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Abstract 

In standard multiple object tracking (MOT) tasks the relative importance of the targets being 

tracked is equal. This is atypical of everyday situations in which an individual may need to 

prioritise one target relative to another and so allocate attention unequally. We report 

three experiments that examined whether participants could unequally split attention using 

a modified MOT task in which target priority was manipulated. Specifically, we examined 

the effect of priority on participants’ magnitude of error and used a distribution mixture 

analysis to investigate how priority affected both participants’ probability of losing an item 

and tracking precision. Experiment 1 (trajectory tracking) revealed a higher magnitude of 

error and higher proportion of guessing for the low compared with high priority targets. 

Experiments 2 (trajectory tracking) and 3 (position tracking) examined how fine-grained this 

ability is by manipulating target priority at finer increments. In line with Experiment 1, 

results from both these experiments indicated that participants could split attention 

unequally. There was some evidence that participants could allocate attention unequally at 

fine increments, but this was less conclusive. Taken together, these experiments 

demonstrate participants’ ability to distribute attention unequally across multiple moving 

objects but suggest some limitation with the flexibility of attention allocation. 

 

Key Words: attention, multiple object tracking, unequal attention splitting, target priority, 

goal-directed 
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Significance Statement 

 

When tracking multiple objects in a dynamic environment one may need to prioritise one 

object over another and so allocate attention unequally. These studies show that attention 

can be divided unequally between two moving targets. Specifically, more and less attention 

can be allocated to a high and low priority target, respectively, as indexed by the magnitude 

of error. Modelled proportions of guessing responses and spread of errors were also 

associated with the priority of targets. Models of multiple object tracking must incorporate 

these novel findings that are indicative of flexible attention allocation.  
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Goal-directed unequal attention allocation during multiple object tracking 

 

Allocating attention to multiple objects as they move around the environment is required 

for both everyday activities (e.g. driving a car and playing team sports) and real-world 

occupations (e.g. air traffic control and CCTV monitoring). This ability has been extensively 

studied using the multiple object tracking (MOT) task (Pylyshyn & Storm, 1988). In this task, 

several objects are presented on screen, a subset of which are temporarily identified as 

targets. Participants then track the targets amongst visually similar distractors as they move 

randomly around the screen. At the end of a trial, all objects stop moving and participants 

are queried about the status (i.e. target or distractor) of an object, the trajectory of a target, 

or the position of a target. Typically, participants can simultaneously track approximately 

four objects (e.g. Intriligator & Cavanagh, 2001; Pylyshyn & Storm, 1988; Scholl, Pylyshyn, & 

Feldman, 2001). Tracking performance is limited by factors such as the number (Yantis, 

1992), speed (Alvarez & Franconeri, 2007) and spacing (Franconeri, Lin, Pylyshyn, Fisher & 

Enns, 2008; Tombu & Seiffert, 2008) of objects. Such limits on tracking indicate that there is 

a finite attentional resource because tracking performance deteriorates as the number of 

targets increases (e.g. Yantis, 1992; Alvarez & Franconeri, 2007; Franconeri et al., 2008). The 

structure of this resource is debated with some authors proposing a fixed architectural 

system consisting of a limited number of discrete pointers or slots (e.g. Pylyshyn, 1989) and 

others postulating a more flexible, continuous pool of resources (e.g. Alvarez & Franconeri, 

2007).  

 

Fixed theories emerged following the consistent finding that approximately four 

targets could be accurately tracked in MOT tasks. Pylyshyn’s (1989) Fingers of Instantiation 
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(FINST) model consists of a fixed set (i.e. three, four, or five) of indexes or slots that can be 

assigned to objects to provide a connection between the outside world and visual 

representations in cognition. Cavanagh and Alvarez’s (2005) multifocal theory posits that 

multiple foci of attention, rather than visual indexes in the FINST model, track each object. 

These two models suggest that tracking limitations are due to fixed architectural 

constraints, namely the number of visual indices or attentional foci. 

 

Flexible resource theories suggest that there is a continuous pool of the attentional 

resource that can be drawn upon for tracking multiple objects. Alvarez and Franconeri 

(2007) proposed the FLEX model (FLEXibly allocated indexes) which suggests that objects 

are tracked by flexible indexes (FLEXes), the total number of indexes is limited by the finite 

resource. The limit on tracking is set by this shared resource that determines the resolution 

of each FLEX such that when fewer items are tracked, the tracking resolution is higher, 

consistent with findings relating to spatial precision of target representations (Howard & 

Holcombe, 2008; Howard, Masom, & Holcombe, 2011). Kazanovich and Borisyuk (2006) 

proposed that tracking is accomplished by a set of central oscillators that synchronise with 

each other to label objects in the focus of attention. Tracking is limited by the phase space 

of such oscillators and so tracking is better with fewer independent oscillators that are more 

sparsely distributed in phase space. Franconeri et al. (2010) proposed the spatial 

interference theory of MOT which suggests that the constraints on tracking are determined 

by the spatial relationship between targets and distractors (i.e. objects that participants do 

not have to keep track of). This alternative to the FLEX model suggests tracking errors are 

the result of distractors or other targets entering the inhibitory surround (i.e. a spatial 

region) of targets (Meyerhoff, Papenmeier & Huff, 2017).  
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A parallel debate persists in the visual short term-memory (VSTM) literature in which 

a capacity limit of 3-5 items has often been reported (Cowan, 2001). Such findings have led 

to the proposal of fixed, slot-based theories of VSTM which suggest that, irrespective of the 

complexity of objects, only a limited, fixed number of items can be stored (e.g. Awh, Barton 

& Vogel, 2007; Luck & Vogel, 1997). Other authors (e.g. Alvarez & Cavanagh, 2004; Eng, 

Chen, & Jiang, 2005) propose that the number of objects that can be stored is more flexible 

and determined by the complexity of objects. Distinguishing between fixed and flexible 

mechanisms underlies a variety of questions within cognitive psychology which are 

inherently related. One closely related task is multiple identity tracking (MIT) in which 

participants must maintain information about the identity of multiple objects as they move 

(critically in MOT tasks the features of objects are identical, whereas in MIT each tracked 

object has a unique feature to identify it, Oksama & Hyönä, 2004). Oksama and Hyöna 

(2008) suggest that, in some MIT tasks, target relevant location information is stored in 

VSTM and therefore tracking limits are derived from the structure of the resource 

underlying VSTM. Characterising the mechanisms that underlie tracking is therefore 

important to provide a greater understanding of other, related cognitive processes as well. 

 

Both fixed and flexible theories are based on results from experiments using 

assumed equal attention splitting. Under either the fixed or flexible theories, unequal 

attention splitting, in which objects for tracking are allocated different amounts of the 

attentional resource, is theoretically possible. As an analogy to help distinguish the two 

accounts, water can be used to represent the attentional resource underlying tracking. 

Under a fixed account, water takes the solid form of ice cubes and so the fixed number of 
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ice cubes or slots can be unequally distributed across objects in only a limited number of 

ways (i.e. attention slots could be split between two targets according to a limited number 

of ratios: 4:0; 3:1; 2:2 or 5:0; 4:1; 3:2). In contrast, under a flexible account water takes the 

liquid form and so can be flexibly allocated unequally in any way (e.g. 37%:63%). It is 

important to recognise that the structure of the attentional resource could fall anywhere 

between these two points and so a key question, addressed here, is how flexible the 

resource is.  

 

Previous studies have demonstrated stimulus-driven unequal allocation. Liu et al. 

(2005) modified the typical MOT task so that half the objects moved at 1 degree/s and the 

other half at 6 degree/s. There was no difference in tracking performance between fast- and 

slow-moving targets indicative of unequal attention allocation. More specifically, more of 

the resource could have been allocated to the faster (more demanding) target, which 

resulted in similar tracking accuracy across both speed conditions. Chen, Howe, and 

Holcombe (2013) compared the speed limits at which participants could track a critical 

target when the second target was moving at either the same or a slower speed. The speed 

limit for the critical target was higher if the second target was moving slow rather than fast. 

This suggests that participants allocated attention unequally with more attention available 

to allocate to the fast-moving target when the secondary target was moving slower. 

Together, these results provide evidence consistent with participants’ ability to unequally 

allocate attention in a stimulus-driven manner.  

 

Some authors have also examined participants’ ability to shift attention on-line (i.e. 

during a trial). Iordanescu, Grabowecky, and Suzuki (2009) argued that targets in crowded 
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situations (i.e. those in danger of being mistaken for distractors) were localized more 

precisely than uncrowded targets, suggesting that more attention was allocated to these 

‘high risk’ targets. This supports the notion of unequal attention allocation and, additionally, 

suggests that the attention allocated to a given target can be changed during tracking. 

Nevertheless, this result should be interpreted with some caution because proximity (to the 

nearest distracter) was not manipulated directly (i.e. object trajectories were randomly 

determined) and, therefore, other display characteristics could have been affected as well 

as proximity (Chen, Howe, & Holcombe, 2013; see also contradictory findings by Howard, 

Masom, & Holcombe, 2011). Howe et al. (2010) adapted the ‘simultaneous-sequential 

paradigm’ (Eriksen & Spencher, 1969) to examine whether attention could be reallocated 

between targets during tracking. In the simultaneous condition, all objects moved and 

paused simultaneously whereas in the sequential condition objects were divided into two 

groups and moved alternatively. There was no difference in tracking performance between 

objects in the simultaneous and sequential conditions which suggests that participants 

could not reallocate attention unequally between targets during tracking. Meyerhoff, 

Schwan, and Huff (2018) conducted a series of experiments to explore whether inter-object 

spacing guides visual attention. A bias towards temporarily close objects (both in term of 

spatial attention allocation and eye movements), which persisted even when the bias was 

harmful for the task, was observed indicating both unequal attention allocation and 

updating of attention allocation during a trial (see also, Zelinsky, & Todor, 2010). In other 

work Meyerhoff, Papenmeir, Jahn, and Huff (2016) revealed that such unequal allocation of 

the attentional resource in a stimulus-driven manner is advantageous to avoid confusion 

between targets and close distractors indicating that attention can be flexibly allocated 

during tracking.   
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Goal-directed unequal attention allocation in MOT has also been documented. 

Cohen, Pinto, Howe, and Horowitz (2011) modified the instructions given to participants in a 

MIT task. In one condition, participants were instructed to prioritise the locations over the 

identities of target and, in another, were instructed to place equal emphasis on both 

location and identity information. Position tracking performance was higher when 

prioritisation instructions were given demonstrating unequal attention allocation between 

the location and identity information associated with the same target. However, to our 

knowledge, no research has addressed whether participants can split attention unequally 

between distinct targets in a goal-directed manner (i.e. not to different features of the same 

object). Examining the way in which participants can split attention unequally in a strategic 

manner has the potential to inform the debate regarding the structure of the attentional 

resource underlying tracking because the amount of attention allocated to a given object 

can be directly manipulated. This allows examination of the resource-versus-performance 

function, the shape of which would be different for fixed and flexible theories. As well as 

being theoretically important, unequal allocation of attention is highly relevant to the real-

world in situations where one wishes to prioritise, and so allocate more attention to one 

target over another target, which nonetheless needs tracking.  

 

Yantis (1992) showed goal-directed attention allocation within an MOT framework. 

Participants who were instructed to group all targets together displayed higher tracking 

accuracy than those who were given neutral tracking instructions. This shows that 

participants modified their tracking strategy in a goal-directed manner. Brockhoff and Huff 

(2016) combined a typical MOT task with a non-interfering top-down identification task. 
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Participants were instructed to identify the behaviour of dynamic cartoon eyes. The cartoon 

eyes were the objects in the MOT task and the moving pupils cued either a single target or 

single distractor by all rotating to look towards that specific object. Participants could ignore 

or prioritise objects based on cueing thus indicating goal-driven attention allocation during 

the MOT task. Taken together, these results demonstrate top-down mechanisms driving 

attentional allocation but do not provide any insight into the potential for top-down 

unequal attentional allocation between two simultaneously tracked objects within a trial.  

 

Goal-directed unequal attention allocation has been demonstrated in other 

attention-based tasks in which participants are instructed to allocate different proportions 

of their attention accordingly. Miller and Bonnell (1994) instructed participants to pay a 

certain amount of attention to a line-length discrimination task on the left side of the screen 

and the remaining attention to the right side and revealed that sensitivity increased with the 

proportion of attention devoted to that side. Fitousi (2016) instructed participants to 

allocate differential amounts of their attention to the top and bottom halves of a face. Such 

instructions were effective in modifying the amount of attention allocated to either half of 

the face, with participants’ performance improving as a function of attention allocation 

(Fitousi, 2016). Atkinson, Berry, Waterman, Baddeley, Hitch, and Allen (2018) used probe 

frequencies (i.e. how frequently a more valuable item was tested) to examine whether 

memory for an item was enhanced if participants were told it would be tested more 

frequently. Memory was enhanced for the relatively more valuable item indicating that 

attention can be directed according to probe frequencies. However, on the contrary, Chen, 

Howe, and Holcombe (2013) claim that it would be difficult to induce participants to 
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allocate a specific proportion of attention to two targets during an MOT task due to the 

extended duration of tracking across an MOT trial. We empirically test this claim here.  

 

The present series of experiments examined whether participants could split 

attention unequally to multiple moving objects in a goal-directed manner. We used 

modified MOT tasks in which the priority of targets was manipulated to examine the effect 

of target priority on tracking performance. Such modification resulted in the task 

encompassing components of both MOT and multiple identity tracking (MIT). Multiple 

identity tracking requires participants to maintain location-identity bindings during tracking 

(Mayerhoff, Papenmeier, & Huff, 2017). This modified MOT task requires participants to 

assign a priority (i.e. an identity) to each target during a trial and therefore fits with an MIT 

task. However, the index of tracking performance fits more closely with the MOT literature 

because the targets’ position or trajectory is queried rather than an identity-related 

response.  

 

Experiment 1 examined whether participants could split attention unequally 

between high and low priority targets. Experiment 2 and 3 explored how fine-grained 

participants’ ability to allocate attention unequally was by manipulating the target priorities 

at finer increments. Tracking performance was measured as the absolute error between the 

actual and estimated trajectory (Experiments 1 and 2) or location (Experiment 3). In addition 

we used a mixture distribution analysis (based on Zhang & Luck, 2008) to estimate the 

precision of tracking and the guessing rate. We hypothesised that the magnitude of tracking 

error, proportion of guessing, and the precision of tracking would be lower for the higher 

priority targets in all three experiments indicative of strategic unequal attention allocation.  
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Experiment 1 

Method 

Participants. Twenty-seven undergraduate students from the University of Bristol 

participated in return for course credit. G*Power version 3.1 (Faul, Erdfelder, Lang, & 

Buchner, 2007) was used to calculate sample size for all experiments. Due to institutional 

constraints, we over-recruited for all experiments. Based on existing data from our lab 

suggesting an effect size of dz = 0.73, this sample size gave us at least a 95% chance of 

observing a similar effect size, with alpha set at .05 for two-tailed tests.  

 

Design. Target priority was manipulated in a within-subject design with three levels: 

low (25%), equal (50%), and high (75%) which reflected the veridical probability of a target 

being queried over the course of the whole experiment. The primary dependent variable 

was magnitude of angular error, indexed by the degree of error from the queried target’s 

actual trajectory (i.e. the direction it was heading in) to the participant’s reported trajectory 

at the end of the trial. For example, if at the final moment of the moving tracking display, 

the queried target was last moving upwards and rightwards at an angle of 10 degrees 

clockwise from vertical, and the participants reported that it was moving directly upwards, 

then this would constitute a magnitude of angular error of 10 degrees. The proportion of 

guess trials and precision of representations, calculated from the mixture modelling analysis 

were also dependent variables.  

 

Procedure. Stimulus displays were presented on a 17 inch CRT monitor with a resolution of 

1,024 x 768 pixels and a refresh rate of 85 Hz.  Viewing distance was approximately 40 cm. 

Participants completed the task in a dimly lit room. A custom made programme was written 
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using MATLAB version 2014b (The MathWorks, Inc, 2014) and the Psychtoolbox extensions 

(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).  

 

Figure 1 shows a timeline of one MOT trial. On each trial, participants fixated a central black 

fixation cross and eight black discs with a radius of 1.14° of visual angle, two targets and six 

distractors, were presented on a mid-grey screen at the start of each trial for 2,000 ms. Each 

target had one of three numbers (25, 50, 75) presented on them denoting the likelihood of 

this target would be queried at the end of a trial and so indicating the relative importance of 

each target (i.e. the 75 and 25 targets were of high and low priority respectively). On any 

given trial, the combined values totalled 100. Participants were given clear instructions and 

the opportunity to ask questions on how to allocate their attention before starting the 

practice trials. The discs then moved randomly around the screen at an average speed of 

15.8° per second for between 5,000 - 8,000 ms (randomised for each trial) and underwent 

perfectly elastic collisions whenever they collided with the edge of the display or another 

disc. At the end of the trial, all discs disappeared except one of the targets, which remained 

on the screen. Participants clicked inside the target to activate it which caused a Iine, 1.14° 

long, to extend from the targets’ centre. The direction of the line was determined by the 

position of the participants mouse click. Participants then moved the line (using the mouse) 

to report the target’s trajectory and clicked to confirm their answer. Feedback, consisting of 

a arrow indicating the correct direction of heading, was given on each trial for 2,000 ms, 

after which the next trial was presented. Participants completed 10 practice trials followed 

by 250 experimental trials, the order of which was randomised, in 10 blocks. The 

experiment lasted approximately 1 hour. 
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Figure 1. Trial timeline. 1) Eight discs were presented on screen. Discs containing a value 
inside denote the likelihood of that target being queried at the end of a trial; 2) All discs 
moved around the screen; 3) All discs except one disappeared. Participants estimated what 
direction the disc was heading it at the end of the trial using a rotatable pointer; 4) 
Participants were given feedback. A second arrow was presented which indicates the 
correct target trajectory. If a participant’s trajectory estimate was within 12.5 degrees of the 
correct trajectory, the arrow turned green. Otherwise, it turned red.   
 
 
Results and Discussion  

One participant was excluded due to their very high magnitude of error (and the 

model-based analysis suggested they had a very high rate of guessing). Linear Mixed Effects 

models (LMEs) were used to analyse the data using the lme4 package (Bates, Mächler, 

Bolker, & Walker 2014) for the R computing environment (R Development Core Team, 

2014). Target priority was entered into the model as a fixed effect. As random effects, there 

was a random intercept for subjects and a by-subject random slope for the effect of target 

priority.  P-values were obtained by likelihood ratio tests of the full model including terms 

related to priority against the model without priority included. Post-hoc comparisons were 

conducted by comparing the slopes between two adjacent target priorities.   

 

There was a main effect of priority, χ2 (2) = 16.60, p < .001, whereby the magnitude 

of angular error decreased as target priority increased, b = -0.277, SE = 0.06, t = 4.42. Post-

hoc tests showed that there was a higher magnitude angular error in the low priority than 
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equal priority condition (b = -0.48, t = 3.53, p = .006), but no difference between the equal 

and high priority conditions (b = -0.08, t = 1.65, p = .236) (see Figure 2, left panel). 

 

Figure 2. Mean magnitude of error, proportion of guessing and precision of tracking for each 
target priority in Experiment 1. Error bars represent 95% within-subject confidence intervals 
using Morey (2008). 

 

It is possible to interpret the distribution of error magnitudes in order to examine 

the data further. This analysis distinguishes contributions from two sources to differences in 

overall accuracy. The source is the guessing rate, where guesses may be due to participants 

losing track or otherwise completely withdrawing attention from a target. The second is the 

precision of representations (due to the amount of allocated attention) of targets1. 

Analysing data from a series of MOT experiments in which participants judged the heading 

of a target object, Horowitz and Cohen (2010, following Zhang & Luck, 2008) used a mixture 

of a uniform distribution (representing the situation where a target is lost and participants 

must guess) and von Mises (the circular equivalent of the normal distribution, representing 

the situation where participants have successfully tracked a target, but with varying 

precision, as reflected in the spread of the distribution). Under a pure slot-based model the 

                                                           
1 We thank H. Meyerhoff for suggesting this analysis.  
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precision should not change as set size increases to any level (since a fixed number of slots 

are allocated, and targets that are not tracked are guessed, which is captured under the 

uniform guessing distribution). Flexible accounts predict that precision should decrease as 

the number of items increases for any set size increase. Horowitz and Cohen also tested two 

hybrid models (again following Zhang & Luck, 2008): the slots + resources model (a fixed 

number of slots, but a resource that can be unequally allocated among those slots) and the 

slots + averaging model (a fixed number of slots, but slots can be applied to more than one 

target if below capacity). Both hybrid models make the same prediction however: if the 

number of targets to track is below capacity the precision will decrease as the number of 

targets increase (either because resources are spread more thinly, or because slots cannot 

be shared) and asymptote if capacity is reached (as additional targets are not tracked and 

are guessed, which is captured under the uniform guessing distribution).  

 

In line with the method used by Horowitz and Cohen (2010), we fit a mixture of a 

uniform circular distribution and von Mises distribution to each participants’ data for each 

level of priority. We used the fitdistr function from the ‘MASS’ package (Venables & Ripley, 

2002) with von Mises and uniform distributions functions from the ‘circular’ package 

(Agostinelli & Lund, 2017). The uniform circular distribution, representing the situation 

where a participant makes a guess response, generates a random value between -180 to 

180. The von Mises distribution, representing the situation where a participant has tracked 

a target, but to a varying degree of precision, is controlled by two parameters: μ (the mean) 

and κ (the concentration parameter, which determines the spread of the distribution). The 

mixture of guessing and tracked errors was controlled by PG, the proportion of guessing. The 

error distribution, ε, is therefore: 
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𝜀 = 𝑃𝐺𝑓𝑢𝑐(−180,180) + (1 − 𝑃𝐺)𝑓𝑉𝑀(𝜇, 𝜅),      (2) 

In which fuc is the uniform circular distribution function and fvm is the von Mises distribution 

function. In our analysis (following Horowtiz & Cohen, 2010) we fixed μ = 0 (i.e. average 

error was zero). We used R (R Core Team, 2015) to estimate κ and PG values via maximum 

likelihood estimation function fitdistr from the MASS package (Venables & Ripley, 2002) 

with von Mises and uniform distributions functions from the ‘circular’ package (Agostinelli & 

Lund, 2017). The mixture model fits (for data combined across participants), for each level 

of target priority, are shown in Figure 3. A higher precision value, κ, indicates a more 

leptokurtic distribution which demonstrates higher precision.  Therefore, a higher precision 

value indicates higher precision.  
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Figure 3. Mixture model fits for the combined data across participants for Experiment 1 for 
each level of target priority. The density plot displays the actual data and the black line 
shows the model fit. The proportion of guessing (PG) and precision of tracking (κVM) 
parameters are also detailed.   
 

The κ and PG values, estimated for each participant and each level of priority, were 

then entered into a LME analysis, in an identical manner to the treatment of the magnitude 

of angular error scores. There was an effect of target priority on the proportion of guessing, 

χ2 (2) = 11.10, p = .004. Participants demonstrated less guessing for high priority targets, b = 

-0.002, SE = 0.001, t = 3.52. There was evidence for a higher proportion of guessing in the 

low priority compared to the equal priority condition, (b = -0.004, t = 0.32, p = .021). 

However, there was no difference in the proportion of guessing in the high compared with 

equal condition, (b = -0.004, t = 1.65, p = .950) (see Figure 2, right panel).  

Finally, there was an effect of target priority on the precision of representations (κ), 

χ2 (2) = 10.52, p = .005, with the precision increasing as target priority increased, b = -0.09, 

SE = 0.03, t = 3.42 (see Figure 2, right panel). Post-hoc tests showed that there was no 

difference in precision between any of the adjacent levels of target priority (both t < 2.12 , p 

> .127).  

Experiment 1 showed that participants guessed the trajectory of the low priority 

target more frequently than both the equal and high priority target. Howard, Rollings, and 

Hardie (2017) showed that participants’ attention to a target’s position and attention to its 

motion characteristics are distinct. Therefore, it cannot be assumed that all guess trials were 

associated with participants having no attention on that target. However, it could be argued 

that the higher proportion of guessing for low priority targets indicates participants could 

not split attention unequally and, therefore sometimes either lost the target completely (i.e. 

dropped the target) or confused it with a distractor (i.e. swapped the target with a 



Running Head: Unequally divided attention 
 

19 
 

distractor). However, this is likely an infrequent occurrence given the relatively low 

proportion of guessing (the majority of trials not modelled as involving a guess response) 

and a relatively good level of tracking accuracy (indexed by the magnitude of angular error) 

for the low priority target. This indicates that some attention was allocated to the low 

priority target but, in some cases, this was not sufficient to support updating of a targets’ 

trajectory which resulted in an increase in guessing.  

 

 The effect of target priority on magnitude of error and precision shows that 

differential amounts of attention were allocated to the high and low priority targets, 

respectively, indicative of unequal attention allocation. This suggests some flexibility to the 

attentional resource underlying tracking. Specifically, more attention is allocated to the high 

priority target which leads to lower magnitude or error and higher precision. This finding 

does not fit with slot-based accounts of attention allocation which would predict that the 

magnitude of angular error and precision of representations would remain constant 

because each target is allocated one slot. Flexible and hybrid models can, however, account 

for these findings because under their assumptions attention is unequally distributed 

between the two targets resulting in differences in the three indexes of tracking accuracy.  

 

This experiment does not provide insight into how fine-grained this ability is. The 

extent to which attention splitting is fine-grained refers to the precision with which a 

division of attention is possible, in an analogous fashion to the way that liquid water makes 

splitting infinitely more fine-grained than crushed ice or ice cubes. Experiment 2 therefore 

examined whether participants can split their attention unequally across two targets with 

smaller disparities in their priority (e.g. 40% vs 60%) than used in Experiment 1 (i.e. 25% vs 
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75%). Exploring the extent to which attention is fine-grained has the potential to distinguish 

between different models of MOT. For example, under slots + averaging models, each target 

could be assigned more than one slot and, therefore, unequal attention splitting is 

theoretically possible. However, in slot + averaging models, attention can only be split 

unequally in a finite number of ways (i.e. 4-0; 3-1; 3-2). In contrast, under flexible accounts, 

there is an unlimited number of ways that attention can be split.  
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Experiment 2 

Experiment 2 further investigated to what extent participants can finely split their attention 

unequally across multiple moving objects. We manipulated the target priorities at finer 

increments (70, 60, 50, 40, and 30) than Experiment 1 to enable investigation of the 

precision with which participants could allocate a pre-specified amount of the attentional 

resource to a given target. We conducted two identical studies, but one was completed in a 

single participant testing environment (i.e. each participant completed the study alone) and 

another was completed in a group testing environment (i.e. participants completed the 

study in a group of approximately 20 participants).  The study aims and hypothesis were 

preregistered on the Open Science Framework and can be accessed at: 

https://osf.io/s5c6h/?view_only=ed239e4a584744249dd1bb53b4742e53 and 

https://osf.io/ety5r/?view_only=75f6816e4ade4956a3cdfff270190ca52. For brevity and 

power, we present the combined data from these studies3.  

 

Method 

Participants. Seventy-nine undergraduate students from the University of Bristol 

participated in return for course credit (single testing = 36 participants; group testing = 43 

participants). Based on existing data from our lab suggesting an effect size of dz = 0.54, we 

powered for a similar effect size of d = 0.5, which gave us at least an 80% chance of 

                                                           
 
3 The same qualitative pattern of results was observed when each experiment was analysed independently. 
When experiment was included as a between subject factor there were no reliable differences. Note, under a 
Bayesian framework combining the data is equivalent to multiplying the Bayes factors from each experiment 
(assuming the posterior from Experiment 1 is the prior for Experiment 2; see Ly, Etz, Marsman, Wagenmakers, 
2018). 
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observing a similar effect size, with alpha set at .05, based on two-tailed tests, for each 

independent method of testing (i.e. single and group testing power calculations were 

calculated separately) 

Design. Target priority was manipulated in a within-subject design with five levels: very low 

(30), low (40), equal (50), high (60), very high (70), and reflected the true likelihood of a 

target being queried over the course of the whole experiment. The dependent variables 

were the same as in Experiment 1. 

 

Procedure. The procedure was identical to that used in Experiment 1 apart from, when 

providing their response, participants had to indicate whether they thought they were 

tracking the queried target at the end of the trial or not by clicking the left mouse button for 

‘tracked’ and the right mouse button for ‘not tracked’ (labels were put on the mouse 

buttons) 4. This click also activated the response indicator line Participants then used the 

same mouse button to finalise their response as detailed in Experiments 1. In the group 

testing experiment stimuli were presented in a 1,024 x 768 pixels window of a 21-inch LCD 

monitor (1920 x 1080 resolution) with a refresh rate of 60Hz. 

 

Results and Discussion  

Two participants were removed from the analysis because their overall magnitude of 

error was very high (and the model-based analysis suggested they had very high levels of 

guessing). The LME analysis and post-hoc comparisons used was identical to Experiment 1.  

 

                                                           
4 We do not include analysis of this aspect of the design as so few participants actively engaged with it, but 
note the same qualitative pattern of results was observed when ‘untracked’ trials were excluded. 
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There was an effect of target priority on the magnitude of angular error, χ2 (2) = 

121.49, p < .001, which decreased as target priority increased, b = -0.467, SE = 0.04, t = 

12.20 (see Figure 4, left panel). Post-hoc tests showed no difference in the magnitude of 

angular error between the very low and low priority condition (b = -0.13, t = 0.14, p = .639). 

Magnitude of angular error was higher in the low compared with equal (b = -0.90, t = 6.49, p 

< .001), equal compared with high (b = -0.29, t = 2.50, p = .049), and high compared with 

very high priority conditions (b = -0.42, t = 5.40, p < .001), respectively.  

Figure 4. Mean error in magnitude of error, proportion of guessing and precision of tracking 
for each target priority in Experiment 2. Error bars represent 95% within-subject confidence 
intervals using Morey (2008).  
 

Figure 5 shows the mixture model fits all the data combined for all participants, for 

each level of target priority. Fitting the models to each individual participant showed that 

there was an effect of priority on the proportion of guesses (Pg), χ2 (2) = 43.65, p < .001 

(Figure 4, right panel). Participants demonstrated less guessing for higher priority targets, b 

= -0.003, SE = 0.001, t = 6.85. Post-hoc comparisons revealed no difference in the proportion 

of guessing between the very low and low priority targets (b = -0.001, t = 0.39, p = .923). 

Proportion of guessing was higher for the low compared with equal priority targets (b = -
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0.006, t = 3.58, p = .003). However, there was no difference between the equal and high 

priority targets, (b = -0.001, t = 0.69, p = .787). Lower proportion of guessing was revealed in 

the very high compared with high priority condition (b = -0.005, t = 4.95, p < .001). 

  

There was also evidence for an effect of target priority on the precision of 

representations κ, χ2 (2) = 27.59, p < .001, with precision increasing as target priority 

increased (b = 0.15, SE = 0.03, t = 5.18) (see Figure 4, right panel). There was no difference in 

precision between the very low and low, equal and high, and high and very high priority 

targets (t < 1.86, p > .184). There was, however, higher precision in the equal compared with 

low priority condition, b = 0.25, t = 0.11, p = .026. 

Figure 5. Mixture model fits for all participants for Experiment 2 for each level of target 
priority. The density plot displays the actual data and the black line shows the model fit. The 
proportion of guessing (PG) and precision of tracking (κVM) parameters are also detailed.   
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 In line with Experiment 1, the effect of target priority on the magnitude of angular 

error and proportion of guessing suggests that participants can split attention unequally. 

Specifically, more attention was allocated to the high priority target leading to a lower 

magnitude of error, and overall a lower proportion of guessing. Taken together, this result 

suggests flexible allocation of the attentional resource and, therefore, does not fit with pure 

slot-based accounts of attention allocation which would predict no effect of target priority 

because, under this account, each target is allocated a single slot.  

 

Experiment 2 explored the extent to which attention splitting is fine-grained, namely 

the precision with which attention can be divided. There was some evidence for fine-

grained spitting because there was a difference in magnitude of angular error and 

proportion of guessing for the high and very high targets. However, there was no evidence 

for a difference in these parameters between the very low and low priority targets. Since 

there was only limited evidence for fine-grained splitting, the results cannot distinguish 

between flexible and hybrid models of attention. No difference in tracking performance 

between the very low and low priority targets could be taken as evidence for a slots + 

averaging model of attention in which three and one slot(s) were allocated to the high and 

low priority target respectively, on any given trial thus resulting in the same pattern of 

results for the both the unequal splitting condition (i.e. high and low). However, better 

tracking performance in the very high compared with high pattern fits with a flexible or slots 

+ averaging model which would predict a graded decrease in magnitude of angular error 

and proportion of guessing as target priority increases.  
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 Experiments 1 and 2 demonstrated unequal attention splitting in a trajectory 

tracking task. Since position tracking does not automatically recruit trajectory tracking 

processing during MOT it has been suggested that position tracking may be a more primary 

representation during the process of tracking (Howard, Rollings, & Hardie, 2017). To further 

explore the extent to which unequal attention splitting was possible within a MOT-

paradigm, we replicated Experiment 3 using a position tracking task. This will also 

potentially provide more insight into the fine-grained nature of unequal attention splitting.   
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Experiment 3 

Experiment 3 examined whether participants could allocate attention unequally using a 

different measure of tracking accuracy, to further generalise our findings. Tracking 

performance in Experiment 3 was indexed by the magnitude of spatial error (we report 

pixels because we did not standardize viewing distance due to the nature of group testing) 

from the correct final position of the queried target to the participant’ reported final 

position of the queried target. More specifically, we used the x,y co-ordinates of the targets 

centre to index the actual final location and the x,y co-ordinates of the participant’s click to 

index their position reports.  The study aims and hypothesis were preregistered on the Open 

Science Framework and can be accessed at: 

https://osf.io/ety5r/?view_only=75f6816e4ade4956a3cdfff270190ca5.  

 

Method 

Participants. Forty undergraduate students from the University of Bristol participated in 

return for course credit. Based on existing data from our lab suggesting an effect size of dz 

= 0.66, we powered for a similar effect size of d = 0.5 which gave us at least an 80% chance 

of observing a similar effect size, with alpha set at .05 for two-tailed tests.  

 

Design. Target priority was manipulated in a within-subject design with five levels: very low 

(30), low (40), equal (50), high (60), very high (70), and reflected the true probability of a 

target being queried over the course of the whole experiment. The dependent variable was 
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the magnitude of error (pixels) from the correct final location of the queried target to the 

participant’s reported final location of the queried target.  

 

Procedure. The task was identical to that used in Experiment 2 (group participation 

condition) apart from the substitution of the trajectory tracking task with a position tracking 

task. At the end of a trial, there was an aural cue that instructed participants to click on the 

location that they thought the cued target had last occupied. This prompt instructed 

participants to localise the target (i.e. click the location on the screen where they thought 

the centre of queried target with the priory stated through the headphones was at the end 

of the movement). In the 50/50 conditions, the two targets were labelled with either an ‘X’ 

or ‘Y’ at the start of the trial and participants were cued at the end of the trial using these 

labels. Feedback, consisting of a green disc indicating the correct location of the queried 

target, was given on each trial for 2,000 ms after which the next trial started. Viewing 

distance was approximately 40 cm. 

Results and Discussion  

The LME analysis used was identical to Experiment 2. One participant from the 

analysis because their overall magnitude of error was very high (and the model-based 

analysis suggested they had very high levels of guessing). All trials on which the size of 

distance error was greater than 605 pixels was excluded. This value was chosen as it 

represented the 95th percentile of the data and the density plots showed less uniform 

responding thereafter. 

 

There was an effect of target priority on the size of the distance error, χ2 (2) = 67.97, 

p < .001, with distance error decreasing as target priority increased, b = -1.75, SE = 0.20, t = 
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8.91. Post-hoc comparisons showed evidence for smaller distance errors in the high 

compared with equal condition, (b = -1.67, t = 2.65, p = .040), and equal compared with low 

priority condition (b = -2.99, t = 3.80, p = .002) (see Figure 6, left panel). There was also 

evidence for smaller error distances in the very high compared with high condition, (b =-

1.06, t = 3.10, p = .014). There was no evidence for a difference in tracking error between 

the very low priority and the low priority condition, b = -0.72, t = 1.31, p = .430. 

 
Figure 6. Mean error in size of position error, proportion of guessing and scale of 
distribution for each target priority in Experiment 3. Error bars represent 95% within-subject 
confidence intervals using Morey (2008).  
 

 In order to fit the data from Experiment 3, we used a different mixture distribution 

analysis because the error data distribution was linear and positively skewed. We used a 

Weibull distribution for the tracked items and a uniform distribution (from 0 to 605) for the 

guessing distribution. The dweibull function used in the analysis of is part of the base 

distribution package ‘stats’ (R Core Team, 2015). The Weibull has the advantage that both 

the shape and scale can vary, and can approximate other distributions, including the 

normal.  The error distribution, ε, is therefore: 

𝜀 = 𝑃𝐺𝑓𝑈(L =0, 𝑈 = 605) + (1 − 𝑃𝐺)𝑓𝑊𝐵(𝜂, 𝛽),      (2) 



Running Head: Unequally divided attention 
 

30 
 

in which Pg is the guessing rate, L and U are upper and lower bounds for the uniform 

distribution function fU, and 𝜂 and 𝛽 are the scale and shape of the Weibull distribution 

function, fWB. Figure 7 shows the mixture model fit to the combined data from all participant 

for each level of priority. As is evident in the plots, the scale parameter 𝜂 is capturing the 

spread of the data, which we interpret as the precision of tracked items.  

Figure 7. Mixture model fits for all data combined across participants for Experiment 3 for 
each level of target priority. The histogram plot displays the actual data and the black line 
shows the model fit. The proportion of guessing (PG) precision of tracking (𝛽 the Weibull 
shape), and scale (𝜂) parameters are also detailed.   
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There was an effect of priority on the proportion of guesses, χ2 (2) = 44.18, p < .001. 

Participants demonstrated less guessing for high priority targets, b = -0.004, SE = 0.001, t = 

6.40 (see Figure 6, right panel). Post-hoc comparisons showed evidence for a lower 

proportion of guessing in the high compared with equal condition, (b = -.005, t = 4.87, p < 

.001), and equal compared with low priority condition, (b = -.007, t = 3.68, p < .003) (see 

Figure 6, left panel). There was also evidence for lower proportion of guessing in the very 

high compared with high condition, (b = -.0.003, t = 2.81, p = .027). There was, however, no 

evidence for a difference in the proportion of guessing between the very low priority and 

the low priority condition, b = .002, t = 0.51, p = .819. 

 

There was no evidence for an effect of target priority on the shape, as measured by 

𝛽, of representations, χ2 (2) = 0.71, p = .701. There was, however, evidence for an effect of 

target priority on scale, as measured by,  , χ2 (2) = 23.34, p < .001. As target priority 

increases, the distribution become more concentrated, b = 1.25, SE = 0.25, t = 5.02 (see 

Figure 6, right panel). Post-hoc comparisons revealed evidence for increased concentration 

for the low compared with very low priority condition, b = 4.79, t = 3.37, p = .007. There was 

greater concentration in the equal compared with low priority condition, b = -1.31, t = 2.75, 

p = .030, and high compared with equal, respectively, b = 0.17, t = 1.17, p = .004. The 

distribution for the very high compared with high priority targets was also more 

concentrated b = 0.22, t = 1.15, p < .001. 

Overall, the position tracking task revealed evidence for unequal attention allocation 

which cannot be accounted for by fixed, slot-based models of attention. There was some 

evidence for more fine-grained attention allocation for the higher priority, with a smaller 

size of position error and lower proportion of guessing in the very high compared with high 
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priority condition. There was, however, no evidence for fine-grained splitting for the lower 

priority targets (i.e. 30 vs 40). This pattern of results is similar to Experiment 2 with 

participants not differentiating between allocating their attention to a very low and low 

priority target.  
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General Discussion 

In a series of three experiments, we investigated whether participants can split 

attention unequally to multiple moving objects. Results from all experiments revealed some 

evidence for unequal attention allocation according to strategic top-down control. This is in 

line with the existing literature documenting top-down, goal driven attention allocation in 

MOT (Brockhoff & Huff, 2016) and visual search (Jiang et al., 2015; Navalpakkam et al., 

2010; Shomstein & Johnson, 2013). Such findings replicate research demonstrating unequal 

attention allocation during MOT in response to instructions, (Yantis, 1992; Cohen, Pinto, 

Howe, and Horowitz, 2011) further supporting the efficacy of using goal-directed 

instructions to manipulate participants’ attention allocation (Bonnel & Miller, 1994; Fitsoul, 

2016).  

 

 Across all experiments, the proportion of guessing decreased as target priority 

increased. Guessing in response to a prompt to report one aspect of a target cannot be 

equated with a complete withdrawal of attention to all other aspects of that target, since 

for example, position and trajectory encoding for targets appear to be distinct processes 

(Howard, Rollings & Hardie, 2017). Therefore, for any given modelled guessing response, 

this may not necessarily indicate a complete withdrawal of attention to that target if its 

trajectory ( Experiments 1 and 2) or its position (Experiment 3) is not known. Even if the 

participant has completely withdrawn attention from a target, there are two possible 

reasons that could lead a participant to produce a guess response. They could drop the 

target (i.e. lose track of it) or swap the target (i.e. confuse it with a distractor). We propose 

that a combination of these events occur more frequently in the low priority condition than 

the high priority condition because less attention is allocated to the low priority target 
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which constitutes unequal attention allocation. It could be argued that the increased 

proportion of guessing for low priority targets compared to high priority targets reflects 

participants’ inability to split attention unequally. Specifically, participants may have 

dropped the low priority target on some trials and, therefore on those occasions, performed 

single object tracking which could be responsible for an increase in the precision for the 

high-priority target. This is unlikely because the guessing rate and magnitude of error is 

relatively low across all experiments and indicates non-guessing responses for the lower 

priority of targets on the majority of trials. Using electrophysiological markers and 

behavioural experiments, Drew, Horowitz, and Vogel (2013) distinguished between 

swapping and dropping trials. The relative frequency of these events is not distinguishable in 

the current data and, therefore, research using such measures within an unequal splitting 

MOT paradigm is required.  

 

 Experiments 2 and 3 assessed how fine-grained unequal attention allocation is. The 

results from these experiments indicate that, on a given trial, participants can allocate more 

and less attention to the high and low priority targets, respectively. However, the results 

were less conclusive with regard to how fine-grained such attention splitting is. There was 

some evidence for fine-grained splitting at higher levels of priority (e.g. between 60 and 70) 

but not at the lower end of the priority range (e.g., 30 and 40). Perhaps participants could 

not distinguish between what constitutes 30% and 40% of their attentional resource or 

were not sufficiently motivated by the task to make the distinction, and so operated 

according to a binary ‘more’ or ‘less’ mechanism. Alternatively, it is possible that 30% of the 

attentional resource was sufficient to accurately track the very low priority targets and 

therefore that the task was not sensitive enough to distinguish between highly similar target 
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priorities. It is also important to recognise that the response procedure used in our 

experiments is different to the typical MOT literature in which participants must indicate 

whether a probed object is a target or non-target which may have contributed to 

participants adopting different tracking strategies. However, trajectory and position tracking 

have been previously shown to be appropriate and sensitive measures of tracking 

performance which decline with set size (Horowitz & Cohen, 2010; Howard, Rollings & 

Hardie, 2017).  

 

A persistent debate in the literature surrounds the structure of the attentional 

resource underlying tracking. Results from all experiments suggest that participants can split 

attention unequally indicating some flexibility to the attentional resource. This does not fit 

with fixed architecture theories of tracking which would predict that each target is allocated 

one slot, and, therefore, there would be no difference in tracking performance. Findings 

from Experiment 2 and Experiment 3 regarding the fine-grained nature of attention splitting 

are less conclusive. There is some evidence that participants may be able to only split 

according to a binary mechanism (i.e. high and low priority) which fits with slots + averaging 

models which assume that more than one slot can be allocated to a high priority target. In 

both the unequal attention splitting conditions (i.e. 30/70; 40/60) three slots and one slot 

can be allocated to a high and low priority target respectively and therefore no difference in 

tracking accuracy is observed. Under this account, no further precision in unequal splitting 

would be observed, since the slots cannot be subdivided any further, and therefore, this 

model explains the data presented here. Experiment 2 revealed evidence for a difference in 

magnitude of angular error and proportion of guessing which indicates fine-grained 

attention allocation. This fits with pure flexible and slots + resources models which predict a 
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graded increase in tracking performance measures as target priority increases. Further 

research is needed to distinguish between these accounts.  

 

Our results fit most closely with hybrid models of attention allocation. Pure flexible 

accounts require an additional assertion that not only can the resource be divided in a fine-

grained manner, but that this fine-grained allocation of the resource can be divided out 

unequally between targets. A relevant analogy here might be the division of pay between 

workers: if forty units (dollars, euros, etc.) of currency are to be shared between four 

workers, the fixed account would suggest that there are four ten-unit notes which can be 

shared out, where a flexible account would suggest that there are in fact 4,000 subunits 

(e.g. cents) to be shared out. The flexible account asserts that this sum could be divided 

amongst 4,000 workers (actually an infinite number, but this requires subdivision of cents 

into electronic payments of less than one cent for the purpose of this analogy). However, 

the flexible account has so far been silent on whether or not this payment could be made 

unequally between workers, with some receiving more than others. The evidence we 

present here suggests that this is the case, that attention can be flexibly and unequally 

divided. How this unequal splitting of attention is achieved by the visual system does, 

however, warrant further theoretical consideration in the MOT literature. 

 

The guessing rate remained relatively low throughout, indeed the mean guessing 

rate for the lowest priority targets across Experiments 2 and 3 was 29%. This is important 

because it suggests that on the majority of trials, participants did not appear to adopt the 

strategy of only single object tracking the high priority target, in which case we might expect 

nearer a 100% guess rate for the lower priority target. However, the results reported were 
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averaged across trials and so it is possible that participants did not attempt to track multiple 

objects on each and every trial. Specifically, it is possible that participants engaged in single 

object tracking and used target priority to determine the number of trials on which they 

tracked only the high or low reward target. However, this is unlikely because there were 

only two targets which is below the proposed four object capacity limit for tracking. 

Whereas examining within-trial behaviour was not the main focus of this article, future 

research should focus on how participants achieve this unequal splitting.  One way to 

directly investigate this would be by probing both targets at the end of a trial to gain insight 

into the relationship between tracking accuracy on the two simultaneously presented 

targets.  A positive correlation between tracking performance would indicate that 

participants were engaging in multiple object tracking because performance on a given trial 

is broadly either good or bad for both targets. A negative correlation would indicate that 

participants were engaging in single object tracking because, as accuracy on one target (i.e. 

the tracked target) increases, accuracy on another target (i.e. the untracked target) 

decreases. No correlation between performance on the two targets might be consistent 

with participants attention fluctuating within a trial and, therefore, tracking a single object 

at the cost of another. 

 

Although the studies presented indicate unequal attention allocation when 

performance is examined at the trial level, it is not possible to determine participants 

attention allocation during the trial. It is possible that participants were tracking one target 

at a time but switched between targets during the trial, spending relatively more time on 

higher priority targets.  Some have argued that attention is flexibly allocated in experiments 

investigating stimulus-driven unequal attention allocation (e.g. Iordanescu, Grabowecky, & 
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Suzuki, 2009). Therefore, it is possible that prioritisation and unequal attention allocation 

only occurs when, for example, tracking becomes difficult such in response to reduced inter-

object spacing (Meyerhoff, Schwan, & Huff, 2018). Future research is therefore required to 

examine how attention is allocated at different points within a trial. One possible avenue is 

to use a dot probe detection task (e.g. Meyerhoff, Schwan, & Huff, 2018) in which probes 

are randomly presented within the tracking phase or two lateralised tracking areas are 

utilised to index attention allocation at different timepoints in a trial. Such research will also 

provide detail into the interplay between stimulus-driven and goal-directed attentional 

mechanisms within MOT.  

 

A further consideration of the tasks we have used, is that equal and unequal 

attention splitting are potentially different tasks. Traditional MOT tasks might best be 

characterised primarily as an equal attention splitting task, although some have argued for 

unequal attention splits and attention reallocation in MOT (e.g. Iordanescu et al. 2009). The 

unequal attention splitting MOT task used in these experiments also has a multiple identity 

tracking component because participants must assign a target priority (a form of identity) to 

each of the targets. Identity encoding is not automatic during MOT (Pylyshyn, 2004; Scholl & 

Pylyshyn, 1999) and has been shown to require resources (Cohen, Pinto, Howe & Horowitz, 

2011), in part due to identity-location binding processes (Saiki, 2002; Oksama & Hyönä, 

2008). Future research should examine whether attention can be divided unequally in a 

purer MOT paradigm that does not require identity-location bindings. For example, distinct 

tracking areas or ‘cages’ (e.g. Howard and Holcombe, 2008) could be presented on each trial 

and each tracking area would be associated with a certain likelihood of being probed. This 
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design would not require participants to maintain identity-location bindings because there 

would only be one target in each tracking area with, for example, three distractors. 

 

These data demonstrate that participants can split attention unequally in MOT tasks. 

There is, however, limited evidence that this ability is fine-grained. These findings are not 

consistent with fixed, slot-based accounts of attention allocation. Pure flexible accounts 

could account for the results but with the additional assumption that attention may be 

divided unequally between targets. Hybrid models, specifically the slots + averaging model, 

explains the data reported here without further assumptions. Since these models have 

traditionally been applied to memory tasks, similar models specific to MOT that can account 

for the flexibility of attention demonstrated here, are required.  
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Figure 1. Trial timeline. 1) Eight discs are presented on screen. Discs containing a value 

inside denote the likelihood of that target being queried at the end of a trial; 2) All discs 

move around the screen; 3) All discs except one disappear. Participant estimates what 

direction the disc was heading it at the end of the trial using a rotatable pointer; 4) 

Participants are given feedback, with the arrow turning green or red for a correct or 

incorrect response respectively.  
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Figure 2. Mean error in magnitude of error, proportion of guessing and precision of tracking 

for each target priority in Experiment 2. Error bars represent 95% within-subject confidence 

intervals using Morey (2008).  
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Figure 3. Mixture model fits for the combined data across participants for Experiment 2 for 

each level of target priority. The density plot displays the actual data and the black line 

shows the model fit. The proportion of guessing (PG) and precision of tracking (κVM) 

parameters are also detailed.   
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Figure 4. Mean error in magnitude of error, proportion of guessing and precision of tracking 

for each target priority in Experiment 3. Error bars represent 95% within-subject confidence 

intervals using Morey (2008). 
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Figure 5. Mixture model fits for all participants for Experiment 2 for each level of target 

priority. The density plot displays the actual data and the black line shows the model fit. The 

proportion of guessing (PG) and precision of tracking (κVM) parameters are also detailed.   
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Figure 6. Mean error in size of position error, proportion of guessing and scale of 

distribution for each target priority in Experiment 3. Error bars represent 95% within-subject 

confidence intervals using Morey (2008). 
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Figure 7. Mixture model fits for all data combined across participants for Experiment 3 for 

each level of target priority. The histogram plot displays the actual data and the black line 

shows the model fit. The proportion of guessing (PG) precision of tracking (κWB, the Weibull 

shape), and scale (𝜆) parameters are also detailed.   


