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Ultra-high-frequency lead-lag relationship and information arrival 

 

 

 

Abstract 

 

To our knowledge, this paper is the first study on the effect of information arrival on the lead-

lag relationship among related spot instruments. Based on a large dataset of ultra-high-

frequency transaction prices time-stamped to the millisecond of the S&P500 index and its two 

most liquid tracking ETFs, we find that their lead-lag relationship is affected by the rate of 

information arrival whose proxy is the unexpected trading volume of these instruments. 

Specifically, when information arrives, the leadership of the leading instrument may strengthen 

or weaken depending on whether the leading or lagging instrument responds to that information. 

An increase in the unexpected volume of the leader strengthens its leadership whereas an 

increase in the unexpected volume of the lagger weakens this leadership. In addition to the 

strength of leadership, an increase in the unexpected volume in response to information arrival 

may also have opposite effects on the lead-lag correlation coefficient depending on whether 

that volume increase belongs to the leader or the lagger. Finally, we find that sophisticated 

investors have a more significant effect on the lead-lag relationship than non-sophisticated ones. 
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1. Introduction 

The efficient market hypothesis (EMH) suggests that return predictability and arbitrage 

opportunities should not exist in financial markets. Accordingly, the returns of related 

instruments (e.g. an equity index and its futures) should show contemporaneous correlations in 

efficient and frictionless markets (Stoll and Whaley, 1990, Brooks et al., 1999). However the 

lead-lag effect, a phenomenon where a security follows the movements of another with a time 

delay (Huth and Abergel, 2014), is often found in the literature. Yet according to the EMH, 

even if returns of security A are correlated with past returns of security B, it should still be 

impossible to use price changes of B to forecast and make abnormal profits from price changes 

of A due to practical constraints. 

 

Motivated by the literature on lead-lag effect in returns (e.g.(Kawaller et al., 1987, Fleming et 

al., 1996, Chen and Gau, 2009, Alsayed and McGroarty, 2014, Curme et al., 2015), our paper 

is the first to investigate the effect of information arrival on the lead-lag relationship between 

related stocks. To examine related stocks, we focus on ETFs because the purpose of ETFs is to 

track the performance of some index or asset and ETFs tracking the same index or asset can be 

considered very much related. Moreover, the ETF market has been growing rapidly (Shin and 

Soydemir, 2010, Kearney et al., 2014) since their introduction with many investors choosing 

ETFs as their investment vehicle. ETFs track different asset classes (e.g. stock, bond, 

commodity) and we choose equity ETFs for our analysis because they are easily accessible to 

investors, very liquid (Marshall et al., 2013) and should be representative of the US economy. 

Equity ETFs, which track stock indices or economic sectors, are more liquid than single stocks 

(Ruan and Ma, 2012). 

 

Our study on the lead-lag effect in relation to information is also motivated by the fact that the 

lead-lag relationship exists because some financial instruments reflect information faster than 

others. In general, information plays an important role in financial markets. Hanousek and 

Podpiera (2003) state that informed trading affects the bid-ask spread because market makers 

set the spread to compensate for the risk of adverse selection which they face when trading 

with informed traders. Similarly, Gregoriou et al. (2005) argue that market makers mitigate 

their informational disadvantage compared to informed traders by increasing the bid-ask spread. 

On the other hand, the flow of information to the market also helps explain the ARCH and 

GARCH effects in daily stock returns (Lamoureux and Lastrapes, 1990, Sharma et al., 1996, 

Aragó and Nieto, 2005). In addition to prices and volatility, Frank and Kenneth (2005) suggest 
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that the relative trade size (i.e. trade size scaled by market depth) is also affected by information, 

showing that informed traders prefer to trade larger volume. 

 

We find that the lead-lag relationship is indeed influenced by the rate of information arrival. 

When information arrives, the leadership of the leading instrument may strengthen or weaken 

depending on whether the leading or lagging instrument responds to that information. An 

increase in the unexpected trading volume of the leader strengthens its leadership whereas an 

increase in the unexpected volume of the lagger weakens this leadership. In addition to the 

strength of leadership, an increase in the unexpected volume in response to information arrival 

may also have opposite effects on the lead-lag correlation coefficient depending on whether 

that volume increase belongs to the leader or the lagger. We also find that sophisticated 

investors have a more significant effect on the lead-lag relationship than non-sophisticated ones.  

 

Our research is conducted in the high-frequency context which has become more and more 

important in recent times. In current financial markets, speed is considered such an essential 

competitive edge that many market participants are willing to make significant technological 

investments to increase their speed of analysis and execution (even by only a small amount), 

in both absolute and relative terms (i.e. trying to be faster than their competitors). This 

competition for speed has pushed the boundary to extreme levels; specifically, Hasbrouck and 

Saar (2013) find that high-frequency traders can operate with a latency of only a few 

milliseconds while an eye blink takes a few hundred milliseconds. Even more extreme, 

Goldstein et al. (2014) report that it is possible to trade in the microsecond environment. In any 

case, high-frequency traders are among the most active and important market participants and 

thus we use the high-frequency setting to examine the lead-lag relationship. This setting is 

appropriate for our analysis because the lead-lag relationship is a common phenomenon in 

high-frequency data (Huth and Abergel, 2014). 

 

Moreover, using high-frequency data to analyse the lead-lag relationship is suitable since the 

increasing electronification of financial markets and high-frequency trading activities have 

reduced the lead-lag time dramatically, to the point where data sampled at regular intervals can 

no longer capture this time delay (Huth and Abergel, 2014). In other words, it is not suitable to 

use regularly sampled data to measure high-frequency correlation (Zhang, 2011), especially 

when one security is traded more often than the other (Lo and MacKinlay, 1990). However, in 

order to measure correlation, using high-frequency data requires an approach different from 
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that used for regularly sampled data. Following Alsayed and McGroarty (2014), we apply the 

model of Hayashi and Yoshida (2005) to calculate the contemporaneous correlation, and its 

extension by Hoffmann et al. (2013) to include leads and lags. This model uses the original tick 

data and does not require any modification such as interpolation or resampling at regular 

intervals (Huth and Abergel, 2014).  

 

We contribute to the literature on lead-lag effects in returns by analysing the role of information 

in the lead-lag relationship among related spot instruments (i.e. equity index and ETFs) which, 

to our knowledge, has not been studied before. We examine, at the tick level, the most liquid 

ETFs that track the S&P500 index thus representative of the performance of the US economy. 

We show that information arrival has a large part of play in the lead-lag effect among these 

instruments. Moreover, we conduct our analysis in the high-frequency context, which is 

increasingly important in financial markets, using a large dataset and a novel approach 

proposed by Hayashi and Yoshida (2005) and Hoffmann et al. (2013). 

 

The structure of this paper is as follows. Section 2 reviews the literature on lead-lag effects in 

returns. Section 3 presents our dataset. Section 4 describes our estimation of the lead-lag 

relationship and our analysis of the effect of information arrival on this relationship. Section 5 

and 6 provide the results and conclusions respectively. 

 

2. Literature review 

The literature on lead-lag effects is plentiful and we classify the literature in Figure 1.  
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Figure 1. Classification of the literature on lead-lag effects in returns. Related securities refer to securities which 

have the same underlying asset (i.e. stocks and their derivatives). Unrelated securities refer to stocks in general. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding Figure 1, a large part of the literature on lead-lag effects focuses on equity markets 

so we divide the literature into studies on equity markets and studies on other assets. Studies 

on equity markets can be divided further into studies on instruments in the same country and 

studies on instruments between countries. Finally, studies on instruments in the same country 

include studies on related securities (i.e. spot and derivative instruments) and studies on 

unrelated securities (i.e. stocks in general). Because our paper investigates related securities 

(i.e. ETFs tracking the same index), the following literature review will focus on the lead-lag 

effect between related securities. We mainly look at the spot – futures and spot – options 

relationship since there are few studies on other relationships. 

 

The spot – futures relationship is the most extensively studied relationship in the literature on 

lead-lag effects of related securities. Many papers find that the lead-lag effect is bi-directional 

(i.e. futures lead the index and vice versa), although the futures’ lead is stronger and longer 

than the index’s lead (e.g.(Chiang and Fong, 2001, Nam et al., 2006, Ergün, 2009). While 

futures’ lead can be up to 45 minutes (Kawaller et al., 1987), the index’s lead does not exceed 

15 minutes (Chan, 1992). Regarding US indices, many papers find a bi-directional spot – 

Literature on lead-lag effect 

Equity Other assets 

In the same country Between countries 

Related securities (i.e. spot and 

derivative instruments) 

Unrelated securities  

(i.e. stocks in general) 
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futures lead-lag relationship (e.g.(Chan, 1992, Pizzi et al., 1998, Ergün, 2009) and only a few 

find a uni-directional effect where futures lead the index (e.g.(Fleming et al., 1996). Regarding 

non-US indices, it is common to find both a bi-directional effect (e.g.(Brooks et al., 1999, Frino 

and West, 1999) and a uni-directional effect (e.g.(Najand and Min, 1999, Frino et al., 2000). 

However, Brooks et al. (2001) find that although the lead-lag effect can be used to produce 

accurate forecasts, trading these forecasts does not outperform the benchmark after considering 

transaction costs. 

 

Some researchers attribute the lead-lag relationship to infrequent and nonsynchronous trading 

(Shyy and Vijayraghavan, 1996, Brooks et al., 1999) while others still find the lead-lag effect 

after considering infrequent and nonsynchronous trading (Stoll and Whaley, 1990, Grünbichler 

et al., 1994, Martikainen and Perttunen, 1995, Fleming et al., 1996). Another explanation for 

the lead-lag effect, especially the futures’ lead, is the trading cost hypothesis (Nam et al., 2008). 

Specifically, because trading the index is cheaper in the derivative markets than in the spot 

market, new information should be updated in the derivative markets before the spot market 

(Martikainen and Perttunen, 1995, Fleming et al., 1996). Consistent with the trading cost 

hypothesis, Chen and Gau (2009) find that when the bid-ask spread in the spot market decreases 

(due to a decrease in the minimum tick size), the spot index’s contribution to price discovery 

becomes more significant. In addition to nonsynchronous trading and trading costs, the trading 

mechanism also affects the lead-lag relationship. When the futures are screen-traded and the 

index is floor-traded, the futures’ lead is longer than when both are floor-traded, since screen 

trading increases the price discovery speed (Grünbichler et al., 1994). 

 

In terms of time variation, the lead-lag effect is regime-switching and non-linear (Chung et al., 

2011). The futures’ lead has weakened and the spot – futures integration has strengthened over 

time (Frino and West, 1999, Brooks et al., 1999). Lien et al. (2003) use daily data and even 

find that in more recent time, information flows from the spot market to the futures market, 

which means the index leads the futures. However, Nam et al. (2008) warn that using low-

frequency data may lead to information loss and incorrect results, which is why we use tick 

data in this paper.  

 

In addition to the spot – futures relationship, the spot – options relationship has often been 

studied and the findings are mixed. Some authors find no lead-lag effect (Panton, 1976, Chan 

et al., 1993) while others find a uni-directional effect (Stephan and Whaley, 1990, Fleming et 



7 
 

al., 1996) or a bi-directional effect (Chiang and Fong, 2001, Nam et al., 2006). However, the 

spot market tends to have a longer lead than the options. The spot market can lead the options 

by up to 20 minutes whereas the options lead the spot market by up to only 10 minutes (Chiang 

and Fong, 2001). Interestingly, bi-directional effects are usually found in non-US markets 

(e.g.(Chiang and Fong, 2001, Nam et al., 2006).  

 

Although option prices contain information not reflected in stock prices (Manaster and 

Rendleman, 1982), this information is not lucrative enough to cover transaction costs and 

search costs (Bhattacharya, 1987). On the other hand, the spot market’s lead over options might 

be due to the infrequent trading and illiquidity of options (Chan et al., 1993, Fleming et al., 

1996, Chiang and Fong, 2001). Lead-lag effects can also be explained by trading costs. 

Generally, information will be updated faster where it is cheaper to trade. Fleming et al. (1996) 

find that stocks lead options because trading stocks in the spot market is cheaper than in the 

option market and that futures lead options since trading costs in the future market are lower 

than in the option market. Ryu (2015) also finds that in the futures – options relationship, 

futures play a more significant role in price discovery than options. However, regarding the 

options – options relationship, there is no lead-lag effect between call and put options because 

of their similar trading costs (Fleming et al., 1996). 

 

In summary, our literature review has focused on the lead-lag effect in returns of related 

securities (i.e. stocks, futures and options). The findings range from no lead-lag effect to a uni-

directional effect to a bi-directional effect, with liquid and cheap instruments often leading 

illiquid and expensive ones. The lead-lag relationship may be affected by the trading 

mechanism of securities (i.e. screen-traded or floor-traded). However, this relationship might 

not be exploited profitably after considering transaction costs. Finally, there is also evidence 

of a weakening lead-lag effect and strengthening integration between markets over time.  

 

3. Data 

Our dataset includes the S&P 500 index and the two most liquid equity ETFs in the US market 

which are constructed to reflect the performance of the S&P 500 index. They are SPDR S&P 

500 ETF Trust (ticker symbol SPY) and iShares Core S&P 500 ETF (ticker symbol IVV), 

provided by State Street Global Advisors and BlackRock respectively. Using Thomson Reuters 

Tick History database, we collect index value and ETF transaction price data (time-stamped to 

milliseconds) between August 2014 and July 2015. Following Marshall et al. (2013), in every 
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trading day, only the main trading session from 9:30am to 4pm is considered to ensure 

maximum liquidity. 

 

Following the data cleaning procedure employed by Marshall et al. (2013) to remove potential 

data errors, we exclude observations where (i) the logarithmic return of price is higher than 25% 

or lower than -25% 1, or (ii) the time-stamp is within the first or last five minutes of the trading 

session. Table 1 shows the summary statistics of the data after the cleaning process. The index 

has the highest number of observations because it consists of a large number of stocks and 

moves whenever one or more component stocks move. The mean returns are small due to the 

large number of observations while the median returns are zero since there are many instances 

where consecutive transactions occur at the same price, resulting in zero returns. The returns 

range from -1.5% to 1.5%, with SPY and IVV showing the lowest and highest standard 

deviation respectively. Because of the positive skewness and leptokurtosis, the non-normality 

of the data is confirmed by the Jarque-Bera statistic, which is statistically significant at 1%. 

 

Table 1. Summary statistics of logarithmic returns. The returns are in percentage terms. *** superscript denotes 

statistical significance at 1% level. 

 

 S&P 500 SPY IVV 

Mean 4.93E-07 2.41E-06 3.1E-05 

Median 0 0 0 

Maximum 1.48 1.31 1.30 

Minimum -1.36 -1.44 -1.47 

Standard deviation 4.75E-03 2.60E-03 0.01 

Skewness 30.04 10.03 2.65 

Kurtosis 30349.33 41274.72 2271.93 

Jarque-Bera normality 1.35E+14 *** 1.25E+15 *** 2.10E+11 *** 

Number of observations 17745864 4117085 281734 

 

 

4. Methodology 

4.1. Estimation of the lead-lag relationship 

We analyse the lead-lag relationship between the S&P500 index and each ETF as well as 

between the two ETFs. To examine the lead-lag relationship between two series of non-

synchronous tick data, we use the method of Hayashi and Yoshida (2005) and Hoffmann et al. 

(2013). Our purpose is to calculate the correlation coefficients between one series and 

                                                            
1 In addition to the 25% threshold, we have used alternative cut-off points (i.e. 5%, 15%, 35% and 45%) and still 

got the same results. 
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timestamp-adjusted versions of the other to find the time adjustment which maximises their 

correlation. We describe the specific steps below using the SPY – IVV pair as an example. 

These steps are equally applicable to the S&P500 – SPY and S&P500 – IVV pairs. 

 

The first step is to estimate the contemporaneous correlation coefficient between SPY and IVV 

(i.e. correlation where the timestamps of both series are kept unchanged). Because of the non-

synchronicity of the data (illustrated in Figure 2), we use the method of Hayashi and Yoshida 

(2005). Their method does not require data synchronisation (e.g. through interpolation) and 

thus can avoid potential biases.  

 

Figure 2. Non-synchronicity of the data. Each dot is a data point; t is the arrival time of observations; I is the 

interval between two consecutive observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Letting R denote the return and I denote the interval between two consecutive observations, 

the covariance C between SPY and IVV is given by 

𝐶 =   ∑  𝑅𝑆𝑃𝑌
𝐼𝑖  𝑅𝐼𝑉𝑉

𝐼𝑗  𝕀

𝑖,𝑗

                                                                (1) 

                             where   𝕀 =  {
1   𝑖𝑓   𝐼𝑖  ∩  𝐼𝑗  ≠  ∅

0   𝑖𝑓   𝐼𝑖  ∩  𝐼𝑗  =  ∅
 

Equation (1) shows that the covariance is calculated by summing the products of every SPY 

interval return and its overlapping IVV interval returns. For example, in Figure 2, the 

covariance is calculated by summing the products of the following pairs of returns: (𝑅𝑆𝑃𝑌
𝐼1 , 𝑅𝐼𝑉𝑉

𝐼1 ), 

(𝑅𝑆𝑃𝑌
𝐼2 , 𝑅𝐼𝑉𝑉

𝐼1 ) and (𝑅𝑆𝑃𝑌
𝐼2 , 𝑅𝐼𝑉𝑉

𝐼2 ).  

 

The standard deviation 𝜎 of SPY and IVV is given by 

SPY 

IVV 

Time 

Time 

𝐼2 𝐼1 

𝐼2 𝐼1 

𝑡3 𝑡2 𝑡1 

𝑡3 𝑡2 𝑡1 
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𝜎𝑆𝑃𝑌  =   √∑ (𝑅𝑆𝑃𝑌
𝐼𝑖 )2

𝑖                                                                   (2)     

𝜎𝐼𝑉𝑉  =   √∑ (𝑅𝐼𝑉𝑉

𝐼𝑗 )2
𝑗                                                                   (3)  

The correlation coefficient 𝜌 of SPY and IVV is given by 

𝜌 =   
𝐶

𝜎𝑆𝑃𝑌 𝜎𝐼𝑉𝑉
                                                                       (4) 

After estimating the contemporaneous correlation by equation (4), the next step is to adjust the 

timestamp of either SPY or IVV to allow for leads and lags, and re-estimate their correlation 

as suggested by Hoffmann et al. (2013). We choose to fix the timestamp of SPY and adjust that 

of IVV. Regarding the S&P500 – SPY and S&P500 – IVV pairs, we choose to fix the 

timestamp of the ETFs and adjust that of the index. Figure 3 illustrates this process. 

 

Figure 3. Example of time adjustment and correlation re-estimation. Each dot is a data point; t is the arrival time 

of observations; I is the interval between two consecutive observations. IVV’ is created by moving every IVV 

observation backward in time by the same amount ∆𝑡. Then the correlation is re-estimated between SPY and IVV’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Letting IVV’ denote the timestamp-adjusted IVV series, I’ denote the interval between two 

consecutive IVV’ observations and C’ denote the covariance between SPY and IVV’; the 

correlation coefficient 𝜌’ between SPY and IVV’ is given by 

𝜌′ =   
𝐶′

𝜎𝑆𝑃𝑌 𝜎𝐼𝑉𝑉′
 =   

∑  𝑅𝑆𝑃𝑌
𝐼𝑖  𝑅

𝐼𝑉𝑉′

𝐼𝑗
′

 𝕀′𝑖,𝑗

√∑ (𝑅𝑆𝑃𝑌
𝐼𝑖 )2  ∑ (𝑅

𝐼𝑉𝑉′

𝐼𝑗
′

)2
𝑗𝑖

                                        (5) 

SPY 

IVV 

Time 

Time 

𝑡3 𝑡2 𝑡1 

𝑡3 𝑡2 𝑡1 

IVV’ 

𝑡1
′  𝑡2

′  𝑡3
′  

Time 

∆𝑡 ∆𝑡 ∆𝑡 

𝐼1 𝐼2 

𝐼1 𝐼2 

𝐼1
′  𝐼2

′  
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                                  where   𝕀′ =  {
1   𝑖𝑓   𝐼𝑖  ∩  𝐼𝑗

′  ≠  ∅

0   𝑖𝑓   𝐼𝑖  ∩  𝐼𝑗
′  =  ∅

 

Calculating 𝜌’ with different time adjustments ∆𝑡 of IVV produces the correlation curve which 

shows the correlation coefficient between SPY and IVV at different leads and lags of IVV. To 

capture the ultra-high-frequency lead-lag relationship, we consider ∆𝑡 from -100 milliseconds 

(i.e. moving IVV backward) to 100 milliseconds (i.e. moving IVV forward) with 10-

millisecond increments. 

 

After producing the correlation curve, the final step is to find the ∆𝑡 which maximises the 

correlation. This ∆𝑡 shows the temporal relationship between SPY and IVV. If it is zero, there 

is no lead-lag relationship; if it is negative, IVV lags SPY by ∆𝑡; if it is positive, IVV leads 

SPY by ∆𝑡. Also, for ease of reference, we refer to the maximum correlation on the correlation 

curve as the lead-lag correlation coefficient hereafter. In addition, following Huth and Abergel 

(2014), we calculate the lead-lag ratio (LLR) as follows. 

𝐿𝐿𝑅 =   
∑ (𝜌(∆𝑡)𝑖

)2
𝑖

∑ (𝜌−(∆𝑡)𝑖
)2

𝑖
    (∆𝑡 > 0)                                                (6) 

The numerator of LLR is the sum of squared correlation coefficients at all leads of IVV while 

the denominator is the sum of squared correlation coefficients at all lags of IVV. LLR measures 

the relative strength of leadership (i.e. if LLR is higher than one, IVV tends to lead SPY more 

than lag and vice versa). Figure 4 shows an example of the correlation curve. 

 

Figure 4. Example of the correlation curve. This curve is obtained by calculating the correlation between two 

instruments while fixing the timestamp of one and adjusting that of the other. The horizontal axis shows the time 

adjustment ∆𝑡 . The vertical axis shows the correlation coefficient 𝜌 . The peak of the curve is the lead-lag 

correlation and its corresponding ∆𝑡 is the lead-lag time. 
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4.2. The effect of information arrival on the lead-lag relationship 

4.2.1. Dependent variables 

To study the effect of information arrival on the lead-lag relationship, we use regression 

analysis. The dependent variables are variables which represent the lead-lag relationship, 

namely the lead-lag correlation coefficient, the lead-lag time and the strength of leadership 

(measured by the lead-lag ratio). Although previous studies focus on the lead-lag correlation 

and the lead-lag time (e.g.(Fleming et al., 1996, Nam et al., 2006, Ergün, 2009), the lead-lag 

ratio (calculated by Equation 6) is necessary to provide a more comprehensive analysis of the 

lead-lag relationship. Let us consider the following example. 

 

Figure 5. Example of a correlation curve. This curve is obtained by calculating the correlation between two 

instruments while fixing the timestamp of one and adjusting that of the other. The horizontal axis shows the time 

adjustment ∆𝑡 . The vertical axis shows the correlation coefficient 𝜌 . The peak of the curve is the lead-lag 

correlation and its corresponding ∆𝑡 is the lead-lag time. 

 

 

 

 

 

 

 

 

 

 

 

 

If we focus on the lead-lag correlation and the lead-lag time, we may conclude that the time-

adjusted instrument leads the time-fixed one because the peak of the curve is on the ‘leads’ 

side. However, the lead-lag ratio, which examines not only the peak but also a range of leads 

and lags, results in a different conclusion. Since the correlation is generally higher on the ‘lags’ 

side than on the ‘leads’ side, the lead-lag ratio suggests that the time-adjusted instrument tends 

to lag the time-fixed one. To cover this type of situation, it is important to consider the lead-

lag ratio in addition to the lead-lag correlation and the lead-lag time. For each pairwise 

combination of the S&P 500 index and the two ETFs, we follow the steps in section 4.1 to 

obtain these lead-lag quantities for every trading day in the sample period. As a result, each 

𝜌 

Lags 

Lead-lag 
correlation 

∆𝑡 0 

Lead-lag time 

Leads 
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pair of instruments has three daily series corresponding to the three lead-lag variables which 

are used as the dependent variables in our regression analysis. 

 

4.2.2. Independent variables 

Previous research has found that the lead-lag relationship is affected by factors such as the 

trading cost and the trading mechanism of the instruments. Regarding the trading cost, 

information is generally updated faster where it is cheaper to trade. For example, because 

trading the index is cheaper in the derivative markets than in the spot market, new information 

should be updated in the derivative markets before the spot market (Martikainen and Perttunen, 

1995, Fleming et al., 1996, Nam et al., 2008). However, as for the derivative markets, Fleming 

et al. (1996) show that there is no lead-lag effect between call and put options because of their 

similar trading costs. Regarding the trading mechanism, Grünbichler et al. (1994) find that 

when the leading instrument changes from being floor-traded to being screen-traded, its 

leadership strengthens since screen trading increases the price discovery speed. In our study, 

these factors should not contribute to the lead-lag effect because we only examine 

electronically traded spot instruments and no derivative. 

 

Unlike the trading cost and trading mechanism, the information flow to the market may 

influence the lead-lag effect in our study. Motivated by (i) the fact that the lead-lag relationship 

exists because some instruments reflect information faster than others and (ii) the importance 

of information in financial markets (e.g.(Hanousek and Podpiera, 2003, Gregoriou et al., 2005, 

Frank and Kenneth, 2005), we hypothesise that changes in the information flow have an impact 

on the lead-lag relationship. Therefore, our independent variables are variables which represent 

information arrival. A common proxy for the rate of information arrival is trading volume 

(e.g.(Lamoureux and Lastrapes, 1990, Sharma et al., 1996, Aragó and Nieto, 2005) so our 

independent variables are daily trading volume of the S&P500 index and the two ETFs. Table 

2 shows the summary statistics of the trading volume. The volume is highest for the index and 

lowest for the IVV ETF. The index volume is platykurtic while the ETFs’ volume is leptokurtic. 

The volume of all instruments is positively skew and non-normal, as shown by the Jarque-Bera 

statistic. 
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Table 2. Summary statistics of the daily trading volume. The volume is in million shares. *** superscript denotes 

statistical significance at 1% level. 

 

 S&P 500 SPY IVV 

Mean 525.074 29.944 0.770 

Median 509.568 26.997 0.684 

Maximum 927.539 100.688 2.673 

Minimum 224.945 10.861 0.175 

Standard deviation 101.001 13.250 0.432 

Skewness 0.742 1.719 1.715 

Kurtosis 2.286 4.274 3.763 

Jarque-Bera normality 27.887 *** 138.382 *** 127.118 *** 

 

Because the information content of trading activities is not uniform among different types of 

investors, we distinguish sophisticated investors from non-sophisticated ones. We divide the 

total trading volume of each instrument into the ‘block trades’ and ‘non-block trades’ 

component to proxy for sophisticated and non-sophisticated investors respectively since 

Madhavan and Sofianos (1998) show that block trades (i.e. trades of a large number or value 

of shares) are typically initiated by institutional traders. After obtaining the block volume data, 

the non-block volume is the difference between the total volume and the block volume. Letting 

V, BV and NBV denote the total, block and non-block volume respectively, we have the 

following equation. 

𝑁𝐵𝑉𝑡  =   𝑉𝑡  −   𝐵𝑉𝑡                                                                 (7) 

 

To reflect the information flow more accurately, we divide both the block and non-block 

volume into the expected and unexpected component, as suggested by Bessembinder and 

Seguin (1993) and Aragó and Nieto (2005). Aragó and Nieto (2005) point out that the expected 

and unexpected volume capture the normal level of market activity and the arrival of new 

information respectively. Moreover, Bessembinder and Seguin (1993) find that the expected 

component in a given day is equal to yesterday’s level and the unexpected component shows 

the change during the day. Letting EBV, UBV, ENBV and UNBV denote the expected block, 

unexpected block, expected non-block and unexpected non-block volume respectively, we 

have the following equations. 

𝐸𝐵𝑉𝑡  =   𝐵𝑉𝑡−1                                                                        (8) 

𝑈𝐵𝑉𝑡  =   𝐵𝑉𝑡  −   𝐸𝐵𝑉𝑡                                                          (9) 

𝐸𝑁𝐵𝑉𝑡  =   𝑁𝐵𝑉𝑡−1                                                                  (10) 

𝑈𝑁𝐵𝑉𝑡  =   𝑁𝐵𝑉𝑡  −   𝐸𝑁𝐵𝑉𝑡                                                 (11) 
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In summary, we divide the total volume of each instrument into four components based on two 

dimensions, namely (i) block and non-block and (ii) expected and unexpected. As a result, each 

of the three instruments has four daily volume series which are used as the independent 

variables. 

 

4.2.3. Regression analysis 

We hypothesise the following. 

1. The information flow (i.e. unexpected volume) affects the lead-lag relationship (i.e. 

lead-lag correlation coefficient, lead-lag time and lead-lag ratio). 

2. Sophisticated investors (i.e. block volume) have a more significant impact on the lead-

lag relationship than non-sophisticated investors (i.e. non-block volume). 

Regarding the regressions, for each index – ETF pair, the independent variables are the trading 

volume of each instrument in that pair. However, for the ETF – ETF pair, the independent 

variables include not only the volume of each ETF but also the index volume, because both 

ETFs track the index so the index volume may be relevant to the ETFs. For each pair, we 

estimate a separate regression for each of the three lead-lag variables (i.e. lead-lag correlation 

coefficient, lead-lag time or lead-lag ratio). Letting Y denote the lead-lag variable, we estimate 

the following regression for each index – ETF pair. 

𝑌𝑡  =   𝛼 +   𝛽1𝐸𝐵𝑉𝑡,𝑆𝑃500  +   𝛽2𝑈𝐵𝑉𝑡,𝑆𝑃500  +   𝛽3𝐸𝑁𝐵𝑉𝑡,𝑆𝑃500  +   𝛽4𝑈𝑁𝐵𝑉𝑡,𝑆𝑃500     
+  𝛾1𝐸𝐵𝑉𝑡,𝐸𝑇𝐹  +   𝛾2𝑈𝐵𝑉𝑡,𝐸𝑇𝐹  +   𝛾3𝐸𝑁𝐵𝑉𝑡,𝐸𝑇𝐹  +   𝛾4𝑈𝑁𝐵𝑉𝑡,𝐸𝑇𝐹  +   𝜀𝑡           (12) 

 

We estimate the following regression for the ETF – ETF pair. 

𝑌𝑡  =   𝛼 +  𝛽1𝐸𝐵𝑉𝑡,𝑆𝑃500  +   𝛽2𝑈𝐵𝑉𝑡,𝑆𝑃500  +   𝛽3𝐸𝑁𝐵𝑉𝑡,𝑆𝑃500  +   𝛽4𝑈𝑁𝐵𝑉𝑡,𝑆𝑃500 

+  𝛾1𝐸𝐵𝑉𝑡,𝐼𝑉𝑉  +   𝛾2𝑈𝐵𝑉𝑡,𝐼𝑉𝑉  +   𝛾3𝐸𝑁𝐵𝑉𝑡,𝐼𝑉𝑉  +   𝛾4𝑈𝑁𝐵𝑉𝑡,𝐼𝑉𝑉                  
+  𝛿1𝐸𝐵𝑉𝑡,𝑆𝑃𝑌  +   𝛿2𝑈𝐵𝑉𝑡,𝑆𝑃𝑌  +   𝛿3𝐸𝑁𝐵𝑉𝑡,𝑆𝑃𝑌  +   𝛿4𝑈𝑁𝐵𝑉𝑡,𝑆𝑃𝑌  +   𝜀𝑡           (13) 

 

 

5. Results 

5.1. Overall lead-lag relationship 

Table 3 shows the overall lead-lag relationships among the S&P 500 index and its tracking 

ETFs, namely SPY and IVV. These results are based on the whole sample, as opposed to the 

daily estimation used for the regression analysis. The lead-lag relationship of each pairwise 

combination of the three instruments is represented by three lead-lag quantities. After obtaining 
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the correlation curve using Equation 5, the lead-lag correlation and the lead-lag time are 

measured at the peak of the curve while the lead-lag ratio is calculated by Equation 6. 

 

Table 3. Lead-lag relationship among the S&P 500 index and its tracking ETFs. The first name in each pair is the 

leader. The lead-lag time is in milliseconds. For example, that the lead-lag time of the S&P500 – IVV pair is 10 

means that the S&P 500 index leads the IVV ETF by 10 milliseconds. 

 

 

 Lead-lag correlation Lead-lag time (ms) Lead-lag ratio 

S&P500 – IVV 0.1943 10 1.0058 
S&P500 – SPY 0.1886 30 1.0230 

IVV – SPY 0.2370 20 1.0284 
 

 

Although the S&P 500 index and its tracking ETFs are highly correlated using daily data (i.e. 

their daily correlation coefficient is 99.9%), Table 3 shows that they are only moderately 

correlated (i.e. around 20% correlation) using tick data due to the Epps effect (i.e. an effect 

documented by Epps (1979) where financial instruments become less correlated at higher 

sampling frequencies). The ETF – ETF pair is more correlated than the two index – ETF pairs. 

The lead-lag time is relatively short, ranging from 10 to 30 milliseconds. The index leads both 

ETFs, so price discovery starts from the index and the ETFs follow. Regarding the lead-lag 

ratio, it is slightly higher than one and highest for the ETF – ETF pair. Figure 5 shows the 

correlation curves of the three pairs of instruments. 
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Figure 5. Correlation curves. This figure shows the correlation curves of the three pairs of instruments. The vertical axis shows the correlation coefficient. The horizontal axis 

shows the time adjustment in milliseconds (we adjust the timestamp of the first instrument in each pair). Because the correlation range of each pair is small, if we plot all the 

three curves on the same chart, they look like straight lines. Therefore, we plot each curve on a separate chart.  
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According to Figure 5, the peaks of all three curves correspond to a positive time adjustment 

on the horizontal axis, which means that the instrument whose timestamp is adjusted (i.e. the 

first instrument in each pair) leads the instrument whose timestamp is fixed (i.e. the second 

instrument in each pair). When we move away from the peak on both sides, the correlation 

coefficient decreases gradually. The ETF – ETF curve is smoother than the two index – ETF 

curves and the two IVV curves are more symmetrical on both sides of the peak than the 

S&P500 – SPY curve. Because Figure 5 shows that the lead-lag relationship exists among the 

index and ETFs, we attempt to exploit this relationship by applying the trading strategy of 

Alsayed and McGroarty (2014) where we trade the lagger in the direction of the leader’s 

previous price change. However, the strategy is not profitable, which is consistent with Brooks 

et al. (2001), who find that although the lead-lag effect can be used to produce accurate 

forecasts, trading these forecasts does not yield favourable returns. 

 

5.2. The effect of information arrival on the lead-lag relationship 

Table 4 shows the results of regression (12) and (13), which estimate the effect of information 

arrival on the daily lead-lag relationship among the S&P500 index and ETFs. The daily trading 

volume of each instrument (i.e. the independent variable, in million shares) is divided into four 

components based on two dimensions, namely (i) block and non-block and (ii) expected and 

unexpected. The expected and unexpected volume are used as a proxy for the normal market 

activity and information arrival respectively while the block and non-block volume are used as 

a proxy for sophisticated and non-sophisticated investors respectively. The lead-lag 

relationship (i.e. the dependent variable) is represented by three lead-lag quantities. After 

obtaining the correlation curve using Equation 5, the lead-lag correlation (panel A) and the 

lead-lag time (panel B) are measured at the peak of the curve while the lead-lag ratio (panel C) 

is calculated by Equation 6. 

 

 

 

 

 

 

 

 

 



19 
 

Table 4. Effect of information arrival on the lead-lag relationship. This table shows the estimated coefficients for 

regression (12) and (13). The first instrument in each pair is the leader. The lead-lag time is in milliseconds. The 

numbers in brackets are standard errors of the coefficients. The ***, ** and * superscripts denote statistical 

significance at 1%, 5% and 10% level respectively. 

 

 

 Index - IVV Index - SPY IVV - SPY 

   Panel A: lead-lag correlation coefficient      
Intercept 0.15634*** (0.02066) 0.20387*** (0.01383) 0.26919*** (0.01640) 
Expected S&P500 block volume -0.00007 (0.00072) 0.00031 (0.00023) -0.00020 (0.00027) 
Unexpected S&P500 block volume -0.00073** (0.00032) 0.00012 (0.00048) -0.00016 (0.00058) 
Expected S&P500 non-block volume -0.00013 (0.00009) -0.00007 (0.00007) -0.00001 (0.00008) 
Unexpected S&P500 non-block volume -0.00001 (0.00018) 0.00001 (0.00012) -0.00003 (0.00014) 
Expected IVV block volume 0.03171* (0.01647) -  0.01968 (0.01464) 
Unexpected IVV block volume 0.05245** (0.02096) -  0.04518** (0.01991) 
Expected IVV non-block volume 0.03043* (0.01593) -  0.02738* (0.01435) 
Unexpected IVV non-block volume 0.03540* (0.01856) -  0.02530 (0.01735) 
Expected SPY block volume -  -0.00006 (0.00039) -0.00127** (0.00058) 
Unexpected SPY block volume -  -0.00032 (0.00043) -0.00118** (0.00059) 
Expected SPY non-block volume -  -0.00077* (0.00043) -0.00110* (0.00057) 
Unexpected SPY non-block volume -  -0.00086** (0.00043) -0.00112* (0.00059) 
Adjusted R2 0.27455  0.20854  0.27274  

   Panel B: lead-lag time (ms)       
Intercept 9.01535*** (2.38260) 23.85950*** (5.76255) 15.42479*** (5.55488) 
Expected S&P500 block volume 0.04093 (0.03675) -0.00957 (0.09441) -0.07944 (0.09076) 
Unexpected S&P500 block volume 0.11544 (0.08324) 0.29438 (0.20158) 0.12359 (0.19666) 
Expected S&P500 non-block volume -0.00904 (0.01068) 0.00303 (0.02821) 0.02119 (0.02726) 
Unexpected S&P500 non-block volume -0.03131 (0.02030) -0.07552 (0.04950) -0.02889 (0.04838) 
Expected IVV block volume 0.92662 (2.41662) -  3.32228 (6.74262) 
Unexpected IVV block volume 2.38254 (1.89976) -  1.14084 (4.95906) 
Expected IVV non-block volume 1.67334 (2.14030) -  -5.70446 (5.87593) 
Unexpected IVV non-block volume 2.85017 (1.83670) -  -6.78641 (4.86146) 
Expected SPY block volume -  0.06611 (0.16393) -0.01539 (0.19880) 
Unexpected SPY block volume -  0.11651 (0.17921) 0.01657 (0.19765) 
Expected SPY non-block volume -  0.02900 (0.18099) 0.01984 (0.20063) 
Unexpected SPY non-block volume -  0.08662 (0.17958) 0.05234 (0.19309) 
Adjusted R2 0.15143  0.11322  0.14527  

   Panel C: lead-lag ratio       
Intercept 1.03604*** (0.01999) 1.04818*** (0.00984) 1.02697*** (0.02650) 
Expected S&P500 block volume -0.00036 (0.00031) 0.00016 (0.00016) -0.00079* (0.00043) 
Unexpected S&P500 block volume 0.00196*** (0.00070) -0.00027 (0.00034) -0.00029 (0.00094) 
Expected S&P500 non-block volume 0.00009 (0.00009) -0.00007 (0.00005) 0.00016 (0.00013) 
Unexpected S&P500 non-block volume 0.00045*** (0.00017) 0.00006 (0.00008) 0.00007 (0.00023) 
Expected IVV block volume -0.01787 (0.02027) -  0.03732 (0.03216) 
Unexpected IVV block volume -0.00847 (0.01594) -  0.03306 (0.02365) 
Expected IVV non-block volume -0.02726 (0.01796) -  0.00242 (0.02803) 
Unexpected IVV non-block volume -0.02190 (0.01541) -  0.03576 (0.02319) 
Expected SPY block volume -  0.00006 (0.00028) -0.00098 (0.00095) 
Unexpected SPY block volume -  -0.00022 (0.00031) -0.00246*** (0.00094) 
Expected SPY non-block volume -  -0.00002 (0.00031) -0.00085 (0.00096) 
Unexpected SPY non-block volume -  -0.00013 (0.00031) -0.00227** (0.00092) 
Adjusted R2 0.20238  0.13908  0.25208  
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According to Table 4, there is evidence that the lead-lag relationship among the S&P500 index 

and its tracking ETFs is influenced by the rate of information arrival which is captured by the 

unexpected trading volume of these instruments. In particular, the impact of information is 

significant on the lead-lag correlation coefficient and the lead-lag ratio. Specifically, when 

more information comes to the market, the resultant increase in unexpected volume of the 

leader and the lagger has opposite effects on the lead-lag correlation coefficient. For the 

S&P500 – IVV pair, increased trading of the leader (lagger) leads to a lower (higher) 

correlation coefficient while for the other pairs, increased trading of the leader (lagger) leads 

to a higher (lower) correlation coefficient. Compared to the ETFs, the unexpected index volume 

has a less pronounced effect on the lead-lag correlation (statistically significant in only the 

index – IVV pair). Regarding the strength of leadership (measured by the lead-lag ratio), 

although an increase in information intensity may lead to an increase in the unexpected trading 

volume of both the leader and the lagger, their changes have opposite effects on the strength of 

leadership. If the unexpected volume of the leader increases, its leadership strengthens while if 

the unexpected volume of the lagger increases, this leadership weakens. This effect is 

significant at 1% level for the index – IVV pair and the IVV – SPY pair. Finally, sophisticated 

investors (i.e. block volume) have a more significant effect on the lead-lag relationship than 

non-sophisticated ones (i.e. non-block volume). 

 

Table 5 summarises the magnitude of statistically significant results, namely the lead-lag 

correlation and the lead-lag ratio. It shows the changes in these lead-lag variables caused by a 

given increase in the trading volume of the leader and the lagger. Because each instrument has 

a different level of trading activities, we report the changes caused by a volume increase of one 

standard deviation to make the results more comparable. The changes in the lead-lag variables 

are reported in absolute and relative terms (i.e. as a percentage of the overall levels in Table 3). 

 

Table 5. Magnitude of statistically significant results. This table shows the changes in the lead-lag correlation and 

the lead-lag ratio (in absolute and relative terms) caused by an increase of one standard deviation in the trading 

volume of the leader and the lagger. The first instrument in each pair is the leader.   

 

 Index - IVV Index - SPY IVV - SPY 
 Absolute Relative Absolute Relative Absolute Relative 

Lead-lag correlation       

Leader -0.0477 -24.57% 0.0065 3.43% 0.0429 18.08% 

Lagger 0.0545 28.03% -0.0241 -12.77% -0.0553 -23.35% 

Lead-lag ratio       

Leader 0.1453 14.45% -0.0036 -0.36% 0.0395 3.84% 

Lagger -0.0267 -2.66% -0.0039 -0.38% -0.0800 -7.78% 
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The SPY volume has the largest impact on the lead-lag correlation in absolute terms (-0.0553 

for the IVV – SPY pair) whereas the IVV volume has the largest impact in relative terms (28.03% 

for the index – IVV pair). For all pairs, the laggers have a larger influence on the lead-lag 

correlation than the leaders. On the other hand, the index volume has the largest effect on the 

lead-lag ratio in both absolute and relative terms (0.1453 and 14.45% respectively for the index 

– IVV pair). 

 

6. Conclusion 

To our knowledge, this paper is the first study on the effect of information arrival on the lead-

lag relationship among related spot instruments. Based on a large dataset of ultra-high-

frequency transaction prices time-stamped to the millisecond and a novel approach proposed 

by Hayashi and Yoshida (2005) and Hoffmann et al. (2013), we find lead-lag effects among 

the S&P500 index and its two most liquid tracking ETFs. The lead-lag correlation coefficients 

are relatively low (i.e. around 20%) due to the Epps effect (Epps, 1979) where financial 

instruments become less correlated at higher sampling frequencies. The index leads both ETFs 

by 10 and 30 milliseconds respectively so price discovery starts from the index. 

 

Using daily unexpected trading volume of the index and ETFs to proxy for the arrival rate of 

information, we find that information intensity affects the lead-lag relationship, especially the 

lead-lag correlation coefficient and the strength of leadership. Regarding the strength of 

leadership, the leadership of the leader may strengthen or weaken depending on whether the 

leader or lagger responds to the arrival of information. This leadership (i) strengthens when the 

unexpected volume of the leader increases and (ii) weakens when the unexpected volume of 

the lagger increases. Regarding the lead-lag correlation coefficient, although the unexpected 

volume of both the leader and the lagger may increase in response to information arrival, their 

changes may also have opposite effects on the correlation coefficient. Moreover, we find that 

sophisticated investors have a more significant effect on the lead-lag relationship than non-

sophisticated ones. All in all, our study suggests that future research on the lead-lag relationship, 

especially in high-frequency data, should pay attention to the influence of information arrival 

on this relationship. 
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