ± 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>104 ± 3</td>
<td>98 ± 10</td>
<td>100 ± 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>105 ± 8</td>
<td>99 ± 4</td>
<td>97 ± 8</td>
<td></td>
</tr>
</tbody>
</table>

Western blots of cell lysates from N2a and C6 cells induced to differentiate in the absence and presence of CPF, CPO and PSP at the concentrations indicated, were probed with antibodies that recognise GAPDH. The antibody reactivity was then visualized with ECL reagents as described in Materials and Methods. Densitometric peak areas were quantified using AIDA software. Data represent means of four separate experiments and values are expressed as a percentage of corresponding non OP-treated control ± SEM.

4.4 Effects of CPF, CPO and PSP on the expression levels of microtubule proteins in differentiating N2a cells

In order to determine the effects of OPs on the expression levels of microtubule proteins, Western blots of lysates prepared from cells differentiated in the absence and presence of 1, 3 and 10 µM of CPF, CPO or PSP for 24 h were probed with antibodies against a range of MT proteins which included MAP2, βIII-tubulin and Tau as described in chapter 2. Changes were observed in the levels of antibody reactivity on Western blots of cell lysates from cell lines treated with OPs compared to the controls (Figures 4.1 and Table 4.2).

The three OP treatments showed significant effects on reactivity of lysates with anti-MAP2, which decreased significantly after exposure to 3 µM CPF (p<0.05) and 10 µM CPF, CPO and PSP (p<0.05). However, there was no statistically significant effect on the reactivity with same antibody in cell lysates for 1 µM CPF, 1 µM and 3 µM CPO and PSP.

Similarly, all OP treatments also showed significant effects on reactivity of lysates with anti-βIII tubulin, which decreased significantly after exposure to 10 µM CPF (p<0.05), CPO (p<0.05) and PSP (p<0.01).
Antibody cross reactivity of anti-Tau with whole cell lysate was significantly reduced after 24 h exposure to 3 and 10 µM concentrations of both CPF (p<0.01) and PSP (p<0.05) of 3 µM and (p<0.01) of 10 µM. However, there was no statistically significant effect on reactivity with anti-tau in cells for any of the CPO concentrations tested.

Figure 4.1. Detection of microtubule proteins by Western blots of differentiating N2a cell lysates.

N2a cells were induced to differentiate for 24 h with the treatment of (0, 1, 3, 10 µM) of CPF, CPO, PSP or without OP (Control 0 µM). Equal amounts of N2a cell lysates were loaded in SDS-PAGE and Western blotting as mentioned in the Material and Methods chapter. Shown are typical blots which probed with antibodies against MAP-2, βIII tubulin and Tau followed by HRP-conjugated secondary antibodies and developed by ECL reagents. Blots probed with GAPDH were used as internal control.
Table 4.2. Densitometric analysis of Western blots probed with antibodies to microtubule proteins in N2a cell lines.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Toxin (µM)</th>
<th>Densitometric peak (% control ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CPF</td>
</tr>
<tr>
<td>MAP-2</td>
<td>1</td>
<td>101±1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>75±6*</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>69±7*</td>
</tr>
<tr>
<td>βIII-tubulin</td>
<td>1</td>
<td>102±1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>90±5</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>74±13*</td>
</tr>
<tr>
<td>Tau</td>
<td>1</td>
<td>85±3</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>59±10**</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>35±4**</td>
</tr>
</tbody>
</table>

Western blots of lysates from differentiating N2a cells were probed with antibodies that recognise MAP-2, βIII-tubulin and Tau. The antibody reactivity was then visualized with ECL reagents as described in Materials and methods and densitometric peak areas were quantified using AIDA software. Data represent means of four separate experiments and values are expressed as a percentage of the corresponding control (band densities for all proteins were normalised to blots probed with GAPDH) ± SEM; *P<0.05, **P<0.01, asterisks indicate significant differences compared to the corresponding untreated control.

4.5 Effects of CPF, CPO and PSP on the expression levels of neurofilament and growth associated proteins in N2a cells

To examine possible effects of the OP treatments on the levels of axonal intermediate filament and growth associated proteins in N2a cells, the immunoreactivity of antibodies with GAP43 and the core neurofilament forming protein NFH was quantified by Western blotting analysis.

For immunoblotting, Western blots of lysates prepared from cells induced to differentiate for 24 h in the absence and presence (1, 3 and 10 µM) of CPF, CPO or PSP were probed with antibodies against NFH and GAP43.
As indicated on figure 4.2 and table 4.3, there were no significant effects on the cross reactivity with the antibody that recognised NFH of lysates from differentiating N2a cells exposed to 1 µM CPF, CPO or PSP for 24 h compared to control. However, probed Western blots of N2a cell lysates showed a significant decrease after exposure to 3µM CPF (p<0.01) and to 3µM PSP (p<0.05), while the decrease was high significant after exposure to 10 µM CPF, CPO or PSP (p<0.01).

Similarly, GAP43 reactivity was unaffected following exposure to 1 µM CPF, 1 µM and 3 µM CPO and PSP. However, probed Western blots of N2a cell lysates showed a significant decrease in antibody reactivity with GAP43 on exposure to 3µM CPF (p<0.05) and after exposure to 10 µM CPF, CPO and PSP (p<0.01).

Figure 4.2. Detection of neurofilament and growth associated proteins by Western blots of differentiating N2a cell lysates.

N2a cells were differentiated for 24 h in the absence (0) and presence of 1, 3 and 10 µM CPF, CPO or PSP. N2a cell lysates were separated by SDS-PAGE and Western blotting as explained in Material and Methods. Shown are typical blots which were probed with antibodies against NFH and GAP-43 followed by HRP-conjugated secondary antibodies and developed by ECL reagents. Blots probed with anti-GAPDH were used as internal control.
Table 4.3. Densitometric analysis of Western blots probed with antibodies to neurofilament and growth associated proteins in N2a cell lysates.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Toxin (µM)</th>
<th>Densitometric peak (% control ±SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CPF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PSP</td>
</tr>
<tr>
<td>NFH</td>
<td>1</td>
<td>77 ± 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>90 ± 13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89 ± 3</td>
</tr>
<tr>
<td>GAP-43</td>
<td>1</td>
<td>96 ± 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>99 ± 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>89 ± 9</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>65 ± 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>86 ± 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88 ± 7</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>39 ± 15**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45 ± 16**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>62 ± 9**</td>
</tr>
</tbody>
</table>

Western blots probed with antibodies that recognise NFH and GAP43. The antibody reactivity was visualized with ECL reagents as described in Materials and Methods and densitometric peak areas were quantified using AIDA software. Data represent means of four independent experiments and values are expressed as a percentage of the corresponding non OP treated control (band densities for all proteins were normalised to blots probed with GAPDH) ± SEM.; *P<0.05, **P<0.01, asterisks indicate significant differences compared to the corresponding untreated control.
4.6 Effects of CPF, CPO and PSP on the expression levels of glial fibrillary acid protein in C6 cells

To examine possible effects of the OP treatments on the levels of cytoskeletal in C6 cells, the immunoreactivity of antibodies with the core astrocyte intermediate filament forming protein GFAP was quantified by Western blot analysis. Interestingly, the cross reactivity of C6 cell lysates with anti GFAP antibody was significantly reduced after exposure to 10 µM CPF, CPO and PSP (p<0.01) and after exposure to 3 and 10 µM of both CPO (p<0.01) and PSP (p<0.05) (Table 4.4). In addition, cross reactivity of cell lysates with anti GFAP antibody was unaffected by 1 and 3 µM CPF and 1 µM CPO and PSP (Figure 4.3 and Table 4.4).

![Western blot image](image)

Figure 4.3. Detection of Glial fibrillary acidic protein by Western blots of differentiating C6 cell lysates.

C6 cells were differentiated for 24 h in the absence (0) and presence of 1, 3, 10 µM of CPF, CPO, PSP. C6 cell lysates were separated by SDS-PAGE and Western blotting as explained in Chapter 2. Shown are typical blots, which were probed with antibodies against GFAP followed by HRP-conjugated secondary antibodies and developed by ECL reagents. Blots probed with anti-GAPDH were used as internal control.
Table 4.4. Densitometric analysis of Western blots probed with antibodies to glial fibrillary acid protein (GFAP) in C6 cells.

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Toxin (µM)</th>
<th>Densitometric peak (% control ± SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CPF</td>
</tr>
<tr>
<td>GFAP</td>
<td>1</td>
<td>103±1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>91±4</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>39±4**</td>
</tr>
</tbody>
</table>

Western blots were probed with antibodies that recognise GFAP. The antibody reactivity was then visualized with ECL reagents as described in Materials and Methods and densitometric peak areas were quantified using AIDA software. Data represent means of four separate experiments and values are expressed as a percentage of the corresponding non OP treated control (band densities for all proteins were normalised to blots probed with anti GAPDH) ± SEM.; *P<0.05, **P<0.01, asterisks indicate significant differences compared to the corresponding untreated control.
4.7 Determination of concentration-response effects of CPF, CPO and PSP on cytoskeletal and associated regulatory proteins using cell ELISA

The effects of multiple concentrations of CPF, CPO and PSP on cytoskeletal and associated regulatory proteins associated with their regulation in neurite outgrowth were further assessed in differentiating N2a and C6 cells using a cell ELISA technique, which could potentially facilitate rapid quantification. Cells were induced to differentiate in the absence (0) or presence of 1, 3 and 10 µM CPF, CPO and PSP as described in Materials and Methods. The differentiating cell monolayers were then fixed and changes in the binding levels of monoclonal antibodies against MAP-2, βIII tubulin, Tau, NFH, GAP-43 and GFAP were determined and quantified in controls and OP-treated cells following 24 h exposure, as described in section 2.2.14.

Figure 4.4 (panels A1 and A2) shows data from cell ELISA using a monoclonal antibody that recognises MAP-2. In figure 4.4 (panel A1), a dose-dependent decrease was seen in the level of MAP-2 binding in differentiating N2a cells treated with both CPF and CPO for 24 h. The decline in MAP-2 level was statistically significant at 3 µM of CPF and CPO (p<0.05) and (p<0.01) at 10 µM of CPF and CPO compared to that of non OP-treated controls. After 24 h treatment of differentiating N2a cells with all concentrations of PSP, there was a progressive reduction in the binding level of anti MAP-2 when compared to controls; however, the observed changes were not statistically significant (Figure 4.4, panel A2).

Quantification of anti-βIII tubulin cross reactivity by cell ELISA in differentiating N2a cells also showed a progressive reduction but this effect was not statistically significant for either CPF or CPO at the concentrations tested at 24 h (Figure 4.4, panel B1). However, in panel B2 of figure 4.4, a dose-dependent decrease was seen in the level of βIII tubulin binding in differentiating N2a cells treated with PSP for 24 h. The decline in βIII tubulin level was statistically significant at 10 µM concentration of PSP (p<0.05), p = 0.03 compared to that the non OP-treated control (Figure 4.4, panel B2).

However, treatment with all concentrations of CPF and 1 and 3 µM of CPO showed no significant decrease on the binding levels of Tau compared to the untreated controls (Figure 4.4, panel C1). By contrast, in figure 4.4 panel C2, a dose-dependent reduction was observed with statistically significant changes in the level of anti-tau binding at 10 µM concentration of PSP (p<0.01) compared to the non PSP-treated controls.
Figure 4.4. Effects of CPF, CPO and PSP on microtubule proteins in differentiating N2a cells as determined by cell ELISA.

N2a cells were induced to differentiate for 24 h either without (0) or with 1, 3 and 10 µM concentrations of CPF, CPO or PSP for 24 h. Changes in the binding levels of antibodies that recognise MAP-2 (panel A), βIII-tubulin (panel B) and Tau (in panel C) were quantified in controls and OP-treated cells using cell ELISA. Data are presented as a percentage of the non OP-treated control ± SEM (from 4 independent experiments). Data were analysed using one-way ANOVA, and Sidak post hoc test. The CPF effects are presented as red dashed lines; the CPO effects are presented as blue solid lines and PSP effects are presented as green solid lines with square symbols. Asterisks indicate changes that are statistically different from the non OP-treated controls (*p < 0.05) or (**)p < 0.01). In cases where SEM bars are not apparent, the error is smaller than the symbol size.
Figure 4.5 (panels A1 and A2) shows dose-dependent decreases in the binding levels of anti-NFH with cell monolayers following the exposure to the three OPs used in the current study. The reduction was statically significant (p<0.01), p=0.001 after exposure to 10 µM CPF (Figure 4.5, panel A1). After PSP exposure (Figure 4.5, panel A2), treatment of differentiating N2a cells with 1, 3 and 10 µM showed decreases in the binding levels of anti NFH but the changes were not statically significant.

However, progressive decreases in the binding levels of anti GAP-43 with lysates of differentiating N2a cells following exposure to CPF, CPO and PSP can be observed in panels B1 and B2 of figure 4.5. Interestingly, in the case of CPF the reduction was statistically significant at 1 and 3 µM (p < 0.05), p= 0.02, and high significant (p < 0.01) at 10 µM. However, the reductions in anti GAP-43 binding observed following CPO and PSP exposure were not statistically significant compared to non OP-treated controls at 24 h (Figure 4.5, panel B2).
Figure 4.5. Effects of CPF, CPO and PSP on neurofilament and growth associated proteins in differentiating N2a cells as determined by cell ELISA.

N2a cells were induced to differentiate for 24 h either without (0) or with 1, 3 and 10 μM concentrations of CPF, CPO or PSP. Changes in the binding levels of antibodies that recognise NFH (SMI33) (panel A) and GAP-43 (panel B) were quantified in controls and OP-treated cells using cell ELISA. Data are presented as a percentage of the non OP-treated control ± SEM (from four separate experiments). Data were analysed using one-way ANOVA, and Sidak post hoc test. The CPF effects are presented as red dashed lines; the CPO effects are presented as green solid lines; and PSP effects are presented as green solid lines with squares. Asterisks indicate changes that are statistically different from the non OP-treated controls (*p < 0.05) or (**p < 0.01). In cases where SEM bars are not apparent the error is smaller than the symbol size.
Results

Since some dose-dependent changes were detected in the levels of binding cytoskeleton proteins in N2a cells, it was of interest to investigate the potential effects of the exposure to CPF, CPO or PSP on GFAP in the C6 glioma cell line used in the current study. Figure 4.6 (panel A) demonstrates the dose-response effects of both CPF and CPO on the levels of anti GFAP which caused similar concentration-dependent decreases, which was statistically significant at 1 µM (p < 0.05), 3 µM (p<0.05) and 10 µM (p < 0.01) compared to non OP-treated controls. By contrast, compared to the control, no significant effects were detected in anti-GFAP cross reactivity with monolayers of differentiating C6 cells exposed to all 3 concentrations of PSP at 24 h (Figure 4.6, panel B).

Figure 4.6. Effects of CPF, CPO and PSP on glial fibrillary acidic protein in differentiating N2a cells as determined by cell ELISA.

C6 cells were induced to differentiate for 24 h with incubation without (0) or with 1, 3 and 10 µM concentrations of CPF, CPO (panel A) or PSP (panel B) for 24 h. Changes in the binding levels of antibody that recognise GFAP quantified in controls and OP-treated cells using cell ELISA. Data are presented as a percentage of the non OP-treated control ± SEM (from four separate experiments). Data were analysed in one-way ANOVA, and Sidak post hoc test. The CPF effects are presented as red dashed lines; the CPO effects are presented as blue solid lines; and PSP effects are presented as green solid lines with squares. Asterisks indicate changes that are statistically different from the non OP-treated controls (*p < 0.05) or (**p < 0.01). In cases where SEM bars are not apparent, the error is smaller than the symbol size.
4.8 Discussion

Based on the results of the previous chapter, which showed exposure to sub-cytotoxic concentrations of CPF, CPO and PSP caused morphological changes in N2a and C6 cells, the hypothesis that these changes may be due to alteration of cytoskeletal proteins was investigated in this chapter. Studies have shown that proteins, such as those of NFs and MTs, are key endogenous factors that control normal axonal and neurite outgrowth, neuro-stability and neurodevelopment. This investigation was supported by the evidence that disruption of the axonal cytoskeleton by OPs is associated with changes in neuronal cell morphology (Sachana et al., 2001).

The aim of the work presented in this chapter was to examine the molecular changes underlining the morphological effects of CPF, CPO and PSP by analysing the expression levels of neural cell differentiation associated cytoskeletal and associated regulatory proteins, in differentiating mouse N2a neuroblastoma cells and rat C6 glioma cells. To achieve these aims, N2a and C6 cell lines were differentiated for 24 h with and without 1, 3 and 10 µM of CPF, CPO and PSP (co-differentiated), and changes in the key proteins MAP 2, Tau, βIII tubulin, GAP-43, NFH and GFAP, were analysed by quantitative Western blotting and ELISA approaches.

MAP family members, such as MAP 2 and Tau, are important in central nervous system development; their roles include maintenance of the stability of growth cones, and the modulation of axonal and dendritic MT dynamics (Schoenfeld and Obar, 1994). They are involved in the stimulation of MT assembly, the cross-linking of MTs to other cytoskeletal elements, and interactions between IFs and actin filaments (Leterrier et al., 1982; Nixon et al., 1990; Cleveland, 1993). β-III tubulin plays an important role during nervous system development; it is one of earliest cytoskeletal proteins expressed in neurons and it has an essential role in neurite growth and cell differentiation (Easter et al., 1993).

GAP-43, which is mainly found in elongating axons and growth cones in neurons, has been shown to play an important role in neurite outgrowth regulation (Skene, 1989; Perkner et al., 1996; Das et al., 2004). It regulates many processes during neurodevelopment, including axon development, growth cone formation, and synapse plasticity (Benowitz and Routtenberg, 1997). NFH is usually found in mature neurons and axons, where they provide support during axonal extension, and regulate axonal development and growth, by forming cross bridges between extensions of the NF tail.
domains and other cytoplasmic organelles (Hirokawa et al., 1984; Lee and Cleveland, 1994). GFAP is found in mature astrocytes, and non-myelinating Schwann cells in the PNS, and glial cells of the digestive system, in which it provides structural support (Eng et al., 2000; Yang and Wang, 2015). Increased levels of GFAP can be detected during glial development and differentiation (Bramanti et al., 2010). The Western blot results for GAPDH showed there were no significant changes in expression following exposure of both cell types to all the concentrations of the different OPs tested at 24 h, which suggests this was a suitable internal control to use for normalisation of the band intensities of the other proteins under investigation.

The investigation of the effect of the OPs on the MT proteins MAP 2, βIII-tubulin and Tau in N2a cells showed the different OPs did influence protein expression, with a reduction in expression seen for all three proteins with at least one OP treatment, but there were no differences seen for 1 µM of any of the OPs. For MAP 2, there was a reduction in expression after treatment with 3 µM CPF (p < 0.05) and 10 µM CPF, CPO and PSP (p < 0.05), and no significant differences for 3 µM CPO and PSP. For βIII tubulin, there was a significant decrease in expression after treatment with 10 µM CPF (p < 0.05), CPO (p < 0.05) and PSP (p < 0.001), but no significant differences were produced with 3 µM of any of the OPs. The results for Tau show there was a significant reduction in expression after treatment with 3 and 10 µM concentrations of CPF (p < 0.01) and PSP (p < 0.05), whereas CPO produced no significant differences, suggesting that there were differences in the cytoskeletal effects of the parent compound and its metabolite.

These results fit with the in vivo studies of Abou-Donia (1993), that showed OP exposure in hens disrupted the neural cytoskeleton and increased phosphorylation of cytoskeletal proteins including MAPs and tubulin (Abou-Donia, 1993). Further evidence to support these results come from structural and immunoreactivity studies in cultured rat brain slices; the results showed exposure to doses of CPO between 0.1 to 10 µM after 24 h induced alterations in MAPs and MT ultra-structure, with a significant reduction in MAP 2 levels in each brain region investigated at concentrations as low as 0.1 µM (Prendergast et al., 2007). Similar results were also found in another study in that used single subcutaneous dose of chlorpyrifos (250 mg/kg) in Wistar rats for 15 days and detected a significant reduction of MAP 2 in the pre-frontal cortex (Ruiz-Muñoz et al., 2011).

The results of the current investigation show some differences to those found by Sachana et al. (2008) who used Western Blot analysis to study the effects of sub lethal
concentrations (1–10 µM) of CPF and CPO on C6 cells. They found there was significant
concentration-dependent reduction in antibody reactivity to α-tubulin by CPO after
treatment for 24 h, which is similar to the response of βIII-tubulin this study. However, in
the Sachana et al. (2008) study there were no significant differences in α-tubulin
expression after CPF treatment, and no significant differences in MAP2 expression seen
for either treatment, which is different to the results of this study and may be due to the
different cell types used (Sachana et al., 2008). The effect of all 3 OPs on N2a cells in the
current study is, however, similar to the results of Sachana et al. (2014) in a study that used
differentiating N2a cells exposed to 10 µM DZO for 24 h, which decreased the expression
of βIII-tubulin in a similar way to this investigation, but their study showed DZO had no
effect on Tau, which is different to our results for CPF and CPO (Sachana et al., 2014).
This suggests that some cytoskeletal effects of OPs may be cell type specific while others
are compound specific.

To examine possible effects of the OP treatments on the levels of cytoskeletal axonal
intermediate filament and growth associated proteins in differentiating N2a cells, the
effects of 24 h exposure of CPF, CPO and PSP on NFH and GAP-43 were determined by
Western blot analysis. As with results for the MT proteins, there were no significant
differences seen after treatment with 1 µM of any of the OPs, suggesting this dose was too
low to create a significant response at this time point. The results for NFH showed
a significant decrease in expression after treatment with 3 µM CPF, 10 µM CPO and 3, 10
µM PSP. The results for GAP-43 were similar to NFH, in that there were significant
decreases in expression after exposure to 3 µM CPF (p < 0.05) and 10 µM CPF, CPO and
PSP (p < 0.01).

The results from this study agree with the results of other studies of the effects of CPF and
CPO in N2a cells. Sachana et al. (2001) showed significantly reduced levels of NFH
following 8 h exposure to 3 µM CPF. Flaskos et al. (2011) investigated the effect of 1-10
µM CPO for 24 h on N2a cells when added at the point of induction of differentiation and
found reduced expression of both NFH and GAP-43, Sindi et al. (2016) found that
exposure of pre-differentiated N2a cells to 3 µM CPF and CPO caused a transient
reduction in GAP-43 expression after 4 h treatment, and a significant reduction in NFH
expression after 8 h exposure, whereas Hargreaves et al. (2006) found treatment of
differentiating N2a cells with 2.5 µM PSP for 24 h resulted in a significant reduction in
NFH protein expression. Thus, taken together with previous data, the results in this chapter
suggest that reduced GAP-43 and NFH protein levels are effective markers of impaired neurite outgrowth following OP exposure.

The effects of CPF, CPO and PSP on cytoskeletal proteins in differentiating C6 cells were assessed by measuring changes in expression of GFAP by Western blot analysis. As with the other proteins measured, 1 µM of all the OPs produced no significant differences compared to the non OP-treated control. There was a significant reduction in GFAP expression after exposure to 10 µM CPF (p < 0.05), 3 and 10 µM of both CPO and PSP (p < 0.05). These results are similar to the in vivo studies in developing rats Garcia et al. (2002) which found that 4 days of subcutaneous CPF administration resulted in decreased in GFAP levels. These results are also supported by a study of the effects of 1-10 µM DZO for 24 h in differentiating rat C6 glioma cells, which reported a decrease in GFAP expression after treatment (Sidiropoulou et al., 2009b). There are some similarities of these results to those found by Wang and Zhao (2017), who used purified astrocytes and Western blot analysis to investigate the effect of 25, 50, and 100 µM CPF combined with 1 µg/mL LPS on GFAP expression.

Further assessment of the effect of the selected OPs on the cytoskeletal and associated regulatory proteins MAP-2, βIII tubulin, Tau, NFH, GAP-43 and GFAP in differentiating N2a and C6 cells was carried out using a cell ELISA technique. Cells were induced to differentiate for 24 h in the absence (0) or presence of 1, 3 and 10 µM CPF, CPO and PSP and an ELISA was carried out on the fixed cell monolayer to detect changes in protein expression.

By comparing the treated cells to the relevant controls for the MT proteins, the results show that, as with the Western blot results, there were no differences seen for 1 µM of any of the OPs, and for most of the treatments there were also no significant differences observed for 3 µM of the OPs. For MAP 2 there was a significant decrease in expression detected by the ELISA after treatment with 10 µM CPF (p < 0.05), and 3 and 10 µM CPO (p < 0.05), when compared to the non OP-treated controls. For anti-βIII tubulin and Tau, the result showed there was only a statistically significant decrease in protein levels after treatment with 10 µM PSP (p < 0.05, and p < 0.01, respectively) when compared to the non PSP-treated control. Thus, although these results show a similar pattern of decreased expression after OP treatment as observed by Western blot analysis, the ELISA only detects significant changes at the highest concentrations investigated, suggesting it is less sensitive that the Western blot.
By comparing the treated cells to the relevant controls for the NF and growth associated proteins, the results show a similar pattern to the ELISA results for the MT proteins. NFH protein levels were significantly reduced after treatment with 10 µM CPF (p < 0.01), when compared to the relevant control, and GAP-43 showed a statistically significant reduction in expression after treatment with 1, 3, and 10 µM CPF (p < 0.05, p < 0.05, and p < 0.01, respectively), when compared to the non OP-treated controls. This suggest the ELISA for GAP-43 is slightly more sensitive to changes in protein levels that the other proteins tested, but still not as sensitive as the Western blot analysis.

The expression levels of GFAP in C6 cells were also investigated by ELISA, and the results show that PSP treatment caused no significant differences in protein levels, whereas all three concentrations of CPF and CPO produced a statistically significant reduction in protein expression (1 µM p < 0.05, 3 µM p < 0.05, and 10 µM p < 0.01, for both) when compared to the untreated controls. Again, these results follow a similar pattern to those of the Western blot analysis as they all show decreases in protein expression after OP treatment, but the actual magnitude of the effect, and the OPs that cause it, show some differences between the detection methods. It may also reflect the fact that not all antibodies are equally suitable for ELISA and Western blot analysis.

Overall, the results of this investigation have shown that the OPs selected do influence the expression levels of the different cytoskeletal and regulatory proteins investigated, suggesting they may be important in the neurotoxic effects produced by OPs. Based on these results the aim of the next chapter is to investigate the genotoxic effects of these OPs on the expression level of selected cytoskeletal genes in differentiating N2a neuroblastoma and C6 cell lines.
Chapter 5
Genotoxicity of Organophosphate Compounds Chlorpyrifos, Chlorpyrifos Oxon and Phenyl Saligenin Phosphate on Differentiating Mammalian Cell Lines
5.1 Introduction

CPF, CPO and PSP are known to induce neurological effects, as discussed in Chapter 1. While the neurodegenerative effect of these OPs on cell morphology and the expression of related proteins is widely established, their effect at the gene level remains to be fully elucidated. There have been relatively few studies performed to evaluate the genotoxic effect of CPF in models of neural cell differentiation including neural differentiation of mouse adipose tissue-derived stem cells (ADSCs) (Zarei et al., 2016) and PC12 cells (Slotkin and Seidler, 2010). Despite the poor understanding of this action, genotoxic potential is considered a primary risk factor leading to long-term health effects. The concept of OP exposure causing malignant tumours as well as their effect on reproductive health has been accepted (Bolognesi, 2003).

Changes in genetic material, particularly DNA damage, were proposed as a useful measure of genotoxic properties of OPs (Kornuta et al., 1996). As such, recent studies have aimed to understand the potential genotoxic effect of CPF (Sandhu et al., 2013; Ismail et al., 2014; Muller et al., 2014; Wang et al., 2014). These in vivo studies involved exposure of rats or fish to different concentrations of CPF followed by analysis of DNA damage using the Comet assay. Ismail et al. (2014) determined the acute LC$_{50}$ value for *L. rohita* fish exposed to various concentrations of CPF (73.8 – 221.4 µg/L for 96 h). Analysis of blood and gill samples showed that the amount of DNA damage was concentration and time dependent. Wang et al. (2014), who exposed zebrafish to CPF (0.01-1 mg/L) for 5 - 25 days, reported that the DNA damage had a clear dose-response relationship. Muller et al. (2014) gave Sprague-Dawley adult rats daily subcutaneous injections of CPF to model typical exposures of agricultural workers; a daily CPF dose of 10 mg/kg body weight was shown to induce DNA damage in blood samples. Using Wistar rats, Sandhu et al. (2013) administered oral CPF doses of 3 and 12 mg/kg. After 7 and 14 days, blood lymphocytes were harvested. In this case, CPF-induced DNA damage was observed at a concentration of 12 mg/kg. Overall, the studies described above confirm that even at sub lethal concentrations of CPF, DNA damage was occurring. However, the mechanism by which CPF induced cytotoxicity remains poorly understood. The observation of CPF binding to DNA and the outcome of DNA adducts has led to an increase in social concern about the CPF genotoxic risk in humans (Li et al., 2015).

A variety of biological responses can be triggered by genotoxic stress, including the transcriptional activation of genes regulating DNA repair (Dickinson et al., 2004).
Genotoxicity may also affect key structural genes, which is consistent with the morphological changes observed by the causative agent. Even though there are studies targeting DNA damage as a cytotoxicity marker, currently there are few studies examining this effect to further characterise the affected genes. As such, the use of real time PCR to analyse the effect of OPs on gene expression in mammalian neural cell lines provides a cutting edge approach to complement our understanding of the mechanism by which these compounds exhibit their toxicity. For example, as CPF, CPO and PSP cause morphological changes, understanding the gene expression patterns of related genes would open a new window towards exposing a new field in this area.

Another factor that could be involved in the genotoxicity of OPs is epigenetic changes. While there are numerous processes that are involved in epigenetic control of gene expression, histone acetylation is the most understood modification. The modification occurs at the histone epsilon amino group in specific lysine residues where an acetyl group is added. This reaction is catalysed by a class of enzymes that are known as histone acetyltransferases (HATs). The removal of the acetyl group is the reverse reaction and it is carried out by histone deacetylases (HDACs) (Altman-Price and Mevarech, 2009). There is a recognised correlation between transcription and histone acetylation levels, and it has been shown that modulating histone acetylation plays a pivotal role in regulating gene expression (Witt et al., 2009). As such, histone deacetylation it is considered as a tag for epigenetic repression. HDACs regulate many processes including DNA damage response and apoptosis (Urnov et al., 2001). Aberrant HDACs are implicated in many diseases including cancer; consequently, it is important to analyse their activity in disease states, particularly where gene expression studies are targeted (Peng et al., 2015).

The fact that HDACs were highlighted as important in a variety of diseases that are caused by mutagenesis, together with the recognised genotoxic effect of CPF, CPO and PSP, raises the question as to whether these OPs have epigenetic effects. And, if they do, does it influence the genes that encode proteins associated with the defects observed at the morphological and developmental levels in cellular models of OP toxicity? Studying the effect of HDAC activity in neuronal and glial cell lines in response to exposure to the OPs would be a novel approach in the field of OP neurotoxicity.
5.2 Aims

The aim of the work presented in this chapter was to study the effect of CPF, CPO, and PSP exposure on:

1) The expression level of selected cytoskeletal genes in differentiating N2a neuroblastoma and C6 cell lines. The targeted genes are involved in maintaining the cytoskeletal integrity of the cells. These include:
 • $\textit{GAP43}$; Growth associated protein 43
 • $\textit{MAP2}$; Microtubule-associated protein 2
 • \textit{MAPT}; Microtubule-associated protein Tau
 • \textit{NEFH}; Neurofilament heavy chain
 • $\textit{TUBB3}$; Tubulin β-III isoform
 • \textit{GFAP}; Glial fibrillary acidic protein

2) HDAC activity in nuclear extracts of control and OP-treated cells and relate it to the changes in the expression levels of the genes of interest.
5.3 Results

5.3.1 Primer validation

The primers were designed using the Primer3 program and their specificities were tested prior to running the experiments. By means of conventional PCR, primers were used to amplify the targeted amplicons in cDNA which was reverse transcribed from the total RNA extracted from mouse and rat brain tissues (positive controls), as well as from mitotic and differentiated N2a and C6 cell lysates. The PCR conditions were initially optimised using RNA extracted from brain tissues, where the target genes were known to be expressed. Figure 5.1 and figure 5.3 illustrate that the primers were specific, as their cDNA amplification resulted in a single defined band at the expected size and showed no amplification product in the negative template control. To achieve that result, the annealing temperature was selected according to the properties of the primers’ melting temperature and, where needed, a gradient PCR in the range of ±5 °C of the mean (forward and reverse) melting temperature was used. The list of primers along with their corresponding annealing temperature and product size is shown in Table 5.1. The bands with N2a or C6 in Figure 5.1 and Figure 5.3 were excised and the amplified products were eluted and sequenced. Neither NEFM nor NEFL showed amplification in N2a cell extracts (Figure 5.2) which fits with the results of Hornburg et al. (2014). However, both sets of primers showed a clear band with the positive control. The sequences were blasted against the genome of *Mus musculus* or *Rattus norvegicus*, respectively. All sequenced PCR products were in a 100% alignment with their corresponding gene of interest (Appendix 8.3-8.8) accession numbers are listed in table.5.1.
Table 5.1. Designed primers targeting N2a and C6 cell lines neuronal markers.

<table>
<thead>
<tr>
<th>Cells</th>
<th>Genes</th>
<th>Accession Number</th>
<th>Primer Sequence (5’ to 3’)</th>
<th>Annealing T (°C)</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>63</td>
<td>100</td>
</tr>
<tr>
<td>N2a</td>
<td>MAP2</td>
<td>1. Isoform1 NM_001039934.1</td>
<td>AGATAGACTTAAGCCATGTGACATCCAAAT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GTTTTACACTCTCAATTTTCACACGTCCAC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Isoform2 NM_008632.2</td>
<td>CTATTCAGGCCCGACAACCTTTATCTTTGGTCA</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CAATTTCACACTCTTTCCGACACATCTTAG</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Isoform3 NM_001310634.1</td>
<td>CATTTGTGAGGTCGCCGAGATGTGT</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TUBB3 NM_023279.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>138</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NEFH NM_010904.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NEFM NM_008691.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NEFL NM_010910.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>GAP43 NM_008083.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>60.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>122</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C6 GFAP NM_017009.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Forward Reverse</td>
<td>123</td>
<td></td>
</tr>
</tbody>
</table>

MAP2; Microtubule-associated protein 2, TUBB3; Tubulin beta-3 chain, MAPT; Microtubule-associated protein tau, NEFH; Neurofilament heavy chain, GAP43; Growth associated protein 43, GFAP; Glial fibrillary acidic protein.
Figure 5.1. Analysis of genes of interest in mitotic and differentiating N2a cells by PCR.

A representation of PCR products amplified using A- Microtubule associated protein 2 (MAP2), B- β III tubulin (TUBB3), C- Microtubule associated protein tau (MAPT) D- Neurofilament Heavy chain (NEFH), and E- Growth associated protein-43 (GAP43) primers. Bands were visualised after electrophoretic separation in a 1.5% agarose gel stained with SyberSafe. Mouse brain RNA extracts were used as a positive control (C+). RNA was obtained from mitotic (M) and differentiating (D) N2a cells and reverse transcribed into cDNA and analysed by PCR. Non-template controls were used as negative controls (C-). Amplified products are presented as a single defined band at size of approximately 100 base-pairs (bp).
Figure 5.2. Analysis of other neurofilament genes of interest in mitotic and differentiating N2a cells by PCR.

A representation of PCR products amplified using A- Neurofilament medium chain (NEFM), B- Neurofilament light chain (NEFL) primers. Bands were visualised after electrophoretic separation in a 1.5% agarose gel stained with SyberSafe. Mouse brain RNA extracts were used as a positive control (C+). RNA was obtained from mitotic (M) and differentiating (D) N2a cells and reverse transcribed into cDNA and analysed by PCR. Non-template controls were used as negative controls (C-). Amplified products are presented as a single defined band at size of approximately 100 base-pairs (bp).

Figure 5.3. GFAP expression in mitotic and differentiating C6 cells.

Shown is a representation of PCR products amplified using primers for the gene encoding glial fibrillary acidic protein (GFAP) visualised on a 1.5% agarose gel stained with SyberSafe. Rat brain RNA extracts were used as a positive control (C+). RNA was obtained from mitotic (M) and differentiating (D) C6 cells and reverse transcribed into cDNA and analysed by PCR. Non-template reactions were used as negative controls (C-). Amplified products are presented as a single defined band at size of 100 base-pairs (bp).

5.3.2 Housekeeping genes

According to the literature, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and ribosomal protein S18 (Rps18) are frequently used as reference genes (Al-Bader and Al-Sarraf, 2005; Stephens et al., 2011) since their expression levels are reported to be relatively stable when exposed to toxic compounds. As such, these two were selected as reference genes for the gene expression analysis in the current study. To assure their levels did not change across the studied groups, their expression was first analysed. Treatment
with CPF, CPO (Figure 5.4, panel A) and PSP (Figure 5.4, panel B) did not alter the expression of either GAPDH or Rps18 in the N2a cell line (Figure 5.4, panel C and D).

Figure 5.4. Ct values obtained for GAPDH and Rps18 expression (qPCR) in differentiating N2a cells after different OP treatments.

Shown is quantitative RT-qPCR analysis of the expression levels of GAPDH in N2a cells induced to differentiate for 24 h either in the absence (0) or presence of variable concentrations of CPF or CPO (panel A) and PSP (panel B), as well as the expression of Rps18 N2a cell lysate treated with CPF or CPO (panel C) and PSP (panel D). Statistical analysis was by one-way ANOVA with Sidak post-hoc test comparing treatments to the control (0). Data are presented as mean ± SEM for four independent experiments.

Their expression levels were also unaffected in the differentiating C6 cells across all the used concentrations of CPF, CPO (Fig.5.5, panel A and C) and PSP (Fig.5.5, panel B and C). As both genes exhibited similar patterns with no difference in their expression across all studied groups in both cell lines, they were both used independently to normalise the expression of targeted genes.
Chapter 5

Figure 5.5. Ct values obtained for GAPDH and Rps18 expression in C6 cell line.

The expression level of GAPDH in differentiated C6 cell lysate for 24 h then exposed to 0, 1, 3 or 10 µM of CPF or CPO (panel A) and PSP (panel B) as well as the expression of Rps18 in differentiated C6 cell lysate for 24 hr then exposed to 0, 1, 3 or 10 µM of CPF or CPO (panel C) and PSP (panel D). Analysis was by one-way ANOVA with Sidak post-hoc test comparing treatments to the (0) control. Data is presented as mean ± SEM for four independent experiments.

5.3.3 Effect of CPF, CPO and PSP on neural markers in mammalian cell lines.

The mRNA expression level of neuronal marker genes including MAP2, TUBB3, MAPT, NEFH and GAP43 was measured in differentiating N2a cells that were exposed to 1, 3 and 10 µM concentrations of CPF, CPO or PSP. Similarly, the mRNA expression of GFAP was measured in differentiating C6 cells after exposure to 1, 3 and 10 µM concentrations of CPF, CPO or PSP. All of these results are discussed in the next subsections.

5.3.3.1 Microtubule-associated protein 2 (MAP2).

The MAP2 gene encodes the MAP2 protein. It is involved in microtubule assembly, which is considered as an essential step in neurite outgrowth, by promoting intracellular microtubule bundling and elaboration (Harada et al., 2002). Due to its importance in neuritogenesis, the effect of the organophosphates on MAP2 at the gene level was studied.
After the expression level of MAP2 was normalised to the expression of GAPDH, it became apparent that MAP2 expression was significantly reduced in N2a cells when exposed to 3 (p = 0.017) and 10 µM (p = 0.014) concentrations of CPF (Figure 5.6, panel A1). CPO and PSP had similar effects but the reduction was only significant at a concentration of 10 µM (Figure 5.6, panel A1 and A2). The expression of MAP2 was then normalised to the expression of Rps18 to further characterise it and, in this case, the statistical analysis corroborated that CPF induced a significant effect at both 3 (p = 0.02) and 10 µM (p = 0.018) (Figure 5.6, panel B1). MAP2 expression was also significantly lower than its corresponding control when cells were exposed to 3 µM as well as 10 µM CPO and PSP when using Rps18 (Figure 5.6, panel B1 and B2).

![Figure 5.6](image_url)

Figure 5.6. Relative expression of MAP-2 mRNA in differentiating N2a cells after CPF, CPO and PSP exposure as determined by quantitative PCR.

N2a cells were induced to differentiate for 24 h incubation without (0) or with 1, 3 and 10 µM concentrations of CPF, CPO or PSP. Data were analysed using one-way ANOVA with Sidak post-hoc test comparing treatments to the (0) control. The normalization of data to the first housekeeping gene GAPDH is shown in panel A, whereas the normalisation to the second housekeeping gene Rps18 is shown in panel B. Expression values are relative to the non-OP-treated control ± SEM. Data presented are an average of four independent experiments, and all samples were amplified in triplicates. Asterisks indicate changes that are statistically different from the non-OP-treated controls (*p < 0.05) or (**p < 0.01).
5.3.3.2 Tubulin βIII chain (TUBB3).

The TUBB3 gene encodes the βIII isotype of tubulin, which is abundant in neurons and involved in the development and maturation of neuronal cells the nervous system. While the mechanism by which it controls the neuronal development is not known, there is evidence showing that any alteration in its expression results in serious consequences to the cells’ viability leading to diverse neurological syndromes (De Gendt et al., 2011). Analysing its RNA expression level could help to form a better understanding of the βIII tubulin protein changes described in chapter three.

The mRNA level of TUBB3 relative to GAPDH was significantly reduced upon N2a cell exposure to 10 µM CPF (p= 0.0237) and CPO (p= 0.0355) (Figure 5.7, panel A1). The pattern was similar when the expression was calculated relative to Rsp18 with CPF, CPO having a significant effect apparent at an even lower concentration of 3 µM (p=0.051) and 10 µM (p= 0.003) (Figure 5.7, panel B1). PSP exposure also caused a significant drop in TUBB3 RNA expression level normalised with either GAPDH (Figure 5.7, panel A2) or Rps18 (Figure 5.7, panel B2).
Figure 5.7. Relative expression of TUBB3 mRNA in differentiating N2a cells after CPF, CPO and PSP exposure as determined by quantitative PCR.

N2a cells were induced to differentiate for 24 h incubation without (0) or with 1, 3 and 10 µM concentrations of CPF, CPO or PSP. Data were analysed using one-way ANOVA with Sidak post-hoc test comparing treatments to the (0) control. The normalization of data to the first housekeeping gene GAPDH is shown in panel A, whereas the normalisation to the second housekeeping gene Rps18 is shown in panel B. Expression values are relative to the non-OP-treated control ± SEM. Data presented are an average of four independent experiments, and all samples were amplified in triplicates. Asterisks indicate changes that are statistically different from the non-OP-treated controls (*p < 0.05) or (**p < 0.01).

5.3.3.3 Microtubule-Associated Protein Tau (MAPT)

The main function of protein Tau, which is expressed by the MAPT gene, is to modulate the stability of axonal microtubules by Tau phosphorylation at Ser262 and Ser356. Furthermore, Tau plays an important role in maintaining the cytoskeletal structure of neurons. Abnormalities in its protein expression levels have been linked to neurodegenerative disease (Mietelska-Porowska et al., 2014). Therefore, studying its RNA expression was of some importance as it would reflect the integrity of the neuronal cells and could help to explain the Tau protein changes observed in chapter 3.
CPF and CPO did not alter the RNA expression level of MAPT normalised with either GAPDH (Figure 5.8, panel A1) or Rps18 (Figure 5.8, panel B1). However, PSP at a concentration of 3 and 10 µM induced a significant drop in its RNA expression independently of the housekeeping gene used for the normalisation (Figure 5.8, panel A2 and panel B2).

Figure 5.8. Relative expression of MAPT (Tau) mRNA in differentiating N2a cells after CPF, CPO and PSP exposure as determined by quantitative PCR.

N2a cells were induced to differentiate for 24 h incubation without (0) or with 1, 3 and 10 µM concentrations of CPF, CPO or PSP. Data were analysed using one-way ANOVA with Sidak post-hoc test comparing treatments to the (0) control. The normalization of data to the first housekeeping gene GAPDH is shown in panel A, whereas the normalisation to the second housekeeping gene Rps18 is shown in panel B. Expression values are relative to the non-OP-treated control ± SEM. Data presented are an average of four independent experiments, and all samples were amplified in triplicates. Asterisks indicate changes that are statistically different from the non-OP-treated controls (**p < 0.01).

5.3.3.4 Neurofilament Heavy Chain (NEFH)

Studies on NEFH-null mice have showed that NF-H, encoded by the NEFH gene, plays an important role in determining the physical dimensions of axons and its role extends to maintaining a normal axonal conduction velocity (Yuan et al., 2012). Understanding how
it behaves at the gene level when exposed to the OPs would help to further explain the changes observed in NFH protein levels in neural cells that underlie alterations in morphology following exposure to sub-lethal concentrations of OPs.

When cells were exposed to 3 and 10 µM CPO, the relative RNA expression of *NEFH* was significantly decreased. These data were produced by normalizing either to *GAPDH* (Figure 5.9, panel A1) or *Rps18* (Figure 5.9, panel B1) and there was very little difference between the two sets. By contrast, CPF (Figure 5.9, panel A1) and PSP (Figure 5.9, panel A2 and B2) did not induce any significant effects on *NEFH* expression.

Figure 5.9. Relative expression of *NEFH* mRNA in differentiating N2a cells after CPF, CPO and PSP exposure as determined by quantitative PCR.

N2a cells were induced to differentiate for 24 h incubation without (0) or with 1, 3 and 10 µM concentrations of CPF, CPO or PSP. Data were analysed using one-way ANOVA with Sidak post-hoc test comparing treatments to the (0) control. The normalization of data to the first housekeeping gene *GAPDH* is shown in panel A, whereas the normalization to the second housekeeping gene *Rps18* is shown in panel B. Expression values are relative to the non-OP-treated control ± SEM. Data presented are an average of four independent experiments, and all samples were amplified in triplicates. Asterisks indicate changes that are statistically different from the non-OP-treated controls (*p < 0.05) or (**p < 0.01).
5.3.3.5 Growth Associated Protein 43 (GAP43).

Like NEFH, GAP43 has a role in the maintenance of axons particularly during CNS development. Null mutation of GAP43 is lethal and causes death within days after birth as a consequent of defects in axon path finding (Routtenberg et al., 2000). GAP43 plays an important role in differentiating neurons as it is a component of the centrosome (Shen et al., 2008). Its central role makes understanding the effect of the organophosphates on its expression level crucial.

The same trends were observed in the mRNA expression level of GAP43 when normalised relative to both GAPDH and Rps18. Exposure to a concentration of 10 µM of CPF caused a significant reduction in its relative expression (Figure 5.10, panel A1 and B1). A reduction was observed at even lower concentrations of PSP: there was a significant reduction in its relative expression when cells were exposed to 3 µM as well as at 10 µM (Figure 5.10, panel A2 and B2). CPO did not exhibit any significant effects on GAP43 mRNA expression level compared with the non OP-treated control (Figure 5.10, panel A1 and B1).
Figure 5.10. Relative expression of GAP43 mRNA in differentiating N2a cells after CPF, CPO and PSP exposure as determined by quantitative PCR.

N2a cells were induced to differentiate for 24 h incubation without (0) or with 1, 3 and 10 µM concentrations of CPF, CPO or PSP. Data were analysed using one-way ANOVA with Sidak post-hoc test comparing treatments to the (0) control. The normalization of data to the first housekeeping gene GAPDH is shown in panel A, whereas the normalisation to the second housekeeping gene Rps18 is shown in panel B. Expression values are relative to the non-OP-treated control ± SEM. Data presented are an average of four independent experiments, and all samples were amplified in triplicates. Asterisks indicate changes that are statistically different from the non-OP-treated controls (*p < 0.05).

5.3.4 Effect of CPF, CPO and PSP on GFAP expression in differentiating C6 cells.

As mentioned previously in section (1.11.4), GFAP plays an important role in providing structural support in astrocytes. It also maintains important processes in the central nervous system including cell communication and blood brain barrier function. As such, studying the gene expression pattern of GFAP was of particular interest in order to determine whether this could be involved in the GFAP protein changes detected in the Western blots shown in chapter 3.

Normalizing to GAPDH or to Rps18 produced comparable results. CPF, CPO as well as PSP treatments all caused switching off the gene as high significant decrease in GFAP
RNA expression level that ranged between 4 to 10 fold upon cell exposure to levels as low as 1μM and as high as 10 µM (Figure 5.11, panelA1-B2).

Figure 5.11. Relative expression of GFAP mRNA in differentiating C6 cells after CPF, CPO and PSP exposure as determined by quantitative PCR.

C6 cells were induced to differentiate for 24 h incubation without (0) or with 1, 3 and 10 µM concentrations of CPF, CPO or PSP. Data were analysed using one-way ANOVA with Sidak post-hoc test comparing treatments to the (0) control. The normalization of data to the first housekeeping gene GAPDH is shown in panel A, whereas the normalisation to the second housekeeping gene Rps18 is shown in panel B. Expression values are relative to the non-OP-treated control ± SEM. Data presented are an average of four independent experiments, and all samples were amplified in triplicates. Asterisks indicate changes that are statistically different from the non-OP-treated controls (*p < 0.05) or (**p < 0.001).
Table 5.2. Summary of OP effects on neural marker gene expression relative to *GAPDH*

<table>
<thead>
<tr>
<th>Cells</th>
<th>OPs</th>
<th>Conc. (µM)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>CPF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAP2</td>
<td>ns</td>
<td>-1.34↓ (0.017)</td>
<td>-1.34↓ (0.014)</td>
<td>ns</td>
<td>ns</td>
<td>-1.2↓ (0.018)</td>
<td>ns</td>
</tr>
<tr>
<td>TUBB3</td>
<td>ns</td>
<td>ns</td>
<td>-1.25↓ (0.02)</td>
<td>ns</td>
<td>ns</td>
<td>-1.2↓ (0.03)</td>
<td>ns</td>
</tr>
<tr>
<td>MAPT</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>NEFH</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>-1.2↓ (0.05)</td>
<td>-1.8↓ (0.003)</td>
</tr>
<tr>
<td>GAP43</td>
<td>ns</td>
<td>ns</td>
<td>-1.32↓ (0.04)</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>C6</td>
<td>GFAP</td>
<td>-8.8↓ (0.0001)</td>
<td>-9.5↓ (0.0001)</td>
<td>-8.4↓ (0.0001)</td>
<td>-1.5↓ (0.02)</td>
<td>-3.9↓ (0.0003)</td>
<td>-7.7↓ (0.0001)</td>
</tr>
</tbody>
</table>

Value are expressed as fold change relative to the control (0) with the p-value in the parenthesis. CPF: Chlorpyrifos, CPO: Chlorpyrifos oxon, PSP: Phenyl saligenin phosphate, MAP2: Microtubule-associated protein 2, TUBB3: Tubulin beta-3 chain, MAPT: Microtubule-associated protein Tau, NEFH: Neurofilament heavy chain, GAP43: Growth associated protein 43, GFAP: Glial fibrillary acidic protein.
5.3.5 Histone deacetylase (HDAC) activity upon exposure to CPF, CPO and PSP in differentiating neuronal cells.

Our qPCR results showed that the OP compounds can indeed significantly decrease the mRNA levels of some key genes involved in neuronal development (qPCR data are summarised in Table 5.2). Whilst it cannot be discounted that these compounds could affect RNA stability, leading to its decrease, an interesting possibility is that they could modulate gene expression through the regulation of transcription. This would mean that a series of transcription factors and chromatin remodelling complexes are specifically recruited to the promoter region of these genes. Once there, these complexes would be altering transcription rates by favouring DNA and/or histone modifications. And the acetylation and deacetylation of histones is one of the most widely studied changes controlling this process. In order to determine whether alterations in histone modifications could be involved in the genotoxic effects observed for the OPs studied in the current work, the analysis of HDAC activity was performed. As the genes studied exhibited reduced expression after exposure to CPF, CPO and PSP, and in general terms histone deacetylation is linked to transcriptional repression, it was felt that the HDAC activity could provide an insight to the mechanisms underlying the transcriptional changes observed. As such, the activity of HDAC was analysed using a colorimetric assay.

HDAC activity was measured in nuclear extracts prepared from differentiating N2a cells that were exposed to 1, 3 and 10 µM concentrations of CPF, CPO or PSP for 24 h. All three OPs caused a concentration dependent increase in the HDAC activity at concentrations of 1, 3 and 10 µM (Figure 5.12, panel A and B).
Figure 5.12. Effects of CPF, CPO and PSP on HDAC activity in differentiating N2a cells.

N2a cells were induced to differentiate for 24 h either without (0) or with 1, 3 and 10 µM concentrations of A. CPF and CPO or B. PSP. Data are presented as mean of the total HDAC activity of the non-OP-treated control ± SEM (from three independent experiments). Differences among different groups were determined by one way-ANOVA with Sidak post-hoc test comparing treatments to the (0) control. Asterisks indicate changes that are statistically different from the non-OP-treated controls (***p < 0.001).

The experiment was also performed on nuclei prepared from differentiating C6 cells that were exposed or not to a concentration of 1, 3 and 10 µM of CPF, CPO or PSP for 24 h. The data were identical to those obtained for the N2a cells, where all three organophosphates caused statistically significant linear increases in the HDAC activity at concentrations of 1, 3 and 10 µM (Figure 5.13, panel A and B).
Figure 5.13. Effects of CPF, CPO and PSP on total HDAC activity differentiating C6 cells.

C6 cells were induced to differentiate for 24 h either without (0) or with 1, 3 and 10 µM concentrations of A. CPF and CPO or B. PSP. Data are presented as mean of the total HDAC activity of the non-OP-treated control ± SEM (from three independent experiments). Differences among different groups were determined by one way-ANOVA with Sidak post-hoc test comparing treatments to the (0) control. Asterisks indicate changes that are statistically different from the non-OP-treated controls (**p < 0.001).
5.4 Discussion

The previous chapter investigated the effects of CPF, CPO and PSP on the expression levels of neural cell differentiation cytoskeletal and associated regulatory proteins (MAP 2, βIII tubulin, Tau, NFH, GAP-43, and GFAP), in differentiating mouse N2a neuroblastoma cells and C6 glioma cells, and the results showed that the OPs selected influenced the expression levels of the proteins investigated, suggesting they may be important in the neurotoxic effects produced by OPs.

As we had observed significant changes in protein expression, this chapter investigated the genotoxic effect of CPF, CPO and PSP on the expression level of selected cytoskeletal genes in differentiating N2a neuroblastoma and C6 cell lines. There is some evidence that OPs can cause genotoxic effects; for example, studies into long-term effects of OPs have suggested that occupational exposure is linked to increased reports of cancers such as non-Hodgkin’s lymphoma (Dreiher et al., 2005), and observations that CPF can bind to DNA and produce DNA adducts have led to increased concerns about CPF genotoxic risk in humans (Li et al., 2015), but the actual effect of OPs at the genetic level is yet to be fully elucidated. Studies have shown that measuring changes to genetic material, such as DNA damage, can be a suitable measure of the genotoxic properties of OPs (Kornuta et al., 1996), and genotoxicity may also affect key structural genes, which could then be linked to the changes observed at the protein level.

The aim of this chapter was to examine the effect of CPF, CPO, and PSP exposure on the expression level of selected cytoskeletal genes in differentiating N2a neuroblastoma and C6 cell lines. To achieve these aims, quantitative RT-PCR analysis of the RNA expression levels for the key proteins GAP43, MAP2, MAPT, NFH, TUBB3, and GFAP were measured after exposure to 1, 3 and 10 µM CPF, CPO, and PSP, and normalised to the reference genes GAPDH and Rps18. To investigate if there were any significant effects due to epigenetic changes, a colorimetric test was used to evaluate HDAC activity.

The first stage of these experiments was the investigation of the specificity of the primer pairs designed to detect the selected genes. The primers were used in a PCR to amplify the targeted amplicon using cDNA from mouse and rat brain tissues as positive control, and then, using mitotic and differentiated N2a and C6 cell lysates. The results showed a single defined band at the expected size, and after excision and sequencing, all the PCR products were in a 100 % alignment with their corresponding gene of interest. These results
suggested the primers were suitable for use in detecting changes in gene expression after treatment with the selected OPs.

In order to understand gene expression in RNA samples, the selection of at least one ‘housekeeping’ gene is required. This is a gene whose expression does not change with the treatments and can be used to normalize the results. In this study, both GAPDH and Rps18 gene expression was analysed as possible reference genes: they were both stable and presented with similar expression patterns. However, GAPDH had a lower coefficient of variance which meant higher stability, thus the results normalized to GAPDH have been used for the discussion (Table 5.2).

The results for the mRNA expression in the N2a cells showed that, as with the results for protein expression, there were no significant differences seen following exposure to 1 µM of any of the OPs. However, the MAP2 results showed a significant reduction in expression after exposure to 3 and 10 µM CPF, 10 µM CPO, and 10 µM PSP. By comparing these results to those of the protein expression (Chapter 4), the data show the same pattern of reduced expression, which also agree with protein expression results of in vivo studies (Abou-Donia, 1993; Prendergast et al., 2007; Ruiz-Muñoz et al., 2011). As there is a good correlation between the mRNA levels and protein expression, these results suggest that the reduced protein levels are at least partly due to changes in gene expression.

The results for RNA expression for βIII tubulin (TUBB3) normalised to GAPDH in N2a cells showed there was a significant reduction after exposure to 10 µM CPF, CPO and PSP, and 3 µM PSP. This is similar to the results for the protein levels, where there were significant reductions in expression after treatment with 10 µM of all the OPs, the only difference being there were no significant changes seen at 3 µM PSP. These results agree with previous studies, which show a reduction in tubulin protein expression after OP exposure (Sachana et al., 2008; Sachana et al., 2014), and would suggest the lower protein expression is driven by an altered gene expression.

The results for the mRNA expression for Tau (MAPT) normalised to GAPDH in N2a cells showed a significant reduction after exposure to 3 and 10 µM PSP, but not after treatment with any of the other OPs. These results are slightly different to those for the protein expression; here the treatment with 3 and 10 µM CPF as well as PSP caused a reduction in protein expression. As with the results for the protein expression levels, these results are different to those published in the literature for protein expression as they found that Tau
levels did not change after treatment with other OPs (Sachana et al., 2014). However, it is worth remembering that mRNA changes and protein changes do not always correlate. Tau turnover is regulated through the proteasome activity and its half-life is 60 h in hippocampal neuronal cells (Poppek et al., 2006). Taking this into account, the results obtained support a regulation of Tau protein levels through alteration of its proteasomal degradation rather than a modification of its gene expression. Changes in gene expression detected at 24 h, such as those of PSP treatment, would be detected at protein level only hours later than those covered in this study. Furthermore, as CPF treatment seems to modify Tau protein levels without affecting its gene expression levels, it would be interesting to study if it leads to post-translational modifications of Tau that could explain its increased degradation.

The results for the expression for NFH after normalisation to GAPDH showed a significant reduction after cells were exposed to 3 and 10 µM CPO, but no significant changes for the other OPs. This is similar to the results for the protein expression levels, but there were also reductions in protein expression after treatment with 3 and 10 µM CPF, and 10 µM PSP. This suggest that the treatment with CPO caused changes in gene expression which resulted in lower protein levels, but the lower protein levels seen after treatment with CPF and PSP were probably due to post-translational events. These results are consistent with the studies of the effects of OPs on protein levels for NFH in the literature, that have showed a reduction in expression of NFH after treatment of N2a cells with 3 µM CPF for 8 h (Sachana et al., 2001; Sindi et al., 2016), 3 µM CPO for 8 h (Sindi et al., 2016), 1-10 µM CPO for 24 h (Flaskos et al., 2011), and 2.5 µM PSP for 24 h (Hargreaves et al., 2006).

The results for GAP-43 normalised to GAPDH expression show that there was a significant reduction in expression after treatment with 10 µM of CPF, 3 µM and 10 µM PSP (p < 0.05 for all), but no significant differences were observed for CPO. These results have some similarities to the results for changes in protein expression; here there was a significant reduction in protein expression after exposure to 3 µM CPF and 10 µM of CPF, CPO and PSP (p < 0.01), which suggests the reduced protein expression for CPF and PSP are a result of an alteration in gene expression, but the changes in protein expression level for CPO are not due to changes in mRNA. As with the results for NFH, the results for GAP-43 agree well with those in the literature, which reported a reduction in GAP-43 protein expression in N2a cells after treatment with 3 µM CPF and CPO for 4 h (Sachana et al., 2005; Sindi et al., 2016), and 1-10 µM CPO for 24 h (Flaskos et al., 2011).
The largest changes in mRNA expression after treatment with OPs were seen for GFAP in differentiating C6 cells. The results for RNA expression normalised to GADPH show that exposure to all concentrations of all the OPs resulted in a significant reduction in RNA expression; 1 µM CPO (p < 0.05), 3 and 10 µM CPO (p < 0.001), 1, 3 and 10 µM CPF (p < 0.001), and 1, 3 and 10 µM PSP (p < 0.001). This was a greater reduction than what was seen at the protein level, but the same trend was observed there: increasing concentrations of the OPs resulted in a reduced level of GFAP expression.

The results for the protein levels showed a significant reduction in expression after treatment with 10 µM CPF (p < 0.01), 3 and 10 µM of both CPO and PSP (p < 0.01), which suggest the changes in protein are possibly a result of reduced expression levels and that the gene expression is more sensitive to the OPs. As with the results for the changes in protein expression, the results for the changes in gene levels agree with the different studies published in the literature; both in vivo and cell line studies have reported a reduction in GFAP after treatment with certain combinations of CPF and DZO (Garcia et al., 2002; Sidiropoulou et al., 2009b; Wang and Zhao, 2017).

Garcia et al. (2001) indicated that CPF disrupted glial development in vivo of C6 glioma of the rat, by the disruption of signalling cascades, the inhibition of cell replication, disrupting the activity of nuclear transcription factors involved in cell differentiation and increasing the levels of reactive oxygen species. The results of the current study also fit with the work by Muñoz (2010), who found that 24 h treatment with 10 µM CPO and CPF significantly reduced the expression of GFAP in differentiating C6 cells.

In addition, a study using RT-PCR to detect GFAP mRNA in neuroglia of the zebrafish brain to investigate cadmium cytotoxicity after treatment with 1 mg l⁻¹ cadmium chloride for 2, 7 and 16 days, found a considerable reduction in GFAP reactivity in the subependymal layer, the meninges and the outer surface of blood vessels (Monaco et al., 2016). The reduced GFAP expression was not due to changes in transcript stability and/or transcription, but instead it was due a reduction of protein in the cells or a reduction in the number of cells (Monaco et al., 2016). Thus, GFAP may be targetted differently at a molecular level by CdCl₂.

In a study of the effect of GFAP knock out, stable transfection of U-251 human astrocytoma cells with an antisense GFAP construct caused suppression of GFAP, and this resulted in a decreased ability to extend processes in response to neurons and a decrease in cell differentiation (Westermark, 1973; Weinstein et al., 1991). Furthermore, GFAP loss
could be an important step in glial tumour development, or the reduction in \textit{GFAP} expression may signify the secondary loss of a differentiation marker, both of which are important in cancer progression, and can signal progression of the tumour to a more malignant and rapidly growing phenotype (Pekny \textit{et al.}, 1998; Wilhelmsson \textit{et al.}, 2003). Several studies indicated that many malignant astrocytic tumours are GFAP negative, and the majority of high-grade gliomas lose GFAP expression during their development (Jacque \textit{et al.}, 1978; Van der Meulen \textit{et al.}, 1978; Jacque \textit{et al.}, 1979; Velasco \textit{et al.}, 1980; Tascos \textit{et al.}, 1982).

Overall, there is a good correlation between the reduced protein levels observed and the reduced RNA expression of some but not all of the markers observed, which suggests the cause of the toxicity observed after OP treatment is partly due to genotoxic effects on the key genes, but possibly also due to posttranslational effects on gene products, leading to the morphological changes observed after OP exposure. The results for the expression of these genes agree with the more general studies into the genotoxic effects of OPs; \textit{in vivo} studies in rats and fish have shown that exposure to sub lethal concentrations of CPF can cause DNA damage measured by the Comet assay, in a dose- and time- dependent manner (Sandhu \textit{et al.}, 2013; Ismail \textit{et al.}, 2014; Muller \textit{et al.}, 2014; Wang \textit{et al.}, 2014).

Studies have shown that a variety of biological responses can be induced by genotoxic stress, including transcriptional activation (Dickinson \textit{et al.}, 2004). Histone acetylation is one of the best understood modifications of DNA involved in the epigenetic control of gene expression, and there is a correlation between transcription and histone acetylation levels. Therefore, having demonstrated that the RNA levels are often changed after OP treatments, it is a suitable target to check if OPs induce epigenetic changes (Allfrey \textit{et al.}, 1964; Witt \textit{et al.}, 2009). Histone deacetylases (HDACs) and histone acetyl transferases (HATs) are antagonistic enzymes that regulate gene expression through deacetylation and acetylation of histone proteins around which DNA is wrapped inside the eukaryotic cell nucleus (Ahmad Ganai \textit{et al.}, 2016). Epigenetic modification of histones is an essential principle of how neurons regulate transcriptional responses and adapt to environmental signals (Cho and Cavalli, 2014). The post-translational modification of histones by histone deacetylases (HDACs) and chromatin-modifying enzymes histone acetyltransferases (HATs) shapes chromatin to regulate transcriptional profiles during neuronal development. The epigenetic control of HDACs and the cellular imbalance between HATs and HDACs dictate disease states and has been implicated in loss of memory, muscular dystrophy,
autistic disorders and neurodegeneration. Altering gene expression profiles through inhibition of HDACs is now emerging as a powerful technique (Ahmad Ganai et al., 2016) and epigenetic events have been recently found to play important roles in regulating axon regeneration (Ahmad Ganai et al., 2016). This is further supported by evidence that abnormal HDACs are involved in different diseases including cancer, suggesting analysing HDAC levels in combination with gene expression studies will provide a clearer picture of the effects of OPs (Peng et al., 2015).

Therefore, to further investigate the genotoxic effects of the selected OPs, and to determine if epigenetic changes were involved in these changes, the analysis of HDAC activity in the nuclear extracts of differentiating N2a and C6 cells after treatment with CPF, CPO and PSP for 24 h was carried out using a colorimetric assay. The results showed that there was a significant increase in HDAC activity for all the concentrations of the different OPs, in both cell lines, which occurred in a dose-dependent manner.

The down regulation of gene expression mediated by the up regulating of HDAC activity found in this study is comparable to the published study on the HDAC inhibitor Trichostatin-A, which was found to induce the expression of GAP43, a neural marker for axonal regeneration. It should be noted however, that proteins other than histones can be modulated by acetylation of specific lysine residues. Therefore, HDACs have the potential to have repressive impact on gene expression, restricting transcription factor access to monitoring regions (Gregoretti et al., 2004; Haberland et al., 2009). Therefore, the increased activity of HDAC can be correlated to the effects observed on the RNA expression; increased HDAC activity would result in higher levels of heterochromatin meaning less transcription and lower levels of RNA produced. This means that the genotoxic effect, when seen in OP toxicity is partly due the effects of OPs on epigenetic factors, which then causes the altered RNA and can be related to the altered protein levels and other morphological and developmental responses seen in the toxic effects of the OPs.

In the meantime, HDAC’s function in neurons and the nervous system remains to be fully elucidated, which is a major impediment; hence, understanding the specific gene expression patterns alongside the accurate specificity and dosage will open a novel aspect in the field and trigger a new wave (Ahmad Ganai et al., 2016).

Overall, the combined results from the mRNA and HDAC assays provide new information on how OPs produce their toxic effects: this occurs in part by altering the expression levels
of the genes investigated. Based on these results, the research could be taken forward by investigating other key genes using these techniques to help develop a better picture of the mechanisms involved in OP toxicity in more relevant human stem cells.
Chapter 6

Organophosphate Toxicity in a Human Neural Progenitor Stem Cell Model
6.1 Introduction

While the main aim of this thesis is to investigate the toxic effects of CPF, CPO and PSP on differentiating mouse and rat neural cell lines, testing the effects of these toxins on cell differentiation and evaluating the gene expression in human stem cell models would add value to this study and to the field. By using neural progenitor stem cells derived from humans, the cellular model will resemble cells of the developing human nervous system neurons in situ more closely, which can lead to more accurate predictions of chemical-related changes in vivo (Radio and Mundy, 2008).

The first neural stem cells were isolated from different regions of human embryonic brains (Vescovi et al., 1999); however, recent advances have led to the isolation of neural progenitor stem cells from adult human particularly from the neocortex region of the nervous system (Richardson et al., 2006). This makes human neural progenitor stem cells a valuable tool and exciting model for neuroscience research. Using human neural stem cells for evaluating xenobiotic toxicity could diminish the level of uncertainty that is associated with cells derived from animal models (Donato et al., 2007).

Previous research using human neural progenitor stem cells was hampered by the short life span of stem cell cultures, as well as the limited facilities available to maintain both a stable phenotype and genotype across passages (Wright et al., 2006; Donato et al., 2007).

The development of immortalised human neural progenitor stem cells, achieved by using the myc oncogenic transcription factor, overcame these difficulties (Dang et al., 1999; Kim, 2004). The cells’ ability to self-renew, generating large numbers of cells, alongside their genomic stability is the fundamental core of immortalisation using myc technology. These characteristics have allowed the use of these cells for toxicity screening (Klemm and Schrattenholz, 2004).

The ReNcell CX cell line is one example of human immortalised neural progenitor stem cell lines that are commercially available (Merck Millipore). They were derived from a 14-week old human foetal brain cortex and, upon mitogen withdrawal in serum free defined medium, they have the ability to differentiate into a mixed population of neurons, astrocytes and oligodendrocytes (Donato et al., 2007; Kornblum, 2007). Due to their immortalisation with myc oncogene transduction, these cells can self-renew, since they are multipotent, in addition to having phenotypic and genetic stability (Donato et al., 2007).
Thus, the ReNcell CX cell line is a suitable model for the assessment of neurotoxicity in vitro (Breier et al., 2008). Breier et al. (2008) employed ReNcell CX cells in an undifferentiated state, using HTS to measure the effects of chemicals such as lead acetate and methyl mercury chloride on the proliferation and viability of neural stem cells. However, chemical-induced changes in neurite outgrowth in differentiated ReNcell CX cells have yet to be studied. Nor have the underlying molecular effects of CPF, CPO and PSP been evaluated in differentiating human neural stem cell models.

Hence, it was of interest to study the potential effects of OPs using a human-relevant cell model. Furthermore, there was additional interest in determining whether this human neural progenitor stem cell line, which comprises a mixture of neuronal and glial cells at early stages of differentiation, was affected by OP compounds in a manner comparable to differentiating N2a cells described in chapters 3, 4 and 5.

To realize this goal, ReNcell CX cells were utilised as a cell model in co-differentiation exposure conditions similar to those applied to N2a and C6 cells. Cells were exposed to the same concentrations of CPF, CPO and PSP through 24h of differentiation.

MTT reduction assays were also used to assess the viability of cells after exposure to OP compounds. Furthermore, quantitative PCR was used to evaluate the effects of the OP compounds and to confirm the mRNA expression of the mature neural stem cell markers, including βIII-tubulin, NF-H and GFAP. Finally, a histone deacetylation assay was carried out to further study the molecular mechanism underlying the genotoxic effects of the OPs of interest in differentiating ReNcell CX cells. The study of both gene expression a histone modification would be a valuable addition to the field of OP toxicity, as this study is the first to tackle these aspects particularly in the ReNcell CX cell model.
Results

6.2 Results

6.2.1 Cell viability in the presence of organophosphates

A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay was used to assess the cells’ viability upon exposure to toxins. ReNcell CX cells were differentiated for 24 h (as described in section 2.2.2) with simultaneous exposure to 1, 3 and 10 µM CPF, CPO or PSP. A slight but significant decrease (P= 0.017) in MTT reduction was observed with 1 µM CPO. The decrease was slightly more pronounced at 3 and 10 µM CPO (P= 0.008 and P= 0.006, respectively) (Figure 6.1, panel B). On the other hand, exposure to the same concentrations of CPF and PSP did not have any significant effect on MTT reduction.

In order to monitor any morphological changes, ReNcell CX cells line were assessed after 24 h exposure to different concentrations of CPF, CPO and PSP. Cells were incubated in the absence (0) or presence (1, 3 or 10) µM of CPF, CPO and PSP. They were then fixed and stained with Coomassie Brilliant Blue dyes (Figure 6.2). There were differences in the morphological changes in cells exposed to varying concentrations of CPF, CPO and PSP after 24 h. The proportion of cells exhibiting decreased with increasing concentrations of OPs, it was which difficult to determine changes using Coomassie blue stain, as there was no obvious change in cell density of the stained monolayers was.
Figure 6.1. Effects of CPF (A), CPO (B) and PSP (C) on MTT reduction in differentiating ReNcell CX cells.

ReNcell CX cells were exposed to different concentrations (1, 3 and 10 μM) of OPs during 24 h of induction of cell differentiation, the levels of MTT reduction were measured to evaluate cell viability. Results are expressed as a mean percentage of the corresponding untreated control ± SEM from five separate experiments. Statistical significance of data was analysed using one way ANOVA with Sidak post-hoc test comparing treatments to the (0) control (*p<0.05, **p<0.01).
Figure 6.2. Effects of CPF, CPO or PSP on the morphology of differentiating ReNcell CX cells.

ReNcell CX cells were induced to differentiate for 24 h in the presence or absence of 1,3,10 µM CPF, CPO or PSP, as described in Materials and Methods. Shown are images of typical fields of cells viewed by phase contrast microscopy after 24 h differentiation by using an inverted light microscope following methanol fixation and staining with Coomassie blue. Bar represents 15 µm.
6.2.2 Primer validation

The designed primer pairs’ specificities were tested prior to running the experiments. ReNcell CX cell total RNA was extracted and reversed transcribed to cDNA. The primers were used to amplify targeted amplicon in the constructed cDNA by conventional PCR.

Figure 6.3 illustrates the primers’ specificities and table 6.1 shows the conditions that achieved the best amplification results. The amplified bands in Figure 6.3 were excised and the amplified products were eluted and sequenced then ‘blasted’ against the genome of *Homo sapiens*. The sequenced PCR products were in a 100% alignment with only their corresponding gene of interest (Appendix 8.9, 8.10), accession numbers are listed in table 6.1.
Table 6.1. Primer sequences and standardised PCR optimisation protocols for the amplification of specific neural markers genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Variants</th>
<th>Primer Sequence (5’ to 3’)</th>
<th>Annealing Tm (°C)</th>
<th>Product size</th>
</tr>
</thead>
</table>
| TUBB3 | 1. Isoform 1 NM_006086.3 | Forward ATTTCATCTTTGGTCAGAGTGGGGCC
Reverse CAGTCGCAGTTTCACACTCCTTC | 65 | 121 |
| | 2. Isoform 2 NM_001197181.1 | | | |
| NEFH | NM_021076.3 | Forward ACTCCCCAAATATCCCTCTGTGTCC
Reverse TTGGGTCTCCTCTGTCTGTTCCTC | 61 | 121 |
| GFAP | 1. Variant 1 NM_002055.4 | Forward CAGAAGCTCCAGGATGAAACCAACC
Reverse GACTCAATCTTCCTCTCCAGATCCAGACG | 63 | 119 |
| | 2. Variant 2 NM_001131019.2 | | | |
| | 3. Variant 3 NM_001242376.1 | | | |

GFAP; Glial fibrillary acidic protein, NEFH; Neurofilament heavy chain, TUBB3; Tubulin βIII chain, and Tm; Melting temperature.
A- β III tubulin (*TUBB3*), B- *NEFH*, C-*GFAP*. RNA was obtained from mitotic (M) and differentiating (D) human stem cell and reverse transcribed into cDNA and analysed by PCR. Non-template controls were used as negative controls (C). Bands were visualised after electrophoretic separation in a 1.5% (w/v) agarose gel stained with SyberSafe. Amplified products are presented as a single defined band at size of approximately 100 base-pairs (bp).

6.2.3 Effect of CPF, CPO and PSP on neuronal markers in ReNcell CX cell line.

The mRNA expression level of neuronal markers including *TUBB3*, *NEFH* and *GFAP* was measured in differentiated ReNcell CX cells that were exposed to 1, 3 and 10 µM concentrations of CPF, CPO and PSP.

Since the expression of neural marker genes in mammalian cell lines of the previous chapter were relative to glyceraldehyde 3-phosphate dehydrogenase (*GAPDH*), the same housekeeping gene was selected as reference gene in the gene expression analysis of differentiating ReNcell CX cells.

6.2.3.1 Tubulin beta-3 chain (*TUBB3*).

TUBB3 mRNA expression level relative to *GAPDH* was significantly reduced upon cells’ exposure to 1 (p= 0.0303), 3 (p= 0.0340) and 10 µM (p= 0.0070) CPF with 10 µM causing the most significant effect. A concentration of 3 µM (p= 0.0005) of CPO caused the most significant reduction in *TUBB3* mRNA levels. This reduction was also high at a concentration of 10 µM (p= 0.0019) (Figure 6.4, panel A1). PSP exposure did not cause a significant effect until a concentration of 10 µM (p= 0.0074), where the expression dropped in comparison to the control (Figure 6.4, panel A2).
Figure 6.4. Expression of TUBB3 mRNA in differentiating ReNcell CX cells after CPF, CPO and PSP exposure, as determined by quantitative qPCR.

ReNcell CX cells were induced to differentiate for 24 h with incubation without (0) or with 1, 3 and 10 µM concentrations of CPF, CPO or PSP. Data were analysed using one-way ANOVA with Sidak post-hoc test comparing treatments to the (0) control. The normalization of data was to the housekeeping gene GAPDH. Expression values are relative to the non-OP-treated control ± SEM. Data presented are an average of four independent experiments, and all samples were amplified in triplicate. Asterisks indicate changes that are statistically different from the non-OP-treated controls (*p < 0.05, **p < 0.01, or ***p < 0.001).

6.2.3.2 Neurofilament heavy chain (NEFH)

CPF did not cause a significant effect on NEFH’s mRNA expression levels. On the other hand, CPO caused a significant drop in its expression at a concentration of 3 (p= 0.0031) and 10 (p= 0.0054) µM (Figure 6.5, panel A1).

Low concentration of PSP (1 µM) elevated NEFH mRNA expression slightly but not significantly compared to the control; however, this effect was linearly reduced with increased PSP concentration but only significant at a concentration of 10 µM (p= 0.0140) (Figure 6.5, panel A2).
Figure 6.5. Expression of NEFH mRNA in differentiating ReNcell CX cells after CPF, CPO and PSP exposure as determined by quantitative qPCR.

ReNcell CX cells were induced to differentiate for 24 h with incubation without (0) or with 1, 3 and 10 µM concentrations of CPF, CPO or PSP for 24 h. Data were analysed using one-way ANOVA with Sidak post-hoc test comparing treatments to the (0) control. The normalization of data was to the housekeeping gene GAPDH. Expression values are relative to the non-OP-treated control ± SEM. Data presented are an average of four independent experiments, and all samples were amplified in triplicate. Asterisks indicate changes that are statistically different from the non-OP-treated controls (**p < 0.01).

6.2.4 Glial fibrillary acidic protein (GFAP)

Exposing the cells to 1 µM (p=0.0433) and 3 µM (p=0.0374) concentrations of CPF resulted in significant decreases in GFAP mRNA expression levels to approximately 50 % of control values. Higher CPF levels of 10 µM (p=0.0125) caused a drop in its expression to approximately 25 % of the corresponding control value (Figure 6.6, panel A1). CPO’s effect was only significantly observed at a concentration of 10 µM (p=0.0051), where it caused an almost 50 % drop inGFAP expression (Figure 6.6, panel A1). Exposure to a concentration of 3 µM (p=0.0123) and 10 µM (p=0.0074) of PSP caused a similar effect to CPF exposure; it decreased GFAP’s mRNA expression by more than half of the control value (Figure 6.6, panel A2).

Data of OPs genotoxicity on ReNcell CX cells are summarised in table 6.2.
Figure 6.6. Expression of *GFAP* mRNA in differentiating ReNcell CX cells after CPF, CPO and PSP exposure as determined by quantitative qPCR.

ReNcell CX cells were induced to differentiate for 24 h with incubation without (0) or with 1, 3 and 10 µM concentrations of CPF, CPO or PSP for 24 h. Data were analysed using one-way ANOVA with Sidak post-hoc test comparing treatments to the (0) control. The normalization of data was to the housekeeping gene *GAPDH*. Expressions values are relative to the non-OP-treated control ± SEM. Data presented are an average of four independent experiments, and all samples were amplified in triplicate. Asterisks indicate changes that are statistically different from the non-OP-treated controls (*p < 0.05) or (**p < 0.01).
Table 6.2. Summary of OP effects on human neural marker genes relative to GAPDH

Cells	OPs	CPF	3	10	CPO	3	10	PSP	1	3	10	
	Conc. (µM)											
	1	3	10	1	3	10	1	3	10			
TUBB3	-1.4↓ (0.03)	-1.4↓ (0.034)	-1.8↓ (0.007)	ns	-1.7↓ (0.0005)	-1.4↓ (0.0019)	ns	ns	-1.3↓ (0.0074)			
NEFH	ns	ns	ns	ns	-1.4↓ (0.0031)	-1.3↓ (0.0054)	ns	ns	-1.4↓ (0.014)			
GFAP	-1.8↓ (0.043)	-1.9↓ (0.037)	-2.8↓ (0.012)	ns	ns	-1.6↓ (0.0051)	ns	-2.4↓ (0.01)	-3.03↓ (0.007)			

Value are expressed as fold change relative to the control (0) with the p-value in the parentheses, CPF; Chlorpyrifos, CPO; Chlorpyrifos oxon, PSP; Phenyl saligenin phosphate, TUBB3; Tubulin beta-3 chain, NEFH; Neurofilament heavy chain, GFAP; Glial fibrillary acidic protein.
6.2.5 Histone deacetylases (HDAC) activity upon exposure to CPF, CPO and PSP in differentiating RenCellCX cells.

HDAC activity was measured in differentiating ReNcell CX cells that were exposed to 1, 3 and 10 µM concentrations of CPF, CPO or PSP for 24 h. While different concentrations of both CPF, CPO (Figure 6.7, panel A) and PSP (Figure 6.7, panel B) exposure caused changes in HDAC activity relative to the non OP-treated control, a concentration of 3 µM and 10 µM (p<0.05) of CPF, CPO and PSP (Figure 6.7, panel A) significantly increased its activity.

![Figure 6.7](image)

Figure 6.7. Effects of CPF, CPO and PSP on HDAC activity in differentiating ReNcell CX cells.

ReNcell CX cells were induced to differentiate for 24 h with incubation without (0) or with 1, 3 and 10 µM concentrations of CPF, CPO (panel A) or PSP (panel B). Data are presented as mean of the total HDAC activity ± SEM (from three independent experiments). The significance of differences among different groups was determined by one way-ANOVA with Sidak post-hoc test comparing treatments to the (0) control. Asterisks indicate changes that are statistically different from the non-OP-treated controls (*p < 0.05).
6.3 Discussion

The previous chapters in this thesis have shown that in the N2a and C6 cell lines, the selected OPs (CPF, CPO and PSP) at sub-cytotoxic doses (1, 3 and 10 µM) can cause morphological changes to neurite outgrowth without cell death (Chapter 3), which can be linked to changes in the levels of selected cytoskeletal and associated regulatory proteins (MAP 2, Tau, βIII tubulin, GAP-43, NFH and GFAP) (Chapter 4), and in turn this can be related to genotoxic effects from reduced mRNA expression of key genes (MAP2, MAPT, TUBB3, NEFH, GAP43 and GFAP) and epigenetic changes measured by HDAC activity (Chapter 5).

The use of cell lines can provide a good insight into the effects of the OPs on individual cell types, but they do not provide information as to how the different cell types are affected in the presence of the other cell types; therefore a different system needs to be used to allow the interaction of these cell types to be observed. One such way of doing this is to use a stem cell line, such as ReNcell CX cells. These cells can be induced to differentiate to form a co-culture of different glial and neuronal cell types, which means they offer advantages over the C6 and N2a cell lines as the dendrites and axons formed by ReNcell CX cells have similar complex interactions to those found in developing human neural cells (Bal-Price et al., 2008; Radio and Mundy, 2008). ReNcell CX cells have previously been used in toxicology studies. For example, proliferation and viability assays were used in a high throughput methodology approach to assess 16 compounds, including several that were known to cause developmental neurotoxicity, and the study found this cell line could successfully be used to detect changes in proliferation that were not linked to changes in cell viability (Breier et al., 2008). Further high throughput toxicity screening studies in ReNcell CX cells have involved using the ToxCast Phase I library of 309 chemicals, initially at a dose of 40 µM, then in the range 1 nM–40 µM, in a study that measured proliferation and cytotoxicity compared to the rat PC12 cell line (Radio et al., 2015). The results showed that ReNcell CX cells detected activity in 126 (41 %) of the chemicals with 63 chemicals selectively inhibiting proliferation, and the PC12 cells detected 46 (15 %) chemicals, with similar results between the different doses investigated, highlighting the sensitivity and suitability of the ReNcell CX cell type for this type of study (Radio et al., 2015).

The aims of this chapter were to study the effects of the selected OPs (CPF, CPO and PSP) on a human-relevant cell model to investigate if similar results were obtained as in the N2a
and C6 cell lines. Identical conditions to the cell line studies (1, 3 and 10 µM CPF, CPO and PSP) were used to treat the differentiating ReNcell CX cells for 24 h before cell viability was measured using MTT reduction assay, and quantitative PCR was used to measure mRNA expression of key markers (TUBB3, NEFH and GFAP), and epigenetic changes were measured by HDAC activity assays.

The results of the MTT assay showed that CPO had a slight inhibitory effect on MTT reduction, with a significantly lower level observed after 24 h treatment with 1, 3 and 10 µM CPO, yet there were no significant differences for the other OPs. This suggests that there are some differences between the ReNcell CX cells and the N2a and C6 cell types, in that the ReNcell CX are more sensitive to reduced metabolic activity following CPO exposure than are the rodent cell lines. Further work would help to determine if this reflects an effect of CPO on metabolic activity of ReNCell CX cells only, or reduced cell proliferation and viability.

The next step in investigating the effects of the OPs in ReNcell CX cells was to check the specificity of the primer pairs designed to detect βIII tubulin (TUBB3), NEFH and GFAP. The primers were used in PCR to amplify the target amplicon in cDNA reverse transcribed from ReNcell CX cells total RNA, and the results produced single defined band of the expected size. After excision and sequencing, all the PCR products were in a 100 % alignment with their corresponding Homo sapiens gene of interest, suggesting the primers were suitable for use in detecting changes in the expression of their target genes after treatment with the selected OPs.

The results for the mRNA expression levels show that all of the markers were reduced by at least one concentration of the selected OPs, which is similar to the results from the N2a and C6 cell lines. The results for βIII tubulin (TUBB3), show that, when normalised to GAPDH, there was a significant reduction in mRNA levels after treatment with 1, 3 and 10 µM CPF; 3 and 10 µM CPO, and 10 µM PSP. This has some similarities to the results in the N2a cells, as 10 µM CPF, CPO and PSP all caused a reduction in mRNA in the N2a cells, but 3 µM PSP also caused a reduction in mRNA. This suggests that βIII tubulin mRNA in the ReNcell CX cells is more sensitive to CPF and CPO than in it is the N2a cells.

The results for NEFH, when compared to the relevant controls, showed there was a highly significant reduction in mRNA levels after treatment with 3 and 10 µM CPO and 10 µM
PSP. This was similar to the results for the N2a cell line, which showed a reduction after CPO treatment, except that in N2a cells there was no significant difference after PSP treatment. This suggests that in the ReNcell CX cells the production of NEFH mRNA is more sensitive to PSP than it is in N2a cells.

The results for GFAP mRNA levels in ReNCell CX cells, after correction to GAPDH levels, show there was a significant reduction after treatment with 1, 3 and 10 µM CPF, 3 and 10 µM PSP, and 10 µM CPO. These results are similar to those for GFAP in C6 cells, except that the C6 cells showed a slightly higher sensitivity, as all the concentrations of all 3 OPs produced a significant reduction in mRNA levels.

These results can be compared to those of a previous study that used ReNcell CX cells to investigate the changes in multi-parameters of neurite outgrowth using high throughput analysis for βIII tubulin, pNFH and GFAP, and protein levels for βIII tubulin and pNFH using ELISA after 8 h exposure to 1-10 µM CPF and CPO (Sindi, 2015).

In order to further investigate if the changes in mRNA were due to epigenetic factors, HDAC activity was monitored in the ReNcell CX cells after treatment with the selected OPs. The results indicated that there was a significant increase in HDAC activity after treatment with 3 and 10 µM CPF. Despite, the increase was also statistically significant with CPO and PSP exposure and, the significance with rodent cell lines were much higher than human ReNcell CX cells. It may be that in a mixed population of cells (e.g. differentiating ReNCell CX cells) not all sub-populations of cells (e.g. neurons, glia and undifferentiated stem cells) are similarly affected in terms of their HDAC activity by OP exposure, thus making a significant increase in HDAC activity more difficult to detect. In this respect, further work at longer exposure times in this cell model would be worthwhile.

It could also be that, as suggested by Sindi (2015) some OPs (e.g. CPO) may be detoxified in the ReNCell system. The observed diversity could also be partly due to the distinct origins of the cells. For example, N2a cells are derived from the mouse C1300 tumour (neuroblastoma) (Klebe and Ruddle, 1969), C6 cells are derived a rat glial tumour (Benda et al., 1968) and ReNcell CX cells were produced from human foetal cortex (Donato et al., 2007).

Nevertheless, the trends revealed in this chapter are similar of those observed in the N2a and C6 cells, where there were statistically significant, dose-dependent increases in HDAC activity after treatment with all concentrations of the OP. Increased HDAC activity could
result in higher levels of heterochromatin and less transcription. In addition, my findings are in agreement with the study of Ahmad Ganai et al. (2016) in which HDAC inhibitors were found to play protective as well as toxic roles in cells, as it would show whether HDAC upregulation alone was responsible for the changes in mRNA levels observed.

The ReNcell CX results are similar to some other studies in the literature; for example sulforophane, an organo-sulphur compound, has been shown to inhibit HDAC activity in human prostate cancer cell lines and colon cancer cell lines, resulting in increased expression of key inflammatory markers (Myzak et al., 2004; 2005). Overall, the current work and the above mentioned studies suggest histone acetylation may be one of the key epigenetic changes in neuronal cells during the development of neurotoxicity.

Taken together, these findings could be explained by the fact that N2a and C6 cells are monocultures, whereas ReNcell CX cells are a co-culture of neuronal and glial cells, which might influence the outcome. For example, glial cells produce and secrete neurotrophins such as glial derived neurotrophic factor (Lin, 1996). In a study by the host research group, it was found that conditioned medium from glial cells, and specifically GDNF, protected against the neurite outgrowth inhibitory effect of diazinon in differentiating N2a cells (Harris et al., 2009a). Moreover, the protective effect was found to involve attenuation of the ability of diazinon exposure to reduce the protein levels of NF-H, as detected by densitometric analysis of Western blots probed with the monoclonal antibody N52. It would be interesting to determine whether comparable effects were observed at the mRNA level.
Chapter 7
General Discussion
7.1 General Discussion

OPs, have been widely used as pesticides, and in industrial applications, as their use increased it became apparent that these compounds caused neurotoxicity with the effects seen depending on the dose, age and route of exposure to the OP. Although there are extensive studies highlighting the fact that OPs can cause effects on AChE inhibition, which is the primary acute toxicity target for many of them, there are several other cellular proteins that are proposed targets for OP neurotoxicity, including cytoskeletal proteins, axon growth associated proteins and other proteins involved in cell signalling pathways (Flaskos, 2014). Some developmental processes of the nervous system are controlled by the neuronal cytoskeleton, including proliferation, cell migration, differentiation, morphogenesis, neurite outgrowth, elongation of axons, branching of dendrites, steering of growth cones, and also apoptosis (Hargreaves, 1997; Flaskos, 2014). Hence, the disruption of cytoskeletal proteins can result in serious neural development damage (Flaskos, 2014). Therefore, further studies needed to focus on identifying non-cholinergic targets of OPs, in order to clarify the molecular mechanisms involved in OP-induced toxicity.

Based on previous studies showing that sub-lethal concentrations of CPF and CPO in differentiating mouse N2a neuroblastoma cells inhibited axon outgrowth and disrupted the cytoskeleton (Sachana et al., 2001; Sindi et al., 2016), the overall aims of this thesis were to investigate the effects of sub-cytotoxic concentrations (1, 3 and 10 µM) of CPF, CPO and PSP on differentiating N2a, C6 and ReNcell CX cell lines in terms of cell viability, neurite outgrowth, effects on expression of cytoskeletal proteins, expression of genes encoding key cytoskeletal proteins, and epigenetic regulation of gene expression.

The initial investigations of this thesis involved confirming previous reports of the toxicity of the selected OPs using MTT reduction assays and Trypan blue exclusion for cell viability, and the effects on neurite outgrowth using a manual Coomassie Brilliant Blue assay in differentiating N2a and C6 cells (Sachana et al., 2001; Hargreaves et al., 2006; Sachana et al., 2008; Flaskos et al., 2011; Sindi, 2015). Having confirmed previous results using these approaches, a strong basis was established for the development of a high throughput screen for multiple parameters of neurite outgrowth using differentiating cell monolayers that were
fixed and stained by indirect immunofluorescence with antibodies against NFH and β III tubulin in N2a cells, and GFAP in C6 cells. In this respect, indirect immunofluorescence showed good staining for all the antibodies selected, with differences visible after some of the treatments, suggesting these antigens were suitable markers for use in this study.

The development of high throughput platforms has enabled researchers to evaluate and quantify the neurotoxin exposure effects in a variety of neural cell lines. The observation that 10 μM CPO reduced cell body area in differentiating C6 cells stained for GFAP after 24 h exposure, is consistent with previous high throughput screening studies in which C6 cells differentiated for 24 h before exposure to 10 μM CPO for 8 h exhibited reduced cell body area (Sindi, 2015), indicating that one effect of CPO was to induce C6 cells to become more compact. The observed reduction in antibody staining intensity for βIII tubulin, NFH and GFAP after treatment with the OPs could be related to reduced neurite length, and is different to the results of previous studies where no changes in staining intensity were observed for these cell types (Sindi, 2015). One reason for these differences could be the longer exposure time (24 h) in the current study compared to the work of Sindi (2015) and the fact that the latter involved the use of pre-differentiated cells as opposed to treatment throughout the course of differentiation in the present work.

The results for the neurite outgrowth markers in the high content assay were similar to the Coomassie blue staining results, as they both indicate reductions in neurite outgrowth due to treatment with the higher concentrations of all three OPs used, which agrees with previous studies that have shown neurite outgrowth impairment in N2a cells after treatment for up to 8h from the point of induction of differentiation with 3 μM CPF (Sachana et al., 2001; Sachana et al., 2005). A similar concentration dependent response was observed after treatment with CPO for 24 h (Flaskos et al., 2011). After 24 h treatment with PSP, there was no significant effect on cell shape but a concentration dependent reduction in neurite outgrowth in differentiating N2a cells (Hargreaves et al., 2006; Flaskos et al., 2006). The results were also consistent with previous studies in differentiating glial cells which found an inhibitory effect on extension outgrowth following 24 h exposure to 1-10 μM CPF and CPO in C6 cells (Sachana et al., 2008).
PSP reduced the percentage of cells with significant outgrowth for all markers; for anti-βIII tubulin it also caused a significant reduction in maximum and average neurite length/cell (with a greater significant difference than for CPF). For anti-NFH it significantly reduced maximum neurite length and average neurite length/cell. For anti-GFAP it significantly reduced average neurite length/cell which were also affected by CPF but to a lesser extent. These results suggest PSP can affect all the markers investigated with a different response for each marker, and indicate that axon-like process are most sensitive to PSP, causing disruption of neurofilaments, and that in differentiating neuronal cells PSP caused reduced neurite outgrowth associated with neuronal degeneration and modification of axonal morphology, which are critical events in both neural development and in the induction of OPIDN as mentioned in the literature (Flaskos et al., 1994; Ehrich and Jortner, 2001; Hargreaves et al., 2006).

CPO treatment produced the largest inhibitory effect in anti-NFH positive (axon-like) neurites for the percentage of cells with significant outgrowth, maximum neurite length/cell, and had a similar effect to PSP on the average neurite length/cell, and in anti-GFAP staining for maximal neurite length/cell, it had a greater effect than PSP on average neurite length/cell. The fact that CPO produced a significant effect on NFH and GFAP suggests it has a relatively potent inhibitory effect on axon-like neurites and glial extensions, which in agreement with previous studies which have shown CPO was more potent than CPF following 24 h exposure in pre-differentiated rat PC12 pheochromocytoma cells, and in co-differentiated N2a cells, causing inhibited neurite outgrowth, and a reduction in axonal length in embryonic derived primary cultures of sensory and sympathetic neurons (Das and Badone, 1999; Howard et al., 2005; Yang et al., 2008). These results also correlate with studies that have shown CPO can cause a reduction in NFH levels in vitro (Flaskos et al., 2011), that CPO can bind tubulin and disrupt polymerisation in bovine brain MT in vitro (Grigoryan and Lockridge, 2009), and disrupt the neurofilament network after 24 h treatment with non-cytotoxic neurite inhibitory concentrations of CPO (Flaskos et al., 2011). The morphological changes observed after treatment with CPO occur at similar concentrations found in vivo in developing humans (Gupta, 1995; Ostrea et al., 2002; Pelkonen et al., 2006) and therefore can be linked to the developmental neurotoxicity observed (Bramanti et al., 2010; Liu et al., 2012).
CPF caused significant reductions for βIII tubulin in average neurite length/cell; for NFH in the percentage of cells with significant outgrowth; and in GFAP for maximal neurite length. CPF caused reduced levels of NFH and can be linked to the ability of CPF to inhibit protein and DNA synthesis. These findings correlate with previous studies (Song et al., 1998; Sachana et al., 2003; 2005; Flaskos et al., 2007).

The reduction in βIII tubulin and NFH after treatment with CPF, CPO and PSP could indicate a disruption in the neuronal MT network, and changes, or a breakdown, in the NF networks, which would result in reduced axon stability (Sindi, 2015). The effects on neurite length depend on the OP and dose used, which can easily be measured via the sensitive high content throughput assay, and these axon extensions play a key role in connecting single and multiple neurons (Hjorth et al., 2014).

Based on the preliminary data and the high content analysis, further investigations into how CPF, CPO and PSP exert their effects were planned to investigate if the changes in neurite outgrowth observed were due to changes in expression of neural cell differentiation cytoskeletal and associated regulatory proteins, to help to elucidate the mechanism of action of these OPs more fully. Protein expression for MAP 2, βIII tubulin, Tau, NFH, GAP-43 and GFAP, were analysed by quantitative Western blotting and cell ELISA approaches. Studies have shown that proteins, such as NFs and MTs, involved in the neuronal cytoskeletal are key endogenous factors that control normal axonal and neurite outgrowth, neuro-stability and neurodevelopment (Cambray-Deakin, 1991). Previous studies have shown that disruption of the axonal cytoskeleton by OPs is associated with changes in neuronal cell morphology (Lee and Cleveland, 1994).

The investigation of the effect of the OPs on the selected proteins in N2a and C6 cells showed that the OPs did influence protein expression, with a reduction in levels seen for all proteins with at least one OP treatment, but there were no significant differences produced with 1 µM of any of the OPs, which is different to the morphological results where some of the OPs did cause an effect at this concentration. The levels of protein expression were also investigated by cell ELISA, which produced decreased expression after OP treatment with some similarities to the results of the Western blots, with differences appearing in
sensitivity for some of the markers investigated and the OPs that produced a response.

In that there were reductions in the protein levels of βIII tubulin, NFH, GAP-43 and GFAP after treatment with at least one concentration of PSP, CPO and CPF seen in both sets of data. This suggests that the morphological changes observed could be linked to reduce cytoskeletal protein expression levels after treatment with the different OPs, which helps to explain how these OPs produce the neurotoxic effects observed.

The data obtained in this study may reflect the potential impacts of CPF and CPO on memory, since information acquisition and memory storage in the mammalian nervous system which are mainly dependent on changes in the synapses and their protein contents. Increased levels of GAP43 are vital for axonal outgrowth and neuronal connectivity by facilitating the formation of new synapses. GAP43 plays an essential role in synaptic transmission and plasticity (Holtmaat et al., 1995). It has been validated that decreased levels of GAP43 were associated with memory impairment in vivo (Rekart et al., 2005). Therefore, the protein changes observed in the current thesis could have induced structural and functional alterations in synaptic plasticity, which represents a cellular mechanism of memory and learning processes (Mansuy and Shenolikar, 2006). Thus, the cytoskeletal disruption observed in cell lines of the current study following OP exposure could reflect a potential to induce cognitive deficits and memory disorders related with aging, dementias or neurodegenerative disease.

The obtained findings for GFAP in the C6 cells are also similar to those previously published, as 24 h treatment with the organophosphorothioate pesticide DZO caused a decrease in GFAP expression (Sidiropoulou et al., 2009b). The findings in this study did produce some differences to those previously published, in that earlier studies found no significant differences in expression for MAP2 after treatment with CPF and CPO in C6 cells, which may be due to the cell type used; and no effect on Tau or NFH of 24 h treatment of differentiating N2a cells with DZO, which highlights the possible differences in OP specificity (Sachana et al., 2008; Sachana et al., 2014).
As the results of the investigations into the effects of the selected OPs on morphological features correlated with the results from the investigations into the changes in expression of the selected cytoskeletal and associated regulatory proteins, the next step in this thesis was to examine if the reductions in expressed protein could be linked to reduced mRNA levels, which would indicate if the OPs caused a genotoxic effect, or whether they were only acting at the protein level. Based on the protein expression results, the key genes MAP2, TUBB3, MAPT, GAP-43, NEFH and GFAP, which encode those proteins, were measured after 24 h exposure to CPF, CPO, and PSP (1, 3 and 10 µM), and normalised to the reference gene GAPDH in differentiating N2a neuroblastoma and C6 cell lines by qPCR analysis of the mRNA expression. To further investigate the actual mechanism of any genotoxicity of these OPs, any significant effects due to epigenetic changes were measured using a colorimetric test to evaluate HDAC activity.

After the initial tests confirmed that the primer pairs amplified the correct genes and GAPDH was stably present in the samples, the actual changes in mRNA after treatment with the OPs for 24 h were investigated. The results for the N2a cell line showed that the OPs did affect mRNA levels, but there were no significant differences after treatment with 1 µM of any of the OPs, which correlates with their effects at the protein level from the Western blot results. In the N2a cell line mRNA changes for MAP 2 and TUBB3 correlate well with the reduced protein expression observed in this thesis and the literature from either in vivo studies of MAP 2 (Abou-Donia, 1993; Prendergast et al., 2007; Ruiz-Muñoz et al., 2011), or in vitro studies for βIII tubulin (Sachana et al., 2008; Sachana et al., 2014), which would suggest that the reduced protein levels are due to changes in gene expression. The N2a cell line mRNA results for MAPT, NEFH and GAP-43 show some similarities to the protein level results from this thesis.

According to the important roles of glial cell as mentioned in section 1.1.2, any damage to glial cells and their extensions can severely impede nerve cell function and genesis or alter the integrity of these barriers, which would change the brain micro-environment and affect complex nervous system activity. Astrocytes are a sub set of glial cells and the primary component of the cytoskeletal intermediate filaments (IFs) in these cells is GFAP (Pekny et al., 1999). Studies have shown
that GFAP can be substituted by other IF proteins in most situations; however, if IFs are absent in astrocytes, then this can lead to prolonged and impaired healing following injury to the central nervous system (Eliasson et al., 1999). In the current study, we determined that exposure to CPF, CPO and PSP caused reduced expression of GFAP possibly due to switching off the gene. Indeed, the largest changes in mRNA expression were observed for GFAP, as a significant reduction in expression was observed after treatment with all concentrations of all the OPs. However, the GFAP mRNA changes were much greater than those for protein expression, but they both followed a concentration-dependent trend. These protein and mRNA results correlate with the literature results that have shown in vivo or in vitro reductions in GFAP protein after treatment with CPF, DZO, and CPO (Garcia et al., 2002; Sidiropoulou et al., 2009b; Muñoz, 2010; Wang and Zhao, 2017). Studies on GFAP−/− mice have shown there were generally no gross structural CNS, behavioural, or neurologic abnormalities, with astrocytes found in a normal distribution. However, there were changes in myelination, which could lead to reduced contact between myelin sheaths and astrocytes, or oligodendrocytes and astrocytes. This highlights the importance of GFAP in brain development (Gomi et al., 1995; Pekny et al., 1995; Shibuki et al., 1996; Liedtke et al., 1996).

Normally, IFs are depolymerized before cell division, and this process is controlled, in part, by phosphorylation (Ku et al., 1996). Studies have shown that some of the kinases that are involved in cell cycle regulation, such as cell-division cycle 2 (cdc2) and protein kinase C, also play a key role in IF phosphorylation (Inagaki et al., 1990; Dalton, 1992; Yong, 1992; Tsujimura et al., 1994). This means that, if the IFs are absent, then there may be an increased availability of these cell cycle kinases to act on their usual substrates that are involved in the cell cycle, which can result in increased proliferation of cells. This is supported by studies that have shown that cultured cells without GFAP, or within astrocytoma that contain both GFAP-positive and GFAP-negative cells, the GFAP-negative fraction have a higher proliferation rate than cells that are GFAP positive, and GFAP negative astrocytes were often found to be a less-mature, blastic and more aggressive cell state (Hara et al., 1991; Weinstein et al., 1991; Kajiwara et al., 1992; Rutka et al., 1994; Pekny et al., 1998; Lee et al., 2005). This is evident in glioblastoma multiforme, which is the most malignant and common form of glioma; it is highly invasive with rapid growth and low GFAP expression, whereas
The mRNA results showed there were reductions in mRNA levels after treatment with some of the selected OPs; therefore, to determine if epigenetic changes were involved, the nuclear extracts of differentiating N2a and C6 cells treated with CPF, CPO and PSP for 24 h were analysed for HDAC activity using a colorimetric assay. One of the key epigenetic gene regulation mechanisms in mammals is the control of histone acetylation; this process is carefully balanced by the activity of histone acetyl transferases (HATs) to increase histone acetylation, which is involved in the regulation of gene transcription. It is linked to the activity of histone deacetylase (HDAC), which induce histone hypoacetylation, causing gene silencing (Gallinari, 2007; Ropero and Esteller, 2007). HDACs have also been shown to regulate gene expression in other ways; they can join with nuclear receptors to form corepressor complexes in the absence of a ligand, or they can interact directly with transcription factors, including the retinoblastoma protein (Rb), p53, TFIIE, NF-kB, Stat3, and E2f, to regulate the expression of a large number of genes (Robertson et al., 2000; Lin et al., 2006; Gallinari, 2007).

Studies have shown HDAC1 and HDAC2 are involved with transcription factors, and play a role in transcriptional repression regulated by Rb (Robertson et al., 2000). Tumour development has been linked to mutations and altered expression of HDAC controlling genes, as changes in these genes can affect the transcription of genes that are important in apoptosis, cell-cycle regulation, and cell proliferation, which are all important in regulating crucial cellular functions (Gallinari, 2007; Ropero and Esteller, 2007). The activities of HDACs are tightly regulated through many mechanisms as they are vital cellular regulators, including modulation of deacetylase activity by protein-protein interactions, recruitment of different co-repressor complexes, and by post-translational modifications (Gallinari, 2007). HDACs are not only involved in histone deacetylation, they can also cause the deacetylation of other non-histone proteins as well as regulation of transcription and other biological processes. For example, HDAC1 has been shown to deacetylate p53 (the tumour suppressor) in vitro and in vivo which can be...
important in cancer (Juan et al., 2000; Luo et al., 2000; Gallinari, 2007). Under stress conditions, p53 is usually phosphorylated and acetylated, with the acetylated p53 lysine residues overlapping with the ubiquitination site; acetylation increases protein activation and stability, which is important in permanent cell-division arrest, cell death and checkpoints in the cell-division cycle (Juan et al., 2000; Luo et al., 2000). Due to these roles, HDAC inhibitors are currently being designed and studied as a potential therapy for the treatment of cancer (Ropero and Esteller, 2007).

The findings of the current work showed that there was a significant, dose-dependent increase in HDAC activity in both cell lines for all 3 concentrations of the 3 OPs, which would result in higher levels of heterochromatin meaning less transcription and lower levels of mRNA produced, and this can be linked to the reduced mRNA expression observed for some of the selected markers. Thus, HDACs have repressive effect on gene expression through restricting transcription factor access to monitoring regions (Gregoretti et al., 2004; Haberland et al., 2009).

There are some differences between the mRNA levels and the HDAC results; all the OPs caused changes in HDAC activity, but only some of the OPs affected the mRNA levels of the markers investigated, which suggests that the OPs do affect epigenetic factors and thereby cause the genotoxic effects observed, but the changes in the mRNA may not be solely due to the effects on HDAC.

Overall, for the markers that matched for changes in mRNA and protein expression, the results suggest that the changes in protein were due at least partly to genotoxic effects, which could be due the effects of OPs on epigenetic factors, and that these changes produced the morphological differences observed, which provides new information about how OPs produce their toxic effects.

Based on the results in the N2a and C6 cell lines, experiments were designed to investigate if similar effects of the OPs could be detected in the stem cell line ReNcell CX. The individual cell lines have provided a good insight into how the selected OPs affect cell viability, protein expression, mRNA and HDAC activity, but they don’t allow the interactions of the different neural cell types to be examined, whereas ReNcell CX cells can be induced to differentiate to form a co-
culture of different glial and neuronal cell types, allowing the effects of the OPs to be studied in a more human-relevant system.

Interestingly, after 24 h treatment, all concentrations of CPO lowered MTT reduction in the ReNcell CX cells, whereas there were no differences in this parameter for the N2a and C6 cells, which suggests the ReNcell CX cells are more sensitive than N2a or C6 cells to CPO. Whether or not this represents a metabolic effect rather than an effect on cell viability requires further investigation.

After confirming the specificity of the human specific primers, mRNA expression for TUBB3, NEFH and GFAP was investigated in this human neural progenitor stem cell line. The OPs’ impact on neural markers genes share some similarities with the N2a and C6 cells, with TUBB3 in the ReNcell CX cells being more sensitive to CPF and CPO and less sensitive to PSP than in the N2a cells. On the other hand, NEFH in the ReNcell CX cells was more sensitive to PSP than it was in the N2a cells, and GFAP in C6 cells was more sensitive to all the OPs than it was the ReNcell CX cells. This suggests that the co-culture reacts differently in terms of the response of the individual cell types. A study of the cellular composition of the differentiating stem cell population would help to establish the extent to which the cells are differentiating at this time point in the human cell model, as undifferentiated stem cells may respond differently to establish rodent cell lines with predominantly one cell type. It may also be that different exposure and differentiation conditions are required to simulate a similar state of differentiation in RenCell CX cells as that attained by C6 and N2a cells.

As there was evidence of changes in epigenetic factors in the N2a and C6 cells, the activity of HDAC was also investigated in differentiating ReNcell CX cells. The data obtained suggest that HDAC activity was increased with increasing the OP concentration but that the differences were not statistically significant in the human model. This suggests that in the rodent cell lines there was a general decrease in transcription which resulted in reduced levels of mRNA. The weaker effect in RenCell CX cells may reflect the complexity of the stem cell model, which requires investigation under a wider range of experimental conditions as discussed above.
7.2 Conclusions

In conclusion the data reported in this thesis have established that:

- Sub-lethal concentrations of CPF, CPO and CPF inhibit the outgrowth of neurites in differentiating N2a, C6 and RenCellCX cells;

- Neurite inhibitory effects are associated with reduced levels of key cytoskeleton proteins in the axons and dendrites of differentiating N2a cells and of the intermediate filament protein GFAP in differentiating C6 cells;

- Changes in mRNA levels account at least in part for changes in protein expression;

- Inhibition of HDAC activity may contribute to the genotoxic effect of OPs with known developmental neurotoxicity;

- Similar changes in mRNA levels for βII tubulin, NF-H and GFAP were confirmed in a more human relevant model;

- Thus, the OPs tested not only act through inhibition of AChE to produce neurotoxicity, but they also act through suppression of key cytoskeletal protein expression via genotoxic effects. The combination of the cell types in the ReNcell CX cell line provides a more human relevant response to the OPs as the two cell types can interact, and therefore this cell line is suitable for use in further studies to help elucidate the mechanisms of how OPs cause neurotoxicity (Figure 7.1).

7.3 Future work

Overall the work presented in this thesis that has shown the selected OPs can produce a neurotoxic effect, involving disruption of cytoskeletal proteins/genes that are important in neural development. The results also confirm that AChE inhibition is not the only way that OPs produce a neurotoxic effect. To further enhance these results, there are several areas that could be considered for future work:

- Two Two-dimensional PAGE and MALDI-TOF mass spectrometry could be used after exposure to sub-cytotoxic concentrations of CPF, CPO and PSP, as
this would help identify the further changes in protein expression and identify any interacting proteins.

- The levels of DNA damage after treatment with sub-cytotoxic concentrations of CPF, CPO and PSP could be determined using the Comet assay, as this would help to clarify the genotoxic effects of these OPs by combining these results with the changes in mRNA levels and epigenetic results.

- It would also be of interest to investigate the ability of these OPs at sub-cytotoxic concentrations to alter histone acetylation using anti-acetylated histone antibodies or to cause changes in other epigenetic factors, such as DNA methylation.

- It would be interesting to analyse the promoter regions of those genes whose mRNA changes in the presence of OPs - to see if all those genes are controlled by the same transcription factors (as a possible mechanism: OP modifies transcription factor activity and, therefore, all genes dependent on that transcription factor are affected).

- Studies have shown that about 5% of CPF is converted to CPO in humans (Eyer et al., 2009; therefore the effects on neurite outgrowth of exposure to a mixture of CPF at a similar concentration to that used in this study with a much smaller amount of CPO, for example using a ratio of 1:20 CPO:CPF, together with longer exposure times merits investigation.

- Longer differentiation times could be applied to achieve a more comprehensive model of developmental toxicity. Extending the exposure time with lower concentrations or using repeat exposures could also have an effect on the extent of neurotoxicity both in vitro and in vivo.

- Similar approaches could also be used in N2a, C6 or ReNcell CX cells to investigate the effects of CPF, CPO and PSP on other neural markers such as (e.g. cofilin), which regulate microfilament dynamics in neural development, as such targets were found to be affected by diazinon exposure in previous work (Harris et al., 2009).
Further studies could be carried out in the ReNcell CX cells by using the high throughput analysis system described in this thesis. The system could be optimised for other important biomarkers, such as choline acetyl transferase to detect changes in cholinergic neurons, tyrosine hydroxylase to detect changes in dopaminergic neurons, and myelin basic proteins to detect changes in oligodendrocytes exposure to CPF, CPO and PSP, and in comparison to non-differentiated neural stem cells identified from monolayers counter-stained with anti-nestin antibodies.

Further studies could be performed on the mechanisms of “switching off” of GFAP expression or the level of regulations of transcription factors after OPs exposure on various of neural developmental models.

Further studies are also desirable with co-cultures or 3D culture models to enhance cell-cell interactions to simulate in vivo tissue organisation more closely.

Figure 7.1. Schematic diagram of common CPF, CPO and PSP impacts on neural cells.
OPs have been widely used as pesticides and in industrial applications.
These compounds caused neurotoxicity with the effects seen depending on the dose, age and route of exposure to the OP.
Sub-lethal concentrations of CPF, CPO and PSP inhibited axon outgrowth, disrupted the cytoskeleton in differentiating mouse N2a neuroblastoma cells.

Evaluate the effects of the selected OPs on: 1) disruption of neurite outgrowth, 2) expression of cytoskeletal proteins, 3) their associated gene expression levels, and 4) to investigate the molecular mechanism(s) involved in altered gene expression changes by analysing histone deacetylation in cell models using differentiating N2a, C6 and ReNcell CX cell lines.

Synopsis of PhD thesis
- What are the impacts of CPF, CPO or PSP on mammalian cell lines and human stem cells?
- Are the alterations in proteins expression of neural markers associated with genotoxic effects of OPs?
- Could OPs cause epigenetic impacts on the tested cell lines?
- Are these changes responsible for the morphological differences or neurodegenerative effects?

The objectives
The objectives
- Evaluate the effects of the selected OPs on: 1) disruption of neurite outgrowth, 2) expression of cytoskeletal proteins, 3) their associated gene expression levels, and 4) to investigate the molecular mechanism(s) involved in altered gene expression changes by analysing histone deacetylation in cell models using differentiating N2a, C6 and ReNcell CX cell lines.

<table>
<thead>
<tr>
<th>Cell viability</th>
<th>Neurite outgrowth</th>
<th>Expression of cytoskeletal proteins</th>
<th>Expression of genes</th>
<th>Epigenetic regulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No changes in cell number, suggesting any changes observed cell morphology after the sub-lethal exposure were due to the effect of the OP and not cell death.</td>
<td>Disruption of axons, neurite outgrowth, and neurodevelopment.</td>
<td>Reduction in the protein level of neural markers proteins.</td>
<td>Alterations gene expression of the selected neural markers.</td>
<td>HDACs have the potential to have repressive impact on gene expression.</td>
</tr>
<tr>
<td></td>
<td>Reduced axon stability as result of βIII tubulin and NFH reduction, which indicate a disruption in the MT network and changes in the NF network.</td>
<td>Reduced GFAP levels caused disruption of astrocyte intermediate filaments.</td>
<td></td>
<td>OPs affect the epigenetic factors and can cause the genotoxic effects observed.</td>
</tr>
<tr>
<td></td>
<td>Reduced the neurite length and the average of neural length following OP exposure with anti GFAP in glial astrocyte cells.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduction in staining intensity for βIII tubulin, NFH and GFAP after treatment of the OPs, which could be related to reduced neurite length.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Changes in neural cell morphology</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

Appendix
Figure 8.1. Dose estimation of the effects of CPF, CPO and PSP on MTT reduction in differentiating N2a cells after 24 h.

N2a cells were induced to different concentrations (1.53, 3.125, 6.25, 12.5, 25 µM) of CPF (panel A), CPO (panel B) and PSP (panel C), of induction of cell differentiation, and the levels of MTT reduction were measured to evaluate cell viability. Results are expressed as a mean percentage of the corresponding untreated control ± SEM from five separate experiments. Statistical significance of data was analysed using one way ANOVA. When an SEM bar is not apparent, the error is smaller than the symbol size (*p<0.05, ***p<0.001).
Figure 8.2. Dose estimation of the effects of CPF, CPO and PSP on MTT reduction in differentiating C6 cells after 24 h.

C6 cells were induced to different concentrations (1.53, 3.125, 6.25, 12.5, 25 µM) of CPF (panel A), CPO (panel B) and PSP (panel C), of induction of cell differentiation, and the levels of MTT reduction were measured to evaluate cell viability. Results are expressed as a mean percentage of the corresponding untreated control ± SEM from five separate experiments. Statistical significance of data was analysed using one way ANOVA. When an SEM bar is not apparent, the error is smaller than the symbol size (*p<0.05, **p<0.001).
Figure 8.3. Electropherogram data for MAP2 (panel A), TUBB3 (panel B), MAPT (panel C), NEFH (panel D) and GAP43 (panel E) PCR sequenced product in N2a cell lines.

The bases represented by N (nucleotides) were replaced by the specific bases identified by coloured peaks (A) Adenine (Green), (G) Guanine (Black), (T) Thymine (Red), (C) Cytosine (Blue).
Figure 8.4. Electropherogram data for GFAP PCR sequenced product in C6 cell lines.

The bases represented by N (nucleotides) were replaced by the specific bases identified by coloured peaks (A) Adenine (Green), (G) Guanine (Black), (T) Thymine (Red), (C) Cytosine (Blue).

Figure 8.5. Sequences alignments.

Examples of alignments matching cDNA and sequencing data for the genes in N2a cell lines: MAP2 (panel A), TUBB3 (panel B), MAPT (panel C), NEFH (panel D) and GAP43 (panel E).
Figure 8.6. Sequences alignments.

Example of alignments matching between cDNA and sequencing data for GFAP in C6 cell line.

Figure 8.7. Electropherogram data for NEFM (panel A) and NEFL (panel B) PCR sequenced product in N2a cell lines.

The bases represented by N (nucleotides) were replaced by the specific bases identified by coloured peaks (A) Adenine (Green), (G) Guanine (Black), (T) Thymine (Red), (C) Cytosine (Blue).

Figure 8.8. Sequences alignments.

Example of alignments matching between cDNA and sequencing data for the genes in N2a cell lines: NEFM (panel A) and NEFL (panel B).
Figure 8. 1. Electropherogram data for TUBB3 (panel A), NEFH (panel B) and GFAP (panel C) PCR sequenced product in human ReNCells CX cell lines.

The bases represented by N (nucleotides) were replaced by the specific bases identified by coloured peaks (A) Adenine (Green), (G) Guanine (Black), (T) Thymine (Red), (C) Cytosine (Blue).
Figure 8. 2. Sequences alignments.

The alignments matching between cDNA and sequencing data for the genes in RenCells CX cell lines: TUBB3 (panel A), NEFH (panel B), GFAP (panel C).