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A fundamental task of the ascending auditory system is to produce representations
that facilitate the recognition of complex sounds. This is particularly challenging in the
context of acoustic variability, such as that between different talkers producing the
same phoneme. These representations are transformed as information is propagated
throughout the ascending auditory system from the inner ear to the auditory cortex
(AI). Investigating these transformations and their role in speech recognition is
key to understanding hearing impairment and the development of future clinical
interventions. Here, we obtained neural responses to an extensive set of natural vowel-
consonant-vowel phoneme sequences, each produced by multiple talkers, in three
stages of the auditory processing pathway. Auditory nerve (AN) representations were
simulated using a model of the peripheral auditory system and extracellular neuronal
activity was recorded in the inferior colliculus (IC) and primary auditory cortex (AI)
of anaesthetized guinea pigs. A classifier was developed to examine the efficacy of
these representations for recognizing the speech sounds. Individual neurons convey
progressively less information from AN to AI. Nonetheless, at the population level,
representations are sufficiently rich to facilitate recognition of consonants with a high
degree of accuracy at all stages indicating a progression from a dense, redundant
representation to a sparse, distributed one. We examined the timescale of the neural
code for consonant recognition and found that optimal timescales increase throughout
the ascending auditory system from a few milliseconds in the periphery to several tens
of milliseconds in the cortex. Despite these longer timescales, we found little evidence
to suggest that representations up to the level of AI become increasingly invariant
to across-talker differences. Instead, our results support the idea that the role of the
subcortical auditory system is one of dimensionality expansion, which could provide a
basis for flexible classification of arbitrary speech sounds.
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INTRODUCTION

As a prerequisite for speech recognition, the early auditory system
must be sensitive to acoustic cues that differentiate phonemes, the
fundamental units of speech. For example, the vowel sounds /a/
and /i/ distinguish the word “had” from “hid” and the consonants
/d/ and /t/ distinguish the word “hid” from “hit.” This sensitivity
begins in the cochlea, where sounds are transduced from airborne
vibrations to patterns of electrical activity in the auditory nerve
(AN). These patterns are subsequently transformed as they
propagate throughout the ascending auditory system to form the
basis of speech recognition in the brain.

The classical approach to investigate the neural basis speech
recognition is to define an acoustic cue for a given set of phoneme
contrasts. One example of this is the voice-onset time (VOT),
which indicates the distinction between phonemes articulated in
a similar way, such as /b/ vs /p/, /d/ vs /t/, or /g/ vs /k/. This cue
appears to be reliably represented throughout the auditory system
of non-human mammals, from the AN (Miller and Sachs, 1983;
Sinex and Geisler, 1983; Carney and Geisler, 1986; Sinex and
McDonald, 1988, 1989), through the auditory midbrain (Chen
et al., 1996; Chen and Sinex, 1999; Sinex and Chen, 2000) to at
least the primary auditory cortex (AI) (Steinschneider et al., 1994,
1995, 2003; Eggermont, 1995; Aizawa and Eggermont, 2006).

This research, coupled with animal psychoacoustic
experiments on speech discrimination in non-human mammals
(Burdick and Miller, 1975; Kuhl, 1981; Hienz and Brady, 1988;
Hienz et al., 1996; Engineer et al., 2008; Bizley et al., 2013),
hints that at least some aspects of human speech perception are
rooted in generalized auditory processing principles. However,
this acoustically-driven approach is not well suited to more
complex sets of speech sounds, since it is often difficult to define
specific acoustic cues that underlie all phoneme contrasts. This is
particularly the case in the context of natural variation in speech
sounds, such as that between talkers (Nusbaum and Morin,
1992).

To address this, several more recent studies have taken a
classifier-based approach in which the acoustic features that
differentiate phonemes need not be explicitly defined a priori
by the experimenter (Engineer et al., 2008; Mesgarani et al.,
2008; Shetake et al., 2011; Perez et al., 2012; Centanni et al.,
2013, 2014). Such studies typically focussed on the AI and
are concerned with investigating patterns of neuronal activity
that correlate with a behavioral outcome. However, a similar
approach can be extended to the auditory system more broadly.
Doing so makes it possible to investigate how the early
auditory system addresses several key challenges in speech
processing.

The first challenge faced by the auditory system is to
robustly extract informative acoustic cues, such as those that
discriminate phonemes, even in the presence of competing
sounds. According to one hypothesis, this could be achieved
by generating a sparse representation of the acoustic scene
(Asari et al., 2006). The responses of neurons become
increasingly diverse in the ascending auditory pathway as
neurons appear to become more selective in their responses
to complex spectro-temporal stimulus features and feature

combinations (Sadagopan and Wang, 2009; Kozlov and Gentner,
2016). It has been suggested that this selectivity, and the
resulting sparse representation may enhance discriminability
of arbitrary sounds and thus provide a basis for robust
phoneme recognition and language acquisition (Olshausen
and Field, 2004; Hromádka et al., 2008; Mesgarani et al.,
2008).

Secondly, whilst being sensitive to cues that differentiate
phonemes, the auditory system must exhibit a degree of
invariance to non-informative acoustic variation. For example,
listeners need to recognize a word no matter who said it. The
ability to recognize salient perceptual objects across physical
variations in the stimulus is referred to as perceptual constancy
(Kuhl, 1979; Summerfield, 1981) and is a phenomenon that is
typically studied in the primary and higher-order areas of the AI
in humans and other primates (Näätänen et al., 1997; Dehaene-
Lambertz et al., 2002; Blakely et al., 2008; Molholm et al., 2014).
However, it has been shown that neural activity in the AI of naïve
ferrets is sufficient to encode phonemes despite variability across
many talkers (Mesgarani et al., 2008). How and where in the
brain such representations are produced is not well understood,
although there is some evidence that the early auditory system,
from cochlea to primary auditory cortex, plays an important
role in developing invariant representations of natural sounds
(Rabinowitz et al., 2013).

The neural representations involved in reconciling these
challenges manifest spatially, in the distributed activity across a
population, and temporally, in the sequence of action potentials
produced by individual neurons. Sound is an inherently dynamic
stimulus that modulates neural activity over time. However,
it remains unclear at what timescale modulations in neural
responses represent information necessary to identify phonemes.
There is growing evidence that changes in neuronal activity
over very short timescales (of the order of ∼1–10 ms) carries
information about complex acoustic signals up to the level
of the primary auditory cortex (Elhilali et al., 2004; Schnupp
et al., 2006; Engineer et al., 2008; Wang et al., 2008; Huetz
et al., 2009; Kayser et al., 2009, 2010; Panzeri et al., 2010;
Garcia-Lazaro et al., 2013). However, it is not clear whether
this temporal resolution is of value in real-world speech
recognition.

To investigate how the auditory system addresses these
challenges, we examined how the neuronal representation of
a set of dynamic speech sounds changes throughout the
ascending auditory pathway of naïve, anaesthetized guinea
pigs. We obtained neuronal representations of these sounds
from the AN using a computational model of the auditory
periphery, and from the inferior colliculus (IC) and primary
AI. To investigate the extent to which these representations
facilitate invariance to natural acoustic variation, we obtained
responses to multiple examples of each phoneme, produced
by different talkers. We investigated how the information
required to identify these speech sounds is represented within
each of the brain regions using a neural classifier. We
examined how this information is distributed across neural
subpopulations and investigated the timescale of the neural
code.
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MATERIALS AND METHODS

Subjects
Electrophysiological recordings were obtained from seven adult
pigmented guinea pigs (Cavia porcellus). All procedures were
carried out under the terms and conditions of licenses issued by
the United Kingdom Home Office under the Animals (Scientific
Procedures) Act 1986.

Stimuli
The set of stimuli were chosen to match those used by Shannon
et al. (1995), in which the authors were concerned with the
perception of degraded speech, the neural bases of which were
investigated in a set of experiments run in parallel to those
presented here (unpublished). Since the speech recordings used
in the aforementioned study were unavailable, a matching set
of 16 vowel-consonant-vowel phoneme sequences (VCVs), each
spoken by three male talkers with standard American Midwest
dialect, were selected from the speech corpus recorded and
described in detail by Shannon et al. (1999). Three male talkers
were selected randomly from the full corpus to match the earlier
study, which corresponded to talker IDs M2, M3, and M5 in the
dataset obtained from the author. The medial consonants used
were /b, d, f, g, k, l, m, n, p, s,

∫
, t, ð, v, j, and z/, which were in an

/a/-consonant-/a/context, where /a/ is an open back unrounded
vowel as in “palm”. Again, this subset of the full 25 consonants
described in the corpus was selected to match the earlier study.

As described in Shannon et al. (1999), these recordings were
made in a double-walled sound-treated booth using a sample rate
of 44.1 kHz and were stored in an uncompressed, 16-bit format.
All recordings were band-limited to between 0.1 and 4 kHz to
facilitate subsequent comparison to the parallel experiments on
degraded speech sounds that were similarly band-limited as per
Shannon et al. (1995). Each recording was aligned such that
the medial consonant was approximately centered on the point
300 ms from stimulus onset. The recordings were then cropped to
700 ms in duration and a 10 ms raised cosine ramp was applied to
both the onset and offset. The level of each stimulus was set such
that the vowel portions had a mean intensity of 70 dB SPL and
each stimulus was presented 10 times. In the electrophysiological
experiments described below, stimuli were presented diotically
via speakers (modified RadioShack 40–1377) coupled to hollow
aural specula.

Auditory Nerve Model
A computational model of the guinea pig auditory periphery
was used to simulate AN representations of the stimulus set.
The model takes a sound waveform as an input and calculates
binary output sequences where a 1 symbolizes the occurrence
of an action potential. The model has been described in detail
previously (Sumner et al., 2002) and has been shown to reproduce
responses to tones (Sumner et al., 2003a,b) and speech sounds
(Holmes et al., 2004). In brief, the model comprises a linear filter
approximation of the external auditory meatus, a dual-resonance
non-linear filter bank model of the cochlea (Meddis et al., 2001),
a biophysical model of transduction by the inner hair cell,

stochastic spike generation and a model of adaptation based on
quantal neurotransmitter dynamics at the synapse. Characteristic
frequency (CF) is a parameter provided to the model. In this
study, we simulated the responses of 100 fibers with CFs
evenly spaced on a logarithmic scale from 0.1 to 5 kHz. Our
implementation of the model is available online (Steadman,
2018).

Electrophysiology
Animals were anaesthetized with urethane (1.3 g/kg in
20% solution, i.p.), supplemented as necessary to maintain
suppression of the forepaw withdrawal reflex by 0.2 ml Hypnorm
(fentanyl citrate 0.315 mg/ml, fluanisone 10 mg/ml, i.m.).
Bronchial secretions were reduced with a premedication of
atropine sulfate (6 µg/kg, s.c.). A tracheal cannula delivered
100% oxygen. Core body temperature was monitored and
maintained at 38◦C using a homeothermic blanket. Parts of
both tragi were resected to expose the external auditory meatus
and the condition of the tympanic membranes was checked
for abnormalities. The animal was then secured in a stereotaxic
frame inside a sound attenuating booth with the head secured
in place with a bite bar and hollow aural specula through which
acoustic stimuli were presented. Small holes were made in the
auditory bullae into which long (0.5 mm diameter) polythene
tubes were inserted to maintain pressure equalization.

Extracellular multi-unit recordings were made in the IC and
primary AI using 16 channel multi-electrode arrays (NeuroNexus
Technologies, Ann Arbor, MI, United States). Recordings were
made in only the IC in two animals and only the AI in three
animals. In the remaining two animals, recordings were made
simultaneously in IC and AI. For IC recordings, a 5 mm by 5 mm
craniotomy was made over the right IC (Rees and Palmer, 1988).
For cortical recordings, the right temporalis muscle was resected
such that the lateral suture was exposed, and the posterior portion
of the orbit was visible. A craniotomy of approximately 5 mm
by 5 mm was positioned such that it was approximately bisected
by the lateral suture and the rostral edge was aligned with
bregma (Wallace et al., 2000). In both cases, the dura under the
craniotomy was resected and the exposed cortex was covered with
warm agar (1.5% in saline).

Signals were digitized at 24.4 kHz, and multi-unit spikes were
detected offline using custom software developed in MATLAB.
Recordings were initially bandpass-filtered between 0.3 and
6 kHz using a zero-phase digital filter (fourth order, Butterworth).
Robust signal statistics were used to determine a spike detection
threshold, T, of four times the estimated standard deviation of the
noise (Quiroga et al., 2004).

T = −4×median
(
|x|

0.6745

)
Recording Site Characterisation
Pure-tone frequency response areas were acquired for each
recording site. Tones of 50 ms duration, with 10 ms onset
and offset raised cosine ramps, were presented diotically. Tone
frequencies ranged from 0.2 to 25.6 kHz and increased in
quarter-octave steps. Intensities ranged from 0 to 80 dB SPL in

Frontiers in Neuroscience | www.frontiersin.org 3 October 2018 | Volume 12 | Article 671

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-00671 October 10, 2018 Time: 14:48 # 4

Steadman and Sumner Neuronal Discrimination of Speech

5 dB steps. Tones were presented at a rate of five per second in
randomized order. Firing rates in response to each tone were
averaged across 10 repetitions and the CF was automatically
extracted using the algorithm described in Palmer et al. (2013).

Two measures of sparseness were also calculated. The first
was a measure of the degree of selectivity of neural responses
to particular stimuli, referred to as the “lifetime sparseness.”
The second was a measure of how activity is spread across a
neural population, known as “population sparseness” (Willmore
and Tolhurst, 2001). The metric for both measures was initially
proposed by Rolls and Tovee (1995) and later refined to a
normalized form (Vinje and Gallant, 2000). The calculation can
be summarized as follows:

S =
1−

(∑ ri
n
)2
/∑(

r2
i
n

)
1− 1

n

Where ri is the average firing rate in the response to the ith
stimulus in the case of lifetime sparseness, or the average firing
rate measured at the ith electrode in response to a given stimulus
in the case of population sparseness, and n is the total number of
stimuli.

Neural Classifier
To quantify the efficacy of the neural representations to recognize
the speech stimuli, a nearest-neighbor classifier was developed in
MATLAB. The design of this classifier was motivated by a need
to provide as little prior knowledge to the classifier as possible
and to include as few assumptions about complex downstream
processing mechanisms. Initially, single trial peri-stimulus time
histograms (PSTHs) of the first 650 ms of stimulus playback were
produced using 1 ms bins. The final 50 ms were not used, since
this was observed to correspond to the tail end of the final vowel
portion, which was typically longer than the initial vowel. Thus,
this response window better centered the response to the target,
medial consonant stimulus.

These PSTHs were then smoothed by convolution with
Hamming windows of 10 different lengths, evenly spaced on
a logarithmic scale from 1 to 400 ms, where a length of
one corresponds to no smoothing and a length of 400 yields
representations that more closely reflect average firing rates. The
analyses described below were carried out separately for every
smoothing window duration. For population analyses, the single
trial PSTHs of each simulated nerve fiber (AN) or multi-unit
recording site (IC and AI) were concatenated to produce M × N
matrices, henceforth referred to as neurograms, where M is the
number of simulated fibers or recording sites andN is the number
of time bins.

Subsequent processing was determined by which of three
classifier modes was selected; token, phoneme, or hierarchical.
The simplest was the token classifier mode, in which the
classifier learned a separate class for each speech token (48
classes; 16 phonemes × 3 talkers). In this mode, neurograms
corresponding to a single repetition of each stimulus were
removed from the dataset before averaging all other neurograms
across the remaining nine repetitions. Each of the removed

single trial neurograms were then compared against the averaged
neurograms in the manner described below.

The metric used to compare neurograms was Euclidean
distance. If this were to be simply calculated using all
spatio-temporal bins comprising the neurograms, this would
effectively provide the classifier the absolute onset time of each
stimulus, which the brain does not have access to. To avoid
this, a time-shifting mechanism was implemented. For each
comparison, the Euclidean distance was calculated for all relative
lags from −100 to 100 ms in 1 ms steps. The test neurogram was
classified as the token whose template it was nearest to for any
given lag. Any bins outside the range of overlap were not included
in the distance calculation by removing the first and last 100 bins
(corresponding to 100 ms) from the templates. Distances were
then given by:

Di =

√√√√ M∑
m = 1

N∑
n = 1

(Xm,n − xm,n + i)2

Where X is a template neurogram, x is the test neurogram, M
is the number of recording sites, N is the number of bins used in
the distance measurement, equal to the length of the stimulus in
milliseconds minus the maximum lag (100 ms) and i is a value
ranging from 0 to 2 times the maximum lag. This mechanism is
illustrated in Figure 1.

In the phoneme classifier mode, average neurograms in the
training set were combined across talkers such that the classifier
learned a single class per phoneme. Instead of simply averaging
the neurograms across talkers, a time-shifting mechanism similar
to that described above was used to minimize the pairwise
distances between the average neurograms from individual

FIGURE 1 | Schematic representation of time-shifting mechanism in the
neural classifier. The top panel shows the training (template) neurogram for a
given speech token. Below shows a single-trial test neurogram at three
different lags. Euclidean distances are calculated using all unshaded bins.
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talkers before averaging over all. Classification then proceeded
in the same way as the token classifier. The hierarchical classifier
operated in much the same way as the token classifier, but
confusions between the same phonemes produced by different
talkers were disregarded. This mode assumes a subsequent,
simple processing stage that performs phoneme recognition
by mapping distinct token classes to phoneme classes. The
implementation of this classifier, along with an example script
demonstrating its use is available online (Steadman, 2018).

Discrimination Specificity
Similar percent correct values could be generated by a classifier
that recognizes a single stimulus well, but is unable to distinguish
between all others, to one that recognizes all stimuli, but with
reduced precision. These two cases describe the distinction
between specialist neurons, which can identify only a single
stimulus but provide little information to discriminate between
others, and generalist ones. To differentiate these two cases, we
calculated a sensitivity index (d′; Macmillan and Creelman, 2004)
for each stimulus using the following:

d′ = Z(PHIT)− Z(PFA)

Where Z(PHIT) and Z(PFA) are the z-scores corresponding to
the hit and false alarm rates, respectively, which were extracted
from classifier confusion matrices. We then substituted d′ for r in
the sparseness equation described above to obtain a normalized
metric describing the shape of the distribution of d′ values.
Values close to 0 correspond to a flat distribution indicating
generalized performance and values close to 1 indicate specialist
performance. We call this metric discrimination specificity. This
measure has a key advantage over raw percentage correct, which
is that it takes account of any response bias – i.e., propensity of
the classifier to preferentially choose one consonant, regardless of
which is correct.

RESULTS

Representations of Speech
Neuronal representations of a set of natural speech sounds (16
vowel-consonant-vowel sequences, e.g., /apa/, /ata/, /ama/, each
produced by three talkers) were obtained from three stages of the
auditory pathway: the AN, IC, and AI. A computational model of
the peripheral auditory system was used to simulate the responses
of 100 AN fibers. Multi-unit extracellular neural responses were
recorded in 114 sites in the IC and 208 in the AI of anaesthetized
guinea pigs. The complete dataset comprising spike times along
with the stimuli is available online (Steadman and Sumner, 2018).

Spectrogram representations of four of the speech sounds
are shown in Figure 2, along with the corresponding neural
population representations in each of the brain regions. The
neurogram representations of population responses comprise
spiking activity in each of the simulated nerve fibers (AN)
and multi-unit recording sites (IC and AI), arranged by their
pure-tone CF. Frequency-specific neural responses are apparent
in each of the nuclei. For example, simulated nerve fibers (AN)

and multi-unit recording sites (IC and AI) with higher CFs
show more activity than those with low CFs during the medial
portion of the stimulus /a

∫
a/. It should be noted that the vertical

scales of the neurograms and the spectrograms cannot be directly
compared since CFs do not cover exactly the same range as the
auditory spectrogram and are not uniformly distributed in IC and
AI (however, the relevance of CF in the neural representation of
these speech sounds across the three brain regions is discussed
explicitly in section “Factors Influencing Speech Discrimination
by Individual Units”).

There is a clear qualitative change in the representations
as they are transformed via intermediate synapses in the
ascending auditory pathway. Firstly, neuronal spiking activity is
increasingly sparse at each downstream nucleus. In stark contrast
to the activity of the simulated AN, cortical representations are
largely transient with some exceptions (for example, ongoing
activity can be seen in the high frequency region on AI in
response to the fricative consonant /

∫
/).

The mean correlation between PSTHs in response to each of
the 16 stimuli between sites with CFs within half an octave was
calculated using 1 ms bin widths. The mean correlations were
ρAN = 0.313, ρIC = 0.118, and ρAI = 0.128. A one-way ANOVA
indicated a significant effect of brain region, F(2,258) = 39.3,
p < 0.001. A Tukey post hoc test revealed that this reflected
significantly lower correlations in IC and AI compared to AN
(p < 0.001 in both cases). There was no significant difference
between pairwise correlations in IC and AI (p = 0.932).
This analysis indicates that recording sites with nearby CFs
have similar response characteristics in AN, but are more
heterogeneous in IC and AI, as suggested by the horizontal
striations in the neurograms from these brain regions.

Discrimination of Speech Sounds by
Individual Units
The speech tokens elicited visually distinct patterns of neural
activity in each brain region when averaged across multiple
repetitions. However, in the real world the brain must perform
speech recognition using only single-trial activity patterns. To
reflect this, we used a template-based neural classifier to quantify
how distinct these neural activity patterns were. To investigate
the extent to which representations exhibit invariance within
each phoneme class, the classifier was operated in three different
modes, token, phoneme, and hierarchical (see “Materials and
Methods”).

For representations that exhibit invariance across talkers it
is expected that classification of individual acoustic waveforms
(token classification) would result in confusions within each
phoneme class. For example, it would be difficult to discriminate
/aba/ produced by talker one from the same VCV produced by
talkers two and three. In this case, phoneme classification, which
is designed to classify on the basis of medial consonant identity,
would perform significantly better. Hierarchical classification
utilized an initial stage identical to token classification, but
confusions between the same phoneme produced by different
talkers were ignored. This mode predicts performance with
the assumption of a subsequent, simple processing stage that
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FIGURE 2 | Auditory spectrographic representations of a subset of the speech tokens, /aba/, /apa/, /a
∫
a/, and /aja/ with the population responses to the same

stimuli in the auditory nerve (AN), inferior colliculus (IC), and primary auditory cortex (AI). Auditory spectrograms were produced using the Matlab Auditory Modeling
Toolbox (Søndergaard and Majdak, 2013) function audspecgram, whereby the frequency axis is displayed on an ERB-scale and the output is low-pass modulation
filtered to reflect the spectrotemporal resolution of the cochlea. Neural population responses are shown as neurograms, whereby each row represents the spiking
activity of a simulated nerve fiber (AN) or multi-unit recording site (IC, AI) using 10 ms bins, which are arranged by their characteristic frequency (CF) from low to high.
Dark regions indicate higher firing activity. Note that this vertical scale does not match directly to the frequency scale of the spectrograms, since CFs are not
uniformly distributed.

performs phoneme recognition by mapping distinct token classes
to phoneme classes.

The performance of each neural classifier mode for individual
recording site representations in each brain region is summarized
in Figure 3A. These data reflect the maximum classifier
performance for any smoothing window length; the effect
of smoothing is explicitly addressed subsequently. Given the
bounded nature of classifier output values (between 0 and 100%)
and the non-normal distribution of percent correct values within
each brain region (Figure 3B), nonparametric statistics were
used to analyse these data. A Kruskal–Wallis H test revealed a
statistically significant difference in token classifier performance
between the three brain regions, χ2 = 302, p < 0.001, with
mean rank scores of 366.5, 250.7, and 115.5 in AN, IC, and AI,
respectively. A Jonckheere–Terpstra test for ordered alternatives
confirmed that there was a statistically significant trend of lower
classifier performance within higher auditory nuclei, J = 2878,
z = 18.8, p < 0.001. The same analysis was carried out for each
classifier mode, which produced similar results with p< 0.001 in
all cases.

These analyses reveal a progression from highly redundant,
rich representations in the AN in which individual fibers alone
can convey sufficient information to recognize speech sounds
when presented in quiet, to one in which the activity of a small
number of neurons in the IC and AI is insufficient to perform

the recognition task with a high degree of precision. Indeed,
the classifiers performed little better than chance, on average,
when provided with multi-unit activity from individual recording
sites in AI. This change is progressive, with the IC occupying a
middle-ground between AN and AI.

As described above, differences between classifier modes
can be used to investigate the extent to which representations
exhibit invariance. In the AN, the hierarchical classifier performs
similarly to the token classifier, suggesting that the confusions
made by the classifier are not predominantly across talkers (i.e.,
within phoneme classes) as would be expected for representations
exhibiting across-talker invariance. The phoneme classifier
also performs significantly worse than the token classifier
(Mann–Whitney U, p< 0.001). These results indicate that, whilst
the AN is sensitive to acoustic features that identify specific
speech tokens, the responses do not form a representation space
in which speech tokens of the same phoneme class are more
similar to one another than those of other phoneme classes.

In the IC there is no such penalty for using a phoneme
rather than a token classifier. Both token and phoneme classifiers
perform similarly (Mann–Whitney U, p = 0.39). One explanation
for this could be that these representations appear to be more
robust to across-talker differences. However, it should be noted
that the hierarchical classifier performance is not markedly higher
than the token classifier and this is in the context of lower overall
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classifier performance. In the AI the phoneme and hierarchical
classifiers both perform better than the token classifier, but
performance is close to chance in both cases. Since the token
classifier has more classes than the hierarchical and phoneme
classifiers (48 tokens vs 16 phonemes), this is expected and not
necessarily indicative of greater invariance.

To summarize, these analyses reveal a progression from highly
redundant, rich representations in the AN in which almost any
fiber contains sufficient information to discriminate between a
large set of speech sounds, to one in which the activity of a small
number of neurons in the IC and AI is insufficient to perform
the discrimination task with a high degree of precision. This
change appears to be progressive, with the discriminability of
responses in the IC occupying a middle-ground between AN and
AI. Furthermore, at the level of individual units, we find little
evidence of increasing invariance within phoneme classes in the
ascending auditory pathway.

Factors Influencing Speech
Discrimination by Individual Units
Within each brain region, there is a large amount of variability
in classifier performance using individual nerve fiber or
multi-unit representations. For example, the token classifier was
able to identify the correct speech token 100% of the time
using responses from single simulated AN fibers (as long as
they have an appropriate CF). Using another fiber, however,
resulted in classifier performance dropping to only 22.7%.
Similarly, classifier performance ranged from approximately
chance (2.08%) to 82.1% when trained and tested using
multi-unit responses in the IC. To understand this variability, we
investigated the relationship between various classical descriptors
of neuronal spiking behavior and classifier performance.

Figure 4 shows the distribution of pure-tone CF and
mean evoked spike rates, and their relationship to classifier
performance in each of the three brain regions. The AN fibers
appear to fall into two groups; those with highly discriminable
(∼100% correct) responses and those for which classifier
performance falls below 80% for the token and hierarchical
classifier modes, with few data points between. As shown in
Figure 3A, AN classifier performance is generally lower when
using the phoneme classifier but follows a similar pattern.

Inspection of the relationship between fiber CF and
discriminability reveals that these groups correspond to
fibers with low and high CFs. The cut-off is at around 1 kHz,
which is notably similar to the point at which phase locking
deteriorates in the AN of the guinea pig (Palmer and Russell,
1986). We note that this is also the reciprocal of the bin size
used in the creating of the PSTHs (1 ms). To check that this
was not an artifact of binning the responses, the same analysis
was performed using a bin size of 0.1 ms, which resulted in very
similar results and did not shift this cut-off to higher frequencies.

The relationship between CF and classifier performance in
IC and AI is more linear, with higher CFs corresponding to
higher performance. This is even true for those neurons tuned
to well above 4 kHz, where stimulus energy is attenuated
(see “Materials and Methods”), suggesting the correspondence

FIGURE 3 | (A) Discriminability of simulated auditory nerve fiber (AN) and
multiunit responses in the IC and AI for each of the three classifier modes. The
values shown correspond to classifier performance using the optimal
smoothing window (1–400 ms) for each unit. (B) Smoothed histograms
showing the distribution of classifier performances for each of the three brain
regions using only the phoneme classifier mode.

between the pure-tone tuning and the energy in the stimulus is a
poor predictor of how efficacious neurons were for classification.
A Pearson product-moment correlation analysis revealed that
this relationship is strongest for the phoneme classifier mode and
was significant in IC, r = 0.36, p < 0.001, but not in AI, r = 0.23,
p = 0.08. With respect to mean firing rate, the AN data fall into the
two groups described previously. In IC and AI, mean firing rate
was significantly correlated with classifier performance regardless
of classifier mode (right panels of Figure 4), an effect that was
strongest for the token classifier, ρIC = 0.68, ρAI = 0.94, p< 0.001
(in both cases).

These analyses suggest that the ability of an individual AN
fiber to identify speech sounds is broadly determined by stimulus
acoustics and the fiber CF. High firing rates do not necessarily
indicate greater classifier performance. In the IC and AI, however,
CF is a poor indicator of classifier performance, whereas firing
rate is.

The relationships between CF, firing rate and classifier
performance appear to be quite similar in IC and AI, as does
the overall distribution of these attributes, but it is possible that
differences between these brain regions emerge in when and
where these neurons tend to fire. A measure that is related to
firing rate, but provides more information about the selectivity
of responses, is sparseness. Neural responses are said to exhibit
lifetime sparseness if responses are highly selective to a small
number of stimuli. Figure 5A shows the lifetime sparseness of
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FIGURE 4 | Characteristic frequency (left column) and total average firing rate (middle column) as a function of classifier performance for each brain region (color; see
legend) and classifier mode (row). The right column shows a magnified view of the region close to the origin on the firing rate vs. classifier performance axes, and the
line of best fit for IC and AI. Sites that did not demonstrate frequency specific tuning to pure-tones in IC and AI are omitted. All points indicate the discriminability
using the optimal smoothing window for each recording site.

FIGURE 5 | (A) Lifetime sparseness of individual site responses in the auditory nerve, inferior colliculus, and auditory cortex. Values close to 0 indicate a tendency to
respond to each stimulus with equal firing rates. Value closer to 1 indicate a tendency to respond selectively to a small number of speech tokens. (B) Population
sparseness of responses in AN, IC, and AI. Values close to zero indicate that the neurons across the population respond similarly to a given stimulus. Values closer
to 1 indicate that stimuli elicit responses from a small subset of the population. (C) Discrimination specificity in the AN, IC, and AI for each classifier mode.
Discrimination specificity is based on a commonly used measure of sparseness applied to d’ values calculated from confusion matrices. Values close to 0 indicate an
ability to discriminate all tokens equally. Values close to 1 indicate an ability to distinguish only a small subset of stimuli.
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the neurons in our sample in each of the three nuclei. The mean
sparseness values increased in the ascending nuclei (µ = 0.03,
0.12, and 0.14, respectively). A one-way ANOVA was conducted
to test the effect of brain region on lifetime sparseness, which
confirmed a significant effect, F(2,419) = 68.8, p< 0.001. Post-hoc
comparisons using the Tukey HSD test indicated that the mean
lifetime sparseness in the AN was significantly different to that in
the IC and AI. The difference in mean sparseness between the IC
and AI was not significant, p = 0.052.

Figure 5B shows a second measure of sparseness: the
population sparseness, and how this varies across each brain
region. This measure is an indication of the tendency of neurons
across a population to respond with a similar strength, with
values close to one indicating that only a small subset of neurons
responds to any given stimulus. In this case the error bars reflect
variation across stimulus repetitions rather than across individual
recording sites, given that it relates to the population response.
A one-way ANOVA revealed a significant effect of brain region
on population sparseness, F(2,141) = 7408.16, p < 0.001. This
reflects an increase in population sparseness from AN to AI;
a further indication of increasing heterogeneity of responses
throughout the ascending auditory system.

These analyses highlight the dense and redundant nature of
representations in the AN given the very low values of sparseness
and corresponding high classifier performance. Differences
between IC and AI emerge when the way activity is distributed
across the neural population is considered, which could suggest
a more distributed representation in AI compared to IC. This
could explain the much lower discriminability values seen in AI
on average and supports the idea that neurons in higher auditory
nuclei become more selective to features of complex auditory
stimuli.

We hypothesized that this higher selectivity would result in
specialized neurons that are able to identify a single speech token,
but are unable, in isolation, to discriminate between a larger
set of stimuli. On the other hand, the generalist neurons in the
more peripheral nuclei would discriminate between all speech
tokens equally well. To measure this, we developed a normalized
measure of discrimination specificity, which approaches 0 for
neurons with a similar recognition accuracy for each of the speech
tokens and 1 for those that tend to only recognize one single
speech token much better than all others (see “Materials and
Methods”).

Figure 5C shows that mean discrimination specificity does
indeed increase in the ascending auditory nuclei. A one-way
ANOVA confirmed a significant effect of brain region on neural
discrimination specificity, F(2,419) = 836.50, p < 0.001, and
post-hoc analysis revealed significant differences between the AN
and IC, p < 0.001, as well as between the IC and AI, p < 0.001.
It also demonstrates the broad distribution of discrimination
specificity scores by neurons in the IC, suggesting a continuum
of functionality from generalist to specialist.

The analyses so far have considered classifier performance
when responses were smoothed using optimal temporal
smoothing windows, which were found by parametrically
varying the window lengths. Figure 6 shows a summary of the
effects of smoothing on classifier performance for each brain

region. The effects are very similar, regardless of classifier mode.
The top row of the figure shows classifier performance as a
function of smoothing averaged across recording sites. For the
AN data, there is a clear peak in classifier performance for very
short smoothing windows, reflecting reliable, precisely timed
spikes that differ across the speech tokens. This peak is greatly
diminished for the phoneme classifier mode, suggesting that the
representations based on precise spike timing encode acoustic
features that do not generalize well across talkers, such as the
temporal fine structure. Conversely, precise timing in the IC and
AI does not improve classifier performance. Indeed, in the IC, a
degree of smoothing appears to improve it.

Overall, our analyses of individual recording sites demonstrate
an evolution of the neural code throughout the ascending
auditory pathway. In the AN, each fiber contains rich information
about all the speech stimuli presented, reflected by high
classifier performance and low discrimination specificity. Here,
acoustic information is encoded in many, precisely timed
spikes, particularly within fibers whose CF falls well within
the limit of phase-locking. As information progresses up
the auditory pathway, responses become increasingly sparse,
with localized neuronal activity encoding a smaller range of
stimulus features, indicated by the progressive increase in both
lifetime sparseness (within recording sites) and population
sparseness (across neuronal populations), resulting in low
overall classifier performance and high discrimination specificity.
Optimal smoothing windows in the higher auditory nuclei are
also longer, with precise spike timing being less useful for speech
recognition than spike rates over 10–100 ms epochs.

The classifier modes had a significant effect on classifier
performance in general. This was most pronounced in the AN
where the phoneme classifier, in which templates were combined
across multiple talkers, performed significantly worse than the
token classifier. The hierarchical classifier did not perform
markedly better than the token classifier in any brain region,
which indicates that there is little evidence of representations
facilitating invariance to across-talker differences.

There are two possibilities that may explain the lower overall
classifier performance in the IC and AI compared to the
AN. One is that the information necessary to perform the
consonant discrimination task is not maintained across multiple
synapses in the ascending auditory system. Another is that this
information is encoded in spiking activity distributed across
neuronal populations. Subsequent analyses will aim to address
which is the case by providing the classifier with activity from
neuronal populations, rather than individual recording sites.

Discriminability of Population Responses
We have demonstrated that single AN fiber representations
of speech tokens produced by multiple talkers can be reliably
discriminated by a template-matching classifier. The same cannot
be said of multi-unit neuronal representations in the IC and AI.
We investigated how the discriminability of these representations
was affected by training the classifier using representations
comprising larger populations of neurons. The classifier methods
are identical, except that classification is performed using
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FIGURE 6 | The effects of smoothing window length on discriminability of responses to VCVs by individual recording sites in AN (orange), IC (blue), and AI (green) for
the three classifier modes. The top row shows the effect of smoothing averaged across recording sites within each brain region. The middle row shows the
distribution of optimal smoothing windows. The bottom row shows the relationship between characteristic frequency and optimal smoothing window.

spatio-temporal population representations instead of spike
trains produced by single nerve fibers or recording sites.

Figure 7A shows token classifier performance as a function
of the (randomly sampled) population size in each of the
brain regions. Despite the generally poor ability of individual
recording sites in IC and AI to discriminate the speech tokens,
perfect classifier performance is possible by combining the
responses across relatively small neuronal populations. The
required population size increases by orders of magnitude from
AN to IC to AI. In the AN, more than three fibers guaranteed
perfect discrimination. Twenty or more IC units are required to
match this, whilst the total recorded population of 208 multi-unit
sites is required in the AI.

These results could be indicative of the following scenarios.
Firstly, this may indicate that the information driving classifier
performance becomes increasingly distributed across the
population, with each neuron encoding sufficient information to

distinguish only a few speech tokens from all others. This might
be the case if, for example, a particular neuron was sufficiently
selective so as to only spike in response to one of the speech
tokens. Alternatively, it may be that much of the information
driving the speech token discrimination task is encoded in
the activity of a small number of generalist neurons, able to
discriminate the majority of the tokens from one another. In
this case, increasing the size of the subpopulation increases the
chances that one or more of these high-performing generalist
neurons are included.

In order to distinguish these two scenarios, we sampled
neuronal subpopulations in order of token classifier performance
measured individually. The results are shown in the solid and
dashed lines of Figure 7B. The solid lines are the results
where only the best N sites are selected. Conversely, the
dashed lines correspond to the same analysis selecting the
worst N sites. These data are indicative of the latter scenario;
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FIGURE 7 | The effect of population size on classifier performance for token (A,B) and phoneme (C,D) classifier modes. In panels A,C, 20 subpopulations were
selected randomly within each brain region. Error bars represent variation across these subpopulations. In panels B,D, sites were selected in descending (best first)
and ascending (worst first) order of discriminability corresponding to the solid and dashed lines, respectively. The smoothing windows that yielded maximum
performance for the whole population for each brain region were used.

classifier performance reaches a maximum with very small, highly
informative populations in all the nuclei with much of the
population contributing very little information. These sites are
poorly predicted by CF. Indeed, they appear to have pure-tone
CFs significantly higher than the low frequencies containing most
of the energy in the speech stimuli and are generally distinguished
by their higher average firing rate, as shown previously in
Figure 4.

The results of the same analysis using the phoneme classifier,
in which templates incorporate across-talker variability, are
shown in Figures 7C,D. A comparison of Figure 7C and
Figure 7A shows that, for a given population size, when not
at ceiling, performance is generally worse in all nuclei. For
representations that become less sensitive to the fine-grained
differences between the same phonemes produced by different
talkers, it would be expected that the token classifier would make
confusions between exemplars of the same phoneme. In this case,
the phoneme classifier would perform better, which is not the
case; both at the neuronal and population level, we see little to
suggest that these representations could facilitate invariance to
across-talker differences.

Figure 7D shows that, similar to the token classifier results
in Figure 7B, the majority of information driving classifier
performance is encoded by small, optimal populations. IC and
AI performance initially grows at a similar rate (blue and green
solid lines). This contrasts with the corresponding token classifier
data (Figure 7B), where IC performance is higher for very small
populations. This implies that the best performing units in AI
do exhibit at least some greater degree of generalization within
phoneme classes than in the IC.

The effect of population size on consonant discrimination
described above considered classifier performance using optimal
smoothing windows. As in the analysis of single recording site
responses, population responses were also temporally smoothed
by convolution with a window of parametrically varied duration.

Figure 8A shows how token classifier performance varies as
a function of window length. AN and IC representations are
evidently highly redundant for speech token recognition; even
representations using a 400 ms smoothing window are sufficient
for perfect classifier performance. This is in contrast with the
results of the same analysis applied to single recording sites
(Figure 6) and indicates a viable rate-place code for consonant
recognition (at least when those consonants are presented in
quiet at the sound level used in this study).

In AI, the shortest smoothing windows result in very poor
classifier performance, indicating that the millisecond-precise
timing of spikes in responses to the target sounds is unreliable
across multiple presentations. Instead, a degree of smoothing
improves discriminability. However, classifier performance is
also reduced by using the longest smoothing windows, showing
that the temporal structure of the neuronal response must be
considered. Cortical neuronal representations with dynamics
over timescales of between 10 and 100 ms appear to maximize
discriminability.

Figure 8B shows the same analysis using the phoneme
classifier mode. In all three brain regions, the discriminability
of the neural representations generally decreased, as shown
previously. This effect was most prominent in AI. Temporal
smoothing had a dramatically different effect on discriminability
in the AN and IC; increasing smoothing window durations
caused a corresponding decrease in discriminability in AN.
Discriminability of IC representations, on the other hand, is far
more robust to severe temporal degradation of the spike trains,
such that providing only the spatial distribution of firing rates as
an input to the classifier still resulted in over 80% correct. For
AI representations, the function shows a more clearly defined
optimal timescale, with a best smoothing window of 54 ms.

The results from the phoneme classifier show clear shift
toward longer optimal timescales from AN to AI. However, it is
difficult to compare this to token classifier where performance is
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at or near ceiling in many cases. To facilitate this comparison,
the token classifier was run using subpopulations that resulted
in similar maximum classifier performance to the phoneme
classifier. This corresponded to subpopulations of N = 3, N = 10,
and N = 50 in AN, IC, and AI, respectively, as indicated in the
figure legend. The results of this are shown in the dashed lines of
Figure 8B. The resulting curves are remarkably similar regardless
of classifier mode.

In summary, the reduced ability of neuronal activity to
discriminate between consonants in the IC and AI compared
to the periphery is largely recovered by considering population
activity. However, this code appears to be confined to
small subpopulation of particularly informative neuronal
subpopulations. In the AN, and to a lesser extent the IC, the
coding of speech tokens, as opposed to phonemes, is highly
redundant; putative neural codes on multiple timescales provide
sufficient information. Optimal timescales become longer in
higher auditory nuclei.

DISCUSSION

We obtained responses to an extensive set of consonants at
multiple stages of the central auditory system. Reponses in the
AN were simulated using a computational model. Extracellular
multi-unit activity was recorded in IC and AI of naïve,
anaesthetized guinea pigs. The neuronal representation of these
sounds was transformed from a dense and redundant one in
the auditory periphery to a spatially and temporally sparse one
in the AI. Nonetheless, these representations encode sufficient
information to discriminate an extensive set of speech sounds in
a naïve, anaesthetized animal model. The optimal timescale of
neuronal activity facilitating recognition of the dynamic speech
sounds used in this study increased from a few milliseconds in
the periphery to several tens of milliseconds in the cortex, with
little extra salient information gained by considering timing over
shorter epochs. However, there is little evidence that these longer
timescales are associated with increased invariance across talkers;
rather, it seems likely that the auditory system up to the level of
the primary cortex performs a dimensionality expansion, which
could putatively form the bases of flexible and robust complex
sound recognition by downstream cortical regions.

Our results are very much in line with previous literature
showing that key acoustic cues for consonant discrimination,
such as the voice onset time (VOT; Sinex and McDonald,
1988, 1989; Steinschneider et al., 1994, 1995, 2003, 2013;
Eggermont, 1995) are represented throughout the auditory
system of non-human mammals, and that such representations
are sufficient to discriminate phonemes (Engineer et al., 2008;
Shetake et al., 2011; Perez et al., 2012; Centanni et al., 2013, 2014).

Previous work using a classifier approach has focused
primarily on the cortex, and direct comparisons of neuronal
and behavioral speech token discriminability within the same
species. We were interested in how information is propagated
and transformed throughout the auditory system, and how some
of the speech recognition challenges faced by listeners influence
the value of various putative neural codes. We therefore modified

FIGURE 8 | The effect of smoothing on the discriminability of population
representations of VCVs using token (A) and phoneme (B) classifier modes.
Also shown is the same analysis for hierarchical classifier mode (dashed line,
A). The dashed line in B is data from the token classifier using neuronal
subpopulations from each brain region. The sizes of these subpopulations are
indicated in the figure legend and were chosen such that the maximum token
classifier performance was matched to that of the phoneme classifier.

the classifier approach and extended it to three key stages in the
auditory processing pathway; the AN, IC, and AI.

It has been suggested that the neuronal representation of
speech evolves throughout the ascending auditory system from
one that is primarily driven by stimulus acoustics to one
that more closely reflects perception (Perez et al., 2012). Our
experiment was designed to investigate the nature of this
transformation and its implications in the neural coding of
speech, whilst considering some of the challenges in real-world
speech recognition. Firstly, we used a stimulus set incorporating
natural variability by using multiple talkers. This conceptually
changes the nature of the neural classifier paradigm, as well as
the analogous behavioral task in an important way. Imagine,
for example, we were interested in testing a subject’s ability to
discriminate images of apples vs oranges. If a subject is only
shown one image of an apple and one of an orange, the subject
need not necessarily utilize cues that generalize to other images
of the fruits, such as the color. Many other parameters specific
only to the images used can define the distinction, such as overall
brightness, to give one example.

Secondly, we focussed on representations of an extensive
set of word-medial consonant sounds (/a/-consonant-/a/). This
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is significant, since it is likely that neuronal responses to
word-initial consonants, may be different in nature from those
to consonants in continuous speech due to an apparent temporal
asymmetry in auditory perception; listeners appear to be much
more sensitive to spectral and temporal features of sound onsets
compared to offsets (Phillips et al., 2002).

Finally, we introduce a time-shifting mechanism in our
classifier, such that it is not provided with the absolute stimulus
onset time. As has been pointed out previously (Centanni et al.,
2014), this is an important consideration as the brain does
not have access to this external information. Our time-shifting
approach differs from previous ones as it only depends on
spiking neural activity of the population under consideration
and requires no baseline measure derived from the activity of a
broader population.

The finding that cortical responses to complex sounds are
typically transient and sparse, even in awake subjects, is not new
(e.g., Hromádka et al., 2008). However, here we show that such
responses constitute a distributed representation of the necessary
cues to reliably discriminate an extensive set of speech sounds.
Moreover, we find this to be the case in the central auditory
system of a naïve, anaesthetized animal model. Furthermore, we
show that the transformation appears to be progressive, with
representations in the auditory midbrain exhibiting intermediate
characteristics, between the AN and primary cortex.

These findings are also consistent with existing literature on
how the representation of complex sounds in general evolve
along the ascending auditory pathway. For example, Chechik
et al. (2006) recorded responses of auditory neurons to birdsong
in the IC, medial geniculate body (MGB) and AI of anaesthetized
cats. They found that the amount of information conveyed
by individual neurons was significantly lower in the AI and
MGB compared to the IC, whilst representations across small
neural populations were less redundant. This is also consistent
with the sparse coding hypothesis, whereby sensory systems
generate increasingly efficient representations of natural sounds
(Olshausen and Field, 2004; Hromádka et al., 2008; Mesgarani
et al., 2008).

The development of representations that are invariant to
fine-grained, non-informative acoustic variation implies a
decrease in selectivity to complex acoustic features, not the
increase that we observe. Indeed, we find little evidence that
representations in the ascending auditory system facilitate
invariance. Our findings support an alternative model, which
posits that the role of the auditory system up to at least the
primary cortex is to create a multidimensional representation
that forms that basis of flexible and robust class boundary
definitions later on (Olshausen and Field, 2004; Hromádka
et al., 2008; Mesgarani et al., 2008). It seems likely that this is
achieved in higher auditory neurons by developing sensitivity to
nonlinear combinations of spectrotemporal features, as has been
observed in songbirds (Kozlov and Gentner, 2016) and awake
marmosets (Sadagopan and Wang, 2009). Such a representation
could facilitate complex tasks such as listening in noise, since
signals that become degraded across one acoustic dimension
(through energetic masking, for example) could remain intact in
others.

Human phoneme perception is clearly affected by years of
experience and becomes specialized for an individual’s linguistic
environment. This is evident in the way that human infants
can be sensitive to non-native phonemic contrasts in a way
that adult listeners are not (for a review, see Kuhl, 2004).
Nonetheless, intracranial recordings in humans suggest that
responses to speech appear to be driven primarily by stimulus
acoustics rather than phonetics (Mesgarani et al., 2014). This
provides further support to the idea that language development
is guided by auditory processing mechanisms shared across
mammalian species and suggests that the organizing principle
described above might be preserved in humans. If this is the
case, changes in speech perception resulting from auditory
experience is likely to depend largely on connectivity between
primary and downstream cortical regions and subsequent neural
processing.

We investigated the efficacy of neural codes at various
timescales for discriminating between phonemes. The optimal
timescales increase from milliseconds in the periphery to
tens of milliseconds in the AI. Representations comprising
neural codes on a millisecond timescale lead to classifier
performance significantly above chance in all brain regions,
which demonstrates that this does encode stimulus information,
but it is not required, nor is it optimal in the two higher brain
regions in this study. Indeed, little benefit is gained by providing
a neural classifier with response dynamics on timescales shorter
than around 100 ms in the AI.

This appears to contrast with several recent classifier-based
studies that have suggested that millisecond-precise timing in
the primary cortex plays a role in speech discrimination. For
example, Engineer et al. (2008) recorded responses to a set of
consonants in the AI of rats and quantified their discriminability
using a nearest-neighbor classifier. They reported that the ability
of their neural classifier to discriminate consonant pairs better
correlated with the rat’s ability to discriminate the sounds
behaviourally when neuronal responses with a 1–10 ms timescale
were used, compared to firing rates over the entire 700 ms
duration of their consonant-vowel stimuli. Subsequent studies
using a similar methodology have found comparable results for
consonant stimuli (Shetake et al., 2011; Perez et al., 2012).

This apparent contradiction could be due to several key
methodological differences. Firstly, with one notable exception in
which timescales of the neural code were not explicitly examined
(Mesgarani et al., 2008), the conclusions of these previous
studies are limited to pairwise discrimination of speech tokens to
facilitate comparison with a go/no-go behavioral task. It may be
that in the context of a more comprehensive set of speech sounds
millisecond-timescale cues are more ambiguous and therefore
difficult to interpret. Furthermore, it may be that incorporating
natural variability by using multiple talkers diminishes the
salience of fine-grained acoustic cues and therefore the viability of
a precise timing code for the analogous behavioral task (although
it should be noted that we find comparable optimal timescales in
our speech token compared to our phoneme discrimination task,
so this is not a complete explanation).

Secondly, it appears that the precision of spike timing
differs between onset responses and responses to ongoing
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sound (Phillips et al., 2002). In most of the previously
mentioned studies, onset responses to word-initial consonants
were examined. From these comparisons, it is clear that any
conclusions about the role of putative neural codes for speech
discrimination are profoundly affected by the stimulus paradigm.
For example, optimal decoding of cortical responses to vowel
sounds (Perez et al., 2012), guinea pig vocalizations (Huetz et al.,
2009) and marmoset calls (Schnupp et al., 2006) appears to occur
when timescales of tens of milliseconds are used.

There are several limitations on the extent to which the
findings of this study may be generalized to the neural coding
of speech in general. The first of which is that our stimuli were
presented in the absence of background noise and at a single
sound level. The effects of added noise on neural coding of
complex sound have not been extensively studied, though one
study demonstrated that longer temporal integration windows
are used to discriminate pairs of speech sounds in noise relative to
the same sounds presented in quiet in the AI of rats (Shetake et al.,
2011). However, as mentioned previously this study focussed on
the discrimination of pairs of speech sounds and it is unclear
to what extent cortical rate encoding over long (50–100 ms)
epochs is sufficient to recognize sounds from a more extensive
corpus.

Another limitation is that all electrophysiological recordings
were made in a urethane-anaesthetized model. The effects of
this anaesthetic on neural coding in the mammalian peripheral
auditory system remain poorly understood and to the best
of the authors knowledge no direct comparison of awake
and anaesthetized responses to complex sound in the AN
has been reported. However, one study did find that several
anaesthetic agents (not including urethane) did have differential
and significant effects on thresholds, tuning and firing rates in the
AN of the gecko (Dodd and Capranica, 1992).

Likewise, differences between neuronal representations of
complex sound in awake and urethane-anaesthetized models in
the IC have not been directly investigated, as far as the authors
are aware. However, one report compared discriminability of
neuronal responses to complex sound in the anaesthetized and
awake avian auditory midbrain and found that, while intrinsic
excitability was depressed, neural coding (as measured by spectral
tuning properties and the discriminability of responses to natural
birdsong) was not significantly affected (Schumacher et al.,
2011).

The differences between awake and anaesthetized models
have been more extensively reported in the AI. It is commonly
reported, for example, that anaesthesia has the effect of
suppressing ongoing responses to acoustic stimuli, leading to an
overrepresentation of stimulus onset not apparent in the awake
AI. This indeed appears to be the case with steady-state, or brief
stimuli. However, sustained responses have been observed in the
awake auditory cortex, provided that the stimulus is optimal
for a given neuron (Wang et al., 2005). Here, we report many
recording sites in the anaesthetized AI that also demonstrate
sustained responses. This might reflect that we presented natural,
complex stimuli which are more likely to contain spectro-
temporal dynamics that overlap with the optimal stimulus space
for any given neuron.

The tuning properties of cortical neurons also appear to
be affected by anaesthesia, the effect of which is to produce
a reduction in the proportion of neurons with complex,
circumscribed spectro-temporal receptive fields (STRFs; Wang,
2018). An increase in the complexity of cortical STRFs would
suggest that it is possible that auditory cues facilitating speech
recognition could be distributed even more broadly across the
population than we observe here. With respect to temporal
dynamics, Ter-Mikaelian et al. (2007) showed that anaesthesia
can increase the temporal precision of cortical neurons to
synthetic stimuli. On a related note, non-synchronized rate-
encoding of click trains have only been reported in awake animals
(Lu et al., 2001; Dong et al., 2011; Gao and Wehr, 2015),
with anaesthetized models exhibiting synchronized responses.
However, it remains unclear how anaesthesia affects the temporal
dynamics of responses to ongoing, natural, complex sound.

In future studies investigating the importance of spike timing
in speech discrimination, it is important to draw a distinction
between token and phoneme recognition paradigms. It will
be informative to apply corresponding classification algorithms
to distinguish auditory object (e.g., phoneme) vs. waveform
(i.e., token) encoding. We did not find evidence of invariant
phoneme encoding from AN to AI. However, it would be
interesting to extend this approach beyond the primary AI, and
to either use conspecific calls or sounds on which the animals
have been trained. Future similar studies should also include
natural variation by using multiple exemplars of each target
sound and consider potential differences in neuronal encoding
schemes emerging from acoustic context (e.g., is the target sound
preceded by other sounds, or is it presented after a period of
silence). Furthermore, signal processing tools can be used to
systematically manipulate the spectro-temporal complexity of
speech. Such tools will be useful to distinguish between true
spike-timing based representations and rate codes that fluctuate
with rapid changes in the stimulus (Theunissen and Miller,
1995).
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