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Abstract 

Background and Objective: Optimal targets for persistent atrial fibrillation (persAF) 

ablation are still debated. Atrial regions hosting high dominant frequency (HDF) are 

believed to participate in the initiation and maintenance of persAF and hence are potential 

targets for ablation, while rotor ablation has shown promising initial results. Currently, no 

commercially available system offers the capability to automatically identify both these 

phenomena. This paper describes an integrated 3D software platform combining the 

mapping of both frequency spectrum and phase from atrial electrograms (AEGs) to help 

guide persAF ablation in clinical cardiac electrophysiological studies. 

Methods: 30 s of 2048 non-contact AEGs (EnSite Array, St. Jude Medical) were collected 

and analyzed per patient. After QRST removal, the AEGs were divided into 4 s windows 

with a 50% overlap. Fast Fourier transform was used for DF identification. HDF areas 

were identified as the maximum DF to 0.25 Hz below that, and their centers of gravity 

(CGs) were used to track their spatiotemporal movement. Spectral organization 

measurements were estimated. Hilbert transform was used to calculate instantaneous 

phase. 

Results: The system was successfully used to guide catheter ablation for 10 persAF 

patients. The mean processing time was 10.4 ± 1.5 min, which is adequate comparing to 

the normal electrophysiological (EP) procedure time (120~180 min).  

Conclusions: A customized software platform capable of measuring different forms of 

spatiotemporal AEG analysis was implemented and used in clinical environment to guide 

persAF ablation. The modular nature of the platform will help electrophysiological studies 

in understanding of the underlying AF mechanisms. 

Keywords: atrial fibrillation, noncontact mapping, frequency mapping, phase mapping, 

catheter ablation, intracardiac electrogram, diagnostic software  
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Introduction 

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia found in the 

clinical practice, affecting around 1% of the general population [1]. AF increases the risk 

of stroke by fivefold and it is also related with increased mortality and significant costs in 

medical treatments [2, 3]. While paroxysmal AF (pAF) can be effectively treated by 

radiofrequency catheter ablation, the outcomes for catheter ablation in patients with 

persistent AF (persAF) remain suboptimal due to limited understanding of its underlying 

pathophysiological mechanisms [1, 4].  

Electrophysiological (EP) studies have shown that structural and electrical remodeling in 

the atrial tissue are induced by sustained AF.  The remodeled tissue could generate focal 

ectopic activities that could propagate and form re-entry circuits. The atrial regions hosting 

such behaviors are important in the initiation and perpetuation of the arrhythmia [5, 6].  

Dominant frequency (DF) measured from atrial electrograms (AEGs) is believed to 

represent their main activation rate [7, 8]. Therefore, AEGs with high DF (HDF) might 

represent regions with rapid electrical activations and are potential targets for persAF 

ablation [9]. Additionally, organization index (OI) and regularity index (RI) have been used 

to estimate the frequency organization of AEGs, which might help in the identification of 

the underlying activations [8-10].  

Phase analysis was introduced as a promising technique to identify rotors and their 

spatiotemporal propagation that are potential AF drivers [11, 12]. Recent studies have 

shown beneficial outcomes in persAF ablation by targeting rotors defined by points of 

singularity in phase maps [12, 13]. Both HDF and phase mapping might help to identify 

potential AF drivers and ablation of those areas might contribute to AF treatment [13, 14].  

Most EP studies consider point-by-point sequential AEG recording. A recent multi-center 

study concluded that additional high frequency source ablation beyond pulmonary vein 
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isolation (PVI) using sequential mapping did not improve the outcome of persAF patients 

[15].This finding may suggest that simultaneous signal collection should be preferred. For 

instance, the DF measured from AEGs was shown to be spatiotemporally unstable during 

persAF, but it might have cyclic reappearance in some atrial regions, suggesting that 

simultaneous recordings are needed to characterize such regions [16]. Additionally, 

proper atrial phase mapping can only be achieved with simultaneous atrial recordings 

[11]. Currently, multi-electrode array (MEA) and baskets provide simultaneous global 

unipolar AEG measurements [17]. However, there are no commercial solutions for online 

DF analyses for simultaneous unipolar AEGs.  

The main objective of the current study was to design, develop and validate a quasi-real 

time interactive graphic user interface (GUI), incorporating these multiple parameters 

(frequency, organization and phase) to guide EP studies in persAF patients. 

Computational Methods 

Electrophysiological study and platform validation 

The present study was approved by local ethics committee for patients undergoing AF 

ablation at the University Hospitals of Leicester NHS Trust. The software platform, named 

USURP-GUI, was designed for the USURP-AF (Understanding the electrophysiological 

substrate of persistent atrial fibrillation) study. Ten persAF patients undergoing catheter 

ablation in the left atrium (LA) for the first time were enrolled. The patients were given 

anticoagulant drugs to reduce the risk of blood clots before the procedure. Under 

fluoroscopic guidance, after bilateral femoral venous access was achieved, a quadripolar 

catheter and a deflectable decapolar catheter were placed at His position and coronary 

sinus respectively. Trans-septal puncture was performed to gain access to the LA. A high-

density non-contact mapping (NCM) MEA catheter (EnSite Array, St. Jude Medical, USA) 

and a conventional deflectable mapping catheter were deployed. Anticoagulant drugs 
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were administered to maintain an activated clotting time > 300 s. A high-resolution 3D LA 

geometry was generated using electro-anatomical mapping (EnSite Velocity, St. Jude 

Medical, USA) and anatomical locations were annotated. 2048 channels of unipolar AEGs 

(sampling frequency: 2034.5 Hz) were simultaneously collected for 30 s, as well as the 

12-lead ECG. During the EP procedure, the data were exported from the EnSite Velocity 

system using a DVD-RW. The data were transferred to a personal computer and 

investigated on the USURP-GUI. The results were exhibited on a screen available to the 

electrophysiologist performing the ablation to help identifying the atrial regions of interest. 

Figure 1 illustrates the steps of using the USURP-GUI to guide catheter ablation during 

EP studies.  
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Figure 1. The workflow of using the proposed platform to guide catheter ablation: (a) NCM 

array and EnSite Velocity system used to collect the data; (b) information exported using 

DVD-RW disks to laptop running MATLAB; (c) USURP-GUI screen; (d) results exhibited 

to the cardiologist to help guide ablation.   

The USURP-GUI Platform 

The USURP-GUI allows for online and offline EP investigations, by reading either 

exported comma-separated-value data from EnSite Velocity system (.csv), or loading pre-

saved MATLAB (.mat) files. The simultaneous AEGs and electrocardiograms (ECGs) 

were exported from the EnSite Velocity system during online analysis, and the processed 

results were saved for offline studies. Figure 2 shows a schematic representation of the 

data processing steps of the platform during the online analysis. All the steps are 

explained further in the subsequent sections. The platform was developed using MATLAB 

(Mathworks, MA, USA, version 2014a). A laptop running 64 bits Windows 7 professional 

operating system (Microsoft, Redmond, WA, USA) with Intel i7-4800MQ quad-core 

processor, 32 GB DDR3 RAM and 32 GB solid-state drive (SSD) was used during the EP 

procedure.  
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Figure 2 . A schematic representation of the data processing procedures of the platform 

during online analysis: (a-b) The process starts by reading the comma-separated files 

(.csv) exported from the EnSite Velocity mapping system, and extracting the information 

needed for the analysis: ECGs, AEGs, 3D atrial mesh geometry and the anatomical 

labels. (b-c) The QRS onsets and T wave ends are detected from one of the ECG leads 

(chosen by the user). After that, QRST subtraction is performed to remove the ventricular 

far-field influence from the AEGs. (d) The DF of the AEG segment is identified, and the 

OI and RI calculated. (e) HDF maps are generated for each time window and the centers 

of gravity (CG) of HDF regions are identified. The trajectories of the CGs are plotted, and 

sequential CGs are connected with a dotted line to help visualize the movement of HDF 

areas along time. (f) Phase maps are generated from the AEGs. The processed data are 

saved and can be re-loaded later for offline analysis. 
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QRST subtraction 

Ventricular far-field activity present in the AEGs might appear as misleading frequency 

components on the atrial frequency spectrum, affecting the accuracy of both the 

identification of the DF peak and phase mapping [18]. Therefore, a QRST subtraction 

technique was performed to remove the effect of ventricular far-fields for the 2048 virtual 

AEGs as previously described [19]. Before the subtraction, the user can select which ECG 

lead should be used. From this lead, a QRS onset and the end of the T wave are found 

and the fiducial points are projected to the AEGs after coherent delay alignment. Time 

average (adaptive) templates of local ventricular influence for each AEG are then 

removed by subtracting the template. The AEGs after QRST removal were used for 

further analysis (Figure 2 b-c). 

DF Mapping 

The AEGs were divided into 4 s-long segments with 50% overlap [16]. For each segment, 

Fast Fourier transform (FFT) was performed to estimate the frequency spectrum (Eq. 1). 

FFT evaluates the discrete Fourier transform defined as below [20].   

𝑋𝑘 = ∑ 𝑥𝑛 ∙ 𝑒
−𝑖 2𝜋𝑘𝑛

𝑁

𝑁−1

𝑛=0

      𝑘 = 0, … , 𝑁 − 1 𝐸𝑞. 1 

A Hamming window was used to reduce the amplitude of the side lobes around the DF 

peak in the power spectrum [21].  

A zero padding factor of 5 was applied when performing the FFT, resulting in a frequency 

step of 0.05 Hz. DF was defined as the frequency peak in the power spectrum within the 

physiological range of 4-10 Hz [16, 22]. 
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Assessment of the frequency organization  

Although it is believed that DF correlates with the main activation rate representing the 

local periodic activities, it is important to investigate the relationship between the DF and 

the remaining frequency components present in the frequency spectrum of the AEGs [10]. 

Regularity and organization index have been used to assess the relevance of the DF in 

the frequency spectrum of AEGs, providing an assessment of the AEG activation 

organization [8-10]. In the present study, RI was defined as the ratio of the area of the DF 

peak and the total area of the power spectrum (Eq. 2). 

𝑅𝐼 =  
∑ 𝑋[𝑓]

𝑓𝐷𝐹+𝑘
𝑓=𝑓𝐷𝐹−𝑘

∑ 𝑋[𝑓]
𝐹ℎ
𝑓=𝐹𝑙

 𝐸𝑞. 2 

where 𝑓𝐷𝐹 is the DF of the unipolar AEG segment, 𝑓 is the frequency, 𝑋[𝑓] is the power 

spectrum, 𝑘 defines a DF width threshold (here set at 0.375 Hz), 𝐹𝑙 and 𝐹ℎare the lower 

and higher boundaries of the physiology range of the arrhythmia respectively (in our case 

4 Hz to 10 Hz).  

Similarly, OI is defined as the ratio of the area of the DF peak and its harmonics, and the 

total area of the power spectrum (Eq. 3) [2]. 

𝑂𝐼 =
∑ 𝑋[𝑓]𝑓𝐷𝐹+𝑘

𝑓=𝑓𝐷𝐹−𝑘 + ∑ ∑ 𝑋[𝑓]
ℎ𝑛+𝑘
𝑓=ℎ𝑛−𝑘

𝑁
𝑛=1

∑ 𝑋[𝑓]
𝐹ℎ
𝑓=𝐹𝑙

 𝐸𝑞. 3 

Where hn are the harmonic peaks of the DF, and N is the total number of harmonic peaks 

within a certain frequency band. To maintain clinical relevant results, harmonics up to 20 

Hz are included in the calculation.  

HDF cloud and the trajectory of CGs 

To track the spatiotemporal behavior of the high frequency regions in the atrium, HDF 

areas (HDFA) were defined as regions with DF value equal to or higher than the maximum 
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DF- 0.25 Hz for each time window [16] (Eq. 4), where 𝑖 denotes the electrode number 

and 𝑛 is the time window number.  

𝐻𝐷𝐹(𝑖, 𝑛) = {
𝐷𝐹(𝑖, 𝑛), 𝐷𝐹(𝑖, 𝑛) ≥ 𝑚𝑎𝑥(𝐷𝐹(𝑛)) − 0.25

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝐸𝑞. 4 

The CG of each HDFA was estimated from a 2D rectangular uniform mesh representation 

in order to summarize the dynamic movement of the sequential HDFAs. For sequential 

frames, the trajectories of the shortest path between the CGs were also identified using 

Dijkstra’s algorithm on the 3D triangular mesh [23]. 

Phase mapping 

Hilbert transform ℎ(𝑡)  was used to generate an analytic signal 𝐹(𝑡) , from which the 

instantaneous phase 𝜑(𝑡) of the AEGs can be calculated as the four-quadrant inverse 

tangent of the ratio of the  imaginary ℎ(𝑡) and real part 𝑓(𝑡) of the analytic signal (Eq. 5), 

where ℎ(𝑡) is the Hilbert transform of the original signal 𝑓(𝑡) [11, 24]. 

𝐹(𝑡) = 𝑓(𝑡) + 𝑗 ℎ(𝑡) = 𝐴(𝑡) 𝑒𝑗 𝜑(𝑡) 

𝜑(𝑡) = 𝑡𝑎𝑛−1 ⌊
ℎ(𝑡)

𝑓(𝑡)
⌋ 

𝐸𝑞. 5 

Mesh Triangulation 

The locations of 2048 (64 x 32) virtual electrodes provided by the EnSite Velocity system 

can be easily manipulated to form a mesh of rectangles. Nevertheless, this type of mesh 

would result in steep CG trajectories. The atrium was therefore re-meshed to obtain a 

triangular structure in order to obtain smoother CG trajectories [25].  

AEG Visualization 

Considering the importance of visualizing AEGs in atrial regions of interest during EP 

studies, the algorithm to detect the intersection of triangle plane and the line through the 
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current cursor location was implemented based on Cramer’s rule [26]. Therefore, the AEG 

at any node could be visualized. 

Saving data for offline analysis 

The processed data, which includes the AEGs after QRST subtraction, frequency 

measurements, phase, CGs and trajectories, labels and positions of LA anatomical 

structures, vertices and triangulations of the LA 3D geometry, were saved for 

retrospective offline analysis. 

Processing time 

In order to test the feasibility of the platform during EP procedures, the processing time 

for 30 s-long segments from five patients was tested in a ‘dry run’. The processing time 

was assessed for five modules, accordingly: reading exported data; QRST subtraction; 

frequency calculations; phase calculation; and saving results. The processing time for 

each module was measured within MATLAB. 

System Description 

The proposed platform was developed using MATLAB (Mathworks, MA, USA, version 

2014a), including a user-oriented interface (graphic user interface [GUI]) which can be 

easily operated by the clinician, providing online and offline analysis of both frequency 

and phase mapping.  

The USURP-GUI has embedded the following main features: Read/load data; map type 

selection; time window selection; rotation control. 

Read or load the data 

The ‘Read/Load’ buttons on the left upper corner of the main window are used for 

selecting the type of analysis (Figure 3). If the user clicks on one of the buttons, a file 
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selection window will pop up. The ‘Read’ button is used for online investigations. The user 

is expected to select 3 files (.csv), named Labels, ECG and AEGs. From the EnSite 

Velocity system, 2048 virtual unipolar electrograms were exported with the filename  

‘Virtuals_Grid_2048.csv’. This .csv file contains both atrial electrograms and the 3D 

locations of the virtual electrodes. With the scattered 3D coordinates, the left atrial 

geometry with 2048 virtual electrodes were reconstructed. Additional, the surface ECGs 

(‘ECG_FILTERED.csv’) and anatomical labels (‘Labels.csv’) were also exported and 

processed by the platform. The ‘Load’ button is used for offline analyses. In this case, 

only one MATLAB file (.mat) containing all the data is selected. For both cases, once the 

data files are selected, the button changes to red showing that the tool is processing the 

data and will turn green when the system is ready to show the results. 
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Figure 3. Illustration of the USURP-GUI features and interface. A. DF with fixed color map 

B.DF with adaptive color map. C. OI with adaptive color map D. RI with adaptive color 

map E. Phase maps with slider to play, pause, forward and backward. 
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Map type panel 

On the right upper corner of the main page (Figure 3), a group of buttons allows the user 

to select the type of AEG analysis to be projected in the platform on the 3D mesh. The 

AEG analysis includes DF maps, OI, RI, phase maps, trajectory and a summary of CGs.  

DF maps 

The default analysis is ‘DF’, in which a group of two by three LA maps is generated with 

the DF values projected in the LA geometry (Figure 3A and 3B). The first row with three 

maps (Figure 3A) represents sequential windows of DF with the color code range fixed in 

4-10 Hz, while the second row (Figure 3B) shows the same maps, but using a different 

frequency range, adjusted from the minimum to the maximum DF values within the three 

maps. This provides a more detailed look of the landscapes and contours of the DF maps.  

OI and RI maps 

If the buttons OI or RI are selected, the three maps in the first row will continue to show 

the DF values, but the three maps in the second row will change to either OI or RI – 

according to the selection – of the same time window (Figure 3 C-D). This allows the 

users to investigate the DF maps with the frequency spectrum organization maps 

simultaneously, for each time window (Figures 3C and 3D).  

Phase maps 

Similarly, the phase calculated from the AEGs can be projected in the LA geometry on 

the maps in the second row (Figure 3E). Whilst frequency features are measured over 4 

s time windows, the phase is instantaneous and hence measured at each time frame. 

Therefore, a slider was designed to assess the sequential frames of the phase in the 3D 

LA maps. Additionally, the frame step can be set by the user in order to control the play 

speed by entering an integer ‘step’ number in the right lower corner.  
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Trajectory of CG maps 

Once the ‘Trajectory’ button is selected, two large maps showing the HDF cloud and its 

CG are displayed, as measured from the first time window (Figure 4A). The ’Next’ button 

updates the maps with the HDF and CG measured from the next time window, and the 

trajectory of the CGs on the 3D mesh is also projected on the map, as illustrated in Figure 

4A. In this case, the red area refers to the HDF cloud measured from the selected time 

window, and its respective CG is represented as the white dot with black edge (inside the 

cloud). The magenta dots represent the CGs measured from previous time windows, and 

the white dotted line is the shortest path between consecutive CGs projected on the mesh.  
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Figure 4. A. CGs and the trajectories between sequential CGs (current HDFA in red zone; 

previous CGs in magenta circles; current CG in white circle; trajectories tracking the 
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movement of CGs in white dotted lines). B. Summary of all the CGs (full white dots) and 

the AEG of a point selected by the user. 

Summary of CGs 

The tool allows to shown one full screen map with the CGs projected on the mesh as 

measured from all time windows, as a summary of the CGs clustering (Figure 4B). In this 

analysis, virtual AEGs can be visualized by selecting the nodes on the mesh. The CGs 

are represented as white dots on a grey 3D LA map.  

Rotation Control and Labels 

The ‘Link/Unlink’ button on the left upper corner (below the ‘Load’ button) allows linking 

and unlinking the rotation of the six maps (Figure 3). Thus, the user can rotate the plots 

simultaneously or individually by selecting and deselecting the button. As seen in Figures 

3 to 4, the software also allows the display of the anatomic references created by the 

EnSite Velocity system. 

Processing Time 

The overall USURP-GUI processing time (mean ± SD) when pressing the ‘Read’ button, 

i.e. during online EP studies, was 624 ± 90 s for AEGs with 30 s. The processing time for 

each module is shown in Figure 5, divided accordingly: reading exported data (204.1 ± 

7.5 s); QRST subtraction (220.9 ± 97 s); frequency calculations (43.9 ± 0.2 s); phase 

calculation (130.8 ± 4.9 s); and saving results (21.4 ± 0.1 s).  
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Figure 5 Processing time and standard deviation (bars) of the key modules embedded in 

USURP-GUI. 

Discussion 

Different features measured from AEGs were used individually in previous EP studies, 

with varying outcomes [12, 13, 16, 27, 28]. A software platform able to integrate these 

different AEG features would help to improve our understanding regarding the underlying 

mechanisms of persAF maintenance and in the identification of targets for ablation.  

In the present work, we developed and validated the first software platform that 

investigates multiple forms of spatiotemporal AEG features, such as frequency and phase 

analysis that can be used during the EP procedure, to help guide catheter ablation in 

persAF patients [29].  
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Mechanisms for persAF maintenance  

AF initiation and perpetuation requires both triggers for its onset and a substrate for its 

perpetuation [30]. In general, patients with pAF are likely to have a predominance of 

factors that trigger AF, whereas patients with persAF are more likely to have a 

predominance of perpetuating factors due to atrial remodeling [31]. There is, however, 

overlap between these mechanisms in a sense that patients with pAF might not present 

identifiable triggers, as well as triggers can be found as the main cause for maintenance 

of AF in patients with persAF [32].  

Catheter ablation has proven to be an effective therapy for pAF [33, 34]. As persAF is a 

more complex arrhythmia than pAF, the identification of atrial areas for successful 

ablation in patients with persAF remains a challenge due to the co-existence of multiple 

arrhythmogenic mechanisms [4, 35]. Previous works have shown that the DF measured 

from AEGs correlates with the local main activation wave during persAF [9, 14, 36]. 

Therefore, tracking the spatiotemporal behavior of atrial sites hosting HDF could help in 

the identification of arrhythmogenic regions [16]. Some researchers have argued that 

HDF might also be caused by wavefront collisions, and OI could help to distinguish AF 

drivers [37]. In addition, rotor-guided ablation has shown promising success rates in early 

data [11, 24, 38]. Therefore, the proposed platform would help to understand the 

relationship between multiple features and study the underlying mechanisms of AF. 

Estimating DF using NCM 

Previous studies showed imperfect correlations between the NCM and contact mapping 

[39-41]47. Schilling et al. found a correlation of 0.74±0.19 for 3600 electrograms tested 

in the right atrium [39]. Later in 2006, Earley et al. showed the similar correlation 0.81 

(0.27 to 0.98) from the left atrium [40]. Jarman et al. also showed a correlation of 0.7±0.15 

for 62 random locations in the left atrium [41]. It was also shown that correlation 

decreased with increasing distance between the endocardial node and the balloon [40, 
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42]. However, these comparisons were limited on the correlation of the morphology of 

electrograms. In the interesting work by Gojraty et al., instead of comparing electrograms 

in time domain, DFs measured with contact bipolar recordings and noncontact unipolar 

were compared. Although low correlation was also found between contact and con-

contact electrograms, there was no significant difference in the mean DFs between 

contact bipolar and noncontact unipolar signals [43]. Therefore, it is feasible to estimate 

DFs using noncontact mapping. 

FFT Window Size 

The technique of analysing DF using non-contact mapping of virtual AF electrograms has 

previously been studied and validated by other researchers [16, 43, 44]. Sanders and 

colleagues terminated human AF in catheter ablation guided by contact DF mapping 

using windows of 4096 samples with sampling frequency of 1 kHz, using time windows 

of 4 seconds [9]. Ng and colleagues showed relatively good correlation between DF 

calculated using 2 seconds time sub-widow and full 4 seconds window, and 4 consecutive 

windows of 4 seconds could improve the correlation of DF with the atrial activation rate 

comparing to the DF calculate using just a single window [45-47]. Later, Stiles et al. 

studied the correlation between the DF using AF EGMs from 1 to 7 second time windows 

and the DF from 8 second window, and they concluded that EGMs with duration of 5 

seconds or longer could accurately describe the DF [48].  

In the current study, 4-second windows were chosen as it has been shown by other 

investigators that if smaller “slide windows” were chosen, the electrogram window did not 

accurately characterize DF sites [3, 9, 48]. In addition, longer FFT window segments 

would contribute to a considerable increase in the appearance of stability of DF over time, 

which could be potentially misleading the localization of potential AF sites [16]. In the 

spectral analysis strategy, an anti-leakage window has been implemented to reduce 

undesirable effects due to abrupt discontinuities at the beginning or the end of the 
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segment [49]. By considering that the AF signal might have non-stationary components, 

relevant AF events can occur in periodic intervals that might well be important to the 

analysis. These events can occur at the beginning or end of the AF window segments - 

using an overlap processing (50% used in this case) would capture the events of interest 

because with the overlapping of the time records used to calculate the spectrum, the 

Hamming window function would align with the events thus including them in the 

calculated spectrum. 

Online analysis during EP procedure 

Our results show that the overall processing time (about 10.5 min) of the USURP-GUI for 

30 s segments of the 2048 channels of AEGs is relatively short compared to the total time 

of catheter ablation procedures for complex persAF (typically 120-180 min) [50]. It is 

possible for integrated analysis considering multiple features measured from AEGs during 

persAF, which would provide a multidimensional perspective of the arrhythmia, in which 

different aspects of the underlying mechanisms for persAF maintenance would be 

simultaneously investigated, and may further contribute to improve the efficacy of persAF 

therapy [51]. 

Clinical Significance 

Previous studies have shown that the DF of individual AEGs is temporally unstable in 

persAF, which highlights a serious limitation of the point-by-point sequential mapping 

technique [7, 16]. Simultaneous unipolar AEGs can be collected using high-density NCM 

[17]. DF analysis of such simultaneous unipolar atrial signals during persAF could help to 

reveal the spatiotemporal distribution of the atrial activations. However, current 

commercial mapping systems do not provide online DF analysis of the simultaneous 

unipolar signals. In addition, the USURP-GUI was implemented with advanced 

spatiotemporal analysis of movement of HDF regions [16]. Even though analysis in the 

current platform (DF, RI, OI, phase mapping) has been already well established, such 
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multiple features are still lacking from available systems, especially using high density 

NCM. 

Commercial systems and research-orientated platforms for the investigation of rotor 

analysis and complex fractionated atrial electrograms (CFAEs) are usually either built-

into the commercial mapping systems or by reading the exported data from other 

recording systems [12, 13, 52]. For instance, the RhythmView ® mapping system 

(Topera, Menlo Park, CA, USA) is used to create AF propagation maps using 

electrograms exported from commonly-used physiological recorder (Bard, Lowell, MA) 

via USB storages, and the proposed system operates in such similar fashion during the 

EP procedures. 

The present platform was developed as a versatile tool and can be easily expanded to 

include other algorithms considering different theories of persAF maintenance and 

arrhythmias, such as CFAEs to further investigate the multiple wavelet hypothesis [52]. 

Additionally, other tools can be integrated in the USURP-GUI to allow more 

comprehensive studies of multiple aspects of the arrhythmia, such as HDF histogram 

mapping to investigate the DF spatiotemporal behaviors [53], recurrent patterns of HDF 

algorithms [54] and up-to-date classification techniques for CFAE [55]. The preliminary 

outcome of using this platform was reported [56].  

Limitations 

As the current platform runs on MATLAB environment, the data exported from the 

mapping system were transferred on to the laptop using DVD-RW disks. Clearly, the 

additional time of burning the DVD and importing data to the USURP-GUI from the DVD 

has to be considered during the EP. Even though the latest mapping system is able to 

support USB storages that are much faster comparing to burning DVDs, it would still be 

interesting to integrate the analysis performed in our platform to the such mapping 
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systems themselves, in order to speed up the current ablation guided by additional 

features. 

Conclusions 

We have designed a bespoke software platform capable of handling multiple forms of 

spatiotemporal AEG analysis, and objectively demonstrated the feasibility of utilizing the 

platform in a clinical environment during persAF ablation. The proposed mapping 

platform, USURP-GUI, is a fully automated software interface that provides a 3D 

representation of the atrium. It can be used to guide persAF ablation considering multiple 

features measured from AEGs during persAF – such as the DF and phase – and can be 

easily expanded to include additional features. The USURP-GUI provides a 

multidimensional perspective of the arrhythmia, in which different aspects of the 

underlying mechanisms for persAF maintenance can be investigated, and may further 

contribute to improve the efficacy of persAF therapy. 
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