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ABSTRACT:  19 

Arsenic containing sludge, a product of the treatment of acid smelting 20 
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wastewater, is susceptible to temperature, pH, co-existing salt ions and organic matter, 21 

which might lead to the release of arsenic ions into the environment. Here, we studied 22 

the effect of visible light on the dissolution and oxidation of arsenic sulfide sludge 23 

(ASS) sampled from a smelting plant. Results show that by exposure to visible light, 24 

both the release of As(III) ions from ASS and the oxidation of As(III) into As(V) were 25 

markedly accelerated. Electron paramagnetic resonance (EPR) and free radical 26 

quenching experiments revealed that ASS acts as a semiconductor photocatalyst to 27 

produce hydroxide and superoxide free radicals under visible light. At pH 7 and 11, 28 

both the dissolution and the oxidation of the sludge are directly accelerated by ∙O2¯. 29 

At pH 3, the dissolution of the sludge is promoted by both ∙O2¯ and ∙OH, while the 30 

oxidation of As(III) is mainly controlled by ∙OH. In addition, the solid phase of ASS 31 

was transformed to sulfur (S8) which favored the aggregation and precipitation of the 32 

sludge. The transformation was affected by the generation of intermediate sulfur 33 

species and sulfur-containing free radicals, as determined by ion chromatography and 34 

low-temperature EPR, respectively. A photocatalytic oxidation-based model is 35 

proposed to underpin the As(III) release and oxidation behavior of ASS under visible 36 

light conditions. This study helps to predict the fate of ASS deposited in the 37 

environment in a range of natural and engineered settings.  38 

Keywords: Arsenic sulfide sludge; photocatalysis, Release; Oxidation; Active free 39 

radicals 40 
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1. Introduction  41 

Arsenic is ubiquitous in the Earth’s crust, with a mean concentration of 0.5–2.5 42 

mg/kg – about 0.00005% of the Earth’s crust [1]. It often coexists with the ores 43 

containing precious and non-ferrous metals, or iron [2]. During metal smelting, 44 

mineral processing, and sulfuric acid production from pyrite ores, a large amount of 45 

arsenic-containing acid wastewater and tailings are produced [3]. For example, the 46 

arsenic concentration in the wastewater from a sulfuric acid plant can range from 47 

several to tens of thousands mg/L [4]. One of the most popular techniques for 48 

treatment of the arsenic wastewater in industry is sulfide precipitation, where sulfide 49 

is employed to transform arsenic ions into arsenic sulfide precipitate [5]. This 50 

technique has many advantages, such as low solubility of arsenic sulfide at a low pH, 51 

high sediment rate and efficiency, less sludge volume and water content [6,7]. As a 52 

result, large quantities of arsenic sulfide slag is discharged into the environment. For 53 

example, more than half a million tons of arsenic sludge are produced annually in 54 

China. 55 

Arsenic sulfide sludge deposited in the environment is susceptible to temperature, 56 

pH, coexisting organics and inorganics (e.g. sulfides) [8,9]. The weathered and 57 

dissolved residues promote the release of arsenic ions into the surroundings, which 58 

can result in the transport and transformation of chemical species (e.g. arsenic and 59 

sulfur) in natural waters and so leading to environmental contamination. Previous 60 
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studies have demonstrated that when pH is higher than 9, the dissolution of artificial 61 

As2S3 particles is significantly enhanced, owing to the enhanced activity of the 62 

hydroxylated surface species [10]. On the other hand, different types of sulfur species 63 

can influence the dissolution rate of arsenic sulfide. For instance, the added sulfide 64 

ions can react with arsenic sulfide and produce arsenic-sulfide complex (H2As2S6
¯), 65 

according to eq 1, which will accelerate the dissolution of the solid [11,12].  66 

+

2 3 2 3 6

3 3 1
As S (s)+ HS + H H As S

2 2 2

− −    ∆G = -96.72 kJ/mol          (1) 67 

Recently, the effect of light on the dissolution of minerals containing heavy 68 

metals has been studied to elucidate the mechanism of photocorrosion reactions on the 69 

release of metal ions, such as antimony and vanadium, from their parental minerals or 70 

the synthesized substitutes (e.g. senarmontite (Sb2O3) [13], stibnite (Sb2S3) [14], and 71 

vanadium titano-magnetite [15]. It has been demonstrated that simulated sunlight or 72 

UV irradiation can promote the dissolution of minerals and thus release heavy metal 73 

ions. Up to this time, no work has been reported on the effect of light-induced 74 

photochemical reactions on the fate of actual arsenic sludge from industry. As sunlight 75 

is one of the most important climate factors for ecosystems, it inevitably affects the 76 

fate of heavy metal slag deposited in the environment. On the other hand, arsenic 77 

sulfide is a semiconductor with a band gap (~2.34 eV) in the range of visible light 78 

spectrum. It has been reported that photocorrosion of artificial As2S3 colloids could 79 

occur by light irradiation [16]. Therefore, it is expected that the actual sludge, which 80 
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mainly contains arsenic sulfide, is photo-responsive under visible light conditions.  81 

The objective of the investigations described in this paper was to study the 82 

dissolution and transformation mechanisms of actual arsenic-containing sludge under 83 

visible light conditions. The release and oxidation kinetics of arsenic and sulfur from 84 

the sludge, as well as the structure and state of the solid phase, were examined at 85 

different pHs under visible light. The intermediate sulfur species arising during the 86 

photoreactions were quantified by ion chromatography. The photo-generated active 87 

oxygen and sulfur species were identified by EPR and free radical quenching 88 

experiments, and their specific contributions to the transformation of the sludge are 89 

discussed. The findings of the present investigation assist in the understanding of the 90 

fate and transforming process of arsenic sulfide sludge in the environment. 91 

 92 

2. Materials and methods 93 

2.1. Chemicals and materials  94 

The details of all reagents used are provided in the Supporting Information. The 95 

arsenic sulfide sludge, a product of acid wastewater treatment, was sampled from a 96 

smelting plant in Fujian province, China. 97 

2.2. Photo Reaction System  98 

All the photo reactions were performed in a 250 mL beaker by mixing 0.15 g of 99 

the solid sludge with 225 g of H2O. The concentration of ASS was fixed at 0.67 g/L. 100 
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The initial pH of the suspension was adjusted with HCl or NaOH solution. A 500-W 101 

Xe arc lamp (Shanghai Jiguang Special Lighting Appliance Factory, China) was used 102 

as a light source equipped with UV cut filters (λ > 420 nm). The temperature for all 103 

the reactions was room temperature (RT ~25 oC) using a water-cooling system. At the 104 

appropriate time interval, the liquid samples were taken out and filtered through a 105 

0.25 μm filter for further analysis. The dissolved oxygen level was controlled by using 106 

a gas-purging tube to inject N2 or O2 in the system. In order to study the effects of 107 

active species, specific radical scavengers were individually added into the reactor, 108 

including 0.1 M tert-butyl alcohol (TBA) for scavenging ∙OH, 0.1 M methanol 109 

(MeOH) for SO4∙
¯, and 1 mM p-benzoquinone (p-BQ) for ∙O2

¯. 110 

2.3. Analytical Methods  111 

2.3.1. Arsenic and sulfur species in the liquid phase 112 

The concentration of As(V) was determined using the colorimetric molybdene 113 

blue method, and the total As ions (TAs) were measured after As(III) was oxidized 114 

completely by KMnO4 [17]. S(II) species, including H2S, HS-, and S2-, were analyzed 115 

using the methylene blue method [18]. The concentration of total sulfur (TS) was 116 

measured on an ICP-OES (OPTIMA 8300, PerkinElmer, USA). The quantification of 117 

sulfur intermediates, including sulfate (SO4
2-), thiosulfate (S2O3

2-), and sulfite (SO3
2-), 118 

was determined using an ion chromatograph (IS-2000) equipped with a Dionex 119 

IonPacTM AS19 (250 × 4 mm) column. The details of instrumental setups were 120 
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described in the SI (Table S1).  121 

2.3.2. Solid phase of the sludge  122 

High-resolution field emission transmission electron microscopy (HRTEM) 123 

(JEM-2100F, Japan) and scanning electron microscopy (SEM) (SU8020, Japan) were 124 

used to characterize the surface morphology of the solids. X-ray diffraction (XRD) 125 

(PANalytical B.V.X'Pert3 Powder) featuring a Cu−K (alpha) source was used to 126 

determine the crystal phases of samples. X-ray photoelectron spectroscopy (XPS) was 127 

performed on an ESCALAB 250Xi instrument (Thermo Fisher Scientific). The As 3d 128 

and S 2p XPS spectra were fitted by the XPSPEAK41 software. A UV-2600 129 

spectrometer was used to determine the UV-vis absorption spectra of arsenic sludge. 130 

X-ray fluorescence (XRF) was performed on an Axios instrument PW4400 131 

(PANalytical B.V.). 132 

2.3.3. EPR analysis of active free radicals 133 

∙O2
¯, ∙OH and SO3∙

¯ radicals were detected on a Bruker EleXsys EPR 134 

spectrometer (A300-10/12, Germany) at RT with DMPO as the spin-trapping agent 135 

under visible light. When detecting ∙O2
¯, the methanol was chosen as the dispersion. 136 

The sulfur-containing radicals were detected on a Bruker EleXsys EPR spectrometer 137 

(E500, Germany) at the low temperature (90 K) using a100 W mercury lamp 138 

equipped with UV cut filters (2000 nm > λ > 420 nm) [19]. 139 

 140 
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3. Results and discussion 141 

3.1. Analysis of raw ASS 142 

The XRD pattern of ASS revealed that the sludge mainly contained nanosized 143 

and amorphous As2S3 particles plus some undefined impurities (Fig. 1a). The SEM 144 

image in Fig. 1b also shows that the sludge compromised of small particles with the 145 

size less than 100 nm. HRTEM image (Fig. 1b and Fig. S1) further confirmed that the 146 

particles are amorphous structure. EDS mapping images revealed that the two 147 

components, As and S, overlapped each other (Fig. 1d). The XRF and ICP-OES 148 

results (Table S2) confirm that As and S accounted for the two main components of 149 

ASS (more than 80% in mass), while other elements, such as Na, Ni, and Cu, 150 

accounted for only 4.18% of the total.  151 

 152 

Fig. 1. (a) XRD pattern, (b) SEM image with the inserted HRTEM image, (c) XPS 153 
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spectra, and (d) EDS mapping images of the raw sludge. In the As 3d spectra, 1 and 1’ 154 

are assigned to As 3d5/2 and As 3d3/2, respectively. In the S 2p spectra, 1, 2, 3 are 155 

assigned to S 2p3/2, and 1’, 2’, 3’ are from S 2p1/2 of S2- (1-1’), S2
2- (2-2’) and SO4

2- 156 

(3-3’). Inset of (a): optical image of the sludge. 157 

 XPS spectra (Fig. 1c) of ASS show that the peaks observed ranging from 41 to 158 

47 eV, identified as two separated peaks at 43.40 and 44.10 eV (the intensity ratio 5:3), 159 

which are ascribed to As 3d5/2 and As 3d3/2 of As(III), respectively [20]. No As(V) was 160 

detected in the system. The peaks from 161 to 170 eV are corresponding to S 2p, 161 

which can be fitted by three groups of peaks [21-23]. Each group with a separation of 162 

1.2 eV and the intensity ratio of 2:1, is assigned to S 2p3/2 and S 2p1/2. The first group 163 

of peaks (1-1’ in Fig. 1c) located at 162.5 and 163.7 eV originate from S2-, while the 164 

second pairs (2-2’ in Fig. 1c) at 163.2 and 164.4 eV are from S2
2-. The third group of 165 

peaks at 169.0 and 170.2 eV correspond to SO4
2-, indicating that sulfur ions in the 166 

sludge were partially oxidized [24]. 167 
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 168 

Fig. 2. Dissolution and oxidation of the sludge in water at different pHs under visible 169 

light irradiation (vis): (a) the release rate of total As (TAs) and (b) the oxidation rate 170 

of As(III). 171 

 172 

3.2. Arsenic release from ASS under visible light 173 

The total dissolved arsenic concentration, as a function of time for ASS in 174 

aqueous solution at different pH values, is shown in Fig. 2a. Without light irradiation, 175 

the total arsenic ions (TAs) in solution at pH 3 and pH 7 had a low concentration, 176 

increasing slightly with time. Approximately 8 ppm of TAs could be detected after 5 h 177 
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at both pH values. At pH 11, TAs in the solution quickly increased with time and 178 

reached a plateau after 1 h, where the TAs concentration was about 3 times of that at 179 

the low pH. These kinetic observations share similar trends with the results of ref 14, 180 

in which the solubility of artificial As2S3 particles was independent of pH before pH 6, 181 

after which the concentration of TAs increased with pH (as expressed by eq 1). 182 

Under visible light irradiation, the dissolution rate of the sludge markedly 183 

increased at all the three pH values, as compared to the corresponding cases in the 184 

dark. At each pH, the concentration of TAs increased with time, which showed a 185 

linear increase after 10 min. On the basis of linear fit (Fig. S2), the dissolution rates of 186 

ASS at pH 3, 7 and 11 were 12.61, 11.18, and 12.14 ppm/h, respectively. These data 187 

indicated that the illumination by visible light (λ > 420 nm) can greatly promote the 188 

release of arsenic ions from ASS. Moreover, the increase of TAs concentration by 189 

light was more pronounced at lower pH. Specifically, the TAs concentration after light 190 

irradiation for 5 h was about 8.2, 6.9, and 3.1 times higher, compared to the 191 

dissolution in the dark, from low to high pH. These results imply that the 192 

light-promoted dissolution of ASS is controlled by the different mechanisms at varied 193 

pH values (see the discussion in the section 3.7). 194 

3.3. Arsenic oxidation of ASS under visible light 195 

The concentration of As(V) ions were also measured to check the oxidation of 196 

ASS under visible light irradiation. As shown in Fig. 2b, in the dark, almost no As(V) 197 
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at pH 3 and pH 7, while at pH 11, the concentration of As(V) quickly increased to 4.5 198 

ppm at 30 min and then remained at equilibrium. These findings indicated that the 199 

oxidation of As(III) into As(V) by oxygen was favored in a basic solution, probably 200 

due to the lower redox potential of As(III)/As(V) at higher pH [25]. 201 

Under visible light, the concentration of As(V) at pH 3 and pH 7 increased with 202 

time in a roughly linear mode. Moreover, the oxidation rate of As(III) at pH 3 was 203 

much faster than the rate at pH 7 and pH 11. After 5 h of irradiation, the concentration 204 

of As(V) at pH 3 was 79.8 times higher than that in the dark, as compared to 5.2 and 205 

1.2 times at pH 7 and pH 11, respectively. By linear fit (Fig. S2), the oxidation rates 206 

of ASS at pH 3, 7 and 11 were 3.92, 1.16, and 1.02 ppm/h, respectively. These data 207 

suggest that the oxidation of As(III) into As(V) is accelerated by light illumination, 208 

and more so under acid conditions (see the discussion in the section 3.8). It was 209 

notable that at pH 11, a lower concentration of As(V) was obtained at the beginning 210 

under visible light than that in the dark. This is probably due to the decrease of pH 211 

during the rapid dissolution of ASS under illumination (Table S3), which could 212 

change the redox potential of As(III)/As(V) [25]. But with time, the oxidation of 213 

As(III) by light was the dominant factor. 214 

In addition, the effects of the ASS concentration on the dissolution and oxidation 215 

efficiency were checked (Fig. S3). The results indicated that the dissolution and 216 

oxidation efficiency of ASS was proportional to the amount of the sludge. 217 
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 218 

Fig. 3. XRD patterns of the sludge (a) in the dark and (b) under visible light after 5 h. 219 

(c) Photo of the sludge in water without light irradiation and sitting for two days (left) , 220 

and under 5 h of visible light irradiation and standing for 2 min (right).  221 

3.4. Solid state of ASS after illumination 222 

Fig. 3a shows that the XRD patterns of ASS remained almost the same under the 223 

different pH conditions when in the dark and still kept the characteristic peaks of 224 
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As2S3. However, an obvious change could be observed after illumination, where the 225 

broad peaks from As2S3 were suppressed and new sharp peaks occurred (Fig. 3b). The 226 

new phase could be identified as S8 (JCPDS NO.00-044-1419). The species in the 227 

ASS with and without visible light irradiation were further characterized by XPS. As 228 

shown in Fig. S4, two group of peaks (1-1’ and 2-2’) located at the binding energies 229 

of 162.4-163.6 eV (1-1’) and 163.2-164.4 eV (2-2’) are corresponding to S 2p of S2- 230 

and S2
2-, respectively. But after light irradiation, the ratio of two group peaks for all 231 

pH values decreased, indicating that new S species were produced. By fitting the 232 

spectra, the peaks can be deconvoluted into two new additional peaks at 163.9 and 233 

165.1 eV (3-3’), which are assigned to S 2p1/2 and S 2p3/2 of S0, respectively [21-23]. 234 

The XPS results confirm the production of S8, which is coincident with the XRD data. 235 

From the XPS fitting results (Table S4), the contents of S8 in the total S after light 236 

irradiation were obtained as 14.1%, 10.2%, and 15.2%, at pH 3, 7, and 11, 237 

respectively. These data revealed the same pH-dependent order as the dissolution of 238 

total arsenic from ASS under illumination, which suggests that the release of arsenic 239 

ions from the sludge is accompanied with the generation of S8. 240 

The precipitation state of ASS in aqueous solution after visible light irradiation 241 

was checked and compared with the case without illumination. As shown in Fig. 3c, 242 

after 5 h of irradiation the sludge quickly settled down within 2 min and a clear 243 

supernatant solution was obtained. Without light irradiation the particles were highly 244 
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suspended in the solution and complete precipitation could only be achieved after 245 

sitting for two days. A great improvement in the sedimentation performance can be 246 

reasonably ascribed to both an increase of the particle size and the change of particle 247 

surface properties, where the hydrophobic S8 produced on the surface of the sludge 248 

promotes particle aggregation and sedimentation [26].  249 



 

16 

 

 250 

Fig. 4. (a) Release rate of total sulfur (TS) under visible light irradiation at different 251 

pHs. (b and c) Release rate of different sulfur species (TS, S2-, SO3
2-, SO4

2-, and 252 

S2O3
2-) at pH 3 (b) and pH 11 (c).  253 

 254 
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3.5. Sulfur speciation released in the solution 255 

As mentioned above, not only the release and oxidation of As from ASS, but also 256 

the phase transformation from As2S3 to S8, are accelerated under visible light 257 

irradiation. To get a better understanding of the transition of sulfur during the 258 

dissolution of ASS, the sulfur species in the system were monitored.  259 

Fig. 4a shows that the concentration of Total Sulphur (TS) in the solution 260 

increased with pH increasing without light irradiation, where a distinctive increase 261 

can be seen at pH 11. These data demonstrated similar trends with the pH-dependent 262 

release of arsenic in solution. Under visible light illumination the release of TS was 263 

accelerated at all pH values. However, there was only a limited increase of TS at pH 3 264 

and 7, while at pH 11, a distinct increase of about 25 ppm/S was observed after 2 h of 265 

light illumination, as compared to that in the dark.  266 

Specifically, the sulfur species, including SO4
2-, S2-, SO3

2- and S2O3
2-, were 267 

detected under visible light (Fig. 4b and 4c). At pH 3, SO4
2- increased quickly with 268 

time and dominated in solution, accounting for about 50% (15.6 ppm/S) of TS at 269 

equilibrium. The reduced and intermediate sulfur species, such as S2- and SO3
2- and 270 

S2O3
2-, decreased to a very low concentration with time. These data suggest that sulfur 271 

might be first dissolved in the form of reduced sulfur species and finally oxidized into 272 

SO4
2-. It is worth noting that the concentration of TS was higher than the sum of all 273 

the detected S species, probably due to the reason that other sulfur species, such as 274 
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polythionates (SnO6
2-, n = 3, 4, 5 or 6) [27], were not able to be separated or detected. 275 

At pH 11, SO4
2-, S2- and S2O3

2- had an equivalent concentration (~20 ppm/S) and 276 

these three species mainly contributed to the TS. Comparing to sulfur species at pH 3, 277 

a higher concentration of S2- and S2O3
2-, can be found at pH 11. This indicates that the 278 

sulfur oxidation under light irradiation in the basic solution is less favorable than that 279 

in the acid condition, which is consistent with the arsenic oxidation at different pH 280 

values. 281 
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 282 

Fig. 5. EPR spectra of (a) DMPO-∙OH and (b) DMPO-∙O2
¯ produced by light 283 

irradiation at different pH (Measurement conditions: 25 mM DMPO and RT), and (c) 284 

Contribution ratio of dissolution (dis) and oxidation (ox) of the sludge by ∙OH and 285 

∙O2
¯ after 5 h of light irradiation at different pH (calculated from the concentration of 286 

TAs and As(V)). 287 
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3.6. Evaluation of photo-generated active oxygen species 288 

It is known that As2S3 is a semiconductor with a band gap of 2.34 eV. In the ASS 289 

investigated, the measured band gap was 1.89 eV (Fig. S5), indicating a strong 290 

absorption and photocatalytic activity in visible light region. Therefore, under visible 291 

light irradiation the ASS could generate photo-generated holes (hvb
+) and electrons 292 

(ecb
-) (eq 2), which will further react with the species, such as oxygen, hydroxide, and 293 

sulfur, to produce active free radicals. 294 

hv -ASS +
vb cb

h e+⎯⎯→                                 (2) 295 

EPR was used to directly evidence the generation of the involved free radicals in 296 

ASS under visible light irradiation. As shown in Fig. 5a, at pH 3, a strong DMPO-∙OH 297 

[28] signal could be clearly observed by illumination for 15 min. At pH 7, only a 298 

weak DMPO-∙OH signal appeared even after illumination for 1 h. But at pH 11, no 299 

signal of hydroxyl radical was detected. These data indicate that the concentration 300 

of ·OH decreased with the increase of pH values. Meanwhile, the superoxide radical 301 

was also monitored and as shown in Fig. 5b, the characteristic peaks of the 302 

DMPO-∙O2
¯ [29,30] were detected at all three pH values, although the intensities from 303 

∙O2
¯ at pH 3 and pH 7 were stronger than that at pH 11. Notably, in the dark, neither 304 

∙O2
¯ nor ∙OH was detected in the all corresponding systems (Fig. S6). 305 

On the basis of photocatalytic mechanism, normally •OH can be produced in two 306 

ways, one of which is directly generated from hvb
+: [31,32] 307 
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hvb
+ + H2O →  ∙OH + H+                                (3) 308 

hvb
+ + OH¯ →  ∙OH                                    (4) 309 

The other way is from ecb
- in the presence of O2 via a multistep reaction: [33,34] 310 

O2+ ecb
- →  ∙O2

¯                                                    (5) 311 

∙O2
¯ + H+ →  HOO∙                                (6) 312 

HOO∙ +ecb
- →  HOO¯                               (7) 313 

HOO¯ + H+ →  H2O2                               (8) 314 

H2O2 →  2∙OH                                   (9) 315 

It can be seen from the above reactions that ∙OH generated from hvb
+ is more 316 

favorable in a neutral or basic condition, while a low pH and dissolving oxygen help 317 

to produce ∙OH from ecb
-. From our EPR results that show a higher concentration of 318 

∙OH obtained at the low pH, it can be deduced that ∙OH in the system is probably 319 

generated via ∙O2
¯ in the multistep reaction shown above. 320 
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 321 

Fig. 6. Quenching effects of the radical scavengers, TBA and p-BQ, on the dissolution 322 

(a-c) and oxidation (d-f) of the sludge at different pHs. 323 

 324 

3.7. The effects of ∙O2
¯ and ∙OH on arsenic release 325 

In order to study the effect of different free radicals on the dissolution and 326 

oxidation of ASS, TBA and p-BQ were used as the scavengers to quench ∙OH and 327 

∙O2
¯, respectively [35,36]. As shown in Fig. 6a-c, in the presence of p-BQ (∙O2

¯ 328 
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quencher), the release of TAs from ASS was effectively suppressed at all three pH 329 

values. When TBA (∙OH quencher) was added, TAs release was partially inhibited at 330 

pH 3 (~33% cut), and with pH increasing, the inhibitory effect was decreased and 331 

hardly observed at pH 11. The results revealed that both ∙OH and ∙O2
¯ contributed to 332 

the release of TAs at pH 3, but only ∙O2
¯ contributed at the high pH 7 and pH 11. 333 

Their contributions are summarized in Fig. 5c.  334 

As discussed above (eq 5-9), ∙OH was generated from ∙O2
¯ in the system, which 335 

means that the dissolution of arsenic from the sludge basically originates from the 336 

contribution of ∙O2
¯. So when p-BQ was added in the system at pH 3, most of the 337 

dissolution of TAs was suppressed, because the scavenger can both directly inhibit 338 

∙O2
¯ and indirectly eliminate ∙OH that originally stemmed from ∙O2

¯.  339 

The effects of reactive oxygen species on accelerating the dissolution of ASS 340 

were further proved by purging O2 or N2 in the systems (Fig. S7). The released TAs 341 

were obviously increased by purging O2 at all three pH values, while suppressed by 342 

purging N2 in the solution, although a simply purging N2 failed to achieve an anoxic 343 

condition through completely excluding the dissolved oxygen.  344 

3.8. The effects of ∙O2
¯ and ∙OH on arsenic oxidation 345 

As shown in Fig. 6d-f, the effects of ∙O2
¯ and ∙OH on the oxidation of As(III) into 346 

As(V) shared similar trends with the release of arsenic from the sludge (Fig. 6a-c). At 347 

pH 3, both TBA and p-BQ reduced the concentration of As(V) close to zero, 348 
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suggesting that the oxidation of the released As(III) is effectively suppressed. At the 349 

high pH values (7 and 11), TBA had little impact on the concentration of As(V), but 350 

p-BQ suppressed almost all the production of As(V). The contributions of different 351 

radicals to the oxidation of As(III) is summarized in Fig. 5c. It demonstrates that both 352 

∙OH and ∙O2
¯ can oxidize As(III) into As(V). But at the low pH, ∙OH contributed more 353 

to the oxidation of As(III). As ∙OH has a higher oxidation potential than ∙O2
¯, more 354 

As(V) was thus obtained at pH 3 (Fig. 2b), even if the concentration of total arsenic 355 

ions released in the solution was less than that at pH 11 (Fig. 2a). As discussed before, 356 

TBA directly scavenges ∙OH, while p-BQ consumes ∙O2
¯ and thus indirectly inhibits 357 

the generation of ∙OH. Our results reveal that ∙O2
¯ is the critical radical in the system 358 

and controls the oxidation of As(III).  359 

The pathway of As(III) being oxidized into As(V) is proposed as follows (eqs 360 

10-13):[37,38]  361 

As(III) + ∙OH →  As(IV) + OH¯   k = 9×109 M-1s-1               (10) 362 

As(III) + ∙O2
¯ + H+ →  As(IV) + HO2

¯   k = 3.6×106  M-1s-1           (11) 363 

As(IV) →  As(III) + As(V)   k = 4.5×108  M-1s-1                    (12) 364 

As(IV) + O2 →  As(V) + ∙O2
¯   k = 1.1×109  M-1s-1                  (13) 365 

During the oxidation process, As(IV) is the intermediated arsenic species, which will 366 

finally transform to As(V) via a As(IV) disproportionation reaction (eq 12) or by 367 

further oxidizing with the dissolved O2 (eq 13) [38]. From eq 10 and 11, it can be seen 368 
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that the oxidation rate of As(III) by ∙OH is much higher than ∙O2
¯. So, the 369 

concentration of As(V) at pH 7 and 11 is obviously smaller than that at pH 3. 370 

However, the oxidation-reduction potential of As(V)/As(III) also decreases with the 371 

increase of pH values [25]. For example, E°(As(V)/As(III)) at pH 3 and pH 9 are 0.40 372 

V and -0.2 V, respectively [39]. This will provide the chance for ∙O2
¯, as a weak 373 

oxidant, to directly oxidize As(III) at high pH, when ∙OH is in short. It has been 374 

reported that superoxide radicals can act as the main free radicals to oxidize arsenic at 375 

pH 9 [39,40]. Combining with the results from the quenching experiments (Fig. 6e 376 

and 6f), it can be reasonably deduced that ∙O2
¯ is responsible for the oxidation of 377 

As(III) at pH 7 and11 in our system.  378 
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 379 

Fig. 7. (a) sulfur-containing radicals in the sludge by light irradiation for 10 min and 380 

annealing to 90 K. The numbers for peak position are g values. (b) Dissolution of the 381 

sludge (TAs) in sulfite solution under visible light at pH 7. (c) EPR spectrum of sulfite 382 

radical after 10 min reaction by adding 1 mM sulfite in the sludge system. 383 
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3.9. Photo-generated active sulfur radicals and their effects on the production of 384 

S8 385 

Visible light irradiation not only accelerates the release and oxidation of As(III) 386 

from ASS, but also promotes the production of sulfur-related ions and the solid phase 387 

S8. In order to understand the transformation of sulfur species and their effects on the 388 

dissolution of ASS, active sulfur species that are expected to form under light 389 

illumination, were monitored by EPR at 90 K. As shown in Fig. 7a, multiple peaks 390 

located at the magnetic field of 3150-3400 G were observed at all three pH values. 391 

These were sulfur-containing free radicals, S∙¯(s), at g = 2.052~2.021 [41,42] and 392 

sulfur-oxide anion radicals, SO2∙
¯, at g = 2.003 [19]. Normally, sulfide containing 393 

radicals are difficult to capture in an aerobic environment, due to readily reacting with 394 

oxygen and thus having an extremely short lifetime [19]. Also, the radicals are very 395 

sensitive to temperature and the measured spectra gradually diminish on warming. 396 

Thus, the measurement has to be done at a low temperature (90 K in our case).  397 

It has been reported that under light irradiation, sulfur radicals can be produced 398 

from the trapped photo-generated holes localized on the lattice sulfur ions with 399 

surface defects or impurities [42]. Therefore, it can be reasonably deduced that in our 400 

system, ∙O2
¯and ∙OH can react with the lattice sulfur on the surface of As2S3 to form 401 

sulfur-containing radicals, as described in eqs 14-15 [19,43].  402 

As2S3 + ∙O2
¯ + H+ →  3S∙¯(s) + HO2

¯ + 2As(III)    fast             (14) 403 
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As2S3 + 3∙OH + 3H+ →  3S∙¯(s) + 3H2O + 2As(III)  k = 9×109 M-1s-1   (15) 404 

During the photo-reaction process, As(III) can be released. The specific species of the 405 

released As(III) is highly dependent on the pH values and S2- concentration. For 406 

example, H3AsO3 is the main species in the acid and neutral solution with little S2- 407 

ions, while arsenic sulfide complexes, such as AsS2
¯, HAs2S4

¯, H2As3S6
¯ and 408 

As(OH)x(SH)y
3-x-y, form in the basic solution with a high concentration of S2- [10-12]. 409 

The generation of sulfide containing radicals, S∙¯(s), will then transform into S2
2- 410 

and finally produce S8, as presented in eqs 16 and 17 [44].  411 

S∙¯
(s) →  S2

2-
(s)   k = 5.0×109 M-1s-1                            (16) 412 

S2
2-

 (s) →  1/8S8 + S2-   k = 4.0×108 M-1s-1                       (17) 413 

Alternatively, S∙¯(s) can react with dissolving oxygen and convert to SO2∙
¯, and then 414 

quickly decompose to yield ∙O2
¯, as described in eqs 18 and 19, which leads to the 415 

weak EPR signals of sulfur radicals detectable even at a very low temperature (Fig. 7a) 416 

[45]. 417 

S∙¯(s) + O2 →  SO2∙
¯   fast                             (18) 418 

SO2∙
¯
 (s) →  ∙O2

¯ + S   fast                             (19) 419 

3.10. The effects of intermediate sulfur species on the dissolution of ASS 420 

During the dissolution of ASS under visible light, the intermediate sulfur species, 421 

such as S2-, SO3
2- and S2O3

2-, were detected in the system (Fig. 4). In order to 422 

understand the effect of these sulfur species on the dissolution of ASS, extra 423 
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sulfur-containing salts were employed into the system during illumination. As shown 424 

in Fig. 7b, when Na2SO3 was added, the dissolution of ASS was accelerated under 425 

light irradiation. The EPR result revealed that with the addition of Na2SO3 in the 426 

sludge, a new and strong signal of SO3∙
¯ [46] was observed under visible light (Fig. 427 

7c). The generation of SO3∙
¯ was possibly from either photo-generated holes (eq 20) 428 

or hydroxyl radicals (eq 21) [47]. 429 

SO3
2- + hvb

+ →  SO3∙
¯                                  (20) 430 

SO3
2- + ∙OH →  OH¯ + SO3∙

¯                            (21) 431 

The dissolution of ASS can be accelerated by SO3∙
¯, as follows:   432 

As2S3 + SO3∙
¯ + 13H2O →  4SO4

2- + 2As(III) + 26H+             (22) 433 

However, the addition of extra S2- or S2O3
2- resulted in a decrease in dissolution 434 

rate of ASS (Fig. S8), where S2- and S2O3
2- may act as the electron donors scavenging 435 

active oxygen species that contribute to the dissolution of ASS.  Notably, no SO4∙
¯ 436 

was found in all the experimental systems mentioned above, which was verified by 437 

using methanol as the scavenger. 438 

 439 
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 440 

Fig. 8. Conceptual model of the photocatalytic dissolution and oxidation of arsenic 441 

sulfide sludge. 442 

 443 

4. Conclusion 444 

In the environment, a larger amount of arsenic sludge is discharged and 445 

deposited, especially during the treatment of acid mining and ore smelting wastewater. 446 

The sludge poses a major environmental threat, due to the potential release of arsenic 447 

ions. When the sludge is exposed to solar light irradiation, not only the release rate of 448 

As(III), but also the oxidation rate of As(III) to As(V) can be markedly accelerated, 449 

which will further increase the environmental risk of the discharged sludge. The 450 

mechanism of release and oxidation of As(III) from ASS accelerated by visible light is 451 

proposed as follows (Fig. 8). The ASS produces photo-generated holes (hvb
+) and 452 

electrons (ecb
-) under illumination, which will further react with the species (e.g. 453 

oxygen, hydroxide or sulfur) in solution to produce the corresponding active free 454 

radicals. ∙O2
¯ is the primary free radical in the system, both for forming OH∙ and 455 
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sulfur-containing radicals and for releasing and oxidizing As(III) from ASS. At the 456 

higher pH (7 or 11), both the dissolution and the oxidation of the sludge are directly 457 

accelerated by ∙O2
¯. At the lower pH (3), the dissolution of the sludge is promoted by 458 

both ∙O2
¯ and ∙OH, while the oxidation of As(III) is mainly by ∙OH. In the solid phase, 459 

the hydrophobic S8 is formed on the surface of ASS through a series of sulfur radicals 460 

(S∙¯(s) and SO2∙
¯) involved reactions, which favors the agglomeration and precipitation 461 

of ASS. In addition, the dissolution of ASS generates the intermediate sulfur species, 462 

in which SO3
2- positively contributes to its dissolution by converting into SO3∙

¯ under 463 

visible light.  464 

In order to check the dissolution and transformation of ASS in the environment, 465 

experiments were conducted under actual sunlight. Similar results were obtained as 466 

the simulated experiments, in which both the release of As(III) ions from ASS and the 467 

oxidation of As(III) into As(V) were accelerated by actual sunlight ( see Fig.S9). The 468 

dissolution and oxidation rates of ASS under actual sunlight were much slower than 469 

those under simulated light, due to the unstable and weak intensity of actual sunlight. 470 

The finding in this work is meaningful to inform the development of an effective 471 

strategy for the safe stocking and treatment of slag residue. In addition, the 472 

photochemical reactions on the ASS can generate active oxygen and sulfur species 473 

under light illumination. These entities will not only affect the migration and 474 

transformation behaviors of heavy metals ions and organic compounds in the 475 
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environment, but also interfere with the geochemical cycle process of the important 476 

elements, such as sulfur. Further studies on limiting the dissolution and oxidation of 477 

the deposited ASS in natural environments, and/or the development of methods to 478 

extract arsenic for detoxifying the sludge and resource recycling, are required to 479 

support future improvements in environmental management at relevant industry sites. 480 
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