
Investigation on Recurrent High Dominant Frequency Spatiotemporal Patterns
during Persistent Atrial Fibrillation

Xin Li1, Gavin S. Chu2,3, Tiago P. Almeida1, Frederique J. Vanheusden1, Nawshin Dastagir1,2,
João L. Salinet1,5,Peter J Stafford3, G. André Ng2,3,4, Fernando S. Schlindwein1,4
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Abstract

Atrial regions hosting dominant frequency (DF) may
represent potential drivers of persistent atrial fibrillation
(persAF). Previous work showed that DF can exhibit cyclic
behaviour. This study aims to better understand the spa-
tiotemporal behaviours of persAF over longer time pe-
riods. 10 patients undergoing persAF ablation targeted
at DF were included. Left atrial (LA) non-contact vir-
tual electrograms (VEGMs, Ensite Array, St Jude Medi-
cal) were collected for up to 5 min pre-/post- ablation. DF
was identified as the peak from 4-10 Hz, in 4 s windows
(50 % overlap). High DF (HDF) map was created and
automated pattern recognition algorithm was applied to
look for recurring HDF spatial patterns within each pa-
tient. Recurring HDF patterns were found in all patients.
Patients who changed rhythm to atrial flutter after abla-
tion demonstrated single dominant pattern (DP) among
the recorded time period, which might consistent with the
higher level of regularity during flutter. Ablation regular-
ized AF as demonstrated by increased DP recurrence after
ablation. The time interval (median [IQR]) of DP recur-
rence for the patients still in atrial fibrillation(AF) after
ablation (7 patients) decreased from 21.1 s [11.8∼49.7
s] to 15.7s [6.5∼18.2 s]. The proposed method quanti-
fies the spatiotemporal regularity of HDF DPs over long
time periods and may offer a more comprehensive dynamic
overview of persAF behaviour and the impact of ablation.

1. Introduction

Atrial fibrillation (AF) is one of the most common ar-
rhythmias in clinical practice, affecting 0.4% of the general

population, and 5%-10% of those are over 60 years old
[1, 2]. Although catheter ablation techniques are widely
applied to treat AF patients, the underlying pathophysio-
logical mechanisms of long-standing AF remain unclear
[3, 4]. It has shown that atrial sites hosting high domi-
nant frequency (DF) might be the potential important sites
for the maintenance of AF [5]. However, recent studies
suggest that DF may not be spatiotemporally stable by us-
ing noncontact mapping (NCM) in the left atrium (LA).
Additionally, we have previously reported the existence of
atrial regions with cyclical high DF (HDF) behaviours[6].
In order to further characterise this type of behaviour, an
automatic tool has been designed and implemented to in-
vestigate the recurrent behaviours of HDF maps over long
time periods (up to 5 mins) to potentially unveil the poten-
tial link with spatiotemporal regularity.

2. Materials and Methods

2.1. Data Acquisition

10 patients undergoing persAF ablation targeted at DF
were included in this study. LA non-contact virtual elec-
trograms (VEGMs, Ensite Array, St Jude Medical) were
collected for up to 5 min pre-/post- ablation for offline
analysis.

2.2. Signal Processing

The 5-min VEGMs were original sampled at 2034.5 Hz
and then resampled to 512 Hz to reduce processing time
and save storage using cubic interpolation method. Since
the ventricular far filed activities affects recorded VEGMs,
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Figure 1. Left: 3D HDF map with location tags and cor-
responding surface tags ; Right: 2D HDF map with esti-
mated location tags.

QRST subtraction was performed as described in our pre-
vious work [7].

The VEGMs were then divided into 4 seconds windows
with a 50% overlap. For each window, spectral analy-
sis was carried out by performing fast Fourier transform
with Hamming window and zero padding was used to im-
prove the detection of DF, which was identified as the peak
within the physiology range of 4-10 Hz from the power
spectrum. In each window, the nodes were sorted by the
DF values in descending order and HDF map was created
by the top 10% of the LA surface area hosting the high-
est DF. Image binarisation using the HDF threshold was
performed using the HDF threshold: the nodes hosting DF
values equal or greater than the threshold were transformed
to logical value 1, while the rest of the nodes were labelled
with logical value 0. Equation 1 shows the transformation
for the node in row i and column j, where i ranges from
1 to the total number of rows, and j ranges from 1 to the
total number of columns of the 2D map (Figure 1).

HDF (i, j) =

{
1, if DF (i, j) ≥ threshold

0, if DF (i, j) < threshold
(1)

For instance, the 3D and 2D maps in Figure 1 are colour-
coded in the HDF fashion after the above image binarisa-
tion. Here magenta and cyan stand for 1 and 0 respectively.

2.3. HDF Pattern Extraction

cc =

∑
i

∑
j

(Aij −A)(Bij −B)√(∑
i

∑
j

(Aij −A)2
)(∑

i

∑
j

(Bij −B)2
) (2)

The EGM of 2048 virtual electrodes from LA were re-
arranged on to a 64 × 32 2D uniformed rectangular grid

Figure 2. The flowchart of the HDF spatiotemporal pattern
extraction algorithm.

(Figure 1 right). In order to find the recurrent HDF maps
along time, the pattern extraction algorithm uses 2D Pear-
son’s correlation coefficient (cc) (Equation 2) as a mea-
surement of similarity between the HDF maps (Figure 1)
at different time windows [8]. In Equation 2, A,B are 2D
images; A,B are their average values; i and j are the row
and column of the images. All the generated HDF maps
were included in a data pool, while the single HDF map
under analysis was referred as the element. Figure 2 is
a flowchart of 2D pattern extraction algorithm using a cc
threshold as input. The algorithm can be explained as:

Step 1: Compute the cc of first element of the data pool
with the rest, set the elements with cc greater than thresh-
old and the first element as current pattern.

Step 2: Calculate cc of the other elements (if there is
any) in current pattern with the elements in the data pool,
and add the elements greater than the threshold to the cur-
rent pattern. Remove the current pattern maps from the
data pool, until there are no elements joining the patterns.

Step 3: Consider as a pattern when the element num-
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ber is at least 2 (window recurrence exists) and move on to
the next pattern.

Step 4: Repeat Step 1, 2 and 3 until there are no more
elements in the data pool, and the patterns were sorted by
number of elements and saved.

2.4. Temporal Analysis

The above extraction algorithm was applied to the HDF
maps from 10 patients prior and after the DF-guided ab-
lation with the 2D correlation threshold of 0.6. After all
the patterns of each patient were found, the dominant pat-
tern (DP) was defined as the pattern with the maximum
number of time windows involved, which represents the
spatial HDF pattern with more reappearance for each pa-
tient(Figure 3A),. The time windows of the DP were
recorded in order to investigate the temporal periodic be-
haviours of the DP HDF maps. The mean time intervals
between the windows of the DP and the ratio of duration
of the DP windows against the total were calculated. As
show in Figure 3B, we visualised the temporal behaviour
DP of each patient, the time occurrences of the DP were
highlighted as black from the time bar and the other win-
dows shown as grey. In addition, the average time intervals
between the DP windows for each patient and the percent-
age of the duration of DP windows were calculated.

3. Results and Discussions

Recurring HDF patterns were found in all patients be-
fore and after ablation using cc threshold of 0.6. Figure
3 A is one example of the recurring pattern of HDF maps
in 3D representation, where the HDF regions repeat in the
same or nearby regions with certain level of graphical sim-
ilarity.

3.1. Temporal Analysis

Figure 3B shows the time occurrences of the DP for each
patient pre-/post- ablation. Patient 4, 5 and 10 change to
atrial flutter (Aflt) after HDF ablation. In these patients,
the post-ablation DP accounted for up to 68.1% (patient 4),
94.8% (patient 5) and 93.6% (patient 10) of the recorded
time period. This finding supports the fact that Aflt can be
considered as a more regular arrhythmia, since it is sus-
tained by one macro re-entrance [9]. Therefore, the orga-
nized spatiotemporal behaviour of the DP in patients with
Aflt after ablation might correlate with the high level of
regularity of Aflt.

In general, the time interval (median [IQR]) of DP recur-
rence for all patients decreased from 16.8 s [11.5∼32.4 s]
to 6.5 s [3.3∼16.0 s] after ablation. The time interval (me-
dian [IQR]) of DP recurrence for the patients still in AF af-
ter ablation (7 patients) decreased from 21.1 s [11.8∼49.7

Figure 3. A. 3D LA HDF maps with time window num-
bers; B. The time occurrences of the DP of each patient
pre-/post- ablation (black: DP windows; grey: non-DP
windows).

s] to 15.7s [6.5∼18.2 s]. This also might infer the fact that
ablating HDF regions might regularize AF demonstrated
by increased DP recurrence after ablation.

3.2. Correlation Coefficient Threshold

Figure 4 shows the relationship between the fraction of
number of time windows in DP over total number of win-
dows and the cc threshold used in the algorithm. As ex-
pected, the number of windows reduces when the thresh-
old of the pattern extraction algorithm increases. Further
investigation on the threshold balancing the number of DP
windows and the quality of the selected HDF maps is cru-
cial, which is the next step of the current study.

4. Conclusions

With the technology of non-contact mapping and the
proposed spatiotemporal pattern extraction algorithm, we
have been able to provide a more dynamic view of the re-
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Table 1. The percentage of duration of DP windows over
the recorded time period and the mean interval of recur-
rences between the DP windows before and after ablation
(1All patients; 2Patients still in AF post-ablation).

Patient DP Duration % Mean Interval (s)
Pre Post Pre Post

1 1.4 9.0 132 20.3
2 17.4 4.9 11.2 37.1
3 43.2 12.7 4.4 15.7
4 11.5 68.1 12.3 2.8
5 5.7 94.8 23.3 2.1
6 6.9 40.5 21.1 5.0
7 15.8 11.5 12.5 16.1
8 5.4 24.6 35.4 8.0
9 1.3 7.2 64.0 4.8

10 32.5 93.6 6.0 2.1
Median1 9.2 18.6 16.8 6.5
[IQR]1 [5.4∼17] [9.6∼61.2] [11.5∼32.4] [3.3∼16.0]

Median2 6.9 11.5 21.1 15.7
[IRQ]2 [3.4∼16.6] [8.1∼18.7] [11.8∼49.7] [6.5∼18.2]

current behaviours of DF during AF.
Single recurrent activity found in Aflt might help char-

acterise higher regularization. Reduced recurrent interval
of DP after HDF ablation might correspond to the increase
in the level of spatiotemporal regularity during persAF.
Further study on the features of the HDF regions of re-
curring patterns may also help to understand the disease.
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