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Abstract 
The issue of waste generation and its environmental implications raises important questions 
about firms’ responsibilities.  Regulations as well as firms’ voluntary actions may result in 
waste reduction, but are costly to firms.  Such costs may stem from “end of pipe” waste 
management, or from process solutions that involve changes in firms’ input use.  We evaluate 
county-level patterns of input use and output production in U.K. manufacturing, using a cost 
function approach that includes waste as a “bad output.”  We estimate the overall, input-
specific, and marginal production costs of reducing waste as shadow value, input demand, and 
marginal (“good output”) cost elasticities with respect to this harmful output.  We find for 
most counties that there are significant costs associated with waste reduction, that arise from 
increased intermediate materials but lower labour and capital demand. 
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Introduction 

In the last two decades waste has become an increasingly important environmental concern in 

most developed and developing countries. Fuelled by the Brundtland Report (World 

Commission of Environment and Development, 1987), the issue initially targeted was 

potential risks from waste to human health and the environment. The response to this by the 

U.K. government, as in many countries, was to legislate and use command and control 

frameworks to ensure safe disposal of waste, placing liability "from the cradle to the grave" 

and assigning duties for appropriate disposal. Attention has since shifted to the concept of a 

sustainable rate of waste generation, and the use of more market-oriented methods to regulate 

the disposal of waste.  

 

In particular, a landfill tax was introduced in the U.K. in 1996 to encourage the reduction of 

waste.  Set initially at a rate of 7 pounds per tonne, the aim of the tax was to internalise the 

externalities created by waste disposal in landfills, thus encouraging movement up the waste 

hierarchy to more sustainable waste practices such as recycling, reuse, and ultimately waste 

minimisation. Such a market mechanism provides incentives for firms to shift attention from 

end of pipe solutions to process solutions for waste minimisation, consistent with material 

flow principles (Pethig 2003) that are an increasing focus of sustainability. Viewing waste 

minimisation in the materials flow framework brings to the forefront firms’ use of process 

inputs such as virgin and reused material, energy, and labour, rather than just waste 

management at the end of the process.  That is, it underscores the role of production decisions 

and processes, and their likely changes in response to taxes or other forms of government 

intervention to stimulate waste reduction. 

 

A growing number of firms have also chosen to go “above and beyond” legal requirements by 

engaging in recycling and abatement activities that further minimise waste and thus reduce 

environmental degradation. This behaviour, like actions such as initiating progressive human 

resource management programmes and embodying products with socially desirable attributes 

(such as dolphin free tuna or recycled paper), has become known as Corporate Social 

Responsibility (CSR: McWilliams and Siegel, 2001). Environmental CSR has manifested 

itself in several forms. Many firms have adopted voluntary environmental management 
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systems, such as ISO14001,1 which have provided a vehicle for waste minimisation within 

firms. Others have signed international agreements such as the U.N. Global Compact, or have 

joined local initiatives such as envirowise2 waste minimisation clubs.  A substantial rise in the 

level of environmental reporting has also been evident, either as a "stand alone" report or a 

part of the company reporting process. These trends have largely been driven by an increasing 

demand for “transparency” from stakeholders, and perceived consumer demand for 

environmental quality. Therefore firms have also used this medium to gain both reputational 

and market benefits from their environmental activities.(Arora and Cason, 1996) These 

activities can therefore be thought of as having both pecuniary and non-pecuniary 

motivations, but again involve increased production costs. Furthermore, the level of voluntary 

action might also be a function of the location of manufacturing, whereby economic 

prosperity, clustering of industry, geographical location and political activism might influence 

the levels of voluntary abatement (Arora and Cason, 1999). This suggests there might be 

location-specific “demand side” characteristics for waste abatement.   

As waste management is related to production processes, analysis of waste practices and the 

potential for – and costs of – waste minimisation requires a "supply side" rather than a 

"demand side" approach (McWilliams and Siegel, 2001).  This study develops such a 

framework, to characterize waste decisions by U.K. manufacturing firms in the context of 

production processes and costs, and thus in terms of their impacts on input use, output 

production, and efficiency, which are often the focus of debates about waste minimisation 

(Environment Agency, 2003).   

 

                                                 
1 ISO 14001 is an environmental management system (EMS) introduced in 1996 by the International Standards 
Organisation. Firms are audited and accredited by independent accreditation agencies. Part of ISO 14001 is the 
process is firms setting their own environmental targets, however these targets are completely voluntary, and are 
not externally enforced or sanctioned. 

2 There are over 100 active waste minimisation clubs across England & Wales, providing advice to well over 
5000 companies. The focus of these groups varies: some provide support to industries across a range of business 
sectors while others support specific sector groups. Their aim is to encourage reductions in resource use and 
waste emissions, and is supported by the environment agency. 
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A primary goal of firms is the maximization of output production while minimising private 

costs.  Minimising environmental costs may also be a key target, especially in response to 

pecuniary, social, or other incentives.  Reaching these objectives involves making choices 

about waste generation, in combination with other production decisions.  Like other forms of 

CSR, waste minimisation (reduction) would be expected both to reduce output production, 

since output and waste tend to be joint products, and to increase input costs, since more or 

better inputs are necessary to reduce wastage.  Formally, these impacts of waste management 

may be characterized as (the primal notion of) lower output production from a given level of 

inputs, modeled via a production function, or (the dual counterpart of) higher input costs for a 

given level of output, from a cost function. 

Input costs associated with reducing waste may also increase at the margin; firms with higher 

waste reduction levels incur higher implicit costs (shadow values) of waste management – or 

marginal waste reduction costs (Figure 1).  Average costs of (good output) production may 

also be affected differently than marginal costs by waste management, thus affecting profit 

maximizing production decisions as well as scale economies.  Cost impacts may also vary 

across inputs – or be biased.  Biases might be absolute (if waste management involves 

increases in some and decreases in other inputs), or relative (e.g., increases in multiple inputs 

but by differing amounts). 

For example, minimising waste can be capital intensive, as it often involves specific capital 

purchases such as pollution abatement (waste reduction) machinery.  Firms employing higher 

levels of waste management technology will thus face higher capital costs, which may not be 

uniform across firms.  Greater capital intensity for the provision of waste minimisation might 

in fact be associated with increased scale economies, due to the large fixed costs involved in 

waste management investment.3  In turn, labour costs could rise if more staff is required to 

implement, monitor, and engage in the additional required capital expenditures (McWilliams 

and Siegel, 2001).   

The likely impact of waste minimisation on material flows seems more ambiguous.  Based on 

the materials flow framework and the implied efficiency impacts of waste minimisation, 

reducing waste might lead to lower levels of primary, “virgin,” or "new" material use, by 

encouraging reuse of materials within the production process.  However, it alternatively might 

                                                 
3 The higher are firms’ output levels, the lower the per unit cost of the technology. 
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be the case that reducing waste requires higher quality or more “processed” inputs, thus 

increasing the effective quantity (and thus price) of material inputs (McWilliams and Siegel 

2001).  This also raises questions about capital and labor impacts, since increased demand for 

more processed materials might reduce the demand for “value added” inputs formerly used 

for processing.  

The overall cost implication of waste reduction depends on the balance of these input demand 

effects.  If overall costs are higher (as one would expect, because otherwise waste reduction 

would have been cost-minimising before-hand), more stringent waste regulation or greater 

“demand” pressures for CSR from stakeholders could have significant implications for the 

cost structure and thus competitiveness of U.K. manufacturing firms.  There are also likely to 

be spatial variations in these effects since companies in areas with higher marginal waste 

reduction costs, due to different types or density of production and population, will be less 

likely to reduce waste.4       

To better understand and quantify the potential implications of waste reduction on U.K. 

manufacturing firms, we model regional cost, input demand, and output production patterns 

for this industry, and their connection with waste generation. Our framework is based on a 

flexible cost function, which permits the representation of a broad range of cost interactions 

and effects.  We estimate these relationships econometrically using county by year panel data 

(42 counties in 1991-1998) for multiple outputs and inputs, including waste as an undesirable 

"bad" output.  This model and data allow a detailed evaluation of production processes over 

time and space, and their link to the costs of waste reduction – or input- output- and spatial-

specific patterns in the costs of environmental CSR activity and thus competitiveness. 

 

We represent production costs associated with the reduction of waste by estimated shadow 

values for the “bad output” (waste) that embody the underlying effects on technology, and 

input and output composition. That is, they depend on the technological substitution 

possibilities and input demand and output supply behaviour of U.K. manufacturing firms that 

are captured in our empirical framework.  These shadow values may be thought of as input 

cost savings from free disposal of waste (the marginal benefits of not being socially 

responsible), or, conversely, as the costs of this form of environmental CSR (waste 

                                                 
4 Regional variations in supply and demand of waste disposal facilities may also cause waste disposal costs to 
vary, causing spatial variation in cost incentives for waste minimisation.  Thus one might see different costs on 
the margin for different reasons due to different motivations to minimise waste. 
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reduction).  The corresponding factor-specific effects on the demands for inputs (labour, 

capital and materials) and the supply of products (good and bad outputs) are also estimated ,to 

assess whether waste reduction is labour or capital intensive, or leads to reductions in 

materials use or output production. 

 

We find for the 60 percent of “regular” counties in our sample that there are costs associated 

with waste reduction that increase on the margin, arise from higher intermediate materials but 

lower labour and capital demand, and imply greater scale economies.  For metropolitan 

counties, however, there is a strong labour-using, and in commuter belt counties a strong 

capital-saving, bias.  These overall patterns imply that waste reduction requires more 

processed or higher quality materials, in turn resulting in less need for “value added” labour 

and capital inputs.  However this is counteracted in varying amounts by movements toward 

more labour-intensive (less “dirty”) production, and requirements for more waste-efficient or 

abatement capital.  Different patterns across counties may be related to different levels and 

trends in heavy/light manufacturing, capital intensity, age of plant, and bad/good output 

ratios. 

 

Methodology 

The Theoretical Model 

Measuring the costs and benefits of waste minimisation (reduction) in U.K. manufacturing 

involves explicitly modelling the production structure, recognising the wide variety of spatial 

and temporal output production and input cost patterns exhibited in the data.  Our county level 

dataset includes information on the production of one "good" (aggregated) output and one 

"bad" (waste) output, and the use of three inputs (capital, labour and intermediate materials). 

The good output and input data are in the form of multilateral price and implicit quantity 

indices.  The bad output, waste, is represented as a quantity only (due to problems obtaining 

accurate costs of disposal).  Our estimation framework is based on a cost function model of 

U.K. manufacturing, which represents a broad array of interactions among the underlying 

inputs and outputs.   

 

For empirical implementation the cost function is augmented by input demand equations 

defined by Shephard’s lemma, and represents spatial, temporal, and industrial patterns by 

dummies for three different types of counties, a time trend, and industry characteristic 

variables.  Including the quantity of waste (bad output) as an argument of the function, and 
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thus of the system of estimating equations, allows us to examine not only the shadow values 

(overall cost effects) of waste, but also the impacts on input demands (including intermediate 

material use) and output production levels (marginal cost and scale/scope economies). 

 

More specifically, the (total) cost function takes the general form TC=TC(QG,QB,w,D,t,CH) 

where QG is good output; QB is bad output (waste); w is a vector of input prices wj (for 

capital, XK, labour,  XL, and intermediate materials, XM); D is a vector of county-type dummy 

variables; t is a time trend; and CH is a vector of county-specific manufacturing 

characteristics.  The county dummy variables were included in an attempt to categorize three 

types of counties with very different patterns evident in the data; MET, COM, and CTY.  

These county types were distinguished according to intensity or clustering of production. 

Metropolitan areas (MET) are densely populated city areas, with high levels of manufacturing 

and a larger proportion of older (“dirty”) industries.5  Commuter belt counties (COM) are 

close to London and have lower levels of manufacturing and high levels of residential 

landuse. Most “regular” counties (CTY) are between these two groups in terms of 

manufacturing clustering and residential land use.  The industry characteristics included in 

CH – the average age of plants, CHAGE, and the ratio of heavy to overall manufacturing 

output, CHSIC – were chosen for their significant cost-impacts and explanatory power for 

county-level cost variations in preliminary analysis.6  

 

QB is incorporated as an argument of the cost function to recognize that bad and good outputs 

are jointly produced; it is impossible to eliminate waste emissions while producing good 

output. "Free" or "unrestricted" production of bads (waste) thus allows firms to use less inputs 

to produce a given amount of QG, or to produce more QG with a given input level, than if bads 

were limited.7  That is, reducing waste is expected to be costly to producers in terms 

productivity – lower output per unit of input, or more inputs (costs) for a given amount of 

output – because it requires resources which ordinarily would be used in production of "good" 

outputs to be transferred to the task of minimising waste, such as through environmental 

management schemes, environmental audits and actual physical waste reduction (Fare et al 

                                                 
5 These are listed as "metropolitan" areas in government statistics, and have city councils as opposed to county 
councils. 
6 Population density, R&D intensity of the manufacturing industry, and ISO 14001 accreditations were also tried, 
but either had insignificant effects or exacerbated rather than attenuated the variability across counties. 
7 However, firms typically do not have to pay for this “bad output” and thus do not take it into account in their 
optimization process, so ".the environment is being used as an unpaid input by producers disposing of effluent" 
(Paul et al. 2002).   
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1993). Conversely, however, it could be that the cost of waste minimisation is offset by 

material saving or enhanced “material efficiency,” resulting in short run productivity gains 

and longer term technological change (Chapple and Harris, 2003).  

 

As discussed in more detail below, these hypotheses about the productive or cost impacts of 

waste reduction may be addressed by evaluating the shadow cost (elasticity) of waste and its 

input- and output-specific components. That is, the shadow value or marginal waste reduction 

cost of QB, SVB = ∂TC/∂QB, represents the overall cost-impact of reductions in QB.  The 

input-and output-specific cost effects take the form of second order derivatives, because input 

demands (for Xj, j=K,L,M) and marginal production cost (of QG, MCG) are first derivatives of 

TC(●): Xj=∂TC/∂wj (by Shephard’s lemma) and MCG=∂TC/∂QG.  Input and output waste 

reduction effects may thus be represented by the impacts on Xj and MCG from QB changes or 

differences: ∂Xj/∂QB and ∂MCG/∂QB.  For our analysis, these derivatives are expressed in 

terms of elasticities to represent their proportional impacts.    

 

The Data 

Our empirical analysis is carried out at the county level; we distinguish 42 counties or 

metropolitan areas.8  The primary motivation for using the county as the unit of analysis is 

that disposal targets and waste strategies are decided at this level (whereas collection 

decisions are made at the more disaggregated local authority level).     

 

Our waste/production dataset merges information from the Annual Respondents Database 

(ARD) and the Chartered Institute of Public Finance and Accountancy (CIPFA) waste survey.  

The weighted ARD data are from Harris and Robinson (2002).  The ARD collects data from 

14000-19000 establishments, based on a stratified sampling frame. Because the collected data 

is heavily biased towards larger establishments (Oulton, 1997), sample weights for each 

establishment are calculated to ensure that they adequately reflect the underlying population 

distribution (Harris and Robinson, 2002).  Weighting is also advantageous due to endogenous 

sampling (Harris, 2002); as the stratified sampling frame is based upon employment size, the 

probability of being in the sample is likely correlated with variables in the model.  

 

                                                 
8 Two consistent outliers in the data, London and Warwickshire, were dropped from the analysis to avoid 
possible bias from outliers.   
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 The data on gross output (sales) and intermediate input (costs) were deflated using 1990-

based 4-digit information on producer prices for outputs and inputs.  The plant and machinery 

estimates of the capital stock for each plant, and the price of capital (user cost of capital 

services), are taken from Harris and Drinkwater (2000).  Labour quantity is reported as the 

number of full time workers, as reported in the ARD database and the price computed as total 

labour costs bill divided by this quantity. 

 

The waste data were taken from the CIPFA waste survey of waste disposal authorities about 

waste collection and disposal.9  In the time period in question the response rate for this survey 

ranged from 70% in the early 1990s to 81% in 1998.The surveys were conducted at the local 

authority level for waste collection data and at the waste disposal authority (county) level for 

the waste generated/disposal statistics. Waste is reported in tonnes.   

 

Summary statistics of the merged production/waste data for the full sample are provided in 

Table 1. Note that waste fell slightly between 1992 and 1997, with a sharp increase in 1998.  

This supports a criticism that the landfill tax meant to motivate waste reduction has been 

ineffectual (hence the change of the tax in 1998 to an escalating tax rate),10 although the 

waste-to-output ratio has remained reasonably constant overall (with some variation in 1995-

96 driven by output changes).  Gross output peaked in 1995, whereas both capital stock and 

employment have declined, and intermediate materials use (including outsourcing) has 

generally risen, during this time period.  Prices of outputs and inputs have all increased 

throughout the period of analysis, with the price of capital rising and of materials falling 

relative to labour. 

 

Empirical Measures of Waste Reduction Effects 

As alluded to above, the marginal (input) costs of waste reduction may be measured as the 

shadow value of the bad output (SVQB = ∂TC/∂QB), expressed in proportional (elasticity) 

terms as εTC,QB = ∂ln TC/∂ln QB.= SVQB●QB/TC. That is, -εTC,QB represents the proportion by 

which firms’ input expenditures would have to increase (for a given “good” output level, QG) 

                                                 
9 Only English local authorities were considered, and those with significant missing data were dropped, leaving 
42 included counties for 1991-98 (see Appendix table A1 for a list of the counties included). 
 
10 In the 1998 Budget, the UK Government announced a landfill tax “escalator”, whereby the landfill tax would 
be increased to £10 in 1998 and increased by £1 a year until the tax reached £15 per tonne. The aim of this tax 
was to trigger investment in waste abatement technology. 
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to reduce waste on the margin.  Conversely, it represents the marginal (input) cost savings or 

benefits from unfettered waste generation/disposal – and thus the marginal amount firms 

would be willing to pay for the right to increase QB, or the tax that would be necessary to 

stimulate QB reduction if it was not forthcoming voluntarily or directly legislated.  The sign 

and significance of εTC,QB is thus a fundamental issue to quantitatively explore in our analysis 

of the costs of waste reduction in U.K. manufacturing  Further, whether this cost effect 

increases at the margin can be determined by the second order elasticity εSVB,QB = ∂ln SVB/∂ln 

QB=     (-∂2TC/∂QB
2)●QB/SVQB.  

 

Unlike technological (production function-based) measures of marginal products or primal 

shadow values, the εTC,QB (cost-based) measure incorporates both technical substitution 

possibilities and the behavioural motivations underlying cost-efficient input choices. The 

overall cost effects represented by εTC,QB can therefore be decomposed into input-specific 

demand effects, to facilitate the analysis of linkages among waste generation (reduction) and 

capital, labour, and materials use.   
 

That is, based on Shepherds lemma, demand for input k is characterized by Xj=∂TC/∂wj 

(j=K,L,M). Input demand changes associated with increased (decreased) waste are therefore 

represented by the second order derivatives ∂Xj/∂QB = ∂2TC/∂wj∂QB. A more interpretable 

(unitless) representation of such a relationship is its proportional counterpart – the input 

demand elasticity εXj,QB = ∂ln Xj/∂ln QB.  For j=M, for example, εXM,QB reflects the 

dependence of material use on the (allowed or chosen) level of waste disposal, and hence the 

link between materials efficiency and waste minimisation.  Similarly, εXK,QB and εXL,QB 

capture the XK- and XL-specific impacts of waste reduction.  Assessment of input demand and 

composition (or intensity) responses to waste management changes thus involves evaluation 

and comparison of the εXj,QB measures. 

 

For example, the overall cost effect of QB, εTC,QB, will be negative if waste reduction is costly; 

reducing QB increases input costs.  If XM (materials) and QB (waste) are joint or 

complementary, as would be implied if waste minimisation involves reuse and minimisation 

of "virgin" materials, or increased “materials efficiency,” εXM,QB would instead be positive.  In 

this case an input bias in absolute terms is implied; if overall costs increase but material 

demand declines with waste reduction, the use of XK and XL must increase even more than 
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suggested by the total cost elasticity.  That is, εXL,QB and εXK,QB are likely to both be not only 

negative, but also more negative than εTC,QB (εXj,QB<εTC,QB<0, j=K,L).  If εXM,QB is instead 

negative, this may imply that higher (perhaps more processed) materials demand is associated 

with waste reduction.  However, the magnitude of this elasticity is still unlikely to be the same 

as εTC,QB or the other input-specific elasticities. In particular, if all εXj,QB elasticities are 

negative but are different sizes, relative input biases are apparent; cost increases from waste 

reduction may be input j-saving relative to input i.  These relationships may also vary across 

different types of counties or industries. Assessing these input demand relationships and 

biases with respect to waste reduction thus provides a broad range of information for 

evaluation of QB cost effects. 

 

Measuring the impact on the marginal cost of the good output (QG) from restrictions on waste 

(QB) provides further insights about the input- and output- specific costs of waste reduction.  

That is, the shadow or marginal cost of good output production is represented by its marginal 

costs: MCG=∂TC/∂QG. The impact of QB changes on marginal cost, ∂MCG/∂QB = 

∂2TC/∂QG∂QB or in elasticity form, εMCG,QB = ∂ln MCG/∂ln QB, thus reflects firms’ 

motivations to adapt output production levels in order to reduce waste.  Perhaps even more 

importantly, this measure also allows us to evaluate the implied change in scale economies 

associated with waste reduction.  That is, since scale economies are measured in a cost 

framework as εTC,QG = ∂ln TCG/∂ln QG = MCG/AC (where AC is average costs), if MCG falls 

(εMCG,QB>0) and/or AC rises (εTC,QB<0)11 at higher waste reduction levels, scale economies are 

correspondingly greater.  The εMCG,QB measure may also be interpreted in terms of scope 

economies, since scope economies (diseconomies) imply that when one “output” level 

increases the marginal cost of the other output declines (rises). 

 

Econometric Implementation and Results 

The Estimating Model 

The cost function from the model overviewed above thus takes the general form TC= 

TC(QG,QB,wK,wL,wM,DMET,DCOM,DCTY,t,CHAGE,CHSIC), where the vector notation has been 

expanded to make explicit the  individual arguments of the function.  Econometric 

implementation of the model, and construction of the parametric elasticity measures 

                                                 
11 This measure is positive rather than negative because the shadow value elasticity is defined here as the 
negative derivative to facilitate interpretation of the measure as the costs of waste reduction. 
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summarizing waste reduction costs, requires specifying a functional form for TC(⋅).  We 

approximate this function by a generalised Leontief form, with output levels and shift factors 

in quadratic form, as in Paul (2001): 

 

(1) TC(QG,QB,wK,wL,wM,DMET,DCOM,DCTY,t,CHAGE,CHSIC) =  ∑j ∑i αji wj
0.5 wi

0.5 

+ ∑j ∑m  δjm wj Qm + ∑j ∑r  δjk wj Ek  

+ ∑j wj (∑m ∑n γmn QmQn + ∑m∑k γmk Qm Ek  + ∑k∑l γkl Ek El ) , 

 

 where i,j denote the inputs, m,n the good and bad outputs, and k,l the external (denoted “E”) 

factors t, D, and CH.  Our system of estimating equations is comprised of this cost function, 

combined with three factor demand equations derived from (1) (Xj=∂TC/∂wj from Shephard’s 

lemma, j=K,L,M),12 and was estimated using seemingly unrelated regression (SUR) 

econometric procedures in PC-TSP (the parameter estimates are presented in Appendix Table 

A2). This approach is often preferred to an instrumental variable approach, which can lead to 

mis-specification and can cause serious problems with panel data.13  

 

Potential heteroskedasticity was accommodated by computing robust-White standard errors, 

and autoregressive (AR1) errors were allowed for initially, but had virtually no impact on the 

results and so were left out of the final model. County level dummy variables (fixed effects) 

were also incorporated in preliminary empirical investigation, but contributed to instability of 

the parameter estimates and thus volatility of the elasticity estimates without substantively 

affecting the overall or county-type patterns, and so were also omitted for our final 

“preferred” model.  Also, we retained in the model only those δjk, γmk, and γkl estimates for the 

county dummies that had t-statistics exceeding 1, since many were very insignificant. 

 

The elasticity estimates discussed in the previous section depend on a variety of parameters 

and their associated standard errors, because they are based on a somewhat complex flexible 

function form. Computing standard errors for the elasticities is thus problematic, particularly 

                                                 
12 By construction the cost function is homogeneous of degree one, so the input demand equations are 
homogeneous of degree zero. 
13 As discussed in Paul and MacDonald (2003), the choice of instruments is typically arbitrary and can generate 
volatility in the estimates that are exacerbated in a system of equations.  There also can be issues when an 
autoregressive structure is explicitly incorporated, especially when lags of the exogenous variables are used 
(although for our model we omitted the autoregressive adjustment). 
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when the cross-section dimension of the panel spans very different types of entities (in this 

case counties), so evaluating the elasticities at the mean of the data (using the “delta method”) 

is not very meaningful.14  It is therefore quite common in the cost literature to see such 

elasticities summarized simply as the mean of the elasticity estimates across all (or a subset 

of) observations.  However, it is desirable to derive confidence intervals for the elasticities to 

allow for statistical inference. One possible approach is to present estimates of statistical 

significance by county, but this is cumbersome and thus not very informative overall. We 

chose, therefore, to use bootstrap methods to generate distributions and thus confidence 

intervals for our elasticity estimates.15  Since this is not a common practice in this literature, it 

deserves further elaboration. 

 

Bootstrapping the cost function 

The concept of the bootstrap was first introduced in the seminal piece by Efron (1979) to 

provide new perspective to the established statistical technique of jack knifing and calculate 

(non-parametrically or parametrically) the distribution and thus standard error of a statistic.  

We applied the non-parametric approach, which directly reflects the structure of the data 

because it does not require an assumption about the form of the distribution.16 The non 

parametric bootstrap represents the discrete empirical distribution generated by a random 

sample of size n from an unknown distribution F. This empirical distribution of   assigns 

equal probability to each sample item.

nF̂
17  By generating an random sequence or resample from 

the distribution , or its smoothed version, we generate estimates of the original distribution.  nF̂

 

To develop the bootstrap standard error and bias estimators, let  θ  be a statistic based on the 

observed sample, from the unknown distribution function F, that estimates some real-valued 

n
ˆ

                                                 
14 Differences between the average values of the elasticities and the elasticities evaluated at the average values of 
the data, as found in our initial estimation, might arise because the assumed normal approximation does not 
account for possible skewness of the marginal distributions of the parameters, in addition to the wide variance 
across the sample. 
15 Bickel and Freedman (1981) formulated conditions for the consistency of the bootstrap, resulting in extensions 
of the Efron model to a broad range of  standard applications, and argued for the use of the bootstrap because it 
does not require theoretical derivations such as functional derivatives, influence functions, and asymptotic 
variances. Singh (1981) also demonstrated that the bootstrap estimator of the sampling distribution of a given 
statistic might be more accurate than the traditional normal approximation, so the bootstrap may be particularly 
useful when there is some uncertainty as to the correctness of traditional methods of estimation. 
16 The distribution is usually assumed to be normal, but our estimated elasticities evaluated at the mean values of 
the data suggested that a normality assumption for these data might not be warranted. 
17 For the parametric bootstrap setting we would consider F to be a member of some prescribed parametric 
family and obtain  by estimating the family parameters from the data. nF̂
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parameter of interest θ with standard error and bias seF(θ ) and biasn
ˆ F(θ ).  Since the form of 

the statistic θ might be very complicated, the exact formulas to compute the true standard 

error (BESE) and bias (BEB) might be very difficult to derive.  Bootstrap estimation 

approximates these measures with the help of multiple resamples.  

n
ˆ

n
ˆ

ˆ =B

)

ˆ Bes

ˆ(

 

The approximation to the standard error estimate suggested by Efron (1979) is: 

 

(2)      [ ]
2/1

1

2** )1/((.)ˆ)(ˆ








−−∑
=

B

b
n Bbes θθ

 

where θ    is the original statistic θ  calculated from the bth resample ( b=1…B),  θ  = 

, and B is the total number of resamples (each of size n).  By the law of large 

numbers: 

(ˆ* bn

Bb /)(

n
ˆ (.)ˆ*

n

∑
=

B

b
n

1

*θ̂

 

(3)        , )ˆ(lim
B nBESE θ=

∞→

 

and for a sufficiently large n : 

 

(4)        . )ˆ() nFn seBESE θθ ≈

  

Similarly, the approximation of the bias , based upon the B resamples, can be calculated 

by: 

Basibˆ

 

(5)  . n

B

b
nB Bbasib θθ ˆ/)(ˆˆ

1

* −=∑
=

 

The higher the “B” the higher the accuracy of the BESE and estimators. Typically, B=250 

gives a satisfactory approximation of the standard error, whereas for the bias B may have to 

be significantly higher (Efron and Tibisharani, 1993). We chose B=5000, which is 

computationally demanding but gives us highly accurate approximations. 
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The data for our application is panel in nature and hence is not completely independent, so an 

extension of the Efron bootstrap is required.  We adapted the “block” bootstrap method 

suggested by Künsch (1989) to do a “panel” bootstrap; the random sampling takes place 

within “blocks,” which in our case are the county observations. So, within the X1………Xn 

observations in our data, where θ  denotes the real valued statistic, we created l 

blocks, where l is the number of counties, each containing t years of observations. Then, for 

each block, we resampled randomly inside the block, resulting in pseudo values for B. 

).....(ˆ
1 nn XX

 

The Bootstrap Results 

Based on the parameters of the “base” model (equation 1 estimated by SUR), we first 

estimated the elasticities of interest for each observation, and averaged them across the overall 

sample and each county division (MET, COM, CTY), resulting in the “mean elasticity 

estimates” εTC,QB, εSVB,QB, εXL,QB, εXK,QB, εXM,QB, εTC,Qg, εMCG,QB, εSVB,Dt, and εSVB,CH.  For 

comparison and to construct standard errors, we alternatively used a bootstrapping algorithm 

(within PC-TSP) to randomly resample within the “blocks” of our data, and reran the cost 

function with the resulting replications of the parameters and elasticity estimates of interest 

recorded; that is, ε*
TC,QB, ε*

SVB,QB, ε*
XL,QB, ε*

XK,QB, ε*
XM,QB, ε*

TC,Qg, ε*MCG,QB, ε*SVB,Dt, and 

ε*SVB,CH  are recorded for the bootstrap b=1….B. We then calculated the average values, 

standard errors, and biases associated with these estimates, across the whole sample and 

separately for the different county types. The results of both the base and bootstrap estimation 

are reported in tables 5-8, with the full distributions of ε*
TC,QB, ε*

XL,QB, ε*
XK,QB, and ε*

XM,QB, 

graphed in Figures 2-5. 

 

First consider the full sample elasticity estimates in Table 5.  Both the mean εTC,QB elasticities 

from the original SUR estimation and the bootstrapped means are negative, and from the 

distribution of ε*TC,QB it is evident that there is 0.99 probability of  ε*TC,QB  taking a negative 

value.  Thus, lower waste emission levels correspond to higher costs, as expected.  The 

bootstrap estimate is also very close to the mean elasticity estimate in size, so averaging the 

estimated elasticities across observations is supported.  These shadow costs are also 

decreasing in waste, as indicated by the negative εSVB,QB  estimate.18 That is, at higher 

                                                 
18 Note that the average bootstrap measure εSVB,QB is actually positive, but the probability of it being negative is 
.98; the positive mean is driven by just a few very positive outliers, as suggested by the very high “bootstrap 
max” in the fifth column.  Second order derivatives of external factors tend in general to have large outliers, 
because the first derivative appears in the denominator of the elasticity, so if there are any outliers close to zero 
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abatement (waste reduction) levels the marginal abatement cost rises, consistent with convex 

and increasing marginal waste reduction costs, as in Figure 1.   

 

The mean input elasticities reveal that average εXL,QB  and εXK,QB are both positive for the 

entire sample, with εXL,QB nearly twice as large as εXK,QB (0.126 versus 0.073).  The 

bootstrapped means are also positive and very close to the same size (0.133 and 0.070), and 

have a very high probability of being positive (0.99 and 0.90 respectively).  These estimates 

indicate that lower levels of waste abatement (more waste emissions) imply higher levels of 

labour and capital use.  This implication is somewhat perplexing; as the usual expectation is 

that εXL,QB and εXK,QB would be negative – that waste reduction is labour- and capital-using.  

However, if abatement or reduction of waste involves increases in the use of more processed 

rather than primary materials, this could cause less demand for these “value added” inputs.  

This result could alternatively (or in part) also be a result of aggregating dissimilar counties, 

resulting in somewhat misleading overall averages, as discussed further below. 

 

The estimated sign of εXM,QB is negative (and consistent across the base and bootstrap models, 

with average estimates of -0.120 and -0.118, respectively, and a probability of being negative 

that is essentially 1.0).  That is, waste abatement appears to be material-using, as opposed to 

material-saving as suggested by the material flow balance approach.  This result is again 

contrary to our initial expectations, although it is consistent with the notion that waste 

reduction involves increasing the use of more processed or higher quality inputs – materials 

composition impacts not well represented by our data.     

 

These input composition effects are obviously biased in both absolute and relative terms; that 

is, the average input-specific measures differ in sign as well as size from the average overall 

cost elasticity εTC,QB, so input composition is strongly linked to waste emissions.  For 

example, for the bootstrap measures, ε*TC,QB = -0.035.  The implied increase in cost from 

waste reduction implies higher materials demand, ε∗XM,QB = -0.118, but the change in XM is 

greater than overall costs so waste abatement is both absolutely and relatively materials-using.  

In turn, ε∗XL,QB = 0.133 and ε∗XK,QB = 0.073 reflect absolute capital and labour saving biases, 

                                                                                                                                                         
the second order derivatives will be greatly inflated.  For these elasticities, therefore, it is preferable to focus on 
the confidence interval.  
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although the overall increase in materials use outweighs these capital and labour saving 

effects. 

 

Moving to the output relationships, εMCG,QB=0.191 (ε∗MCG,QB=0.183) is large and positive 

(with probability 1.0), which indicates that the marginal costs of production increase with 

waste levels, or greater waste reduction is consistent with lower marginal production costs. 

This could be due to high levels of fixed inputs associated with waste abatement, or, given the 

largely panel nature of the data, that counties with lower (higher) marginal production costs 

produce less (more) waste.19 Implications about the link between waste generation and scale 

economies can also be drawn, because εTC,QB indicates the impact of higher QB levels on 

average costs (since QG is constant by construction).  Our mean elasticity estimates suggest 

increasing returns to scale in the production of good outputs; average εTC,QG=0.975<1 or 

MC<AC.  Our positive (average) εMCG,QB and negative εTC,QB estimates show that waste 

reduction is consistent with lower marginal and higher average costs, implying that scale 

economies are even greater at higher waste abatement levels.  

 

County-Type Patterns 

The bootstrap results in table 5 show that the mean elasticity estimates from the SUR 

estimation provide relevant indications of the size as well as signs of the key elasticities for 

our analysis.  The signs of the input-specific elasticities raise questions, however, about how 

much these results might reflect the temporal versus the spatial, or county, dimension of the 

data.  In particular, these results might be generated by differences across county types, rather 

than reflecting the costs of increasing waste reduction in any particular county.  The results in 

Tables 6-8 show that the elasticity estimates do vary significantly across our county sub-

categories. The mean elasticity and bootstrap estimates are still closely comparable, 

suggesting robust models at the disaggregated level. However, there are noticeable differences 

in estimates between county types, the main differences being the demands for inputs by the 

“regular” (CTY) as compared to the metropolitan (MET) and commuter belt (COM) counties. 

The bootstrap bias is also much lower for the individual county types, suggesting that 

disaggregation is appropriate for estimating meaningful elasticity values. 

 

                                                 
19 This can be interpreted in terms of scope economies; if MC increases with waste generation there are, in some 
sense, diseconomies of scope.  If defined in terms of “good” outputs – increased waste abatement implies lower 
MC – this may be thought of as scope economies.   

 16 



The CTY results are reported in table 6.  Comparison between the mean elasticity from the 

original estimation and the bootstrap results, and consideration of the bootstrap bias compared 

to the overall sample results, show that the results are robust and have a high level of 

precision.  εTC,QB remains negative (with a 1.0 probability), and is larger (in absolute value) 

than for the overall results, so  reducing waste implies significant input costs (both 

statistically and in terms of magnitude).  εSVB,QB is again negative in terms of the mean 

elasticity estimate and the bootstrap probability (0.98 probability of a negative elasticity), 

although not for the bootstrap mean due to large positive outliers. The larger (in absolute 

value) εSVB,QB estimate also suggests that abatement costs are increasing on the margin even 

more for CTY than other counties.  And εMCG,QB is still positive (although slightly smaller 

than overall); counties in the CTY category with higher marginal production costs have higher 

waste levels (lower levels of abatement), or MCG increases as waste generation levels rise. 

 

The input elasticities εXL,QB and εXL,QB are also the same sign but larger (in absolute value) 

than for the average county, whereas εXK,QB reverses sign (εXK,QB = -0.035 and ε*XK,QB = -

0.033, with a .82 probability of being negative).  The (absolute) labour-saving and (relative) 

materials-using biases of waste reduction are thus still evident.  But we find in this case an 

absolute capital-using but relative capital-saving bias (the reduction in XK associated with 

higher QB is less than the cost effect, due to the large materials-using bias). The greater capital 

demand associated with higher waste abatement levels suggests that waste reduction requires 

capital inputs that are either specific to waste abatement or are more “efficient” in terms of 

waste.  

 

The metropolitan counties (MET) contain large “city” areas, with a high concentration of 

manufacturing, as well as (typically) older “dirtier” industries. The results for these counties 

are presented in Table 7.  εTC,QB  is again negative (with a probability of 0.98), but slightly 

smaller (in absolute value) than for the overall sample average, indicating that the 

proportionate increase in cost from waste abatement is less than for the “regular” counties.  

εSVB,QB is also positive, in contrast to the overall and CTY measures, although this average is 

driven by a few large outliers; the probability of this measure being negative for these 

counties is 0.99.  
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Differences in the input demand and output marginal cost patterns from the other counties are 

also apparent. The estimated εXj,QB elasticities for all inputs are negative, implying that waste 

abatement is labour, capital and material using in an absolute sense, although it is only 

relatively labor-using.  εXL,QB is greater (in absolute value) than εTC,QB, whereas the capital 

and materials elasticities are smaller than the overall cost measure. The labor impact is thus a 

key difference that could be related to a greater labor-intensity of the older industries.  Finally, 

εMCG,QB  is positive but even larger than at the CTY and overall levels, suggesting strong 

impacts of waste reduction on economies of scale.   

  

The final county category, the commuter belt counties (COM), is typified by high levels of 

residential land use and low levels of light manufacturing. Not surprisingly this affects the 

potential for and costs of waste abatement; εTC,QB for these counties is positive (but with a 

probability of only 0.76), indicating lower rather than higher costs with increased waste 

reduction.  Also, average εSVB,QB is negative and large (in absolute value, -0.944), suggesting 

that the cost-savings benefits of waste reductions are reduced quite significantly, and 

ultimately turn into enhanced costs, at higher levels of waste abatement.  By contrast, the 

(good) output marginal cost and scale economy implications of waste reduction are very 

similar to the overall results. 

 

The positive εTC,QB may arise from waste disposal difficulties from the high levels of 

residential land use in these areas, and the associated costs, but in terms of the production 

estimates it is driven by a (relative and absolute) capital saving bias of waste reduction.  That 

is, the input elasticities mirror the overall results that waste reduction is (absolutely) labour 

and capital saving, and material using, so waste abatement requires more (quantity or quality) 

of intermediate materials, and less labour and capital inputs.  However, an important 

difference here is the magnitudes of the elasticities; the (positive) εXK,B elasticity is so large 

relative to the (negative) εXM,QB elasticity that it drives the overall finding of cost-savings 

from waste reduction both in the COM counties and for the average across all counties.   

 

The above discussion reveals strong differences across our three county types in terms of 

costs, input use and scale effects. Manufacturing production in the CTY category faces the 

highest costs from waste abatement, whereas that in the COM category incurs a negative cost, 

implying a cost “benefit” from waste minimisation. On the input side, waste abatement for all 
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three types of counties is (absolutely) materials-using, but for the CTY and MET categories it 

is also capital-using, and only for the MET counties is it labour-using. For the outputs, 

production in all counties is subject to increasing returns to scale in good outputs that is 

augmented by waste abatement. To further assess the differences across county types it is 

useful to consider what county characteristics, revealed from summary statistics for the 

different types of counties in Tables 2-4, might contribute to differences in the costs and input 

demands associated with waste reduction.  

 

First, note that counties in the MET category have higher levels of both good and bad (waste) 

outputs, followed by the CTY and then the COM categories.  However the ratio of waste to 

good outputs has improved for the CTY and MET counties from 1991 to 1998; it has fallen 

the most (by 19 percent, although strong yearly fluctuations are evident) in the CTY category, 

but the manufacturing industries in the MET counties have achieved a 5 percent reduction. 

The COM counties by contrast have a significantly higher level of waste per unit of output, 

which has increased by 21 percent. Hence, the differences in estimated waste reduction costs 

may be influenced by a combination of the absolute and relative levels of both production and 

abatement; the higher the level of abatement the higher the cost, consistent with Figure 1. 

 

The ability to reduce waste will also be linked to other industry-specific characteristics. One 

influence might be the “heaviness” of manufacturing; heavier manufacturing processes may 

produce more waste, and hence have higher waste per unit of good output simply because of 

the nature of the process. In particular, although the COM counties have lower absolute 

output levels, the concentration of heavy to light industries is the highest.   In addition to the 

heavy-light manufacturing ratio, the average plant age and the capital intensity ratio 

(capital/labour) seem likely to influence the input mix used, and hence costs of waste 

reduction. Average plant age has fallen drastically during the sample period, as is evident 

from Tables 1-4, although plant age is highest in the MET counties and has dropped the most 

in the COM counties.  Capital intensity is also lowest in the COM, and highest in the CTY, 

counties. These patterns might provide insights about why waste reduction is more labor-

using in the MET, and capital-saving in the COM, counties, as postulated briefly below, 

although counteracting influences are suggested and the linkages between the industry 

characteristics and costs of waste reduction are not transparent.   

 

 

 19 



Concluding Remarks 

In this paper we have explored, across U.K. counties and for 1991-1998, cost and input use 

changes associated with reductions in waste (bad output) generation. Our results provide 

insights about the impacts on competitiveness from waste abatement resulting from either 

pecuniary motivations or environmental CSR.   

 

Overall, we find that waste reduction is associated with increased costs; the shadow value of 

waste reduction is negative and statistically significant.  We also find these costs to be 

increasing at the margin; the second-order elasticity of the cost function is negative with 

respect to waste (although a few significant outliers make the average elasticity positive in 

some cases), and counties with higher (lower) waste levels have lower (higher) abatement 

costs.  In fact, the measured shadow value for the commuter belt (COM) counties, which have 

both the highest levels of waste to output and an upward trend in waste generation, is actually 

positive.  In addition, waste reduction for all counties corresponds to lower marginal costs and 

greater scale economies. 

 

In terms of input use, we find that the cost of waste reduction is invariably associated with 

increased materials use (although less so for COM and especially metropolitan, MET, than for 

“regular,” CTY, counties). This is inconsistent with a materials efficiency story, such as that 

from a materials flow framework, but consistent with the idea that more processed or higher 

quality materials are required to minimise waste.   

 

For labor, we find that lower waste levels are related to lower labor use (waste reduction is 

absolutely labor-saving), except for the MET counties which have a strong labor-using bias.  

This may imply substitution of materials for labor; if more processed materials are used, less 

in-plant processing, and thus labor, is required.   

 

For capital, we find for all except the COM counties that waste reduction is capital-using – 

capital expenditures seem required for higher levels of waste-abatement – although not as 

much so as for materials.  This is consistent with the idea that more waste-efficient or waste-

abatement machinery may be required to minimise waste.  However, the finding that waste 

reduction is associated with lower capital levels for the COM counties – waste minimisation 

is capital-saving – is sufficiently strong that it drives an overall capital-saving average result 

across all counties.  This may imply that, as for labor, increased use of processed materials 
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reduces the need for processing facilities in the plant, counteracting (at least for some areas or 

industries) the tendency for waste reduction to require capital investment.  

 

In sum, the results for the CTY counties (25 of our 42 counties, or 60 percent), show strong 

tendencies for waste reduction to “use” materials and “save” labor, and a less significant 

tendency to use capital.  This seems intuitively reasonable; more processed or higher quality 

materials are needed to reduce waste, and this implies less “value added” labor and capital 

inputs are needed, although increased demand for abatement or more materials-efficient 

capital counteracts that tendency sufficiently that waste reduction is absolutely (but not 

relatively) capital-using.  The variations from this story in the MET (6 or 14 percent of the 

counties) and COM (11  or 26 percent) categories are not as readily interpretable.  

 

The discrepancies in the results for these counties may be due to their differing characteristics, 

although the mechanism through which this works is not obvious from a look at county-

specific variables that might have explanatory power.  For example, COM counties have the 

highest levels of heavy to light manufacturing. This intuitively seems to imply greater capital 

intensity, although capital/labour and capital/materials ratios are in fact lower in these than in 

the CTY and MET counties. The greater reliance on materials and labor in the COM counties 

may help to explain why waste reduction is associated with less capital in these counties; 

waste reduction seems to require lower materials use, and if materials needs are high this may 

require significant substitution efforts. That is, the large requisite materials- and labor-using 

adaptations for waste reduction in the CTY and MET counties, respectively, may be  less 

possible when production is already relatively materials and labor intensive. This may mean 

significant amounts of capital must be freed up from producing capital-intensive heavy 

intermediate materials required for heavy manufacturing production, in order to support 

increased materials demand in the COM counties.  

 

In terms of vintage, all counties have exhibited a strongly falling age of plant, but the age is 

slightly higher in the MET counties.  These counties also tend to be more manufacturing-

intensive, and to be where older more “dirty” types of manufacturing production are located.  

The finding of labor-using waste reduction in these counties may imply that newer capital that 

is meant to be less “dirty” is also more labor-intensive.  The relatively lower and more rapidly 

declining age of the plants in the COM counties seem to confirm the very different capital-

using tendency of the manufacturing industries in these counties. 
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Note also that although the MET and COM results are very different, labor and capital “move 

together” in both these counties with waste reduction; the fact that they move in opposite 

directions (waste reduction implies increased labor and capital for MET and the opposite for 

COM) may in part be due to the different levels and trends in waste disposal in these counties.  

They could also be associated with the high (low) manufacturing-intensities of the MET 

(COM) counties.  Finally, note that the strong tendencies for waste reduction to be labor-using 

in the MET counties and capital-saving in the COM counties imply that waste reduction 

measures or voluntary implementation may reduce the manufacturing capital intensity in such 

counties. 

 

This evidence is therefore in concurrence with the McWilliams and Siegel (2001) theory of 

the firm perspective of CSR.  Our results support their proposition that CSR (in this case 

waste reduction) is costly, and the higher the levels of abatement the higher are marginal 

costs.  We also find evidence to support their proposition that the provision of CSR (waste 

reduction) is capital and material using, and that because of high fixed costs that there are 

scale economies in CSR (waste reduction). These findings have significant implications for 

the competitiveness and performance of UK manufacturing.  The provision of waste reduction 

as a CSR activity will very much be dependant on how much consumers, members of the 

supply chain and other stakeholders value the activity of waste minimisation.  If products are 

successfully differentiated through levels of “environmental responsibility,” and waste 

reduction is valued by consumers or other companies in the supply chain, levels of demand 

and prices should rise for products with this attribute.  If the increase in revenue is greater 

than the increase in costs, we would expect to see rising levels of waste reduction.  However, 

if revenue does not cover these costs, we would expect to see a decline in waste abatement 

activity, as competitiveness and performance are reduced. 
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Table 1: National Cost Data 

  1991 1992c 1993 1994 1995 1996 1997 1998 

Gross Output (£Mill)a 126521 129390 118578 140558 152799 102017 134000 131153 

Waste (000 tonnes)b 13576 13007 12575 13027 13108 13074 13058 13489 

Capital (£ Mill)a 44717 52220 46835 47389 37992 25493 29618 31784 

Labour(000 FTE)a 1887 1817 1556 1543 1593 972 1287 1463 

Material (£ Mill)a 82214 86289 78577 91362 103782 72575 99657 99387 

Capital Price (index)a 0.350 0.353 0.375 0.623 0.807 0.608 1.158 1.099 

Labour Pricea 0.017 0.017 0.018 0.019 0.020 0.021 0.019 0.023 

Material Pricea 1.019 1.028 1.060 1.088 1.138 1.142 1.068 1.065 

Good Output Pricea 1.033 1.050 1.075 1.102 1.169 1.188 1.191 1.295 

Average age of planta 19.82 19.28 19.49 16.65 13.63 11.90 10.96 10.36 

Heavy/ light manufa 1.64 1.76 1.68 2.18 2.30 1.97 2.54 2.09 

 

a. Data from the Annual Respondents Database (ARD), from the Office of National 
Statistics UK. 

b. Data from the Chartered Institute of Public Financial Accountants Annual Digest of 
Waste Collection and Disposal Statistics. 

 

Table 2: County Category (CTY) 

 1991 1992 1993 1994 1995 1996 1997 1998 

Gross Output (£Mill) 53994 54181 52103 61361 67507 43072 56398 61132 

Waste (000 tonnes) 5761 5649 5377 5456 5378 5425 5350 5307 

Capital (£ Mill) 21175 28477 25312 25942 17667 12350 12933 15024 

Labour(000 FTE) 806 769 679 672 706 421 530 661 

Material (£ Mill) 34112 35637 34035 38554 45195 30583 42224 46084 

Capital Price (index) 0.322 0.317 0.359 0.620 0.879 0.592 1.194 1.151 

Labour Price 0.016 0.017 0.017 0.019 0.019 0.021 0.020 0.023 

Material Price 1.018 1.026 1.059 1.087 1.132 1.140 1.059 1.053 

Good Output Price 1.035 1.052 1.075 1.103 1.174 1.191 1.190 1.254 

Average age of plant 19.94 19.44 19.52 16.73 13.60 11.88 11.22 10.68 

Heavy/ light manuf 1.45 1.55 1.53 2.01 2.03 1.75 2.36 1.92 
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Table 3: Metropolitan Category (MET) 

 1991 1992 1993 1994 1995 1996 1997 1998 

Gross Output (£Mill) 37632 39916 36979 43005 46207 30593 38594 37950 

Waste (000 tonnes) 3779 3566 3406 3623 3716 3725 3575 3633 

Capital (£ Mill) 13511 13861 13186 12412 12148 7876 9386 9738 

Labour(000 FTE) 615 602 519 513 515 323 419 463 

Material (£ Mill) 25355 27448 25160 29032 32191 22197 29734 30363 

Capital Price (index) 0.266 0.274 0.319 0.480 0.560 0.457 0.774 0.770 

Labour Price 0.016 0.017 0.018 0.019 0.020 0.021 0.019 0.022 

Material Price 1.014 1.021 1.050 1.084 1.152 1.142 1.078 1.076 

Good Output Price 1.031 1.044 1.085 1.101 1.168 1.191 1.224 1.240 

Average age of plant 20.69 19.72 20.41 17.83 15.21 13.89 12.32 12.11 

Heavy/ light manuf 1.47 1.47 1.51 1.72 1.95 2.01 1.39 2.11 

n= 6         

 

Table 4: Commuter Belt Category (COM) 

 1991 1992 1993 1994 1995 1996 1997 1998 

Gross Output (£Mill) 34894 35292 29495 36190 39084 28351 39007 32069 

Waste (000 tonnes) 4035 3791 3791 3947 4013 3922 4132 4547 

Capital (£ Mill) 10030 9881 8336 9034 8176 5265 7299 7021 

Labour(000 FTE) 467 446 357 357 371 228 338 339 

Material (£ Mill) 22745 23203 19382 23775 26395 19794 27698 22939 

Capital Price (index) 0.448 0.466 0.434 0.700 0.786 0.714 1.279 1.161 

Labour Price 0.018 0.019 0.019 0.020 0.021 0.023 0.020 0.025 

Material Price 1.023 1.036 1.068 1.092 1.145 1.147 1.08 1.084 

Good Output Price 1.031 1.051 1.072 1.099 1.159 1.183 1.178 1.407 

Average age of plant 19.16 18.76 18.97 15.90 12.90 10.97 9.78 8.86 

Heavy/ light manuf 2.09 2.30 2.08 2.75 3.03 2.40 3.47 2.42 

n= 11         
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Table 5: Overall Sample Results 

Measure Mean 

Elasticity 

Estimate 

Bootstrap Bootstrap 

Standard  

Error and  

Bootstrap 

Bias 

Bootstrap 

Min and 

Max 

Skewness 

Kurtosis 

Var 

 

Prob 

εTC,QB  -0.038 -0.035 0.018 

0.004 

0.020 

-0.094 

  -0.021 

 0.026 

0.0003 

 

- =0.97 

εSVB,QB  -1.109 0.700 8.63 

1.8 

-33.87 

172.23 

13.63 

245.42 

74.63 

 

-=0.98 

εXL,QB  0.126 0.133 0.036 

0.008 

-0.015 

  0.265 

-0.020 

 0.145 

0.001 

 

+=0.99

9 

εXK,QB  0.073 0.070 0.050 

-0.045 

-0.093 

  0.236 

-0.123 

 0.002 

0.0025 

 

+=0.90 

εXM,QB 

 

-0.120 -0.118 0.020 

0.1 

-0.1887 

-0.0496 

-0.0341 

0.0158 

0.0004 

 

- =1.0 

εTC,QG 0.975 0.975 0.017 

0 

0.916 

1.03 

0.047 

0.024 

0.0003 +=1.0 

εMCG,QB  0.191 0.183 0.031 

-0.008 

0.088 

0.287 

0.079 

0.0416 

0.0009 +=1.0 
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Table 6: Results for the “regular” counties: CTY 

Measure Mean 

Elasticity

Estimate 

Bootstrap Bootstrap 

Standard 

Deviation 

& 

Bootstrap 

Bias 

Bootstrap 

Min and 

Max 

Skewness 

Kurtosis 

Var 

 

Prob 

εTC,QB -0.077 -0.072 0.026 

0.005 

0.013 

-0.150 

-0.124 

-0.033 

0.0007 

 

- =0.99 

εSVB,QB 

 

-1.662 0.287 10.429 

1.949 

-58.62 

258.718 

17.22 

403.86 

108.78 -=0.98 

εXL,QB 

 

0.176 0.187 0.050 

0.016 

0.031 

0.340 

0.043 

0.037 

0.0025 

 

+=1.0 

εXK,QB 

 

-0.035 -0.033 0.065 

0.002 

-0.273 

0.155 

-0.096 

-0.035 

0.004 

 

- = 0.82 

εXM,QB 

 

-0.174 -0.170 0.026 

0.004 

-0.265 

-0.084 

-0.034 

 0.074 

0.0006 

 

- =1.0 

εTC,QG 

 

0.924 1.002 0.020 

0.05 

0.932 

1.07 

-0.011 

0.1778 

0.0004 +=1.0 

εMCG,QB 

 

0.132 0.126 0.218 

-0.006 

0.0604 

0.1992 

0.052 

0.0248 

0.0004 +=1.0 

 

 

 28 



Table 7: Results for the metropolitan counties: MET 

Measure Mean 

Elasticity 

Estimate 

Bootstrap Bootstrap 

Standard 

Deviation 

& 

Bootstrap 

Bias 

Bootstrap 

Min and 

Max 

Skewness 

Kurtosis 

Var Prob 

εTC,QB 

 

-0.027 -0.024 

 

0.031 

0.003 

0.120 

-0.129 

-0.121 

0.565 

0.0009 -=0.77 

εSVB,QB 

 

0.775 3.120 41.91 

2.345 

-145.17 

1212.45 

24.51 

695.27 

1756.8

4 

-=0.99 

εXL,QB 

 

-0.070 -0.070 0.084 

0 

-0.384 

0.210 

-0.002 

0.023 

0.007 - =0.98 

εXK,QB 

 

-0.025 -0.016 0.052 

0.009 

-0.194 

0.171 

0.010 

0.067 

0.003 - =0.96 

εXM,QB 

 

-0.017 -0.015 0.025 

0.0015 

-0.1070 

0.113 

-0.149 

0.972 

0.0006 - = 0.95 

εTC,QG 

 

0.968 0.994 0.0324 

0.026 

0.906 

1.105 

0.325 

-0.0464 

0.001 +=1.0 

εMCG,QB 

 

0.326 0.313 0.053 

-0.0127 

0.154 

0.491 

0.054 

0.035 

0.002 +=1.0 

 29 



Table 8: Results for the commuter belt counties: COM 

Measure Mean 

Elasticity 

Estimate 

Bootstrap Bootstrap 

Standard 

Deviation 

& 

Bootstrap 

Bias 

Bootstrap 

Min and 

Max 

Skewness 

Kurtosis 

Var Prob 

εTC,QB 

 

0.034 0.034 0.030 

0 

0.109 

-0.0505 

-0.102 

-0.336 

0.0008 +=0.76 

εSVB,QB 

 

-0.944 0.301 

 

6.34 

1.245 

-79.18 

107.608 

5.87 

139.38 

40.25 -=0.99 

εXL,QB 

 

0.125 0.130 0.062 

0.005 

-0.094 

0.305 

-0.194 

0.162 

0.004 +=0.95 

εXK,QB 0.339 0.262 0.155 

-0.077 

-0.194 

0.579 

-0.983 

-0.143 

0.024 +0.83 

εXM,QB 

 

-0.063 -0.063 0.028 

0 

-0.152 

 0.012 

-0.152 

-0.239 

0.0008 - =1.0 

εTC,QG 

 

0.944 0.910 

 

0.023 

-0.34 

0.818 

0.976 

-0.116 

-0.07 

0.0005 +=1.0 

εMCG,QB 

 

0.239 0.228 

 

0.04 

-0.011 

 

0.1066 

0.359 

0.138 

0.037 

0.0016 +=1.0 
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Figure 2: εTC,QB  from the overall estimates 
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Fig 3:  εXL,QB  from the overall estimates 
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Fig 4:  εXK,QB from the overall estimates. 

 -0.100 -0.075 -0.050 -0.025 0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250

1

2

3

4

5

6

7

8

9
MEAN

 

 

 

 

 

 

Observed 
Mean 
Elasticity 
(0.073) 



Figure 5: εXM,QB  from the overall estimates. 
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Fig 6: εSVB,QB 
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Appendix Table A1 

English Counties included in study. 

Code County County Type 

AV Avon CTY 

CH Cheshire CTY 

CL Cleveland CTY 

CO Cornwall CTY 

CU Cumbria CTY 

DE Devon CTY 

DOR Dorset CTY 

DU Durham CTY 

GL Gloucestershire CTY 

HW Hereford and Worcester CTY 

HU Humberside CTY 

LA Lancashire CTY 

LE Leicestershire CTY 

LI Lincolnshire CTY 

NF Norfolk CTY 

NY North Yorkshire CTY 

NH Northamptonshire CTY 

NM Northumberland CTY 

NT Nottinghamshire CTY 

SL Salop CTY 

SO Somerset CTY 

ST Staffordshire CTY 

SF Suffolk CTY 

SU Surrey CTY 

WI Wiltshire CTY 

GM Greater Manchester MET 

ME Merseyside MET 

SY South Yorkshire MET 

TY Tyne and Wear MET 
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WM West Midlands MET 

WY West Yorkshire MET 

BD Bedfordshire COM 

BK Berkshire COM 

BU Buckinghamshire COM 

CA Cambridgeshire COM 

ES East Sussex COM 

EX Essex COM 

HA Hampshire COM 

HE Hertfordshire COM 

OX Oxfordshire COM 

KE Kent COM 

WS West Sussex COM 
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Appendix Table A2: Parameter Estimates 

    Standard     

Parameter Estimate Error 
t-
statistic P-value 

αLL -378.33 151.22 -2.50 [.012] 
αKK -1369.54 234.41 -5.84 [.000] 
αMM -583.49 245.69 -2.37 [.018] 
αLK 156.82 29.85 5.25 [.000] 
αLM 425.45 107.74 3.95 [.000] 
αLM,MET 592.91 493.14 1.20 [.229] 
αLM,COM -346.86 157.40 -2.20 [.028] 
αKM 450.02 110.10 4.09 [.000] 
αKM,COM -347.27 147.74 -2.35 [.019] 
δLG 0.06 0.04 1.35 [.176] 
δKG 0.21 0.04 4.83 [.000] 
δLG,COM -0.07 0.02 -4.37 [.000] 
δMG 0.70 0.04 15.58 [.000] 
δMG,MET -0.05 0.03 -1.51 [.132] 
δLW 0.00 0.39 -0.01 [.995] 
δLW,COM -0.62 0.13 -4.78 [.000] 
δKW -0.21 0.40 -0.52 [.601] 
δKW,MET 0.18 0.17 1.07 [.286] 
δMW -0.96 0.41 -2.37 [.018] 
δMW,MET 0.88 0.22 4.08 [.000] 
δLt 4.32 9.27 0.47 [.641] 
δKt 60.06 16.58 3.62 [.000] 
δKt,MET -9.63 10.45 -0.92 [.357] 
δKt,COM -20.26 16.89 -1.20 [.230] 
δMt -18.18 16.18 -1.12 [.261] 
δMt,MET 105.59 29.20 3.62 [.000] 
δMt,COM 33.61 15.64 2.15 [.032] 
δL,SIC -7.56 5.99 -1.26 [.207] 
δK,SIC 31.42 9.48 3.31 [.001] 
δM,SIC 50.75 11.31 4.49 [.000] 
δL,AGE 2.51 4.31 0.58 [.560] 
δK,AGE 20.74 7.20 2.88 [.004] 
δM,AGE -14.75 8.40 -1.76 [.079] 
δL,MET -311.70 373.36 -0.83 [.404] 
δM,MET -1108.28 706.97 -1.57 [.117] 
δL,COM 325.91 119.67 2.72 [.006] 
δK,COM 507.00 250.90 2.02 [.043] 
δM,COM 457.72 231.94 1.97 [.048] 
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γGG 0.0000 0.0000 -3.95 [.000] 
γGG,COM 0.0000 0.0000 -6.57 [.000] 
γWW 0.0001 0.0002 0.53 [.597] 
γWW,MET -0.0008 0.0001 -6.37 [.000] 
γGW 0.0002 0.0000 6.54 [.000] 
γGt -0.0036 0.0038 -0.95 [.344] 
γWt -0.0094 0.0324 -0.29 [.771] 
γG,SIC 0.0030 0.0018 1.64 [.101] 
γW,SIC -0.0565 0.0235 -2.40 [.016] 
γG,AGE 0.0020 0.0017 1.13 [.260] 
γW,AGE -0.0039 0.0172 -0.22 [.823] 
γW,COM 0.4466 0.1495 2.99 [.003] 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 40 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Research Paper Series 
International Centre for Corporate Social Responsibility 

ISSN 1479-5116 
 

Editor: Dirk Matten 
 
The ICCSR Research Papers Series is intended as a first-hand outlet for research output of ICCSR. 
These include papers presented at symposiums and seminars, first drafts of papers intended for 
submission in journals and other reports on ongoing or completed research projects. 
 
The objective of the ICCSR Research Papers Series is twofold: First, there is a time goal: Given the 
quality of ICCSR publication, the targeted journals normally require large time spans between 
submission and publication. Consequently, the ICCSR Research Papers Series serves as a 
preliminary airing to working papers of ICCSR staff and affiliates which are intended for subsequent 
publication. By this, research output can be made available for a selected public which will not only 
establish ICCSR’s lead in advancing and developing innovative research in CSR but will also open the 
opportunity to expose ideas to debate and peer scrutiny prior to submission and/or subsequent 
publication. Second, the ICCSR Research Papers Series offers the opportunity of publishing more 
extensive works of research than the usual space constraints of journals would normally allow. In 
particular, these papers will include research reports, data analysis, literature reviews, work by 
postgraduate students etc. which could serve as a primary data resource for further publications. 
Publication in the ICCSR Research Paper Series does not preclude publication in refereed journals. 
 
The ICCSR Research Papers Series consequently is interested in assuring high quality and broad 
visibility in the field. The quality aspect will be assured by establishing a process of peer review, which 
will normally include the Editor of the ICCSR Research Papers Series and one further academic in the 
field. In order to achieve a reasonable visibility the ICCSR Research Papers Series has full ISSN 
recognition and is listed in major library catalogues worldwide. All papers can also be downloaded at 
the ICCSR website. 
 
 
 
Published Papers 
 
 
No. 01-2003 Wendy Chapple & Richard Harris 

Accounting for solid waste generation in measures of  regional productivity growth 
 
No. 02-2003 Christine Coupland 

Corporate identities on the web: An exercise in the construction and deployment of 
‘morality’ 

 
No. 03-2003 David L. Owen 

Recent developments in European social and environmental reporting and auditing 
practice – A critical evaluation and tentative prognosis 

 
No. 04-2003 Dirk Matten & Andrew Crane  

Corporate Citizenship: Towards an extended theoretical conceptualization 
 
No. 05-2003 Karen Williams, Mike Geppert & Dirk Matten 

Challenges for the German model of employee relations in the era of globalization 
 
No. 06-2003 Iain A. Davies & Andrew Crane 

Ethical Decision Making in Fair Trade Companies 
 
No. 07-2003 Robert J. Caruana  

Morality in consumption: Towards a sociological perspective  
 

 



 

 
No. 08-2003 Edd de Coverly, Lisa O’Malley & Maurice Patterson 

Hidden mountain: The social avoidance of waste  
 
No. 09-2003 Eleanor Chambers, Wendy Chapple, Jeremy Moon & Michael Sullivan 

CSR in Asia: A seven country study of CSR website reporting 
 
No. 10-2003 Anita Fernandez Young & Robert Young 

Corporate Social Responsibility: the effects of the Federal Corporate Sentencing 
Guidelines on a representative self-interested corporation 

 
No. 11-2003 Simon Ashby, Swee Hoon Chuah & Robert Hoffmann  

Industry self-regulation: A game-theoretic typology of strategic voluntary 
compliance 

 
No. 12-2003 David A. Waldman, Donald Siegel & Mansour Javidan 

Transformational leadership and CSR: A meso level approach 
 
No. 13-2003 Jeremy Moon, Andrew Crane & Dirk Matten 

Can corporations be citizens? Corporate citizenship as a metaphor for business 
participation in society (2nd Edition) 

 
No. 14-2003 Anita Fernandez Young, Jeremy Moon & Robert Young 

The UK Corporate Social Responsibility consultancy industry: a phenomenological 
approach  

 
No. 15-2003 Andrew Crane 

In the company of spies: The ethics of industrial espionage 
 
No. 16-2004 Jan Jonker, Jacqueline Cramer & Angela van der Heijden 

Developing Meaning in Action: (Re)Constructing the Process of Embedding 
Corporate Social Responsibility (CSR) in Companies 

 
No. 17-2004 Wendy Chapple, Catherine J. Morrison Paul & Richard Harris 

Manufacturing and Corporate Environmental Responsibility: Cost Implications of 
Voluntary Waste Minimisation 

 
No. 18-2004 Brendan O’Dwyer 

Stakeholder Democracy: Challenges and Contributions from Accountancy 
 
No. 19-2004 James A. Fitchett 

Buyers be Wary: Marketing Stakeholder Values and the Consumer 
 
No. 20-2004 Jeremy Moon 

Government as a Driver of Corporate Social Responsibility: The UK in Comparative 
Perspective 

 
No. 21-2004 Andrew Crane and Dirk Matten 

Questioning the Domain of the Business Ethics Curriculum: Where the Law ends or 
Where it Starts? 

 


	Manufacturing and Corporate Environmental Responsibility: Cost Implications of Voluntary Waste Minimisation
	Wendy Chapple, Catherine J. Morrison Paul & Richard Harris
	Wendy Chapple, Catherine J. Morrison Paul & Richard Harris
	Published Papers


