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Abstract 

 
     Multimodal biometrics refers to automatic authentication methods that depend on 

multiple modalities of measurable physical characteristics. It alleviates most of the 

restrictions of single biometrics. To combine the multimodal biometrics scores, three 

different categories of fusion approaches including rule based, classification based 

and density based approaches are available. When choosing an approach, one has to 

consider not only the fusion performance, but also system requirements and other 

circumstances. 

 

     In the context of verification, classification errors arise from samples in the 

overlapping region (or non- confidence region) between genuine users and impostors. 

In score space, a further separation of the samples outside the non-confidence region 

does not result in further verification improvements. Therefore, information contained 

in the non-confidence region might be useful for improving the fusion process.  Up to 

this point, no attempts are reported in the literature that tries to enhance the fusion 

process using this additional information. In this work, the use of this information is 

explored in rule based and density based approaches mentioned above. 

 

     The first approach proposes to use the non-confidence region width as a weighting 

parameter for the Weighted Sum fusion rule. By doing so, the non-confidence region 

of the multimodal biometrics score space can be minimised. This effectively leads to a 

better generalisation performance than commonly used Weighted Sum rules. 

Furthermore, it achieves fusion performances comparable to the more complicated 

training based approaches. These performances are not only achieved in a wide range 

of bimodal biometrics experiments, but also in higher dimensional multibiometrics 

fusion. This method also eliminates the need for score normalization, which is 

required by other rule based fusion methods.  

 

     The second approach proposes a new Gaussian Mixture Model based likelihood 

ratio fusion method. This approach suggests the application of this density based 

fusion to the non-confidence region only and directly reject or accept the samples in 

the confidence region. By applying Gaussian Mixture Model to the non-confidence 
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region, a smaller and more informative region, the impact of an inaccurately chosen 

component number on the fusion performance can be reduced. Without tuning or 

using any component searching algorithm, this proposed approach achieves 

comparable performance to the one using specific component number searching 

algorithm. This successful demonstration means less resource is required whilst 

comparable performance can be achieved and processing time is also significantly 

reduced.   
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1. INTRODUCTION 

 

1.1  Biometrics: An Authentication Approach 

     Biometrics have recently generated a lot of interest to be used as effective methods 

for identity authentication (identification and verification), particularly after the 

attacks on the United States on September 11, 2001, and the railway explosion 

terrorist attack in Madrid, on March 11, 2004. In addition, as the information society 

increasingly affects every aspect of life, the need to raise security level to ensure the 

identity of the person accessing information increases [1]. The conventional 

authentication methods, such as passwords or Automatic Teller Machine (ATM) cards, 

no longer fulfil the stringent security requirements mentioned above [2]. Some 

anecdotal references [3] have even predicted the death of passwords, to be replaced by 

various biometric authentication mechanisms. Biometrics benefit from the fact that 

they cannot easily to be lost or stolen, they are difficult to copy by others and they 

require genuine users to be present. Therefore, they appear to be a better option for 

information security.  

 

     The purpose of authentication is to answer the question, “Who is this person?” or 

“Is this the genuine user?”. Whereas the conventional methods, e.g. Personal Identity 

Numbers (PIN) or ATM cards are used to authenticate the claimant through 

answering the questions: “What do you know?” (knowledge-based) and “What do you 

have?” (token-based) respectively. Biometrics in contrast to these methods are more 

reliable authentication tools. It is a more intuitive and direct way to provide 

biometrics to answer the question “Who are you?”  
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1.1.1 Operation Modes of Biometrics Systems 

Based on different application contexts, there are two different operation modes for 

biometric authentication: verification and identification. Fig. 1-1 presents the operation 

block diagrams of biometrics systems.  

 

     For both, the verification and identification mode, a user has to enroll to the system 

before his/her biometrics can be potentially accepted. By providing the required 

biometrics through the capturing device (fingerprint reader, iris scanner, etc.), the 

user’s biometric template is extracted and stored in the system’s central database. A 

biometric template is a digital reference of distinct characteristics that have been 

extracted from a biometric sample. Templates are used during the biometric 

authentication process. It is a main public concern that their biometrics might be 

Biometrics 
Capture 

Template  
Extraction Template 

Storage 

Biometrics 
Capture 

Template  
Extraction 

Biometrics 
Capture 

Template  
Extraction 

Multiple 
Matching 

Single 
Matching 

Verification 

Enrolment 

Identification 

All 

templates 

Claimed 
identity’s 
template 

Accept/ Reject  

Rank list  

Claimed 
Identity 

Fig 1-1. Operation modes of biometrics systems. 



Chapter 1: Introduction 

 

 - 3 - 

compromised because of the central storage architecture of the biometrics system [4]. 

But in most cases, only the biometrics template will be stored [5], i.e. only certain 

characteristics of the biometrics will be extracted and stored but not the raw biometrics 

sample. By doing this, not only the size of the biometric storage can be greatly reduced 

but the reconstruction of the original biometrics can be avoided [6].  

 

     For verification, a claimant tells the system who he/she is and provides biometrics 

to the system. The pre-stored biometrics template will be retrieved based on the 

claimed identity and his/her provided biometrics’ characteristics will be extracted to 

form another template. A one-to-one matching is performed in verification mode 

among these two templates to make the decision: to ACCEPT or to REJECT the 

claimant as the identity he/she claimed. 

 

     In contrast to the verification mode, in identification mode, the user only provides 

biometrics without telling the system the claimed identity. The new template which is 

constructed from the provided biometrics is then matched with all the templates in the 

database to generate a ranked list. The identity on top of the list will be assigned to the 

claimant. Therefore the identification mode is a one-to-many matching scheme.       

 

1.1.2 Measurement of Biometrics    

     Fig. 1-2 illustrates how the biometrics is processed after the capturing stage by 

using the facial biometrics as an example.   
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     The user interacts with the sensor to provide a biometrics sample, which is digitised. 

The digital biometrics will then be enhanced for more efficient feature extraction. For 

facial biometrics, the Area Of Interest (AOI) will be identified as shown in fig. 1-2(a). 

In (b), the feature extractor chooses what and how the characteristics are extracted. The 

template shown in (c) is then generated through integration of all these extracted 

features. This template is matched in (d) with another template(s) retrieved from the 

central database to produce the similarity or distance metric as a confidence index to 

authenticate (to identify or to verify) this person.  

 

1.1.3 Conventional and Novel Biometrics    

     Some of the conventional biometrics are illustrated in fig. 1-3. The human traits that 

can be used as biometrics are categorised into physiological and behavioral biometrics. 

A static or physiological trait, for instances the face, iris, hand geometry or palm print, 

provides static characteristics. The signature, speech and gait are considered as 

dynamic or behavioral biometrics. One can extract the recorded dynamic 

characteristics, e.g. for signature, the writing pressure and inclination over the signing 

period [7]. Depending on the extracted features, some of the biometrics are in both 

categories. For example the fingerprint can be used as behavioral or physiological 

biometrics. When the fingerprint is used as static biometrics, it is easy to spoof by 

 

Fig 1-2. An example of biometrics processes. 
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presenting artificial fingerprints. To tackle this issue, the research in [8] uses dynamic 

features of fingerprints extracted from video sequences that are captured at the image 

acquisition stage. 

 

     Whether a human being’s biological or behavioral traits can be used to establish 

identity depends on seven factors listed below [9]:     

 

1. Universality: How common is this biometrics possessed with in the population? 

2. Uniqueness: How distinctive this biometrics among the population? 

3. Permanence: How invariant is this biometrics over time? 

4. Measurability: Is this biometrics collectable and digitisable? 

5. Performance: Are the speed, accuracy, robustness and cost of such biometrics 

acceptable?   

6. Acceptability: How willing is the population to present such biometrics? 

 

Fig 1-3. The physiological and behavioral biometrics examples. 
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7. Circumvention: How easy is it to accept a fake biometrics? 

 

     Many human traits have been used as biometrics, each of them having limitations. 

Therefore the search for a new biometric trait has not ended. As long as the human 

physiological and behavioral traits fulfill the seven conditions listed above, they can be 

used as biometrics. Some of the state-of-the-art biometric traits are listed in table 1-1. 

 

Trait Author Descriptions 

1 
Electro- 

Cardiogram 
[10] 

Utilises the simple distance measure of heart vector as 
biometric feature. 
 

[11] 

Features are extracted from raw eye-tracking data that 
preserve the key characteristics of the scan path. The eye 
gaze is combined with keystroke in this work. 
 

[12] 

Examines the reaction of a human’s eyes to visual 
stimulation. The person to be identified was asked to 
follow a point on a computer screen. 
 

2 Eye gaze 

[13] 
The user sequentially looks at certain parts of a picture to 
create gaze-based signature. 

3 
Mouse 
curve 

[14] 
Uses the curve’s length, curvature, inflection and 
straightness as features. 
 

[15] 

Uses the joint angle trajectories of lower limbs as 
dynamic information. And uses the Procruste shape 
analysis to obtain a compact appearance representation as 
static information.  
 

[16] 

The detected silhouettes are used to build an averaged 
representations using eigenstance shape models. The 
similarity measures are based on these averaged 
representations.  
 

4 Gait 

[17] 
Different components of human bodies are shown to have 
unequal discrimination power. Assigning weights to these 
components shows improvement to the recognition rate.   

5 
Finger 

(Top view) 
[18] 

Uses the top view image of a finger to create feature map 
which is called nail code. Nailcode is employed for 
Euclidean distance computation. 
 

6 Palm vein [19] 
Uses the x and y coordinates, the gray values, 
temperature gradient and the gradient direction to create 
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Feature Points of the Vein-Patterns (FPVPs) 
 

7 
Heart 
sound 

[20] 
Analyses the heart sound in frequency domain and uses 
the log cepstral coefficients as the features 
 

8 Ear [21] 

The features are extracted by the convolution of each sub-
window with a bank of Gabor Filters. Their 
dimensionality is reduced by Laplacian Eigen Maps 
 

9 
Tongue 

print 
[22] 

Uses the geometric features, crack features and texture 
features of tongue. 
 

10 Eye shape [23] 

Static eye information is obtained by using the Gabor 
wavelet coefficients of four feature points around black 
eye area. The dynamic eye shapes (blinking) information 
is extracted based on the size change of black eye area 
during blinking. 
 

11 
Soft 

biometrics 
[24] 

Combines the body weight and fat to aid fingerprint. 
These characteristics can be used directly without further 
processing.  
 

 
Table 1-1. The novel biometrics examples. 

 

1.2  Biometrics History, Development and Its Merits. 

     To systematically identify a person through referring to individual characteristics 

measurement had first appeared in 19th century [25]. Alphonse Bertillon, a French 

police officer had invented anthropometry or Bertillonage. This was a system using the 

physical measurements as the fig. 1-4 shown for human identification purpose.   
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     With increasing popularity over the 20th century, biometrics have been continuously 

developed from manual to semi-automated and eventually to fully automated mode 

like what we see today. Biometrics have been extensively applied in various fields but 

not just for law-enforcement purpose (i.e. to identify a criminal). According to 

International Biometric Group (IBG), the biometrics worldwide market was expected 

to expand to a value between $5.7-$5.8 billion by 2010 [5]. The usage of biometrics 

not only has been driven by government and the public sector, the private sector has 

also increasingly shown its interest in such applications. For the public sector, aside 

from the law-enforcement purpose, biometric applications have been widely 

 

Fig 1-4. Bertillonage or anthopometric measurements (figure obtained from [26]).  
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implemented for border control and other security purposes. As shown in [27], the 

United States Visitor and Immigrant Status Indicator Technology (US-VISIT) 

programme and UK implementation of eBorders are public sector usage examples. 

Biometric applications were also employed in large scale events such as 2008 Beijing 

Olympics [28]. Some other private sector’s biometric applications examples are: ABN 

Amro bank introduced the voice verification and recognition technology to their call 

service centre, fingerprint ticketing was brought in to Disneyland and Mitsubishi 

Securities used biometrics on their trading floor to cure their too-many-passwords 

problem [2].  

 

     The conventional authentication methods no longer comply with the stringent 

authentication requirements. A password, for instance, is very easy to forget. People 

find password management very annoying. For the token based method, an ATM card 

can be easily used by somebody else or lost.  

 

     In contrast to both of these methods, biometrics appears to be a solution to 

overcome restrictions of conventional authentication methods. Biometric 

authentication cannot be forgotten or lost. Furthermore, in the authentication process, 

providing biometrics to the system is the proof of the claimant’s presence. Unlike the 

password or ATM card, a biometrics is more difficult to copy or to falsify. 

Additionally, a biometrics can be combined with password or/and an ATM card to 

form two or more authentication factors. By doing so, the authentication rate can be 

further enhanced without having to replace these existing systems [29].  
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1.3   Evaluation of Biometrics Verification Performance 

     The matching between the centrally stored template and the template constructed 

from a claimant generates a confidence score to verify whether they are an impostor or 

a genuine user. There is always overlap region between the score distributions of the 

genuine user and impostor for a practical biometric system as shown in fig. 1-5. It 

causes the difficulty in classifying the claimant into the correct categories. The reasons 

of this overlap region formation are discussed in the next section. As the figure shown, 

there are two types of errors present in biometric verification: False Acceptance (FA) 

and False Rejection (FR). A verification threshold, ∆ is needed in the overlap region as 

a reference to do the classification. Varying this threshold affects these two error rates. 

          ∆ is used to establish the security level of a biometrics verification system. It can 

be seen that for those who obtain a similarity matching score less than ∆ will be 

classified as an impostor. If one is verified with the similarity matching score higher or 

equals to the threshold, his/her claimed identity will be accepted. A higher ∆ represents 

a higher security level. Undoubtedly, less impostors will get through verification 

because of the higher security level. But a genuine user with score less than ∆ will also 

 

Fig 1-5. Decision making of biometrics based on the threshold (∆).    

 



Chapter 1: Introduction 

 

 - 11 - 

be rejected at the same time. Conversely, by adjusting the threshold to a lower level 

will reduce the number of the genuine users being falsely rejected. However, this will 

also cause an increase of falsely accepted impostors. In brief, there is a trade-off 

between these two types of errors.    

 

     There are four possible verification outcomes that a claimant can obtain: the FR, FA, 

which are negative results, or the positive results, True Acceptance (TA) or True 

Rejection (TR). Four of these outcomes are a function of ∆. Their relationship can be 

clearly represented through the confusion matrix given in fig. 1-6.    

  

     A Receiver Operator Characteristic (ROC) graph is commonly used to visualise the 

performance of biometrics verification. It is constructed by a series of False 

Acceptance Rate (FAR) and its associated Genuine Acceptance Rate (GAR) under 

different operating thresholds. From rule (1.1) and (1.2), FAR is the ratio of total FA 

cases to the total impostor attempts, NI.  FRR is the ratio of total FR to total genuine 

user trials, NC. Both FAR and FRR are also the functions of ∆. Rule (1.3) shows the 

Genuinely Acceptance Rate (GAR) in term of FAR. The Detection Error Trade-Off 

 

Fig 1-6. Confusion matrix of biometric verification.      
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(DET) curve is another commonly used graph to visualise performance. This is a plot 

of FAR versus FRR that emphasises both types of errors [30], [31].  

 

FAR(∆) = %100
)(

×
∆

NI

FA
                                          (1.1) 

 

FRR(∆) = %100
)(

×
∆

NC

FR
                                          (1.2) 

 

  GAR(∆) = 1- FAR(∆)                                              (1.3) 

 

     For biometrics fusion research, ROC is more commonly used. Choosing a specific 

∆ will generate a (FAR, GAR) pair. The manipulation of ∆ from minimum to 

maximum within an appropriate interval will generate a series of (FAR, GAR) pairs. 

All these pairs are plotted and the connection of these points constructs the ROC curve. 

It is as shown in fig. 1-7. In the biometrics research community, the GAR is always 

plotted against FAR in a semi-logarithmic scale in biometrics fusion research field. 

This is because the value of FAR is much smaller than the GAR. Plotting in a semi-

logarithmic scale visualises the verification performance over a series of operating 

points in a better way. However for numerical result comparison, the logarithmic scale 

for FAR is not used. Instead, the GAR is frequently reported under certain FAR, e.g. 

0.001%, 0.01%, 0.1% and EER. This is because the cost of accepting an impostor may 

be very different from the cost of rejecting a genuine user (depending on the biometric 

application). 
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     Fig. 1-7 depicts three ROC curves illustrating three different verification 

performances. As the curves show, increasing the threshold results in lower GAR and 

FAR. Curve (a) shows a linear relationship between the FAR and GAR. When 

increasing the threshold, a FAR decrement is followed by a proportional decrement of 

GAR. Curve (b) shows a slightly better verification ability. This is because when FAR 

is decreased, GAR is decreased at a smaller rate. Curve (c) shows the best verification 

ability amongst the curves. A biometrics verification system always aims to achieve 

0% FAR and 100% GAR. Therefore the closer the ROC curve to this operating point, 

as curve (c) demonstrates, the better.  

 

     The work in [32] demonstrates that fingerprint identification rate achieves up to 

95% accuracy for a database size of 500 samples. However, it drops to 90% and 86% 

for database size 10,000 and 100,000 respectively. Therefore it is necessary to evaluate 

biometrics using appropriate size of databases that depends on different application 

 
* This is not a semi-logarithmic ROC plot. 
  

Fig 1-7. ROC curve examples for biometrics verification with similarity metric. 
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context[33]. Testing results for large databases corresponds to relatively low FAR. The 

scales of GAR and FAR will be very different. So for better visualisation of the 

biometrics performance, it is common for a ROC graph to use semi-log plotting as the 

logarithmic scale is used for FAR. Semi-log plotted ROC curves can be easier 

interpreted and compared.   

 

     Equal Error Rate (EER) and D-Prime (d’) are two other parameters used to report 

the verification ability. It is mentioned previously that there is a trade-off between   

FAR and FRR. By varying the threshold, there is a trade off point where the FAR 

equals FRR and it is termed as EER. D’ is a statistical measurement of the separation 

between the impostor and genuine user score distributions. This is depicted in equation 

(1.4) where µG and µ I are the genuine user and impostor score distributions’ mean and 

σ
G and σI

 are their respective standard deviations.  
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                                        (1.4) 

 

1.4   Single Biometrics Limitations and Multibiometrics Fusion 

     Biometrics as the authentication tool have been extensively accepted and employed 

for practical use. Nevertheless, further development and applicability of single 

biometrics has come to saturation. 

 

     Single biometrics performance in term of enrolment rate is not sufficient for larger 

population coverage. For example, 2% of the population as reported in [32] failed to 

enrol to the fingerprint system due to their fingerprints’ friction ridges being too 
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damaged to be matched. This can happen to those who work in beauty salons whose 

fingerprints can be damaged by chemicals or bank cashiers who have to flip over 

countless banknotes using their fingers. Therefore it is possible that they possess 

damaged fingerprints as well [1]. Some other reasons of enrolment failures can be due 

to the fact that they are born with less discriminative biometrics or because of physical 

body changes. For example, Asian women normally have flatter fingerprint and people 

with eye illness or pregnant women’s irises can change [5]. 

 

     A single biometrics authentication rate is limited. In the case of verification, there is 

an overlap region between the similarity score distributions for true matching (genuine 

user) and false matching (impostor) as shown in fig. 1-8. This region is where the 

errors arise e.g. a genuine user may have a lower similarity matching score or an 

impostor may obtain a higher similarity score. Some of the reasons that cause the 

formation of this overlap region are listed below: 

 

1. Incorrect interaction with the capturing device: The template quality deteriorates if 

the biometrics is not properly provided. For instance, the work in [34] suggests pre-

alignment of the fingerprint otherwise a non-universal frame of the fingerprint will 

probably affect the success of the features extraction. The face pose variation is 

 

Fig 1-8. Overlap region of the genuine user and impostor score distributions  
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one of the main concerns in the facial recognition research field [35]. It causes 

difficulties to facial biometrics authentication as well. Other than the user’s 

improper way of providing biometrics, the system operator may inappropriately 

manipulate the system settings causing the sensor to less effectively capture the 

biometrics.  

 

2. Capturing ambient noise: A reliable biometrics acquisition highly relies on the 

ambient condition. For example the camera or camcorder, which is used as the 

biometrics capturing device, relies on the ambient light condition for a satisfying 

capture. The speech/voice biometrics uses the voice print or sound wave to extract 

the biometrics features. Ambient noise might be integrated into the acoustic signal 

and cause significant negative impact on the authentication results. 

 

3. Interclass similarity: Identical twins may have distinctive iris or fingerprints but a 

facial identification system may have difficulties to differentiate them. A 

biometrics with lower uniqueness will have higher interclass similarity. In [36], the 

distinctiveness of the fingerprint is classified as “high” whereas the hand geometry 

is classified as “low”. This results in smaller overlap regions for the fingerprint 

biometrics comparing to the hand geometry biometrics. It can be seen from [37] 

the ROC graph of hand geometry has a lower ROC curve than fingerprints due to 

lower distinctness. 

 

     Since biometrics applications are widely spread, spoof attacks have attracted great 

interest from researchers [38], [39], [40]. A single biometrics system can be spoofed 

easily. The authors in [41] successfully deceive a fingerprint system by using artificial 
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silicone and gelatine fingers. One of the fingerprint systems is even accepted by the 

ink-printed fingerprint. There are more spoofing examples given in [42] where 

commercial biometrics applications, using fingerprints, facial and iris recognition 

systems, are spoofed. By playing back a video of a person’s face, the facial biometrics 

is counterfeited whereas the iris system is fooled by using high resolution digital iris 

images.   

 

     The above mentioned single biometrics restrictions result in errors such as the 

rejection of a legitimate user or the false acceptance of an impostor. These limitations 

of single biometrics cannot be lessen by simply improving the individual biometrics. 

Since insufficient information utilisation in the system might lead to a failure of 

biometrics [44], the integration of more evidence from the claimant is a feasible way to 

enhance the biometrics performance and usability [43]. This use of more than one 

biometric factor in establishing and verifying the identity of a given person to improve 

the accuracy, reliability and usability of the biometrics system is termed as biometrics 

fusion. 

 

     Multibiometrics systems which are requesting more biometrics evidence tend to 

reduce the authentication errors and other limitations. The fusion of redundant 

information from different sources enhances the overall system certainty whilst the 

fusion of complementary information results in information gain to reduce the 

system’s uncertainty. Therefore to further enhance single biometrics usability and 

performance, multibiometrics is one of the suitable solutions.  
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1.5  Research Aim and Objectives 

     Multibiometrics authentication benefits from additional evidence that are provided 

by the users (multisample, multiunit and multimodal), or are generated by different 

capturing devices (multisensor) or different matching algorithms (multialgorithm). All 

of these sources provide information gain so the error to authenticate a person is 

reduced. Biometrics information gain can also be achieved by exploring the biometrics 

sample quality or other underlying information. Biometrics fusion plays a key role to 

effectively combine all these information.  

 

     Therefore, the aim of this research is to improve biometrics verification through 

effective fusion of multibiometrics and other useful information. To achieve this aim, 

the objectives of the research more specifically are: 

 

• To establish a baseline for individual biometric verification performance. 

• To develop a multibiometrics verification testing framework. 

• To investigate different methods of biometrics fusion. 

• To explore additional information that aids the biometrics fusion. 

 

1.6  Outline of The Thesis 

     This chapter sets the scene by providing the foundation knowledge in biometrics 

and the related performance assessment. Single biometrics performance and usability 

are limited. Chapter 2 presents the literature review of how the usability and 

performance of single biometrics are improved in the context of biometrics fusion. 

These works are discussed from two broad perspectives, information gain and 

information fusion. Chapter 3 compares different fusion approaches that are reported 
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in the literature with top performance by using two publicly available truly multimodal 

biometrics databases and 19 cross validated bimodal biometrics experiments. Not only 

the fusion performances are compared, the limitations, resource requirements and 

processing/training time are also included in this evaluation. The details of two 

databases which are used throughout this research work are also given in this chapter. 

A hybrid fusion method is proposed in chapter 4 to improve the conventional 

biometrics fusion performance. The fusion improvement is achieved with manual 

operation of this proposed method. However, from this work, it can be seen non-

confidence region sample plays a key role in fusion. This finding supports the idea to 

incorporate the non-confidence region related information to the conventional state-of-

the-art fusion approaches to further improve their performance and usability. Chapter 5 

shows how the non-confidence region width can be used in a rule based fusion method, 

the Weighted Sum rule, to achieve better weighting than the conventional schemes. 

Through using this parameter for weighting, the generalisation error can be reduced to 

minimum. In chapter 6, the benefits of employing the non-confidence samples in the 

state-of-the-art density based fusion method are investigated. It shows the comparable 

fusion results to the state-of-the-art density based fusion method with significant 

reduction in training time and requires less resource. Chapter 7 concludes this work 

and suggests the improvement and extension of this research. 

 

 

 

 



2.  LITERATURE REVIEW 

 

    A literature review from the perspective of biometrics information gain and 

information fusion is presented and its structure is depicted in fig. 2-1. Section 2.1 

gives the details of additional biometrics information sources that have been explored 

to enhance authentication.  In this section, multibiometrics information and biometrics 

quality that is directly measured or indirectly derived are reviewed in section 2.1.1 

and 2.1.2 respectively. Other reported sources include soft-biometrics, probabilistic 

reliability of biometrics, failure prediction of ROC and prior knowledge of classifier 

space. Their details are presented in section 2.1.3.   

 

     Section 2.2 discusses the state-of-the-art biometrics fusion algorithm research. 

Section 2.2.1 further categorises biometrics fusion methods into serial and parallel 

modes and describes work on biometrics fusion from three different structural levels 

in section 2.2.2. They are included in section 2.2.2.1~2.2.2.3 for feature level, 

measurement level and decision level fusion respectively. A significant amount of 

measurement level fusion has been reported in the literature, mainly because this is 

the most appropriate fusion level. Therefore measurement level fusion is reviewed 

separately in section 2.2.3. These measurement level fusion methods are further 

separated into rule based, classification based and density based approaches according 

to [45].   
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Fig 2-1. Structure of the literature review.      
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2.1 Biometrics Information Gain 

     Biometrics information gain mentioned in this thesis generally refers to the 

additional information source, other than the single modality biometric matching 

score, that aids fusion performance. Biometrics information gain reduces uncertainty 

to authenticate a person. In the following section, different sources used to increase 

the biometrics information gain are presented. 

 

2.1.1 Multibiometrics 

     Fig. 2-2 illustrates different scenarios of multibiometrics used to increase the 

information gain. The choice of the best fusion scenario is not based on performance 

of individual sources but depends on the correlation or statistical independence 

between the different fused sources [46]. According to experiments published in [47], 

a positive correlation degrades the fusion performance whereas a negative correlation 

improves the fusion. Multiple modalities of biometrics are inherently different so this 

scenario has the lowest correlation and therefore can achieve a better information gain 

compared to the other scenarios.  

 

     Some of the multimodal biometrics research examples are the combination of hand 

geometry, fingerprint and facial biometrics in [43] and BioID identification system in 

[48] that uses lip movement, facial image and speech biometrics. BioID extracts the 

multimodal biometrics through a recorded video of a speaking claimant. It is a 

preferred method because this single section acquisition process is more user friendly 

than the one in [43], i.e. it does not need to interact with multiple capturing devices. 

Furthermore lip movement and speech are dynamic biometrics. Such biometrics aid to 

identify the living state of the claimant to prevent spoof attack [38], [39]. Moreover a 
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dynamic biometrics can also be combined with knowledge based authentication to 

further enhance security. For instance, a system can require the claimant to provide 

his password utterance as speech biometrics or to instruct the user to sequentially look 

at certain points on a screen (gaze based biometrics) can be used to create password 

entries [13], [49]. Further multimodal biometrics combination studies are available in 

[50], [51], [52]. From these works, it can be summarised that multimodal biometrics 

is a preferred approach than the other scenarios to tackle single biometrics limitations 

because of the following reasons: 
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Fig 2-2. Multibiometrics combination scenarios. 
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1. Multimodal biometrics have the lowest correlation among the sources therefore 

higher information gain can be achieved. The uncertainties that are caused by low 

quality biometrics, interclass similarities, etc. can be reduced.  

 

2. It provides alternative biometric options for a claimant who is unable to provide a 

specific biometrics. Consequently it increases the universality of the system to 

cover a larger population. By doing this, the Failure to Enrol (FTE) rate can be 

significantly reduced.   

 

3. The usability of the multimodal biometrics system is also better than the single 

biometrics. For example, a speech biometrics can be used instead of facial 

biometrics under faint light condition or a facial biometrics can be given higher 

weight than the speech biometrics in a noisy ambiance. 

 

4. Multimodal biometrics is more difficult to spoof because multiple modalities have 

to be presented at the same time especially for the system that combines static and 

dynamic biometrics which involves temporal analysis. The liveness of the 

claimant can be detected to prevent the impostor to spoof the system with artificial 

biometrics.        

 

     Although the development in the field of multimodal biometrics has received 

considerable attention, there are some disadvantages in this approach: 

• Additional hardware costs. 

• Additional enrolment time and system processing times. 
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• More complicated software design and data management, e.g. elective control 

and management of access to the biometric data and systems where privacy, 

confidentiality and trust are of primary concern [156]. 

 

     The fingerprint from different fingers, the iris from left and right eyes, the left and 

right side profile faces and the hand geometry or the palm print from left and right 

hands are the examples of multiunit biometrics. Some of the multiunit biometrics 

usage examples in the literature are given as followed. In [65], three different views of 

the face with different head poses are used for gaining additional information. The 

NIST-BSSR1 database detailed in [53] contains the verification matching scores from 

left index and right index fingerprints. The multiunit biometrics fusion works 

employing these multiunit fingerprints’ matching scores are available in [54], [55], 

[56], [57], [58], [59], [60]. In [61], the authors combine the fingerprints from little 

finger, ring finger, middle finger and index finger. This kind of combination has the 

benefit of biometrics acquisition can be done at the same time.  

 

     In the multisensor� scenario, multiple sensors are used to complement the 

shortcomings of a specific sensor. For example, the use of a capacitive and an optical 

fingerprint sensor can be found in [62]. The capacitive sensor is used to eliminate the 

need of optical sensor for clean, undamaged epidermal skin and a clean sensing 

surface. Another example is shown in [63]. It uses an infrared camera, which is robust 

against ambient lighting and other variations such as facial hair, wrinkles and 

expression. It overcomes some limitations of the conventional visual camera used for 

facial recognition.  
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     The same biometric is used more than once to achieve the best “scan” possible in 

multisample scenario. The dataset used in [62] comprises 10 impressions of different 

is a multisample scenario example. As in [64], such a scenario is also named as Single 

Source Multiple Sample fusion (SSMS). Since it uses only a single sensor, its 

implementation costs will not be as high as a multimodal biometrics system. 

Conventional SSMS uses the samples with the same view, but this work discloses that 

different views of the same source contain more disjointed features to increase the 

authentication performance. 

 

     Biometrics internal processing components include a preprocessing module to 

enhance the raw data, a feature extraction and a matching module. Different 

algorithms are capable of extracting and matching different discriminative 

information. Processing the biometrics with more than one algorithm is termed a 

multialgorithm scenario and it helps in gaining complementary information from a 

single source. For instance in [66], facial biometrics authentication performance is 

improved through applying Principal Component Analysis, Independent Component 

Analysis and Linear Discriminant Analysis facial classifiers. Both the minutiae and 

ridge flow fingerprint features are used in a hybrid fingerprint system in [67]. Instead 

of using multiple features, [68] uses a single feature but combining it with three 

different feature matching algorithms. Another approach, using multiple feature 

extractors and also multiple matchers, is presented in [69]. This approach not only 

uses minutiae and texture extractors, the minutiae extractor is further combined with 

two feature matchers, a string matcher and a dynamic matcher. All these approaches 

show the feasibility of gaining complementary information through different feature 
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extractors and matchers from a single biometrics source to enhance the authentication 

performance. 

 

     Other scenarios aside from the multimodal biometrics are to obtain the information 

from a single modality of biometrics. These scenarios can be used to increase single 

modality biometrics usability and performance through complementary information 

obtained from the single biometrics source. However, the improvement is limited 

compared to a multimodal biometrics sources which are inherently different. 

Furthermore, these scenarios do not provide alternative biometrics option to cover 

larger population and are easier to be spoofed. Therefore, these scenarios are more 

frequently used to improve individual biometrics performance. Nevertheless, these 

scenarios can be implemented in a multimodal biometrics system to further enhance 

the usability and performance. In [70], the authors empirically show by averaging m 

modalities of biometrics and n samples per modality, the errors can be reduced by a 

factor from the [1, nm]. The NIST-BSSR1 database contains multimodal and 

multiunit biometrics score. All these scores (multimodal and multiunit samples scores) 

are combined in [55], [56], [57], [59]. In [71], the authors combine infrared iris with 

infrared and visual facial biometrics (multimodal and multisensor combination). By 

doing this, the risk of a spoof attack (e.g. using a high resolution picture) against the 

infrared iris is reduced. 

 

2.1.2 Incorporation of Quality Measure 

     A quality measure of the biometrics is indicative of the classification errors (e.g. 

the systematic errors, presentation-dependant errors and user-dependant errors [72]) in 

biometrics authentication. In this part, quality related fusion research is reported. It 
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provides details about how these biometrics qualities can be obtained and used to 

enhance the biometrics authentication process. 

 

     In [73], the quality of the fingerprint is assessed using the NIST Fingerprint Image 

Software 2 [74] and the speech quality by using the NIST Speech Quality Assurance 

Algorithm (SPQA) [75]. These quality measures are further combined into a global 

quality which is used as a weighing parameter for the Weighted Sum fusion rule. In 

[76], fingerprint images are divided into sub-windows and transformed by Pet Hat’s 

Continuous Wavelet Transformation (CWT) [77]. Then the wavelet coefficients are 

used as an image quality reference to weight the fingerprint features’ Euclidean 

distance. A fingerprints database with quality labeled by a human expert [78] in the 

range between 0~2 is used in [79]. It then uses a modified Support Vector Machine 

(SVM) to do the fusion with inclusion of these quality measures. Biometrics quality 

can also be calculated by the relative biometrics information entropy between the 

population’s and individual’s feature distribution [80].  

 

     Probability based quality measures can easily be incorporated into the density 

based fusion algorithm (e.g. using the product of density or a jointly modeled density). 

The works in [56] and [81] use coherence-based local quality estimation from [82] 

and wavelet-based algorithm [83] for fingerprint and iris quality estimations 

respectively. Two of these quality measures along with relative biometrics scores are 

then jointly modeled and combined using likelihood ratio fusion.   

 

     Cross device matching significantly degrades authentication performance. The 

work in [84] proposes a score normalisation approach that includes the qualitative 
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device information to solve this problem. The joint density is modeled using each 

modality’s match score, quality measure and the quality cluster information. It is then 

combined using the Naive Bayes principal. The quality of facial images and 

fingerprints are assessed using Omniperception SDK [85] and a fingerprint quality 

assessment algorithm in [82] correspondingly. All these quality measurements and its 

relative biometrics scores are available in a recent developed database [86], [87].  

 

     Quality of the biometrics does not contain information on whether the claimant is 

an impostor or a genuine user. However it is an indicator for the reliability of the 

biometrics measurements. Compared to the scores that are obtained from poorer 

quality biometrics, a score from a higher quality biometrics is more reliable therefore 

should be given a higher weighting.  

 

     The Quality information and multibiometrics are the main information sources to 

improve the biometrics performance. Aside from this information, some other sources 

in the literature are further presented in the following section. 

 

2.1.3 Other Information Gain Aids in Biometrics Improvement 

     Soft biometrics are empirically shown to be capable of improving the performance 

of conventional hard biometrics [24], [88]. Some of the soft biometrics examples are 

human height, weight, colour of skin, colour of iris, body fat, gender, age, etc. By 

using the colour of the iris, the author in [88] achieves an improvement by using soft 

biometrics that does not request any additional capturing devices. Using body fat and 

weight which are considered soft biometrics, is a low-cost and easy to understand 
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method to enhance the fingerprint performance and make it more difficult for 

circumvention [24]. 

 

     The research work in [89] uses Bayesian Networks to estimate the probability for 

verification errors. They derive Modality Reliability (MR) using the speech verifier 

outputs (classified identity and score) and the acoustic environment condition (Signal-

to-Noise Ratio). This MR is used to indicate whether the verifier make a reliable 

decision. Authors in [60] suggest a failure prediction model. It is based on the 

construction of a learning system using several features extracted from the biometrics 

scores. By exploiting the classifier space for class-specific information, the face and 

fingerprint fusion can be enhanced [90]. If the output of the biometrics is well 

clustered and distinct from other clusters, this information can be used to further 

extend the separation of different classes.  

 

     Norman et al. proposed a Prior Knowledge Incorporation framework (PKI) in [91] 

which to incorporate additional information sources into the biometrics score. In their 

work, they utilise Client-dependent F-ratio normalised scores (as proposed in [92]) 

and margin derived confidence (as proposed in [93]) as additional sources of 

information. The outputs from the different modalities of biometrics after the PKI are 

then further combined using a second classifier. 

 

     From the works presented in section 2.1 it can be seen that information gain 

reduces the authentication uncertainties and errors. To increase the information gain 

through multibiometrics source is the most popular and direct way. Among the 

multibiometrics scenarios, multimodal biometrics having the lowest correlation 
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between the different sources and hence provides the greatest information gain 

compared to the rest. Not only the authentication rate can be improved, but most of 

the limitations of single biometrics can be overcome. Biometrics scores may not be 

suitable for further processing because of poor quality. Therefore a quality measure 

can be used to tune the scores to more effectively authenticate a person. Aside from 

the above, it is possible that there is other useful knowledge underlying among the 

training biometrics samples. This knowledge can also be exploited and used as 

additional information to enhance the authentication performance.  

 

     With the availability of these biometric information, how to effectively combine or 

fuse them becomes another great challenge in the biometrics research field. This is 

reviewed in section 2.2. 

 

2.2  Biometrics Information Fusion 

     Biometrics fusion approaches reported in the field are firstly reviewed in the 

operation mode which are presented in session 2.2.1.  This includes serial and parallel 

fusion modes. Thereafter parallel fusion which is a preferred mode is classified into 

three different levels fusion according to biometrics internal processing stage. This is 

as shown in fig. 1-2 and detailed in section 2.2.2. Amongst these three levels, 

measurement level fusion is more commonly applied therefore it is further discussed 

in section 2.3.  

 

2.2.1 Serial and Parallel Fusion Mode 

      Fusion can be done in serial or parallel. These modes are also referred to as 

hierarchical fusion and holistic fusion respectively in [94]. Fig 2-3 illustrates these 
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fusion modes in schematic diagrams. Serial fusion authenticates a person through 

sequentially assessing the claimant’s biometrics as shown in fig. 2-3(a). Individual 

biometrics module generates a decision and passes it to the next biometrics module or 

simply terminates the process if a reliable decision is obtained. In this mode, the 

information is not really “fused” but each biometrics acting as a filter. As depicted in 

fig. 2-3(b), in contrast to the serial mode, all biometrics outputs are combined 

simultaneously using a fusion algorithm in parallel mode. 

 

 

     An authentication system named “Sequential Selection Multimodal  

Authentication System” is devised in [1]. The user is requested to present his/her first 

preference of biometrics. When the biometrics score is sufficiently high to clear the 

security level, the authentication is accepted. Otherwise, the user has to provide the 

next preferred biometrics. The author claimed that a higher security level without 

having to request extraneous information from the user. The research work in [23] 

defines the pupil and iris parts as “blackeye”. They use the dynamic blackeye shape 

Biometrics 

1 

Biometrics 

2 

Biometrics 

1 

Biometrics 

2 

Fusion 

Algorithm 

(a)  

(b)  

Fig 2-3. Biometrics fusion modes: (a) Serial fusion mode (b) Parallel fusion mode. 
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(blackeye shape changes during blinking) as the first biometrics subsystem and the 

static blackeye shape as a second subsystem. Prior of employment of this sequential 

combining method, the optimal thresholds for each of the modalities to achieve the 

best fusion result have to be determined.  

 

     In the work presented in [95], the single biometrics matcher with better 

authentication performance is used in the first step and the less performed matcher is 

as the next step for serial combination. However, in contrast to this work, [94] uses 

the less performed matcher prior of the one with better authentication performance. 

There is no reason given for these arrangements in these literature. In [94], the authors 

show serial fusion is less effective than the Sum and the Product rules which are 

parallel fusion rules. Different experimental result is obtained in [95], the serial fusion 

method outperforms the simple Sum rule (parallel fusion). However, this might be 

caused by the fact that unnormalised scores are used in the experiments in [95]. 

 

     The serial mode may request less evidence from the user to reduce the 

authentication time and increases the user friendliness of the system. When reliable 

decision can be made at the first stage, it is simply a single source biometrics. If not, 

the system forfeits previous biometrics and seeks for the next evidence. Although 

reliable decision cannot be made, there is still useful information contained in these 

forfeited biometrics. The serial mode behaves likes a filter rather than a fusion engine 

and hence results in information wastage. In parallel fusion mode, gathering all the 

biometrics information and combining them simultaneously is a more efficient way of 

using the biometrics information. Therefore the parallel fusion approach is used more 

often in the literature.  
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     According to the biometrics processing stage as illustrated in fig.1-2, parallel 

fusion methods are broadly classified into feature level, measurement level and 

decision level fusion [96]. These methods are reviewed in the section 2.2.2.   

 

2.2.2 Three Different Levels of Fusion 

     As shown in fig. 2-4, in the context of verification, to accept or to reject a claimant 

referring to the biometrics is a process of information reduction.  

 

 

     Combination at earlier stage is desired because of the richer available information. 

However to combine the biometrics at the feature level is difficult especially when the 

features are different (e.g. to combine the minutiae of the fingerprint to the eigenface 

coefficient.) Although it is much easier to do the fusion at the decision level, because 

only one bit information is involved, this information is too limited for a significant 

fusion improvement. All biometrics output matching score containing more useful 

information than a binary decision. As a result, the score level biometrics fusion is 

more popular than the two others in the field of fusion research. 

 

 

Fig 2-4. The contents of processing biometrics in verification mode (adapted from [97]) 
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     Some of the feature level and decision level fusion research works are reviewed in 

session 2.2.2.1 and 2.2.2.2 respectively. The score level fusion researches are more 

widely explored than the feature level and decision level fusion. Therefore it is 

reviewed and discussed separately in session 2.2.3.   

 

2.2.2.1 Feature Level Biometrics Fusion 

     Feature level fusion is to concatenate the extracted features from multiple 

biometrics sources. In some of the work, the feature combination is done at sensor 

level or image level. 

 

     Khuwaja uses compact Learning Vector Quantization (LVQ) neural networks to 

combine face and fingerprint images and get a blurred image called Merged Pattern 

(MP) [98]. It contains both biometrics features and is considered to be more 

discriminative. The MP features are then extracted by an adaptive artificial neural 

network. In this work, the achieved 100% identification rate using the Olivetti 

Research Laboratory (ORL) database is considered as the major achievement. 

Concatenation of ear and face features in [99] achieves rank one identification rate at 

90.9% where ear and face provide 71.6% and 70.5% respectively. Because of 

physiological relationship, ear and profile face are combined at feature level in [100]. 

Kernel Canonical Correlation Analysis (KCCA) is a feature fusion method. It is to 

extract the non-linear associated features of ear and face and classify them using 

minimum distance classifiers. In contrast to 90.8% and 77.6% recognition rate for ear 

and profile face respectively, the fusion result is 98.7%. 
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2.2.2.2 Decision Level Biometrics Fusion 

     Since the biometrics verification decision is only one bit of information (i.e. to 

accept or to reject), very limited information is available for fusion at this level. 

Therefore its performance is normally not comparable to the feature and score level 

fusion. However such fusion method is commonly applied in identification mode to 

reduce the processing time.   

 

     The AND, the OR rule and majority voting [101] are commonly used for decision 

level fusion. AND and OR rules are applied in [24] to combine fingerprint and body 

weight. From their reported results, it is surprising that AND rule, which is one bit 

information fusion, achieves 1.45% Total Error Rate (TER, i.e. the summation of 

FAR and FRR) which outperforms the more complicated methods: Sum rule, Multi 

Layer Perceptron and Support Vector Machine, which obtained 2.51%, 1.69% and 

3.28% TER respectively. 

 

     Majority voting is, for example, implemented in BioID [48], a commercial 

biometrics application. This system integrates speech, face and lip movement 

biometrics. The system assigns identity to a claimant if 2 or 3 (under ‘2 out of 3’ or ‘3 

out of 3’ scheme respectively) of his/her biometrics passed the relative thresholds set 

in advance. The fusion result is not reported. However, to achieve the best fusion 

result using this method, the preset thresholds have to be chosen carefully. The work 

in [102] finds the optimal thresholds using individuals biometrics’ ROC and then 

applies these thresholds prior of using AND or OR rule for decision fusion. This 

fusion method is claimed to be more robust to outliers and insensitive to the deviation 

between the training and testing scores. 
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     A biometrics identification system generates a rank list as decision. Lin and Anil 

apply decision level fusion in an identification system [103]. In their work, the top n 

possible identities are established by the face module and then passed to the 

fingerprint module to create the final list. For identification, the system has to 

compare the biometrics template with all the templates in the database, which is very 

time consuming. The amount of template comparison and processing time is 

drastically reduced using such decision level fusion. Unlike this fusion method, 

Djamel and Abbes simultaneously combine the top five rank determined by different 

biometrics using Borda count [65]. Borda count assigns a specific score to the 

possible identities according to their obtained rank and determines the identity based 

on the accumulated score. In [104], the ranks assigned to survivors (users) who pass 

the thresholds are directly summed. By doing this, 99% authentication rate is achieved.          

 

2.2.3 Measurement Level Fusion Approaches 

     Measurement level is the most popular biometrics fusion level. Biometrics 

generates confidence value or score to authenticate a person. Such information is 

homogenous and accessible, therefore majority of biometrics fusion research 

concentrates on this type of fusion. It can be further subdivided into three different 

types: (a) rule based fusion (b) classification based fusion (c) density based fusion.  

 

2.2.3.1 Rule Based Fusion 

     Rule based fusion combines the biometrics score by using a fixed rule, e.g. Sum, 

Min or Max rules. The main advantages of such combination are that there is no 

training session required, and the method is very efficient in processing time and 

conceptually simple. However each biometrics module might have different 
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measurement scale. For the biometrics to be effectively combined using a fusion rule, 

score normalisation presents the greatest challenge. Different score normalisation 

techniques are proposed and compared. These proposed methods and comparisons are 

available in [44], [58], [61], [105], [106]. 

 

     Table 2.1 presents a summary of score normalisation techniques from the 

literatures. An effective score normalisation algorithm should be less sensitive to 

outliers. Whether the normalised scores have to be in a common range or retaining its 

original distribution depends on the applied fusion rule.  

 

     In the table, S’I is the normalised score and Si is the original score. Min-max 

normalisation is the simplest algorithm that only involves finding the minimum (min) 

and maximum (max) scores generated by a specific biometrics matcher. These 

parameters are sometimes directly available from the biometric application vendor so 

no training session is required to find these parameters. To use Z-score normalisation, 

the score distribution’s mean (µ) and standard deviation (σ) must be found in advance. 

Such prior knowledge can only be estimated from a training set and it is sensitive to 

outlier. Tanh normalisation is also sensitive to outlier. However Jain shows that using 

the Hampel influence function [107] able to greatly reduce this problem [44]. Median 

and Median Absolute Deviation (Median and MAD), which uses the median of the 

biometrics score distribution is less affected by outliers than the Z-score and Tanh 

method. However the risk of this normalisation is that once the normalised score is a 

Gaussian distribution, it cannot be normalised effectively. Double Sigmoid 

normalisation requires careful tuning of the t, r1 and r2 to choose the region with linear 

mapping characteristic. t is the reference point, r1 and r2 denote the left and right 
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edges of the linear mapping region. The scores outside this linear mapping region are 

transformed non-linearly to increase the separation of genuine user and impostor 

score distributions.   
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Table 2-1. Commonly used score normalisation algorithms. 
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     [105] proposes to use different normalisation techniques for different regions. In 

this so called Two-Quadratics method (QQ), two quadratic segments are setup in the 

mapping function. This is further modified into three segments normalisation in 

Quadratic-Line-Quadratic method (QLQ). It also includes two quadratic segments but 

leaves certain region unnormalised. In [106], Four-Segments-Piecewise-Linear (FSPL) 

and Linear-Tanh-Linear (LTL) are proposed. The authors use the linear function (for 

FSPL) and non-linear function (for LTL) in the overlap region for score normalisation. 

The comparison between these methods with other commonly used normalisation 

techniques, by applying the Weighted Sum rule, indicates that QLQ and LTL perform 

better than the rest.  

 

     In the following, different rules proposed for fusion are presented. A common 

theoretical framework for combining classifiers is developed in [108]. Commonly 

used combination schemes, e.g. Product, Sum, Min, Max, Median rules and Majority 

Voting are compared. The result shows that the Sum rule outperforms other schemes. 

Through sensitivity analysis, Kittler concludes that the superior performance of the 

Sum rule is due its resilience to the estimation errors. The effectiveness of the Sum 

rule is further justified by Ross and Jain’s research in [43]. This simple fusion rule 

outperforms the complicated Decision Trees and the Linear Discriminant Analysis 

fusion methods. However, the Max rule is reported in [65] and [109] to outperform 

the Sum rule. Nevertheless, the Sum rule has been widely employed in the literature. 

Different Weighted Sum rules have been proposed and they are summarised in the 

table 2-2. 
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 Weighting Scheme Applied in 

 1 

Equal Weighted 

Same weights are assigned to all biometrics. This 

weighting scheme does not use any parameter.  

 

[16], [67], [109], 

[110], [111] 

2 

Equal Error Rate Weighted 

Each biometrics Equal Error Rate, EER, is used to 

weight their contributions. Biometrics with higher 

EER is assigned with lower weight.  

 

[106] 

 

3 

D-Prime Weighted 

Each biometrics genuine and impostor scores 

separation, d’, is used to weight their contributions. 

Biometrics with higher d’ is assigned with higher 

weight. 

 

[106] 

4 

Quality Weighted 

The biometrics with better quality is assigned with 

higher weight. 
[73], [76] 

5 

FAR/FRR Weighted 

False Acceptance Rate (FAR) and False Rejection 

Rate (FRR) are threshold-dependent, therefore a 

training section is required for different operating 

point to find these parameters. The biometrics with 

lower FAR/FRR is assigned with higher weight. 

 

[106] 

6 

Rank Weighted 

This scheme is only applicable in the identification 

mode. A score with higher rank is assigned with 

higher weight for combination.  

 

[16], [59], [64] 
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7 

Exhaustively Searching  

The best weights used to achieve optimal fusion 

performance are exhaustively searched. However this 

searching has to be repeated for different operating 

points.   

[112], [113], [114] 

 
Table 2-2. Commonly used weighting schemes for Sum rule. 

 

2.2.3.2 Classification Based Fusion  

     The scores from different biometrics sources can be treated as feature vectors. The 

fusion therefore is viewed as a classification problem. A classifier is used to construct 

a separation boundary between the genuine user and impostor in a verification system. 

The classifier used for this purpose includes K Nearest Neighbours, Decision Trees, 

Neural Networks, Support Vector Machine and Logistic Regression [115].  

 

     No advance training is required for K Nearest Neighbours. By referring to the 

distances from the tested biometric sample to k nearest reference points, the sample is 

then assigned to the category that has the majority of nearest neighbours. Although no 

training section being required, the distances from the tested sample to all the 

reference points have to be found. This leads to a very time-consuming fusion process. 

To achieve a better verification rate, this method was modified in [116], [117], [118], 

[119]. 

 

     A Decision Tree categorises the biometric samples according to a series of tests on 

a specific attribute of the data. These hierarchical tests lead to a particular class. Each 

of the tested attributes is found based on maximising the information gain at the 

particular node. This method has the advantage that it provides direct insight into the 

predictive structure [120]. However, it is very sensitive to small changes in the dataset 
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[121]. The well-known C4.5 classifier is devised by Quinlan [122]. This is the most 

widely employed Decision Trees algorithm where the related fusion works are 

available in [123], [124], [125].  

 

     Another classification method that can be used for biometrics fusion is Artificial 

Neural Network (ANN). An ANN is composed of many artificial neurons that are 

interlinked by synaptic connections. Each of these connections is associated with a 

specific weight. To train an ANN the weights have to be adjusted according to the 

error between the predicted and actual outputs. This process is performed mostly by a 

back-propagation algorithm. These weights and the relative biometric scores are then 

used by a function to transform this information into a meaningful output. The 

Multilayer Perceptron (MLP) [124] and Radial Basis Function [66], [126] are two 

commonly used transform function in the literature. MLP uses a linear transform 

function whereas the RBF uses a non-linear one. In [66], it is commented that RBF is 

preferred because their experiment shows better fusion performance than MLP. Also 

because of the RBF kernel is able to learn from both the positive and negative 

samples (genuine user and impostor samples).  

 

     K Nearest Neighbours, Decision Tree and ANN operating thresholds are not 

adjustable because their output is not a score but a class label, which is threshold 

independent. Although Support Vector Machines and Discriminant Analysis 

operating thresholds are also non-adjustable, these algorithms can be modified to 

generate a confidence value but not a class label. So a threshold can be used to 

classify these biometrics samples associated with confidence value.   
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     In the biometrics fusion problem for verification (two class classification problem), 

given a set of training samples, a Support Vector Machine constructs a separation 

boundary so the distance from it to the nearest data points which are termed as 

support vector on each side is maximised. Such a classifier is a linear classifier. A 

non-linear Support Vector Machine can be built by applying this algorithm in a 

transformed feature space [127]. This feature space can be created through a kernel 

function to project the samples to higher dimensional space. Polynomial and Radial 

Basis Function kernels are employed in [124] for multimodal biometrics fusion 

problems. In [124], significant fusion performance difference is obtained by using the 

Polynomial and Gaussian kernel. Therefore it can be said to choose a suitable kernel 

function is the main challenge of this fusion approach. The SVM has been reported to 

have the best fusion performance in [128], [129], [130], [131] compared to the 

methods including decision level fusion approach, Sum rule, K Nearest Neighbours, 

Decision Trees and ANN. Instead of using the output class label by SVM, the signed 

distance from the tested sample to the Support Vector Machine’s separating surface 

can be used as output score [132]. 

 

     Logistic Regression uses the logistic function to transform the weighted biometric 

scores into a value between 0 and 1. The input of the logistic function, the variable z, 

is a measure of the total contribution of all biometrics sources. The weights of 

biometrics or the regression coefficients are usually found using Maximum 

Likelihood Estimation (MLE). This is an iterative process which is similar to the 

back-propagation in ANN. Logistic regression is applied in [43], [123], [124], [126], 

[133] to solve the biometrics fusion problem. In the comparative study in [134], 
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Logistic Regression is evaluated as one of the most effective score level fusion 

techniques among three different rule based fusion categories. 

 

2.2.3.3 Density Based Fusion 

     Density based fusion first transforms the scores of biometrics into probability 

densities. These probabilities can then easily be combined using the product rule. 

Unlike the scores used in rule based fusion, these densities can be applied directly 

without normalisation. Furthermore, provided that the underlying densities are known, 

the optimal fusion performance is directly achieved. Since this method is probability 

based, additional information (e.g. the probability based quality) that aids the fusion 

process can also be incorporated without having to modify the fusion algorithm. Some 

individuals might not possess certain biometrics or its measurements are not reliable. 

This causes the non-density based fusion algorithm cannot be applied because of not 

sufficient input is provided. This missing data problem can also be easily solved in 

this fusion method. 

  

     Different attempts have been tried to improve the authentication rate using the 

density based fusion. Dass et. al. consider the biometrics score distributions associated 

with discrete and continuous components [55]. Their algorithm detects and removes 

discrete components before modeling the biometrics’ marginal continuous density. 

The mixture of continuous density and discrete components are used in a product rule 

to do the fusion. Aside from this method, they also utilise the copula function for joint 

densities estimation. The likelihood ratio is then used to categorise the user. They 

successfully demonstrate that the proposed approaches outperform the single 

biometric.  
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     The work in [73] shows that biometrics quality can be easily incorporated for 

density based fusion. They directly use the joint density modeling conditioned on the 

identity (genuine user and impostor) and biometrics quality. This is modeled by using 

Gaussian, Gamma, Log-normal or beta distribution. These joint densities are applied 

in their developed Bayesian Belief Network (BBN) which is shown to outperform the 

Sum fusion rule. 

 

     To achieve a higher authentication performance, the work in [135] models the 

genuine and impostor score distributions by adaptively using both the user dependent 

and user independent parameters. The model parameters which are estimated from the 

entire samples (global estimation as the user independent parameter) and a specific 

user samples (local estimation as the user dependant parameter) are adaptively used in 

their model. They achieve a biometrics fusion improvement of 80% and 55% 

compared to the non-adapted density fusion method for small and large training set 

respectively. 

 

     Nandakumar demonstrates in [57] that the problem of missing biometrics can be 

solved without having to modify the density based fusion method. They use the 

likelihood ratio as the input to the product rule. By assigning unity value as the 

likelihood ratio to the missing biometrics, this problem is catered for.   

 

     The Gaussian Mixture Model (GMM) is demonstrated to be an effective model to 

estimate the genuine user and impostor score densities and is easy to implement in 

[56]. Their work consistently achieves good fusion performance comparable to the 

Sum rule and Support Vector Machine. This performance is further enhanced by 
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incorporating the probability based quality information into the density [81]. The 

component number is the only parameter required for the model. Due to its 

effectiveness and requiring less parameter tuning, this modeling tool has been widely 

employed, e.g. in [129], [131], [136], [137]. However, choosing an appropriate 

component number for the model is challenging. The authors of [131] tune this 

parameter manually on the training samples. In [56], this parameter is searched 

automatically by using the state-of-the-art GMM fitting algorithm in [138].  

 

2.2.3.4 Selecting A Fusion Approach  

     Aside from the fusion performance, there are other considerations in making a 

choice amongst the rules based, classification based and density based fusion 

approaches. These concerns are presented in the following 

      

(a)     Availability of resource:  

Training based fusion methods, either in classification or density based categories, 

normally produce better authentication rates than the non-training rule based fusion. 

But such training set may not be available or large training sets have to be collected 

for a reliable prior knowledge exploration. Furthermore one has to consider the 

availability of these complicated training based algorithms. 

 

(b)     Advantages of the approach: 

Although rule based fusion is less efficient, such a fusion method is the conceptually 

simplest, fast and does not use a specific training algorithm. The density based fusion 

is preferred because of its ability to cope with the missing value problem and to 

incorporate additional information without having to modify its fusion algorithm. 
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Furthermore, it does not require score normalisation and it is able to achieve the 

optimal performance at any operating points directly, provided the underlying 

densities are known.  

 

(c)     System requirements: 

A biometrics system has to be threshold-adjustable to accommodate different security 

levels. Therefore, some of the classification based algorithms that generate class label 

are not suitable for biometrics fusion or have to be modified. A training based method, 

especially when used in large scale application, the training process has to be efficient. 

Such efficiency is necessary for the fusion algorithm to accommodate new enrolments 

and the variation of the biometrics of the population instantly. 

 

2.3 Summary 

     Single biometrics after many years of development has come to saturation to meet 

the desired performance requirements for larger population [46]. Generally, this 

saturation is governed by the limitations of authentication ability and system usability. 

The related works done to overcome these limitations are broadly addressing two 

issues: to provide additional information and to more effectively combine this 

information. The above review can be summarised as follows. 

 

1. Using multibiometrics is the most effective and direct way to increase the single 

biometrics authentication performance. For example, a multimodal biometrics 

system can easily outperform a single biometric. Amongst the different 

multibiometrics scenarios, multimodal biometrics is preferred. This is due to the 

fact that multimodal biometrics is inherently different, so more information gain 
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can be obtained compared to other scenarios. At the same time, multimodal 

biometrics enhances the system usability. It further provides alternative biometrics 

entry option. As a result, the system is more robust to adapt to different operating 

ambiance (e.g. dim light or noisy conditions) and to cover larger population. 

Providing different modalities of biometrics also makes the spoof attack more 

difficult.  

 

2. Multibiometrics information are combined with other information such as 

biometrics quality, soft biometrics and other biometrics score underlying 

knowledge, to further improve the authentication performance. Considering that 

the verification errors arise from the overlap region, this region related 

information might be informative to further aid fusion. However, using this region 

information for biometrics score level fusion is not found in the literature.     

 

3. Effective combination of the biometrics information also plays a key role for 

biometrics authentication improvement. Parallel fusion mode is preferred. This is 

because the information can be “fully utilised” before making a reliable decision. 

Biometrics fusion is easier to be dealt with under verification mode (two class 

problem) rather than the identification mode (multi class problem). As a result, it 

is common the fusion method to be firstly developed for verification purpose. It is 

then extended to the more complicated identification problem, e.g. the work 

presented in [57]. 

 

4. The biometrics information fusion attempts have been tried on feature level, 

measurement level and decision level. Vast majority of works focus on 
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measurement level fusion. This is because of the balance between the complexity 

and richness of information. Furthermore, the biometrics measurement sample for 

the fusion method evaluation is easier to obtain, e.g. from vendor matcher systems 

[46].  

 

5. Three different types of measurement level fusion, including rule based, 

classification based and density based fusion are available. Each of these methods 

has different features to accommodate in different biometrics fusion requirements 

and circumstances. The rule based fusion, e.g. the Sum rule, regardless of being 

simple, has been reported to outperform the complicated training based algorithms 

(Decision Trees and Linear Discriminant Analysis) [43]. It is efficient, effective 

and does not require training session and additional resource. Most of the 

classification based methods’ performances are reported on a single operating 

point. This is due to the fact that a classification based method outputs the class 

label but not a measurement. Therefore, it is not threshold adjustable to 

accommodate different security levels. Further modification is needed to make it 

threshold adjustable. Both the classification based and density based fusion 

methods require sufficient training sets to find the reliable parameter value or to 

fit in the density model. These methods’ performances always rely on the training 

sample size and quality. A density based method also has the feature of directly 

achieving the optimal fusion performance at any operating point. This is achieved 

without parameter tuning. However, this optimal fusion performance can only be 

achieved provided that the density is estimated accurately. Additional density 

based information can be incorporated in this fusion method and the missing of 
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biometrics problem can be solved using this method, without any ad-hoc 

modification. 

 

2.4 Research Questions Arising 

     The overlap region contained in the biometrics verification score as described in 

section 1.4 might be informative in further improving the biometrics authentication 

performance and/or usability. Using such information has not been found in the 

biometrics score level fusion research community. Therefore, this research is directed 

in exploration of the overlap region information and the benefits of implementing 

such information to the existing fusion approaches. From the summaries in section 2.3, 

the measurement level fusion methods from different categories have different 

features. Therefore, this exploration is conducted to approaches from different 

categories. The single biometrics limitations can be more comprehensively solved by 

combining multiple modalities of biometrics. Thus this research is conducted to 

combine the multimodal biometrics at score level, under the parallel fusion and the 

verification mode. From this research direction, several gaps in the literature are 

identified and this work is shaped to address these gaps. These gaps are listed below. 

 

1. Extensive evaluation of the conventional multimodal biometrics fusion 

approaches from different categories has to be established as a baseline for this 

research work. As well as, to compare them over a wide range of experiments, 

since different fusion strategies have been claimed outperforming the others. Such 

comparison is available in the literature. However, they are not extensive enough. 

These works either do not cover all three different approaches or not tested over a 

wide range of multimodal biometrics experiments. For example, the works in [43], 
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[108], [123], [129] use only rule based and classification based methods for 

comparison. In [56], even though all three different categories’ approaches are 

covered, their experiments are tested on multibiometrics combination only 

(mixing of multimodal and multiunit biometrics). The work in [134] includes the 

multimodal biometrics evaluation and various approaches from three different 

categories. Nevertheless, there are only three multimodal biometrics experiments 

tested (the rest are multiunit biometrics). Furthermore, their work is only tested 

using a single database that includes two modalities of biometrics. Therefore, it is 

clear that there is no extensive score level fusion algorithms evaluation 

specifically for multimodal biometrics.  Amongst the approaches claimed with top 

performance, whether there is a specific method outperforming all extensively, 

has remained unanswered. Furthermore, whether a fusion strategy with top 

performance is the most appropriate one for practical implementation also has not 

been discussed previously.   

 

2. The rule based fusion research has been focused on score normalisation 

techniques and Weighted Sum fusion rule in the literature (refer to section 2.2.3.1). 

These works successfully demonstrate that the authentication rate can be 

improved by these techniques. Different fusion rules (e.g. Sum and Max rules) 

have been reported outperforming other compared methods. Aside from using 

these combination strategies separately, the improvement can also be achieved by 

incorporating a selection scheme on these combination strategies. Such a fusion 

approach selection mechanism is not common in the biometrics score level fusion 

research. The only work can be found in [62] where the authors formulate a 

selection mechanism aimed to further separate the genuine and impostor scores. 
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Their mechanism selects the Max and Min rules based on the estimated error rate. 

This is further modified by introducing classifiers (K-NN, Quadratic Bayes and 

Parzen Windows) to make the selection between Max and Min rule [139]. The 

rule based fusion is well known for its simplicity. However, further complexity is 

introduced in their work by using the mechanism. Different score regions (overlap 

and non-overlap regions), which can be easily identified, exhibit different 

confidence level in discriminating a claimant. Therefore, the selection mechanism 

might be conducted from this perspective. The question of whether applying the 

fusion method selection mechanism based on the score region is feasible has not 

been answered in the literature.  

 

3. The Weighted Sum rule is the most effective rule based fusion method. The Equal 

Weighted Sum rule has been commonly used in the literatures [16], [67], [109], 

[110], [111]. However, due to the fact that different biometrics always has 

different authentication ability, whether equal weighting is a good practice is not 

answered in the literature. Different weighting helps to further improve the Sum 

rule fusion performance. One of the attempts is to use the threshold-dependant 

parameter. For example, using the FAR and FRR for weighting [106] or 

exhaustive searching for the optimal weights [112], [113], [114]. However, these 

Weighted Sum rules require searching for the new weighting values whenever 

different operating threshold is required. This is to say that the performance is not 

maximised for all operating thresholds. Some of the threshold-independent 

parameters, e.g. the d’ and EER, are used in [106]. It is usual to use d’ and EER to 

evaluate individual biometrics performance. Nevertheless, whether these 

parameters can be used to produce consistent Weighted Sum rule fusion 
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performance (for most of the operating points) is also remained unanswered. 

Furthermore, since the overlap region is where the errors arise, if reducing such a 

region is a way to enable maximisation� on performance has to be addressed.   

 

4. In the density based fusion method, the authentication performance depends on 

the accurate modeling of the underlying biometrics scores density distribution. 

The Gaussian Mixture Model has been widely employed for this purpose (e.g. the 

works in [56], [129], [131], [136], [137]) because of its effectiveness in modeling 

and less parameter to tune. However, choosing the component number is 

challenging because this causes direct impact to the fusion performance. This 

parameter is manually tuned on the training set [131] or is searched by specific 

density fitting algorithm [56] in the literature. In another word, to achieve optimal 

density based fusion performance, these works focus in the question of “How the 

exact component number can be obtained to boost the biometrics fusion 

performance?”. Considering the resource availability, the inaccuracy of manual 

tuning and the additional searching times is required, the focus can be transferred. 

A new research question can be asked: “How the impact of inaccurate assignment 

of component number to the biometrics fusion performance can be reduced?”. 

There are no relevant works found in the biometrics score level fusion research 

community. The attempt to answer this question aims to address this gap. 



3 COMPARATIVE EVALUATION OF MULTIMODAL 

BIOMETRICS SCORE LEVEL FUSION APPROACHES 

 

     The aim of this chapter is to provide a comparison of different categories of fusion 

techniques on large scale databases. This comparison is based on the fusion accuracy 

that is obtained through bimodal biometrics fusion. Other factors associated with this 

performance, such as its limitations, training and processing time and availability of 

resources are also jointly considered in the work. Such comparison provides 

comprehensive guidance for selecting an appropriate strategy for a particular 

application. Moreover, it provides a baseline for the proposed fusion strategies 

presented in chapters 5 and 6. 

  

3.1   Introduction  

     A significant amount of score level fusion techniques have been proposed in recent 

research. Most of these studies are focusing on increasing the fusion accuracy. 

However, the reported performances from different attempts are not directly 

comparable. This is because the databases used for evaluations are different in size 

and quality, which are factors having a direct impact on performance [142], [143]. 

Therefore, it is difficult for one to choose the best fusion method. Furthermore, some 

assumptions have to be made before the reported performance can be achieved. Also, 

for one to choose the most appropriate fusion algorithm, the fusion accuracy is not the 

only criterion [144]. Some other relevant factors that are listed below are associated 

with the achieved performance and have to be considered as well: 
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1) Processing or training time of the fusion strategy, 

2) Ease of implementation of the algorithm, 

3) Resources availability, such as training data and specific algorithm, 

4) Fusion algorithm’s robustness against the training data variation, 

5) Designing and calibrating of the algorithm.    

 

     Therefore, there is a need to evaluate and compare the conventional state-of-the-art 

fusion strategies from a comprehensive perspective on a common database. Some 

comparisons can be found in the following literatures:  

 

• Kittler develops a common framework to combine different classifiers via a wide 

range of strategies: Sum, Max, Min, Median and Majority Voting [108]. 

Experimental results of combining frontal face, profile face and voice reveal that 

Sum rule outperforms other combination scheme. Kittler concludes the robustness 

of the Sum rule is due to its sensitivity to estimation error.  

 

• Ross and Jain combine face, hand and fingerprint biometrics using Sum rule, 

linear discriminant classifier and decision tree [43]. They “surprisingly” find Sum 

rule outperforming the complicated linear discriminant classifier and decision tree 

that are learning based.  

 

• Fierrez-Aguilar et. al. find the linear SVM and logistic regression yield the same 

best results over a wide range of parametric and non-parametric fusion methods in 

combining face, signature and fingerprint biometrics [129].  
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• Verlinde compares fusion performance by combining profile face, frontal face and 

speech biometrics [123]. Logistic regression is reported to outperform K-NN and 

decision tree based methods. 

 

• Nandakumar et. al. transform the multibiometrics scores into joint densities by 

using a GMM for density estimation [56]. They use the likelihood ratio as the 

fusion score. Their method is reported to outperform or comparable to SVM for 

two different databases.  

 

• Eight fusion techniques from the literature are chosen for comparison based on the 

reported performance in [134]. The comparison is established on the fingerprint 

and face biometrics fusion. The work concludes that the product of likelihood 

ratio and logistic regressions is highly effective. 

 

     In the following session, several fusion strategies that have been commonly 

reported effective for fusion are introduced. They are fusion algorithms chosen from 

the comparative works mentioned above.  

          

3.2  Compared Fusion Schemes from Three Different Categories 

     The commonly reported best fusion strategies from three different categories: rule 

based, classification based and density based fusion methods are compared. Based on 

the literature review in the previous section, the compared methods are Sum rule from 

the rule based category, Support Vector Machine and Logistic Regression from the 

classification based category and Likelihood Ratio based fusion from the density 

based category. Marginal and joint densities are used in Likelihood Ratio based fusion. 
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These densities are estimated by a Gaussian Mixture Model (GMM) and its relevant 

component number is determined by a state-of-the-art algorithm. This algorithm 

automatically estimates the number of component and the component parameters. 

Since Max rule is reported to perform better than the Sum rule [65], [109], it is 

included in the comparison. Min-max score normalisation is chosen to retain the 

original score distribution. Brief details of these fusion methods are given in sections 

(a) ~ (f). Here, Sfi refers to the fused score and S’I,k  is the user i’s normalised score 

that is generated by matchers k, Si,k is the raw biometrics score (without normalisation) 

and the K is the total number of matchers. 

  

(a) Sum rule (SUM) 

K modalities’ biometrics scores are added after the scores are normalised. The 

Equal Weighted Sum rule is the most popular Weighted Sum rule. It is as shown 

below: 

∑
=

×=
K

k

kifi S
K

S
1

,'
1

, i∀                                                (3.1) 

(b) Max rule (MAX) 

The maximum score among the multimodal biometrics scores is chosen as the 

fusion score. For effective comparison, raw biometrics score has to be normalised 

in advance.  

)',...,','max( ,2,1, Kiiifi SSSS = , i∀                                      (3.2) 

 

(c) Support Vector Machine (SVM) 

As shown in fig. 3-1, by viewing multimodal biometric scores as a set of vectors 

in n-dimensional score space, SVM constructs a separating hyperplane. Such 
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hyperplane is constructed so that the distance from this hyperplane to the nearest 

data points (the support vectors) on both sides is maximised. Vapnik proved that 

maximising of this distance minimises the generalised classification error [145]. 

For non-separable samples, a kernel function can be used to project the samples to 

a higher dimensional score space and to construct the separation hyperplane in 

that space. Some commonly used kernel functions are Polynomial function, Radial 

Basis Function and Hyperbolic Tangent Function. Vapnik further suggests a soft 

margin to allow the existence of mislabeled samples. By doing this the samples 

can be classified as less error as possible while the maximum distance between the 

separating hyperplane and nearest support vectors (parallel hyperplanes) can be 

maintained. In this work, a linear kernel function is used and the separating 

hyperplane is found using the Sequential Minimal Optimisation method (SMO). 

To make this method to be threshold adjustable, it was modified to produce a 

fusion score based on the proximity of the test sample to the separating hyperplane 

[130]. 

 

 

Fig 3-1. Support Vectors Machine schematic diagram.  
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(d) Logistic Regression (LREG) 

Fig. 3-2 illustrates the logistic function f(z). The variable z is called logit. It is a 

measure of the total contribution of different biometrics scores based on the 

training samples. Their contributions are weighted by the regression coefficients 

as shown in (3.4). f(z) in (3.3) transforms these combined score into the 

probability values between 0 and 1. 

 

z
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=
1

1
)(                                                   (3.3) 

         KiKii SSSz ,2,21,10 .... ββββ ++++=                        (3.4) 

 

     For the expression of z, β0 is the intercept and β1, β2, …, βK  are the regression 

coefficients. These parameters are estimated from the training samples by using the 

Maximum Likelihood Estimation algorithm (MLE), which is based on the Iteratively 

Re-weighted Least Squares method (IRLS). 

 

 

Fig 3-2. Logistic function used in Logistic Regression Analysis.  
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(e) Likelihood Ratio Based Fusion (JLLR) 

The term fg(x)/fi(x) in (3.5) is referred to as the likelihood ratio. The logarithm of 

this likelihood ratio is taken as the fusion score Sfi. In this method, the multimodal 

biometrics scores joint densities, f(Si,1, Si,2, …, Si,K) of the impostor and genuine 

user are estimated using GMM whereas the component numbers are determined 

by a fitting algorithm in [138].    
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(f) Product of Likelihood Ratio Fusion (MLLR) 

In contrast to the JLLR algorithm (e) which uses the joint densities, here the 

marginal density f(Si,k) of each biometrics is modeled. The likelihood ratio of each 

matcher is then multiplied and the logarithm of the product is used as the fusion 

score. Again, GMM and the fitting algorithm mentioned in (e) are used to estimate 

the marginal densities. 
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     The comparison is conducted on two publicly available truly multimodal databases: 

NIST-BSSR1 [53] and Xm2vts databases [146]. Cross validation over the matchers 

with different modality in these databases is carried out. 4 and 15 bimodal biometrics 

fusion experiments are conducted using NIST-BSSR1 and Xm2vts correspondingly.     
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3.3   Multimodal Biometrics Score Set Databases 

     Two publicly available databases are used throughout the experiments in this thesis. 

These are the NIST-BSSR1 multimodal database [53] and the Xm2vts benchmark 

database [146]. A large number of samples is needed for an evaluation of fusion 

methods, but it is difficult and time consuming to collect biometrics samples from 

large populations. Therefore research is often  based on the chimerical assumption, i.e. 

to use chimeric users whose biometrics are constructed by combining multimodal 

biometrics from different individuals [59], [61], [73], [105], [116]. However, 

according to Norman’s experimental results [147], such practice is questionable. 

Therefore both databases chosen for this work are truly multimodal. A genuine user 

score can only be obtained through true sample matching whilst an impostor score can 

be obtained through cross sample matching. This results unbalanced training set and 

poses challenge when the biometrics score fusion is considered as a classification 

problem [45]. However in this work, the proposed methods are in density based and 

rule based fusion categories. The following section provides the details about these 

databases. 

 

3.3.1 NIST-BSSR1 Multimodal Biometrics Score Database 

     The NIST-BSSR1 multimodal biometrics database comprises three matching score 

datasets. Only Set 1 is used because this is the only truly multimodal database. Set 1 is 

based on faces and fingerprints from 517 individuals, collected using two commercial 

facial matchers and one freely available fingerprint recognition system. Unfortunately, 

the details of the matchers are not provided by the authors. Each of the 517 

individuals’ left index (Fli) and right index (Fri) fingerprint is verified by the 

fingerprint matcher whereas their facial images are verified by the facial matchers 
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Fig 3-3. NIST-BSSR1 all matchers’ score distributions. 

referred to as Fc and Fg. Through cross validation, all the enrolled 517 users are 

verified using their own templates to generate genuine user score and using the rest 

516 users’ templates to generate impostor scores). Therefore there are 517 (517*1) 

genuine user scores and 266,772 (517*516) impostor scores in total. Fig. 3.3 depicts 

the matching score distributions. The ROC curve indicating the performance of the 

matching constructed by using all available scores is shown in fig. 3.4. 
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3.3.2 Xm2vts Benchmark Score Database 

     There are five facial matchers (F1~F5) and three speech matchers (S6~S8) in 

Xm2vts benchmark database. Each matcher is constructed using different feature and 

classifier [146]. The facial and speech matchers are based on the following features: 

 

1. FH: Normalised face image concatenated with its RGB Histogram. 

2. DCTs: Discrete Cosine Transform coefficients that are calculated from face 

image (with size of 40x32 pixels) features. 

3. DCTb: Discrete Cosine Transform coefficients that are calculated from face 

image (with size of 80x64 pixels) features. 

4. LFCC: The Linear Filter-bank Cepstral Coefficient speech features. 

  

Fig 3-4. ROC curves for the matching in NIST-BSSR1 multimodal database.  
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5. PAC: The Phase Auto-Correlation Mel Filter-bank Cepstral Coefficient speech 

features. 

6. SSC: Spectral Subband speech features. 

 

     Two different classifiers were used for these experiments: MLP and a Bayes 

Classifiers using GMM. So these feature and classifier combinations form five facial 

matchers and three speech matchers as the baseline systems. These eight 

combinations are as listed: 

 

1. F1: (FH, MLP) 

2. F2: (DCTs, GMM) 

3. F3: (DCTb, GMM) 

4. F4: (DCTs, MLP) 

5. F5: (DCTb, MLP) 

6. S6: (LFCC, GMM) 

7. S7: (PAC, GMM) 

8. S8: (SSC, GMM) 

 

     The Xm2vts database contains of 295 individuals’ speech and facial score samples. 

Each individual contributes eight samples per modality which are taken within four 

sessions and one month interval with two samples for each session. Within the score 

sets, there are 1000 genuine scores and 151,800 impostor scores from the 

development and evaluation sets. 200 out of 295 users enroll on the systems and 5 

sample images are acquired from them to create 1000 genuine scores (5 x 200). The 

remaining users (95 users) acted as external impostors that are not enrolled on the 
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systems. Eight samples from these external impostors are used to generate 152,000 

impostor scores (95 x 8 x 200) against the enrolled users. By elimination of the 

samples that failed to be compared, the actual available impostor scores are 151,800. 

The author divides this database into training and testing sets. The training set under 

the Lausanne Protocol 1 (LP1) [146] consists of 600 (3 x 200) genuine user scores 

generated using 3 genuine samples and 40,000 (25 x 8 x 200) impostor scores from 25 

external impostors. The testing set includes 400 (2 x 200) genuine user scores from 

the rest of the genuine samples and 111,800 (≈ 70 x 8 x 200) impostor scores from the 

rest of the external impostors. These matchers’ score distributions are given in fig. 3-5 

and their verification ROC curves are depicted in fig. 3-6. 
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Fig 3-5. Xm2vts benchmark database all matchers’ score distribution. 
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     Both NIST-BSSR1 and Xm2vts benchmark database use the impostors that are 

created using cross sample matching. Such impostors are never intended to defeat the 

system therefore are termed as unskilled forgeries. Those created by a user who is 

instructed to make such an attempt given information about the targeted user are 

termed as skilled forgeries. The biometrics evaluation that depends on only unskilled 

forgeries can be insufficient. However, there is no strong means by which one can 

define a good forger and prove his/her existence (or non-existence) that such analysis 

is theoretically impossible [157]. Therefore most studies in the biometric community 

to date only incorporate unskilled forgeries, and very rarely skilled forgeries [158]. 

 

 

 

Fig 3-6. ROC curves for the matchers in Xm2vts benchmark database.  
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3.4  Experiment Set Up, Comparisons and Result Analysis 

     Using the NIST-BSSR1 multimodal biometrics database, 4 bimodal biometrics 

score level fusion experiments are conducted. This database involves fingerprint and 

frontal face biometrics. There are 15 bimodal biometrics fusion experiments from the 

Xm2vts benchmark database that use frontal face and speech biometrics. To evaluate 

the robustness of the fusion algorithms towards the sample variation, it is preferred to 

use several random partitions of the testing and training set rather than just use the 

single defined partition. Therefore, the Xm2vts defined testing and training sets are 

mixed and equally separated into testing and training score sets. Such partitions are 

repeated 30 times in both databases in all experiments. For the density based methods, 

GMM component numbers are searched in the range of 1~5 and 1~10 respectively for 

genuine user and impostor. In the following section, the comparisons between 

different fusion strategies are presented. The comparisons are in terms of average 

verification performance, relative performance variation against different partitions of 

the training and testing sets. Such comparisons also include the required training and 

processing times and their implementation details.  

 

3.4.1 Verification Performance and Its Consistency 

     Four key operating points are extracted from the ROC curves. Table 3-1~3-4 

present the average performance of the single biometrics. The standard deviations of 

the average results over 30 trials are given in brackets. In table 3-2 and 3-4, the 

shaded results are the best one within a category whereas the bolded figures (*) are 

the best fusion results amongst all categories in that particular fusion experiment. M1 

and M2 are the first and second matchers used in that particular bimodal biometrics 
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fusion experiment. The lowest operating point performances are also shown 

graphically in fig. 3-7. 

 

Matcher GAR at FAR equals to 0.001% Exp. 
No M1 M2 M1 M2 

1 Fli Fc 72.38(1.58) 52.84(3.25) 

2 Fli Fg 73.50(1.93) 60.35(1.47) 

3 Fri Fc 83.02(2.27) 53.79(4.25) 

4 Fri Fg 83.13(2.50) 62.62(2.55) 

  
(a) 

 

Matcher GAR at FAR equals to 0.01% Exp. 
No M1 M2 M1 M2 

1 Fli Fc 77.94(0.83) 72.01(4.70) 

2 Fli Fg 77.85(1.14) 67.61(1.57) 

3 Fri Fc 85.95(1.87) 73.40(2.85) 

4 Fri Fg 85.16(2.00) 70.04(2.55) 

  
(b) 

 

Matcher GAR at FAR equals to 0.1% Exp. 
No M1 M2 M1 M2 

1 Fli Fc 82.73(0.75) 84.40(1.51) 

2 Fli Fg 83.21(1.57) 77.19(1.28) 

3 Fri Fc 90.74(1.98) 84.17(1.05) 

4 Fri Fg 90.08(1.86) 79.07(0.85) 

 
(c) 

 

Matcher EER Exp. 
No M1 M2 M1 M2 

1 Fli Fc 8.13(0.70) 4.48(0.22) 

2 Fli Fg 8.01(0.73) 5.57(0.47) 

3 Fri Fc 4.64(1.11) 4.31(0.73) 

4 Fri Fg 4.50(0.89) 5.88(0.50) 

 
(d) 

* The average performances are reported based on 30 trials of 50% testing and training sets 
partitions of the score dataset.  
 
Table 3-1. Single matchers’ performances (average GAR) in four NIST-BSSR1 bimodal biometrics 

fusion experiments under (a) FAR=0.001% (b) FAR=0.01% (c) FAR=0.1% and (d) EER. 
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GAR at FAR equals to 0.001% Exp. 
No. SUM MAX LREG SVM JLLR MLLR 

1 91.03(0.83) 56.37(3.72) 93.32(0.41)* 93.14(0.50) 92.70(0.88) 92.05(1.17) 

2 92.45(0.91) 61.21(1.43) 91.53(1.51) 91.74(1.52) 92.88(0.71)* 91.93(2.03) 

3 93.08(1.59) 58.81(5.19) 95.55(0.96)* 95.30(1.01) 95.33(1.17) 95.30(1.72) 

4 94.89(0.98)* 64.04(2.62) 94.71(2.07) 94.65(1.62) 94.12(2.12) 93.75(3.54) 

  
(a)  

   

GAR at FAR equals to 0.01% Exp. 
No. SUM MAX LREG SVM JLLR MLLR 

1 94.82(0.61) 75.35(4.60) 95.38(0.76) 95.39(1.01) 95.78(0.43) 95.91(0.78)* 

2 94.52(0.76) 68.79(1.68) 94.97(0.64) 95.09(0.68) 95.10(0.69) 95.36(0.65)* 

3 95.95(1.18) 77.27(3.46) 97.43(0.64) 97.54(0.50) 97.75(0.78)* 97.44(1.14) 

4 96.37(1.09) 71.48(2.44) 97.03(0.95) 96.81(0.65) 97.69(0.80) 97.82(1.28)* 

   
(b)  

  

GAR at FAR equals to 0.1% Exp. 
No. SUM MAX LREG SVM JLLR MLLR 

1 97.21(0.51) 87.97(1.34) 98.31(0.73) 98.18(0.61) 98.46(0.57)* 98.30(0.67) 

2 96.18(0.42) 78.71(1.00) 96.24(0.68) 96.47(0.66) 97.39(0.74)* 97.17(0.43) 

3 97.25(0.63) 87.37(1.00) 98.73(0.37)* 98.73(0.37)* 98.59(0.51) 98.64(0.45) 

4 97.79(0.60) 80.25(0.69) 99.08(0.41) 98.84(0.54) 99.02(0.39) 99.12(0.38)* 

  
(c) 

 

EER Exp. 
No. SUM MAX LREG SVM JLLR MLLR 

1 1.25(0.38) 3.48(0.46) 1.20(0.46) 1.10(0.32) 1.04(0.38)* 1.09(0.32) 

2 1.63(0.33) 4.69(0.46) 1.52(0.36) 1.38(0.19) 1.20(0.30) 1.17(0.24)* 

3 0.69(0.16) 3.08(0.30) 1.02(0.45) 0.64(0.20) 0.47(0.13)* 0.49(0.14) 

4 1.49(0.45) 5.29(0.47) 0.62(0.28) 0.60(0.20) 0.39(0.10) 0.38(0.17)* 

 

(d) 

* The shaded figures are the best result in those particular fusion categories and the bolded figure 
with ‘*’ is the best fusion result achieved in that particular experiment. 
** The average performances are reported based on 30 trials of 50% testing and training sets 
partitions of the score dataset which are used to obtain the results in Table 3-1. 
 

 
Table 3-2. Conventional fusion strategies’ performances (average GAR) in four NIST-BSSR1 

bimodal biometrics fusion experiments under (a) FAR=0.001% (b) FAR=0.01% (c) FAR=0.1% and 
(d) EER. 
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Matcher GAR at FAR equals to 0.002% 

Exp. No. M1 M2 M1 M2 

1 F1 S6 1.87(4.01) 55.53(1.72) 

2 F1 S7 3.51(7.00) 15.94(0.94) 

3 F1 S8 4.68(13.77) 41.88(5.13) 

4 F2 S6 54.97(4.23) 56.96(3.16) 

5 F2 S7 58.04(4.09) 15.78(1.54) 

6 F2 S8 62.68(5.00) 39.14(4.72) 

7 F3 S6 76.89(3.73) 57.02(2.38) 

8 F3 S7 76.19(4.52) 18.21(3.44) 

9 F3 S8 79.63(4.83) 38.71(4.60) 

10 F4 S6 1.09(0.82) 55.65(2.77) 

11 F4 S7 0.50(0.63) 16.86(2.50) 

12 F4 S8 0.42(0.38) 37.75(3.39) 

13 F5 S6 0.10(0.16) 56.13(2.43) 

14 F5 S7 0.18(0.36) 17.44(1.73) 

15 F5 S8 0.06(0.09) 38.28(4.23) 

     

(a) 

     

Matcher GAR at FAR equals to 0.01% 

Exp. No. M1 M2 M1 M2 

1 F1 S6 80.59(4.35) 67.55(3.96) 

2 F1 S7 79.72(4.24) 25.39(1.93) 

3 F1 S8 78.00(6.95) 50.36(1.69) 

4 F2 S6 67.59(2.28) 70.02(2.18) 

5 F2 S7 69.25(1.88) 25.48(1.78) 

6 F2 S8 70.68(2.47) 50.26(1.66) 

7 F3 S6 88.56(1.24) 67.17(3.75) 

8 F3 S7 88.53(1.58) 26.91(2.44) 

9 F3 S8 88.43(2.08) 49.64(2.15) 

10 F4 S6 29.35(11.45) 67.04(3.38) 

11 F4 S7 24.06(7.35) 26.08(1.98) 

12 F4 S8 25.60(11.13) 50.67(1.80) 

13 F5 S6 5.55(3.20) 68.26(3.20) 

14 F5 S7 4.52(2.29) 26.70(1.95) 

15 F5 S8 5.44(3.32) 50.15(1.71) 

     

(b) 
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Matcher GAR at FAR equals to 0.1% 

Exp. No. M1 M2 M1 M2 

1 F1 S6 93.12(0.73) 88.32(1.33) 

2 F1 S7 93.46(0.66) 54.98(1.41) 

3 F1 S8 93.23(0.88) 67.19(1.35) 

4 F2 S6 81.22(1.53) 88.84(0.72) 

5 F2 S7 82.63(1.04) 54.10(1.48) 

6 F2 S8 81.61(1.29) 68.47(1.18) 

7 F3 S6 94.39(0.50) 88.32(0.99) 

8 F3 S7 94.15(0.63) 55.38(1.65) 

9 F3 S8 94.30(0.62) 67.64(1.19) 

10 F4 S6 80.00(1.74) 89.00(1.18) 

11 F4 S7 79.65(1.13) 54.74(1.56) 

12 F4 S8 80.03(1.13) 68.04(1.40) 

13 F5 S6 53.12(2.52) 88.95(0.96) 

14 F5 S7 52.28(3.31) 54.90(1.75) 

15 F5 S8 51.60(2.42) 68.00(1.58) 

     

(c) 

     

Matcher EER 

Exp. No. M1 M2 M1 M2 

1 F1 S6 1.74(0.29) 1.01(0.08) 

2 F1 S7 1.62(0.33) 5.84(0.27) 

3 F1 S8 1.86(0.26) 4.63(0.28) 

4 F2 S6 4.61(0.45) 0.93(0.11) 

5 F2 S7 4.20(0.40) 5.87(0.25) 

6 F2 S8 4.30(0.36) 4.33(0.37) 

7 F3 S6 1.52(0.21) 1.00(0.06) 

8 F3 S7 1.79(0.21) 5.90(0.22) 

9 F3 S8 1.78(0.22) 4.59(0.28) 

10 F4 S6 3.10(0.36) 1.02(0.10) 

11 F4 S7 3.24(0.18) 5.91(0.28) 

12 F4 S8 3.10(0.30) 4.48(0.41) 

13 F5 S6 5.63(0.61) 1.01(0.09) 

14 F5 S7 5.44(0.47) 5.84(0.41) 

15 F5 S8 5.54(0.46) 4.23(0.35) 

     

(d) 

* The average performances are reported based on 30 trials of 50% testing and training sets 
partitions of the score dataset.  
 

Table 3-3. Single matchers’ performances (average GAR) in fifteen Xm2vts bimodal biometrics 
fusion experiments under (a) FAR=0.002% (b) FAR=0.01% (c) FAR=0.1% and (d) EER. 
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GAR at FAR equals to 0.002% Exp.    
No. SUM MAX LREG SVM JLLR MLLR 

1 93.47(0.88) 1.28(2.68) 96.59(1.04) 96.65(1.03)* 95.91(1.21) 96.14(1.00) 

2 90.00(1.06)* 2.98(5.02) 88.07(0.83) 88.22(0.85) 88.93(2.57) 89.84(2.19) 

3 90.26(0.95) 4.58(14.79) 83.95(3.27) 83.89(3.37) 89.01(3.72) 91.75(1.06)* 

4 93.18(1.43)* 59.80(6.90) 92.12(1.26) 92.41(1.21) 93.05(1.18) 93.13(1.10) 

5 79.01(1.44) 52.90(7.80) 80.40(0.96) 80.88(1.48)* 78.85(3.59) 80.35(1.61) 

6 81.59(3.12) 60.94(10.20) 82.10(2.73)* 82.10(2.87)* 79.17(4.94) 81.50(3.38) 

7 97.46(0.79) 80.01(3.26) 97.30(1.13) 97.47(0.85) 96.94(1.02) 97.65(0.78)* 

8 83.13(3.38) 31.30(5.47) 87.28(2.60) 87.19(2.60) 87.86(2.38)* 87.11(2.79) 

9 91.95(0.81) 44.11(5.09) 92.45(1.30) 92.87(1.78)* 92.18(2.12) 92.53(1.43) 

10 80.09(2.78) 1.18(0.76) 89.08(12.85) 92.08(6.71) 92.20(3.00) 92.76(4.96)* 

11 66.77(1.57) 0.79(0.67) 76.19(5.32) 76.21(5.26)* 72.86(2.94) 73.59(3.36) 

12 66.56(3.83) 0.60(0.46) 83.58(2.46)* 83.56(2.49) 79.18(3.63) 81.58(2.19) 

13 68.01(4.56) 0.29(0.25) 86.63(3.10) 86.73(3.15) 86.34(2.83) 87.98(1.82)* 

14 50.45(2.44) 0.33(0.46) 62.52(3.92) 62.40(3.93) 57.96(3.78) 62.94(2.43)* 

15 53.77(4.12) 0.30(0.20) 81.08(3.43)* 80.99(3.36) 77.32(1.72) 79.67(2.10) 

  
(a) 

 

GAR at FAR equals to 0.01% Exp.
No. SUM MAX LREG SVM JLLR MLLR 

1 93.85(0.81) 80.23(5.08) 98.12(0.48) 98.13(0.49) 97.67(0.61) 98.18(0.54)* 

2 92.24(1.01) 79.96(4.30) 91.78(1.21) 91.68(1.28) 94.48(0.63) 94.49(0.80)* 

3 92.89(0.83) 77.18(8.11) 93.73(1.42) 93.72(1.33) 94.25(0.82) 94.81(1.06)* 

4 95.19(0.67) 72.55(4.39) 96.43(0.56)* 96.36(0.53) 96.32(0.66) 96.37(0.53) 

5 85.76(1.17) 64.70(5.01) 85.76(1.38) 85.89(1.24)* 85.82(1.35) 85.84(1.10) 

6 89.68(1.25)* 73.50(5.88) 89.02(1.22) 89.31(1.26) 89.15(1.38) 89.49(1.47) 

7 98.47(0.25) 88.74(3.27) 98.47(0.29) 98.45(0.27) 98.51(0.38)* 98.45(0.25) 

8 92.84(1.50) 43.99(4.75) 94.71(0.82) 94.73(0.84)* 94.43(0.92) 94.69(0.72) 

9 95.59(0.87) 56.20(2.48) 95.70(0.67) 95.48(0.62) 95.22(0.68) 95.71(0.65)* 

10 85.18(1.96) 29.15(11.47) 96.97(0.57) 97.02(0.55) 96.98(0.50) 97.56(0.49)* 

11 75.23(2.37) 24.78(7.27) 86.80(1.72) 86.84(1.68)* 81.19(1.96) 83.56(1.62) 

12 77.46(1.53) 25.65(11.03) 89.01(1.42) 89.22(1.68)* 87.19(1.48) 89.07(1.14) 

13 74.74(1.51) 5.75(3.00) 93.02(1.22) 93.01(1.26) 92.54(1.07) 93.25(1.56)* 

14 58.99(3.11) 4.84(2.45) 75.52(2.14) 75.89(2.06)* 67.65(2.94) 72.28(3.18) 

15 63.20(1.44) 5.80(3.31) 86.03(1.07) 86.10(0.98)* 81.45(1.39) 85.01(1.09) 

  
(b) 
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GAR at FAR equals to 0.1% Exp. 
No. SUM MAX LREG SVM JLLR MLLR 

1 95.53(0.82) 93.16(0.74) 99.35(0.32)* 99.33(0.34) 99.26(0.33) 99.35(0.24)* 

2 95.16(0.52) 93.50(0.60) 97.40(0.44) 97.38(0.42) 97.58(0.43)* 97.58(0.43)* 

3 94.95(0.83) 93.86(0.97) 98.22(0.31) 98.20(0.32) 97.99(0.35) 98.23(0.33)* 

4 98.66(0.38) 86.54(2.82) 99.05(0.28) 99.00(0.30) 99.11(0.20)* 99.07(0.22) 

5 93.54(0.49) 87.14(1.44) 93.76(0.57) 93.85(0.58)* 93.82(0.51) 93.85(0.58)* 

6 95.97(0.91) 86.57(3.41) 96.10(0.87) 96.16(0.94)* 95.76(0.86) 96.00(0.85) 

7 99.49(0.19)* 98.04(0.54) 99.49(0.19)* 99.49(0.19)* 99.49(0.19)* 99.49(0.19)* 

8 97.04(0.41) 74.64(2.86) 97.56(0.38) 97.56(0.35) 97.58(0.36)* 97.58(0.40)* 

9 97.88(0.55) 74.61(1.75) 97.86(0.50) 97.74(0.48) 98.05(0.38)* 97.92(0.50) 

10 92.45(0.93) 81.16(1.47) 99.30(0.22) 99.29(0.23) 99.37(0.21) 99.42(0.21)* 

11 90.17(0.97) 81.13(1.26) 95.42(0.70) 95.40(0.65) 95.20(0.62) 95.49(0.74)* 

12 89.30(0.83) 85.02(1.03) 96.86(0.50)* 96.80(0.49) 96.18(0.66) 96.45(0.59) 

13 82.37(1.50) 53.70(2.73) 98.43(0.42)* 98.42(0.44) 97.83(0.47) 98.24(0.35) 

14 78.04(0.95) 53.13(3.32) 89.07(0.77) 88.97(0.83) 89.24(0.72) 89.66(0.71)* 

15 76.93(1.45) 54.62(2.87) 93.77(0.90) 93.79(0.81)* 91.91(0.78) 92.94(0.89) 

  
(c) 

 

EER Exp.
No. SUM MAX LREG SVM JLLR MLLR 

1 0.82(0.10) 0.59(0.11) 0.46(0.21) 0.35(0.11) 0.29(0.08) 0.25(0.05)* 

2 1.03(0.21) 1.03(0.08) 0.75(0.08) 0.72(0.07)* 0.86(0.12) 0.75(0.14) 

3 1.15(0.14) 0.99(0.20) 0.71(0.24) 0.63(0.11)* 0.82(0.14) 0.67(0.17) 

4 0.40(0.09) 2.52(0.62) 0.38(0.14) 0.37(0.14)* 0.42(0.15) 0.41(0.15) 

5 1.30(0.21)* 1.99(0.29) 1.31(0.20) 1.31(0.18) 1.32(0.20) 1.32(0.20) 

6 1.08(0.23) 2.19(0.36) 1.02(0.19)* 1.03(0.20) 1.07(0.20) 1.03(0.23) 

7 0.43(0.13) 0.40(0.18) 0.47(0.18) 0.43(0.13) 0.33(0.10)* 0.38(0.09) 

8 1.09(0.17) 2.31(0.29) 1.00(0.21) 0.99(0.21) 0.89(0.15)* 0.92(0.15) 

9 0.75(0.31) 3.36(0.25) 0.76(0.32) 0.69(0.24)* 0.73(0.22) 0.72(0.23) 

10 0.99(0.09) 0.84(0.10) 0.39(0.16) 0.33(0.08) 0.28(0.09)* 0.29(0.10) 

11 1.31(0.10) 1.68(0.18) 0.68(0.05) 0.68(0.04) 0.62(0.08) 0.58(0.12)* 

12 1.50(0.14) 1.73(0.13) 0.83(0.21) 0.83(0.20) 0.78(0.13) 0.71(0.12)* 

13 2.28(0.22) 1.52(0.16) 0.50(0.12) 0.49(0.09)* 0.56(0.10) 0.53(0.11) 

14 3.10(0.24) 2.69(0.32) 1.65(0.24) 1.62(0.26)* 1.68(0.26) 1.69(0.26) 

15 3.33(0.23) 2.54(0.21) 1.47(0.18) 1.46(0.18) 1.33(0.22) 1.31(0.23)* 

 

(d) 

* The shaded figures are the best result in those particular fusion categories and the bolded figure 
with ‘*’ is the best fusion result achieved in that particular experiment. 
** The average performances are reported based on 30 trials of 50% testing and training sets 
partitions of the score dataset which are used to obtain the results in Table 3-3. 
 

 
Table 3-4. Conventional fusion strategies’ performances (average GAR) in fifteen Xm2vts bimodal 
biometrics fusion experiments under (a) FAR=0.002% (b) FAR=0.01% (c) FAR=0.1% and (d) 

EER. 
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* The error bars are plotted at +/- 1 standard error (sample no. = 30).  
(b) 

 
Fig 3-7. Conventional fusion strategies average performance at lowest operating point in (a) NIST-BSSR1 (b) Xm2vts. 
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     From table 3-2 and 3-4, it can be seen that there are no single fusion algorithm that 

outperforms all the others in the majority of the experiments. However it is obvious 

that the training based methods (classification and density based method) perform 

better than the non-training based rule based methods, because they utilise prior 

knowledge. However, both the density based and the classification based methods 

generally achieve comparable fusion performances. 

 

     An overall comparison result, including the single biometrics performances that 

are given in table 3-1 and 3-3, shows that all fusion approaches, except the Max rule 

outperform single biometrics at four operating points. For instance, M1 almost 

outperforms Max in all experiments and operating points in NIST-BSSR1. This 

supports the argument that Max rule using only a single source is not efficient. Sum 

rule, as another rule based method, performs much better than Max rule. For example 

at the lowest operating point, in 3 experiments out of 19, it achieves the best results 

over all of compared methods. Nevertheless, for the remaining experiments, the 

differences between the Sum rule and the best achieved results vary from 

0.18%~27.3% at the lowest operating point. This shows significant fusion 

performance variation, probably because no reliable weighting reference is used in the 

algorithm. This performance inconsistency of the Sum rule fusion at the lowest 

operating point can be seen from fig. 3-7.   

 

     In classification based fusion, both the SVM and LREG perform very similarly to 

each other. For the Xm2vts database, the difference between the two methods is 

around 3% for Exp. no.10 (at lowest operating point). For the rest of the experiments 

over all the operating points, the differences are just within 0.4%. This 3% difference 
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achieved by LREG however has a high standard deviation. In this case, some of the 

lower genuine scores are projected to an even lower score region by the logistic 

function, therefore a very low threshold is needed to pass these genuine users, which 

will significantly increase the FAR. Therefore LREG is not able to operate on a very 

low FAR in some fusion cases. Classification based methods do not perform well at 

some operating points compared to the density based methods. For instance, in Exp. 

no. 3 using the Xm2vts database at lowest operating point, both the classification 

based methods’ performances are around 8% less than the one for the density based 

methods and around 3% less in Exp. no.2, i.e. for at the second lowest operating point. 

This is because the classification based methods inherently find the single best 

separation boundary, i.e. the performance is not optimised for all operating points.  

 

     For NIST-BSSR1 dataset, both density based methods perform comparable to each 

other. Their performance differences over all the operating points are just within 1%. 

However, MLLR using the marginal density generally outperforms the other 

algorithm in the Xm2vts database. At FAR equals to 0.002%, there are 5 experiments 

are with performance differences more than 2%. Whereas at FAR equals 0.01%, there 

are 3 experiments are with performance differences more than 2%. These 

performances are accompanied by a high standard deviation. For instance, for Xm2vts 

Exp. no. 6, there is a 2.33% GAR difference with a 4.94 standard deviation. In this 

comparison work, GMM uses the component numbers from the range 1~10 and 1~5 

respectively for impostor and genuine user density estimation. This might be not 

enough to build the joint density model accurately and therefore might causes the 

degradation of MLLR.  
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     In rule based fusion, by choosing only a single source score, the Max rule is not as 

efficient as the other compared schemes. The Sum rule can perform better. However, 

using equal weights for the Sum rule fusion cannot perform consistently. 

Classification based methods and density based methods perform consistently and 

comparable to each other, however these methods have certain limitations. LREG 

might fail at very low operating points, and the same goes for SVMs, Their 

performance is not optimised for all operating points. SVMs can achieve better 

performances by replacing the linear kernel function with a more complex one such as 

Radial Basis Function, Polynomial Function or Hyperbolic Tangent Function. But 

such a kernel function and its parameters need to be chosen carefully on a case-by-

case basis. The performance of MLLR and JLLR that use GMMs for density 

modeling highly relies on the modeling accuracy. It heavily depends on the selected 

component number. Inaccurate component numbers cause low and inconsistent fusion 

performance. Searching for the accurate component numbers requires specific 

algorithms and will on the other hand increase the training and processing time. 

 

3.4.2 Required Training Times 

     Biometrics performance is sensitive to factors such as ambient condition, aging 

effects, matcher setting, user interaction with matcher and etc. Such effects become 

more obvious when dealing with a larger population. For a training based fusion 

algorithm, to maintain its performance against the mentioned factors, online retraining 

is needed [148]. Therefore it is important to consider the training time when assessing 

the fusion performance. 

 



Chapter 3: Comparative Evaluation of Multimodal Biometrics Score Level Fusion 

Approaches 

 

 - 82 - 

     Fig. 3-7 shows that the five compared methods, except the Sum rule, can perform 

consistently well near top of the verification rate at lowest operating point. Despite of 

this, Sum rule requires only an addition operation and can almost instantly do the 

fusion whereas training will be required for the four other approaches. Relative 

training times used to achieve the reported performances are shown in fig. 3-8 and 3-9. 

These experiments are carried out using Matlab testing platform under Microsoft 

Windows Environment with 1.6GHz CPU speed and 2GB RAM. 
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(b) 

* The error bars are plotted at +/- 1 standard error (sample no. = 30).  

 
Fig 3-8. NIST-BSSR1 fusion required training times (a) without GMM component numbers 

searching algorithm (b) with GMM component numbers searching algorithm.  
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(b) 

* The error bars are plotted at +/- 1 standard error (sample no. = 30).  
 
Fig 3-9. Xm2vts fusion required training times (a) without GMM component numbers searching 

algorithm (b) with GMM component numbers searching algorithm. 
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     The only difference between (a) and (b) in fig. 3-8 and 3-9 is the training time for 

density based methods. (a) illustrates the training time only for GMM density 

modelling whereas (b) includes the components searching time by using the algorithm 

from [138]. It can be seen that although the fact that density based methods guarantee 

optimum performance at all operating points provided the underlying densities are 

modelled accurately, they require significant modelling time and long periods to 

search for appropriate component numbers. SVM uses SMO to search for the hyper 

plane with maximum margin, which requires less training time than density based 

method. However it consume more times than LREG. LREG, using the MLE 

algorithm for searching for the logit parameters, requires the least training times 

among the algorithms. 

     

3.5  Conclusions 

Most of the score level fusion comparison works in the literature only consider the 

fusion performance. However for choosing the most appropriate fusion strategy, one 

cannot solely used fusion performance as a criterion but also has to consider some 

other key characteristics of the fusion approach. 

 

SUM, LREG, SVM and GMM-LLR (JLLR and MLLR) were found to be the 

most effective score level fusion approaches. Through a wider range of bimodal 

biometrics fusion experiments, their superior performances are again confirmed. 

However, it is empirically shown that there is no one single approach that guarantees 

the best performance at all times. Although all these approaches are comparable in 

achieved verification performance, they have individual limitations which are 

identified in this comparative work.  
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For practical implementation, not only the verification performance and limitation 

have to be considered, the required processing and training times and availability of 

the resources have to be taken into account as well. All these factors influence the 

selection of the most appropriate strategy. Table 3-5 summarises all these factors.



 

 

- 8
7
 - 

 

 
Table 3-5. Conventional fusion strategies comprehensive comparisons. 

  SUM LREG SVM GMM-LLR 

1 
Verification 
Performance 

 
Occasionally outperforms 
training based method. Top 
performance is not 
guaranteed in different 
fusion. 
 

 
Consistent top performance 
is only guaranteed at 
higher operating point (e.g. 
>0.001% FAR). 
 

 
Top performance at most of 
the operating points. But might 
not be the optimal 
performance. 

 
Optimal performance is 
guaranteed at all operating 
points provided the underlying 
density distributions are 
known. 
 

2 Limitation 

 
Inconsistent performance. 
Weighting scheme can be 
applied to improve the 
generalisation performance. 
 

 
Not suitable for application 
operates at very low FAR. 
Optimal result is not 
guaranteed for all operating 
points. 

 
Kernel function and its 
parameters have to be chosen 
carefully for further 
improvement. Optimal result is 
not guaranteed for all 
operating points. 
 

 
Greatly relies on density model 
accuracy. Performance and 
robustness against samples 
variation are sensitive to the 
chosen component numbers. 
 

3 

Processing 
and 

Training 
Time 

 
Fastest, no training session. 
Fusion only involves 
addition arithmetic. 
 

 
Fast, MLE for logit 
parameters’ searching is 
very efficient. 

 
Longer training time to search 
for the hyperplane. 

 
Long modeling time and very 
long component numbers 
searching time. 

4 
Resources 

Availability 

 
No resource is required. To 
improve the consistency, 
weighting  might require 
certain information. 

 
Sufficient training samples 
and standard statistical 
package are needed. 

 
Sufficient training samples and 
advance statistical package is 
needed to construct the 
hyperplane with maximum 
separation margin. 

 
Sufficient training samples and 
advance statistical package are 
needed. Accurate component 
numbers searching require 
special algorithm . 



 

 

4 CONFIDENCE PARTITION AND HYBRID FUSION IN 

MULTIMODAL BIOMETRICS VERIFICATION 

 

     The Equal Weighted Sum rule is a very promising biometric fusion algorithm. 

However, it might be of benefit to not applying it to the entire score space. By 

examining the score distributions of each biometric, it can be seen that confidence 

regions exist, which enable the introduction of the Confidence Partition in biometrics 

score space. Here, it is proposed that the Sum rule can be replaced by the Min or the 

Max rule in the Confidence Partitions to further enhance the verification performance. 

It is empirically shown that this novel Hybrid Fusion method is able to improve the 

Sum rule. The performance depends on the careful manual assignment of the 

Confidence Partition where prior knowledge of the sample distributions will be 

required. Nevertheless, the results and analysis presented in this chapter suggest that 

the non-confidence samples play a key role in improving the fusion performance. The 

results and analysis lead to the concept of using the non-confidence related 

information to aid multimodal biometrics fusion, which is presented in chapter 5 and 

6. 

 

4.1  Introduction 

     The Equal Weighted Sum rule (EW Sum) is one of the well known score level 

fusion approaches. This method simply uses the average value of multiple biometrics 

scores as the fusion result. Surprisingly, this simple and non-training based method 

appears to be outperforming many complicated training based fusion algorithms [43] 

and is widely studied in biometric researches [16], [67], [109], [110], [111]]. Through 
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sensitivity analysis, Kittler concludes that the superior performance of the Sum rule is 

due to its resilience against estimate error [108]. 

    

     Fig. 4-1 shows the score space constructed by two biometric matchers that are in 

similarity measurement (i.e. a claimant is more likely be verified with a higher 

biometrics score). In the figure, the samples within the black square have a lower 

bimodal biometrics score. Because there are no appearances of genuine user’s 

samples, it indicates that the testing samples located in this partition are more likely 

from the impostor group. Testing samples appearing in the grey square are more 

likely from the genuine user group. Intuitively, due to the higher confidence in these 

regions, instead of applying the EW Sum rule over the entire score space, the samples 

residing in the black square can be fused by the Min rule (assigning lower scores for 

samples which are more likely to be from an impostor) and the samples within the 

grey square can be fused using the Max rule (assigning higher score to samples which 

 

Fig 4-1. Bimodal biometrics score space and the confidence regions. 
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are more likely to be from a genuine user). By doing this, the fusion score from two 

different groups can be further separated to achieve better verification accuracy. In 

this chapter, the assignment of Confidence Partitions (CP) to multimodal biometrics 

score spaces is introduced. Replacing the Sum rule with more appropriate rules in 

these CPs to increase the fusion verification performance is evaluated. This new 

approach enables the fusion of multimodal biometrics in a hybrid manner, including 

the EW Sum, Min and Max rule. This fusion scheme is referred to as Dynamic Score 

Selection in [139], [149]. 

 

     The rest of this chapter is organised as follows: Section 4.2 provides details of the 

proposed method. Section 4.3 presents the experiment set up, results and their analysis. 

Finally section 4.4 gives the conclusion for this investigation’s finding and 

suggestions for future development. 

 

4.2   Confidence Partition and Hybrid Fusion 

     In general the proposed method is applicable to higher dimensional score space, it 

is being tested on bimodal biometrics samples in this section. The reason for choosing 

only two biometrics sources to fuse at this stage is to investigate the feasibility of this 

proposed method prior of introducing further complexity.   

 

     Referring to fig. 4-1, the Genuine User Confidence Partition (GCP) in the score 

space is assembled by setting up higher thresholds for two of the biometric matchers. 

A user with scores higher than these thresholds will be considered as more likely to be 

a genuine user. The Impostor Confidence Partition (ICP), the score space is formed by 



Chapter 4: Confidence Partition and Hybrid Fusion in Multimodal Biometrics 

Verification  

 

 - 91 - 

two lower thresholds. If the user’s multimodal biometric scores are smaller than these 

thresholds, he/she is more likely to be an impostor. 

 

     Score normalisation is required in rule based fusion for effective combination [44]. 

The simplest normalisation technique is the Min-max normalisation which is shown in 

table 2-1. It maps the biometric scores into the interval between 0 and 1. This 

normalisation equation is shown in (4.1). The notation shown in the equation 

represents the following:  Si is the biometric score of user i, S’i represents the 

normalised score. The minimum value (min) and the maximum value (max) of the 

biometric scores can be estimated from a set of training scores or available from the 

commercial biometric matcher vendor. 

 

 
minmax

min
'

−

−
= i

i

S
S                                                     (4.1) 

      

     By introducing CP, different rules are applied to different regions. Here, rule (4.2) 

~ (4.4) are applied. They are integrated into a hybrid fusion method as shown in (4.5). 

K is the total number of matchers and Sfi denotes the fused score. 

 

1. EW Sum Rule:  

              ∑
=

=
K

k

kifi S
K

S
1

,'
1

, i∀                                                    (4.2) 

2. Min Rule: 

                                           )',...,','min( 2,1, Kiifi SSSS = , i∀                                     (4.3) 
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3. Max Rule: 

  )',...,','max( ,2,1, Kiiifi SSSS = , i∀                                     (4.4) 

4. Hybrid Rule: 

                         Apply Min Rule, when < S’i,1 , S’i,2 ,…,S’i,K > falls in ICP.                       

      Sfi     =           Apply Max Rule, when < S’i,1 , S’i,2 ,…,S’i,K > falls in GCP.          (4.5) 

                         Apply Sum Rule, elsewhere.                

               

     As shown in equation (4.5), for the confidence partitions, Min or Max rule (instead 

of Equal Weighted Sum) is applied. Applying Min or Max rule in confidence partition 

instead of Equal Weighted Sum rule further separates the impostor and genuine user 

score distributions. The Non-Confidence Partition (NCP) is the complement region of 

the CPs. It denotes the part where the sample can be easily misclassified. Sum rule is 

applied in this part due to its good performance in dealing with the estimation error. 

 

4.3   Experiment Set Up and Results Analysis 

     The proposed methods are tested on two publicly available databases, which are 

the NIST-BSSR1 multimodal database detailed in section 3.3.1 and the Xm2vts 

benchmark database detailed in session 3.3.2.  

 

     Only the best and the worst biometrics from each modality are chosen for the 

fusion experiments. In the NIST-BSSR1 multimodal database, the right index 

fingerprint (Fri) is paired with the facial matcher C (Fc) and the left index fingerprint 

(Fli) is paired with the facial matcher G (Fg) to develop the best and the worst 

bimodal biometrics fusion respectively. Fc is chosen as a better facial matcher 

because it has better performance than Fg at most of the operating points. All the 
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scores in NIST-BSSR1 are used for testing. For the XM2VTS database, the best facial 

matcher DCTb-GMM (F3) is paired with the best speech matcher LFCC-GMM (S6) 

whereas the worst DCTb-MLP (F5) facial matcher is paired with the worst speech 

matcher PAC-GMM (S7) in the experiments. Only the scores from the evaluation set 

are used for testing for this database. 

 

     The aim of this investigation is to find out if the proposed approach is able to 

enhance the verification accuracy. Therefore, the GCP and ICP are assigned manually 

at this stage. The chosen confidence partitions’ thresholds are listed in table 4.1.  

These partitions are optimised using the testing samples. Four fusion results that are 

based on the best and worst biometrics are graphically shown in fig. 4-2 ~ 4-5. Their 

numerical results are presented in table 4.2 and 4.3. The reported GAR is at FAR 

equal to 0.001%. 

 

 ICP GCP 

NIST-BSSR1 
Best Matchers Fusion 

Sface < 0.55 
Sfinger < 0.15 

Sface > 0.34 

Sfinger > 0.20 

NIST-BSSR1 
Worst Matchers Fusion 

Sface < 0.35 
Sfinger < 0.09 

Sface > 0.20 

Sfinger > 0.20 

Xm2vts 
Best Matchers Fusion 

Sspeech < 0.48 
Sface < 0.44 

Sspeech > 0.41 
Sface > 0.60 

Xm2vts 
Worst Matchers Fusion 

Sspeech < 0.43 
Sface < 1.00 

Sspeech > 0.67 
Sface > 0.79 

 

Table 4-1. Manually assignment of confidence partitions for Hybrid Fusion. 
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Fig 4-3. NIST-BSSR1 worst matchers Hybrid Fusion and its baselines ROC curves. 

 

Fig 4-2. NIST-BSSR1 best matchers Hybrid Fusion and its baselines ROC curves.  



Chapter 4: Confidence Partition and Hybrid Fusion in Multimodal Biometrics 

Verification  

 

 - 95 - 

 

 Fingerprint Face Min-max Sum Hybrid Fusion 

 
EER 

(%) 

GAR 

(%) 

EER 

(%) 

GAR 

(%) 

EER 

(%) 

GAR 

(%) 

EER 

(%) 

GAR 

(%) 

Best 
Matchers 

Fusion 

4.5 82.7 4.3 56.9 0.6 91.9 1.0 93.6 

Worst 
Matchers 

Fusion 

8.6 70.0 5.8 61.1 1.6 92.3 1.3 93.0 

 

Table 4-2. Genuine Accept Rate and Equal Error Rate of Hybrid Fusion and its baselines in 
NIST-BSSR1 multimodal database. 

 

 

 

 

 

Fig 4-4. Xm2vts best matchers Hybrid Fusion and its baselines ROC curves.  
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 Face Speech Min-max Sum Hybrid Fusion 

 EER 

(%) 

GAR 

(%) 

EER 

(%) 

GAR 

(%) 

EER 

(%) 

GAR 

(%) 

EER 

(%) 

GAR 

(%) 

Best 
Matchers 

Fusion 

1.8 81.3 1.1 58.3 0.5 96.0 0.5 96.3 

Worst 
Matchers 

Fusion 

6.5 0.0 6.5 19.0 3.7 46.3 3.2 48.0 

 

Table 4-3 Genuine Accept Rate and Equal Error Rate of Hybrid Fusion and its baselines in 
Xm2vts benchmark database  

 

 

 

Fig 4-5. Xm2vts worst matchers Hybrid Fusion and its baselines ROC curves.  
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     From the graphical and numerical results shown in fig. 4-2 ~ 4-5 and table 4-2 and 

4-3, it can be seen that both the Hybrid Fusion and Min-max Sum fusion outperform 

their single best biometrics. It also can be seen that the proposed Hybrid Fusion is 

able to further improve the results achieved using the Min-max Sum rule fusion. The 

GAR improvement at FAR equal to 0.001% over the Sum rule in all the experiments 

is between 0.3% ~ 3.7%. The lower the EER is the better is the performance. EER 

improvements for worst matcher fusion in both databases are 18.8% and 13.5% and 

remained unchanged for the Xm2vts best matcher fusion. Due to inappropriate 

assignment of ICP in NIST-BSSR1 best matcher fusion, its EER rises up 66.7%. The 

reason is discussed further in the following section (4.4). 

      

     In conclusion, from the reported results have demonstrated that the proposed 

approach is able to improve the EW Sum rule based fusion. However, such 

improvement depends on careful manual assignment of CP. Inappropriate CP 

assignment on the other hand reduces the accuracy. In the next section, an in-depth 

investigation into the achieved improvements is presented.  

      

4.4   Further Analysis of Proposed Approach 

     Fig. 4-6 depicts the separation boundary of the EW Sum rule in bimodal biometrics 

score space. By changing the verification threshold, position of the separation 

boundary can be adjusted whilst retaining its gradient. The accept and reject regions’ 

size can be controlled by this adjustment to adapt to different security levels. Fig. 4-7 

~ 4-10 illustrate the bimodal biometrics score spaces for four of the bimodal 

biometrics fusion experiments. By showing the EW Sum rule’s separation boundary 

in the score space, the achieved verification improvements can be visualised. 



Chapter 4: Confidence Partition and Hybrid Fusion in Multimodal Biometrics 

Verification  

 

 - 98 - 

       

     Fig. 4-7 shows a scatter plot of the NIST-BSSR1 best matchers’ fusion samples. A 

non-confidence region is defined by the Min-max Equal Weighted Sum rule 

separation boundary operated with maximum and minimum thresholds. Only single 

class sample available out of this region, i.e. the samples located out of the non-

confidence region can be safely rejected or accepted.  

 

     To apply the Max or the Min rule to the assigned CP equivalent to project the 

samples onto the x=y function line. For example, a claimant is initially assigned with 

the normalised bimodal biometrics scores of 0.3 and 0.5. If this score vector is in the 

ICP, the Min rule will be applied to his/her score vector. This can be seen as his/her 

score vector is transformed from (0.3, 0.5) to (0.3, 0.3) on the biometrics score space 

 

Fig 4-6. EW Sum rule separation boundary in bimodal biometrics score space. 
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when the EW Sum separation boundary is used1 . In ICP, the samples above the 

separation boundary are vertically projected onto the x=y function line whereas the 

samples below are horizontally projected. Similarly for the GCP, if a score vector e.g. 

(0.7, 0.9) is in GCP, the Max rule is applied. This is equivalent to transform the score 

vector from (0.7, 0.9) to (0.9, 0.9)2. On the score space showing EW Sum separation 

boundary, this can be seen as the samples above the boundary are horizontally 

projected whereas the samples below are vertically projected. The figure on the right 

in fig. 4-7 shows the equivalent scatter plot when the Hybrid Fusion rule (replace EW 

Sum to Min or Max rule in CP) is applied. The verification improvement over the EW 

Sum is due to the samples in the green regions. It can be seen the green regions’ 

samples are projected away from the non-confidence region to the confidence region.   

 

     As a result of the inappropriate assignment of ICP in the experiment in fig. 4-7 

(some of the genuine users are included in the ICP), Hybrid Fusion achieves a higher 

EER than EW Sum and rises the EER of the EW Sum from 0.6% to 1.0%. However 

there is still an improvement when the separation boundary operates at FAR equals to 

0.001%, the GAR rises from 91.9% to 93.6%. This is contributed by the non-

confidence samples that are projected to the GCP. The fusion score distributions of 

the EW Sum and Hybrid Fusion are shown in fig. 4-11. It can be seen that even 

further separation between two classes score is achieved by Hybrid Fusion compared 

to EW Sum, the Hybrid Fusion’s improvement is not proportional to this separation.  

 

                                                 
1 Applying the Min rule to score vector (0.3, 0.5) has the same fusion result as applying EW Sum rule 
to (0.3, 0.3), which is 0.3. 
2 Applying the Max rule to score vector (0.7, 0.9) has the same fusion result as applying EW Sum rule 
to (0.9, 0.9), which is 0.9. 
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     From fig. 4-8, the improvement is mainly contributed by the samples projected to 

GCP. Since most of the ICP samples are already in the confidence region of the EW 

Sum rule, further separation (projection of the ICP samples to the x=y function line) 

of these samples as shown in fig. 4-12 does not result in further improvement. Very 

moderate improvement is achieved in the experiment in fig. 4-9. This is because of 

the very small non-confidence region of the EW Sum involved in the projection. This 

result is also justified by their fusion score distributions as shown in fig. 4-13. It 

shows that the overlap region of the two fusion strategies does not have a significant 

difference. EER and GAR improvement of the experiment in fig. 4-10 is due to the 

large number of ICP samples that are projected. Also from fig. 4-14, the Hybrid 

Fusion score distribution’s overlap region is reduced compared to the EW Sum rule. 
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Fig 4-7. NIST-BSSR1 best matchers fusion’s testing score space with confidence partition assignments (left) and equivalent confidence sample projections (right).   
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Fig 4-8. NIST-BSSR1 worst matchers fusion’s testing score space with confidence partition assignments (left) and equivalent confidence sample projections (right).   
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Fig 4-9. Xm2vts best matchers fusion’s testing score space with confidence partitions assignments (left) and equivalent confidence sample projections (right).   
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Fig 4-10. Xm2vts worst matchers testing fusion’s score space with confidence partition assignments (left) and equivalent confidence sample projections (right). 
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Fig 4-11. NIST-BSSR1 best matchers fusion score distribution densities: Min-max Sum (Left) and 

Hybrid fusion (right).  

 

 
 
Fig 4-12. NIST-BSSR1 worst matchers fusion score distribution densities: Min-max Sum (Left) 

and Hybrid fusion (right).  

 

 
 

Fig 4-13. Xm2vts best matchers fusion score distribution densities: Min-max Sum (Left) and 
Hybrid fusion (right). 

 

 
 

Fig 4-14. Xm2vts worst matchers fusion score distribution densities: Min-max Sum (Left) and 
Hybrid fusion (right).  
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4.5  Conclusions 

     Three conclusions can be made from the experimental results and further analysis 

in section 4.4: 

 

1) Hybrid fusion is a feasible approach to improve the EW Sum rule. However, it 

depends on the accurate assignment of the CPs in order to reduce the non-

confidence samples by projecting the samples to the confidence partitions so the 

verification improvement can be achieved. Prior knowledge of the score 

distributions is required for such an accurate assignment. Inaccurate assignment 

of CPs results in the degradation of the fusion approach. 

 

2) The samples in the confidence region can be safely rejected or accepted whereas 

the sample acceptance or rejection in the non-confidence region has to depend 

on the security threshold. The smaller non-confidence region means less non-

confidence samples therefore better fusion performance. 

 

3) Non-confidence samples carry more information than the confidence samples 

for improving the fusion algorithm’s performance.  

 

     Based on conclusions (2) and (3), the non-confidence related information is able to 

aid effective fusion. In the following chapters, the exploration of this information 

incorporating in the conventional fusion approaches is investigated. The first method 

uses the non-confidence region width as weighting parameter in the Weighted Sum 

rule. The second approach employs the GMM likelihood based fusion to the non-



Chapter 4: Confidence Partition and Hybrid Fusion in Multimodal Biometrics 

Verification  

 

 - 107 - 

confidence region only. Both of these approaches are to further enhance the fusion 

algorithm’s performance and usability.   

 

 



 

 

5 TOWARDS A BEST LINEAR COMBINATION FOR 

MULTIMODAL BIOMETRICS FUSION 

 

     Owing to effectiveness and ease of implementation, the Sum rule has been widely 

applied in the biometric fusion research. Different matcher information has been used 

as weighting parameters in the Weighted Sum rule. In this work, a new parameter is 

devised to reduce the genuine/imposter distribution overlap. It is shown that the 

overlap region width can be used as effective weighting parameter to achieve the best 

generalisation performance compared to other commonly used matcher information. 

Furthermore, this conceptually simple and fast method is demonstrated achieving 

comparable performance to other conventional training based methods. This proposed 

method is tested using the 19 bimodal biometrics experiments conducted in chapter 2. 

 

5.1   Introduction 

     The Sum Rule is one of the effective score level fusion approaches for biometric 

score level fusion research. Although it is a very simple algorithm, it outperforms 

some of the more complex fusion methods [43]. Weighting is used in the Sum rule to 

indicate the importance of each modality in the fusion. There are generally two 

different weighting schemes. The first one is to apply a same weight to all the scores 

generated by the same biometric matcher. This is equivalent to adjusting the 

separation boundary’s gradient (e.g. using the biometric matcher performance 

measure as weighting parameter [106]). Another is to apply different weight to 

different users accordingly even the scores are generated by the same biometric 

matcher. This is equivalent to adjusting the score vector’s position (e.g. using 
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individual biometrics quality measure as weighting parameter [73], [76]). In fig. 5-1, 

P represents the bimodal biometrics score vector of a specific user. Poriginal is relocated 

to Puser weight after applying 0.5 and 1.5 weighting scalars to its bimodal biometrics. 

Such weighting scheme highly depends on the reliability of the user specific 

information. However, the training data that underpins such information is usually not 

sufficient or adequately representative [132].  

 

 

     In contrast to the above, the gradient of the decision boundary is adjusted by using 

individual matcher information. Boundary 2’s gradient in fig. 5-1 is adjusted to 

become Boundary 1’s by assigning higher weight to the x-axis fingerprint matcher but 

a lower weight to the y-axis facial matcher. The weighting parameter under this 

weighting scheme can be easily obtained from a training set. The commonly used 

matcher information are EER and D-Prime [106]. For a given FAR, the best gradient 

 

Fig 5-1. The difference between adjusting samples position and separation boundary’s 
gradient in Weighted Sum rule fusion. 
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that is used to achieve the best GAR can be found through exhaustive search [40], 

[112], [113]. Although exhaustive search guarantees a high verification rate, an 

optimal weighting depends on a special purpose algorithm that might be complex and 

or time consuming. In addition, for determining the optimal weights, training is 

required for every single operating point. 

 

      From chapter 3, it is concluded that the biometrics verification errors arise from 

the overlap region. By projecting away the overlap region’s samples to the correct 

confidence region, the verification rate is improved. A smaller overlap region 

generally contains less non-confidence samples thus it produces less errors and results 

in a better generalisation performance over the entire operating points. Aside from 

projecting away the overlap region’s samples, adjusting the gradient of the separation 

boundary will also reduces the overlap region. Therefore the aim of this work is to 

achieve the best linear combination by reducing the overlap region in a novel way by 

adjusting the gradient of the separation boundary. The Equal Weighted (EW), Equal 

Error Rate Weighed (EERW) and D-Prime Weighted (DPW) Sum rules are the 

commonly used methods. They are used as the baselines to evaluate this proposed 

method. The method is also further compared with the conventional best performing 

training based method to evaluate its effectiveness.  

 

     The details of the new method are given in the following section. Section 5-3 

describes the experimental setup and the results analysis. Section 5-4 shows the 

comparisons of the proposed approach to other categories’ best performing training 

based fusion approaches and to the state-of-the-art fusion algorithm in a higher 

dimension. This section is then followed by the conclusion.  
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5.2   Non-Confidence Width Weighted Sum Rule and Its Baselines 

     Fig. 5-2 illustrates a bimodal biometrics fusion that is viewed from one-

dimensional and two-dimensional score spaces. There is a significant overlap region 

causing the difficulty to classify the claimant into genuine user or impostor groups. 

The reasons of this overlap region formation are discussed in section 1.4. The grey 

regions in (a), which are located outside the overlap part, are confidence regions 

where only a single class of users can be found.  Therefore the confidence regions’ 

samples can be safely rejected or accepted whereas the samples in the overlap region 

can only be classified with referring to the threshold boundary.  

 

 

 

(a) 
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(b) 

Fig 5-2. Bimodal biometrics linear fusion views: (a) one dimensional view and (b) two dimensional 
view. 

 

     The width of the overlap region is termed Non-Confidence Width (NCW). NCW 

can be determined from the difference between the maximum impostor score and the 

minimum genuine user score in a similarity based measurement biometrics system. It 

is shown in (5.1). 

 

GI MinMaxNCW −=                                     (5.1) 

 

     From fig. 5-2(b), the NCW, which is manipulated by the maximum impostor fused 

score, Max
I, and the minimum genuine user fused score, Min

G, can be adjusted by 

manipulating the separation boundary’s gradient. It is depicted in fig. 5-3: 
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     The two overlap circles in fig. 5-3 represent the approximated scatter of the 

genuine user and impostor scores. The straight lines are separation boundaries with 

different verification thresholds. Varying the decision threshold is a process of 

moving the boundary while preserving its gradient. As shown by (a), the circles’ area 

between the separation boundaries is the non-confidence region and is at maximum. 

The non-confidence region is the area where the samples cannot be clearly classified 

by the separation boundary. However, by adjusting the gradient of the boundary, the 

non-confidence region can be reduced as shown in (b). When the boundary is parallel 

to the line connecting the intersection points of the two circles (P1 and P2), the non-

confidence region is restricted to a minimum as shown in (c). Such adjustment 

 
Fig 5-3. Reducing the NCW by adjusting the gradient of the linear boundary. 
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enables the samples to be classified with minimum error so a better ROC can be 

obtained. Therefore it is desired that the separation boundary has the same gradient as 

the line connecting the circles’ intersection points. As (d) depicts, this specific 

gradient m can be approximated by the NCW of the two matchers in bimodal 

biometrics fusion, where m in (d) equals to (5.2).  

 

GI

IG

MinMax

MaxMin
m

11

22

−

−
=                                                (5.2) 

cy
NCW

x
NCW

=+
21

11
                                        (5.3) 

 

     By using the common form of a linear equation, y=mx+c, (5.3) can be derived. c is 

an adjustable threshold for controlling of the boundary position. In this Weighted Sum 

rule, biometrics scores are inversely proportional weighted by their NCW. Their 

respective weights Wk can be obtained by applying (5.4) so that∑
=

=
K

k

kW
1

1 , where K 

is the total matcher number. Therefore (5.3) can be rewritten as (5.5), Si is the fused 

score for user i and S’i,k is the biometric score that is generated by matcher k for user i. 
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     This method is referred to as the Non-Confidence Width Weighted Sum rule 

(NCWW). In contrast to conventional rule based fusion methods, the advantages of 

this method are that it is more robust in obtaining better fusion result and it does not 

need score normalisation. Moreover, the NCW information is very easy to obtain. 

Three commonly used weighting schemes are applied as baselines in the experiments 

to evaluate the effectiveness of the proposed method: 

 

1)   Equal Weighted: This weighting scheme assumes that the different modalities of 

biometrics have the same performance and therefore the scores are combined by using 

the same weight, Wk as shown in (5.6). However, this is not practical when the 

different biometrics are having different discrimination abilities.     

 

                                            
K

W Kk

1
...1 ==                                                        (5.6) 

 

2)   EER Weighted: EER is the error rate where false acceptance rate is equal to the 

false rejection rate. It is used to evaluate the performance of a biometrics matcher. 

Nonetheless, this single operating point measurement is not the only factor that 

determines the discrimination ability. For instance, a biometric matcher may have a 

better GAR at lowest FAR but with a poorer EER than another biometric matcher. 

Moreover, the EER of a matcher varies for different testing populations. Therefore 

EER is not a reliable parameter to weight different biometrics’ matcher contribution. 

As shown in (5.7), the weight Wk assigning to the biometrics matcher k is inversely 

proportional to its EER. 
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k

K

k

k
k

EER

EER
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1

1

1=
Σ

=                                                        (5.7)    

 

3)  D-Prime Weighted: d’ statistically measures the separation of impostor and 

genuine user biometrics scores. As depicted in (5.8), G

kµ  and I

kµ  are the mean 

genuine user and impostor scores for biometric matcher k where G

kσ  and I

kσ  are the 

standard deviations. The further separation of the two classes is desired. Therefore the 

associated matcher weight is directly proportional to its d’ as shown in (5.9).  
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     d’ is a measure of two classes’ score separation, which includes confidence 

samples in its computation. A statistical distance measurement without considering 

the confidence and non-confidence regions is not robust if used as weighting 

parameter. For instance, a biometrics with greater d’ might have lower discrimination 

ability because of having a greater overlap region which causes the worse 

performance. Moreover, the sensitivity of the mean and the standard deviation to 

outliers might further degrade the robustness and performance.  
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5.3   Experiment Set Up and Results Analysis 

     It is desirable to examine the effectiveness of the proposed method before 

introducing further complexities. Therefore, although the proposed method can be 

generalised to higher dimensions, this investigation focuses on the performance of 

bimodal biometric fusion. The 19 bimodal biometrics fusion experiments that were 

introduced in chapter 3 are once again used to test the proposed method and its 

baselines. All the score sets are from the truly multimodal databases: the NIST-

BSSR1 multimodal database and the Xm2vts benchmark database. Since no matcher 

information is given, each of the databases is evenly divided into two sets. Using the 

Xm2vts database’s training and testing set defined by the author restricts the number 

of experiments, i.e. it can be carried out only once. Therefore, to examine the 

robustness of the proposed method in this database, the testing and training scores are 

randomly chosen from this database to form equal training and testing sets. The 

required weighting parameters are obtained from the first set and the remaining 

samples are used for testing. Such equal size partition for testing and training enables 

one to evaluate the proposed approach without having a bias for the testing and 

training sets size.  

 

     For the weighting schemes acting as baselines, before the Weighted Sum rule is 

applied, the biometrics scores are normalised using Min-max normalisation which is 

detailed in table 2-1. Each of the experiments were repeated 30 times with different 

random partitions of the databases for statistical reason. For numerical comparison, 

four operating points captured over the ROC are listed in the tables below. The 

average results are reported and their standard deviations are shown in brackets in 

table 5-1 and 5-2. Best results are reported solely based on average performance 
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(shown as shaded figure) and using the t-test, a statistical significance hypothesis test 

at 95% confidence interval (including the shaded and bordered figures). M1 and M2 is 

the first and second biometrics matcher involving in the experiments. These matchers’ 

details can be found in section 3.3. 

 

  GAR(%) at FAR equals to 0.001% 

Exp. 
No. 

M1 M2 EW EERW DPW NCWW 

1 70.99(2.94) 56.37(3.56) 90.66(1.20) 84.78(3.21) 83.34(2.46) 92.36(1.62) 

2 72.33(2.67) 61.07(2.62) 92.76(1.23) 91.19(1.63) 87.49(1.76) 89.07(1.90) 

3 82.65(1.35) 55.17(4.82) 92.50(1.25) 91.48(2.12) 83.49(2.78) 95.40(1.18) 

4 82.73(1.78) 60.88(2.30) 95.00(0.80) 94.94(1.04) 90.27(1.67) 92.34(1.94) 

Total 
Best 

Result 
0 0 2 0(1) 0 2 

   

 
(a) 

    

 GAR(%) at FAR equals to 0.01% 

Exp. 
No. 

M1 M2 EW EERW DPW NCWW 

1 76.82(1.61) 72.86(3.31) 94.27(1.21) 90.71(2.51) 89.59(2.43) 94.83(1.33) 

2 77.76(1.96) 68.36(2.18) 94.39(1.05) 92.76(1.38) 90.45(1.55) 93.51(1.50) 

3 84.79(1.24) 73.01(2.50) 96.63(0.99) 96.19(1.43) 92.13(1.46) 97.52(0.83) 

4 84.66(1.82) 68.08(1.70) 96.80(0.73) 96.95(0.91) 93.26(1.38) 96.26(0.98) 

Total 
Best 

Result 
0 0 1(2) 1 0 2 

   

 
(b) 

    

 GAR(%) at FAR equals to 0.1% 

Exp. 
No. 

M1 M2 EW EERW DPW NCWW 

1 82.95(1.55) 83.97(1.78) 97.31(0.74) 95.67(1.34) 95.45(1.20) 97.66(0.86) 

2 83.54(1.49) 77.84(1.92) 96.49(0.89) 95.58(1.08) 93.47(1.38) 96.41(0.84) 

3 89.82(1.11) 83.74(1.77) 97.73(0.81) 97.68(0.88) 96.60(1.14) 99.07(0.57) 

4 89.94(1.50) 77.82(2.17) 97.94(0.65) 98.24(0.66) 95.96(0.91) 98.51(0.56) 

Total 
Best 

Result 
0 0 1 0 0 3(4) 

   

 
(c) 
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 EER 

Exp. 
No. 

M1 M2 EW EERW DPW NCWW 

1 8.37(1.04) 4.45(0.45) 1.26(0.36) 1.74(0.47) 1.86(0.41) 1.04(0.39) 

2 8.39(0.84) 5.75(0.77) 1.76(0.44) 2.44(0.74) 2.99(0.67) 1.39(0.37) 

3 4.82(0.57) 4.45(0.48) 0.51(0.20) 0.57(0.24) 1.05(0.30) 0.38(0.19) 

4 4.94(0.70) 5.77(0.73) 1.34(0.48) 0.99(0.49) 2.52(0.61) 0.49(0.19) 

Total 
Best 

Result 
0 0 0 0 0 4 

 

(d) 

* The shaded figures represent the best average fusion results. The figures with border represent the 
average fusion results that are not significantly different from the best results tested using t-test 
at 95% confidence interval.  
 

Table 5-1. Weighted Sum fusion performance (average GAR) in four NIST-BSSR1 bimodal 
biometrics fusion experiments under (a) FAR=0.001% (b) FAR=0.01% (c) FAR=0.1% and (d) 

EER. 
 

 
 

 
 

Fig 5-4. NIST-BSSR1 bimodal biometrics fusion experiments: 30 partitions average result’s 

standard deviation to show the fusion performance consistency. 
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     In NIST-BSSR1 experiments, all the fusion strategies outperform their respective 

single best biometrics. It is obvious that the NCWW has a better generalisation 

performance than the compared schemes. It generally achieves more best fusion 

results (GAR) over all compared operating points. Under the lowest operating point, 

NCWW outperforms baselines in the range of 1.7%~11.9% with standard deviation 

equal to or less than 1.62. However it does not perform well in the experiments 

involved with Fg (Exp. no. 2 and 4) under this lowest operating point. Comparing the 

results outperforming the NCWW solely based on the average value shows that the 

performance differences are in the range of 2.1% ~ 3.7%. As seen in fig. 3-2, Fg’s 

score distribution has a long tail and multiple components of Gaussian within the 

distribution. Therefore the two circles model assumed in fig. 5-3 may not suitably fit 

experiments involving Fg because there might be several clusters available within the 

score space instead of a single one. This causes the high variation of NCW to be used 

in the Weighted Sum rule to degrade this fusion approach. This unreliability is 

reflected in the performance of the standard deviation in fig. 5-4. In this figure, this 

approach has the highest standard deviations under the lowest operating point in Exp. 

2 and 4. However, for the consecutive operating points, the NCWW performance 

differences to the other weighting scheme that achieves best fusion result are just less 

than 0.7%. NCWW outperforms the other methods in most of the experiments and 

operating points and hence demonstrates the robustness of this fusion approach. 
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 GAR(%) at FAR equals to 0.002% 

Exp. 
No. 

M1 M2 EW EERW DPW NCWW 

1 5.14(13.93) 57.02(2.86) 93.74(0.88) 94.64(0.90) 92.80(1.15) 96.56(0.93) 

2 6.08(14.52) 15.80(1.63) 90.05(0.93) 87.20(1.74) 88.67(1.44) 88.58(1.05) 

3 2.69(4.61) 38.34(5.49) 90.43(1.51) 88.87(1.16) 89.94(1.23) 85.87(2.51) 

4 60.01(6.07) 56.13(2.21) 93.70(1.07) 76.88(4.94) 93.52(1.01) 91.76(1.77) 

5 59.77(4.89) 15.98(1.64) 79.22(2.11) 80.25(2.77) 80.62(2.05) 79.11(2.20) 

6 59.39(5.23) 38.89(5.55) 82.31(2.93) 82.22(3.28) 82.19(3.02) 83.32(2.90) 

7 77.54(4.86) 56.77(3.07) 97.22(0.67) 94.37(2.35) 97.33(0.68) 96.27(1.30) 

8 78.87(3.39) 16.41(1.77) 83.04(3.37) 88.99(2.32) 87.18(2.62) 84.44(3.19) 

9 79.58(3.33) 39.43(6.11) 92.60(1.54) 90.26(2.56) 93.11(1.79) 91.71(1.95) 

10 1.22(1.03) 57.12(2.63) 78.34(2.39) 92.37(3.04) 81.29(2.38) 94.37(4.32) 

11 1.60(2.62) 16.07(2.05) 67.05(1.69) 54.91(3.81) 65.58(2.33) 77.12(4.05) 

12 1.12(1.76) 38.05(5.85) 66.18(4.31) 58.68(4.44) 66.74(4.20) 83.92(2.58) 

13 0.28(1.02) 56.80(3.29) 67.12(3.25) 86.39(3.63) 78.4(2.98) 86.85(3.17) 

14 0.06(0.10) 16.06(1.64) 50.14(2.56) 49.35(3.06) 57.56(2.37) 63.16(3.52) 

15 0.17(0.49) 35.81(4.60) 52.43(4.04) 56.99(5.79) 66.17(4.13) 78.70(2.40) 

Total 
Best 

Result 
0 0 3(6) 1(4) 3(6) 8 

 
(a) 

 

 GAR(%) at FAR equals to 0.01% 

Exp. 
No. 

M1 M2 EW EERW DPW NCWW 

1 78.06(11.4) 68.41(2.63) 94.23(0.82) 95.22(1.10) 93.49(1.10) 98.04(0.52) 

2 79.25(7.14) 25.77(2.05) 92.20(0.96) 90.41(1.42) 91.66(1.26) 91.78(1.40) 

3 75.99(12.01) 49.75(2.64) 92.91(0.97) 89.87(1.08) 91.19(1.30) 93.91(1.46) 

4 68.80(2.69) 67.45(2.28) 95.60(0.80) 87.52(2.91) 96.02(0.77) 96.22(0.59) 

5 69.09(2.04) 25.45(2.96) 85.70(1.72) 86.34(1.44) 86.28(1.61) 85.73(1.49) 

6 69.02(2.13) 50.19(1.98) 89.48(1.29) 89.24(1.38) 89.52(1.29) 88.91(1.18) 

7 88.61(1.69) 68.88(2.66) 98.38(0.42) 98.00(0.59) 98.36(0.43) 98.38(0.42) 

8 88.92(1.02) 25.19(1.83) 92.61(1.62) 94.02(0.71) 94.81(0.73) 93.33(1.77) 

9 89.01(1.55) 50.18(2.56) 95.30(1.12) 94.82(1.14) 95.64(0.83) 94.79(1.19) 

10 25.32(7.98) 68.83(2.64) 85.07(1.71) 95.92(1.46) 86.92(2.28) 97.34(0.52) 

11 25.63(10.66) 25.44(1.93) 75.09(2.72) 66.40(3.25) 73.35(2.81) 86.31(1.46) 

12 26.68(11.09) 49.60(1.65) 78.10(2.00) 73.04(2.51) 78.29(2.13) 88.86(1.91) 

13 5.24(3.82) 68.68(2.49) 73.63(1.98) 92.58(1.11) 85.39(1.50) 92.64(1.10) 

14 4.43(1.83) 25.68(2.01) 58.56(2.43) 57.72(2.73) 65.33(2.47) 73.53(2.54) 

15 4.27(2.49) 49.40(1.78) 62.84(2.17) 65.99(3.43) 72.26(2.54) 83.52(1.80) 

Total 
Best 

Result 
0 0 2(5) 1(3) 3(6) 10(12) 

 
(b) 
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 GAR(%) at FAR equals to 0.1% 

Exp. 
No. 

M1 M2 EW EERW DPW NCWW 

1 93.25(0.92) 88.71(1.05) 95.74(0.85) 97.29(1.25) 95.13(0.96) 99.15(0.30) 

2 93.54(0.85) 55.25(1.83) 95.20(0.69) 94.15(0.90) 94.73(0.79) 97.47(0.59) 

3 93.08(0.76) 67.25(2.30) 94.97(0.69) 93.83(0.80) 94.36(0.93) 98.11(0.43) 

4 82.14(1.27) 88.90(1.03) 98.57(0.39) 98.20(0.65) 98.78(0.37) 99.00(0.33) 

5 82.20(1.32) 54.59(1.83) 93.80(0.76) 93.82(0.81) 93.95(0.72) 93.72(0.76) 

6 81.97(1.13) 67.66(1.29) 95.49(0.71) 95.41(0.76) 95.52(0.70) 95.46(0.78) 

7 94.31(0.76) 88.96(1.56) 99.38(0.22) 99.32(0.22) 99.38(0.22) 99.38(0.22) 

8 94.49(0.61) 54.84(1.87) 97.05(0.62) 97.51(0.63) 97.59(0.55) 97.25(0.63) 

9 94.29(0.63) 67.64(1.71) 98.11(0.49) 97.55(0.63) 97.97(0.53) 97.87(0.51) 

10 80.16(1.42) 88.76(1.01) 92.61(1.09) 98.61(0.70) 93.53(1.31) 99.38(0.25) 

11 80.83(1.35) 55.44(1.83) 90.66(0.83) 87.30(1.22) 89.96(1.05) 95.42(0.54) 

12 80.29(1.56) 67.61(1.65) 89.43(0.97) 87.60(1.30) 89.63(1.32) 96.88(0.63) 

13 50.78(2.90) 88.87(1.11) 82.25(1.39) 98.25(0.36) 91.09(1.63) 97.95(0.40) 

14 51.45(2.85) 55.74(1.58) 77.24(1.55) 76.39(2.32) 81.20(1.91) 88.32(1.03) 

15 51.28(3.23) 67.51(1.44) 76.41(1.75) 78.09(2.48) 83.72(2.31) 92.41(1.18) 

Total 
Best 

Result 
0 0 2(4) 1(5) 4(5) 10(12) 

(c) 

 

 EER 

Exp. 
No. 

M1 M2 EW EERW DPW NCWW 

1 1.73(0.28) 0.99(0.09) 0.84(0.13) 0.59(0.18) 1.06(0.22) 0.32(0.09) 

2 1.67(0.30) 5.83(0.42) 1.07(0.21) 1.42(0.30) 1.29(0.28) 0.72(0.15) 

3 1.78(0.24) 4.42(0.38) 1.10(0.15) 1.49(0.24) 1.31(0.19) 0.60(0.18) 

4 4.44(0.45) 0.98(0.09) 0.41(0.09) 0.50(0.13) 0.40(0.11) 0.42(0.15) 

5 4.39(0.32) 5.78(0.31) 1.38(0.22) 1.34(0.16) 1.35(0.19) 1.38(0.21) 

6 4.39(0.33) 4.42(0.33) 1.16(0.17) 1.19(0.20) 1.18(0.17) 1.01(0.21) 

7 1.68(0.24) 0.96(0.10) 0.45(0.13) 0.40(0.12) 0.46(0.15) 0.44(0.14) 

8 1.61(0.23) 5.76(0.44) 1.02(0.20) 1.01(0.22) 0.95(0.15) 0.99(0.19) 

9 1.68(0.22) 4.43(0.45) 0.69(0.17) 0.94(0.29) 0.68(0.15) 0.74(0.15) 

10 3.14(0.38) 0.97(0.10) 1.04(0.13) 0.36(0.10) 0.87(0.15) 0.32(0.08) 

11 3.03(0.36) 5.81(0.37) 1.26(0.13) 1.78(0.25) 1.37(0.17) 0.65(0.04) 

12 3.15(0.32) 4.41(0.37) 1.49(0.14) 1.78(0.22) 1.47(0.18) 0.81(0.19) 

13 5.48(0.33) 0.97(0.12) 2.34(0.24) 0.48(0.09) 1.02(0.12) 0.52(0.09) 

14 5.37(0.42) 5.72(0.38) 3.12(0.26) 3.20(0.35) 2.29(0.24) 1.57(0.23) 

15 5.58(0.47) 4.36(0.37) 3.35(0.23) 2.99(0.39) 2.13(0.24) 1.53(0.24) 

Total 
Best 

Result 
0 0 0(5) 3(4) 3(4) 9(14) 

(d)) 

* The shaded figures represent the best average fusion results. The figures with border represent the 
average fusion results that are not significantly different from the best results tested using t-test 
at 95% confidence interval. 
 
Table 5-2. Weighted Sum fusion performance (average GAR) in fifteen Xm2vts bimodal biometrics 

fusion experiments under (a) FAR=0.002% (b) FAR=0.01% (c) FAR=0.1% and (d) EER. 
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     Most of the fusion results using Xm2vts outperform the single best biometrics. 

Again, as the total best results shown in table 5-2, NCWW significantly provides 

more best GAR than the other methods under all operating points. Amongst the best 

results based on average value, NCWW outperforms the other fusion results with 

differences up to 26.27%. At lowest operating point, for NCWW’s results that are not 

outperforming others, the performance differences are in the range of 0.09%~4.56% 

compared to the best achieved fusion results. For the consecutive operating points, 

this is greatly reduced. Except Exp. no. 8, which has a performance difference of 

Fig 5-5. Xm2vts benchmark database bimodal biometrics fusion experiments: 30 partitions 

average result’s standard deviation to show the fusion performance consistency. 
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1.48% at second lowest operating point, the performance differences of the other 

experiments and operating points are equal to or less than 0.85%.  

 

     NCWW outperforms with significant difference when the experiments involve 

face matchers, F4 and F5. Referring to fig. 3-5, it can be seen that two different 

classes’ scores are around -1 to 1. By applying an inverse tangent to these scores prior 

to the Min-max normalisation, the author in [56] demonstrates a fusion improvement 

for the EW Sum rule. This trial once again depicts the importance of choosing the 

appropriate normalisation algorithm on a case by case basis for rule based fusion, 

whereas the proposed method does not has to make this choice to achieve the best 

result. Fig. 5-5 depicts the average performance standard deviation. All the Weighed 

Sum rules’ results show a relative high variation in the experiments involving F4 and 

F5 (Exp. no. 10 ~15). This is due to the significant spread but low density of the non-

confidence region that causes the significant difference of non-confidence score 

scatters through different partition trials.   

 

5.4   NCWW Comparison to Other Conventional Approaches and in 

Higher Dimension.   

     Based on the same experimental set-up, NCWW results obtained in this chapter are 

directly comparable to the results obtained by conventional fusion approaches in 

chapter 3. Table 5-3 and fig. 5-6 show comparisons at the lowest operating point. In 

the table, the shaded figures represent the best achieved fusion results and the figures 

with border are the best results that are in 95% confidence interval. 
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     Fig. 5-6 shows the performance differences of NCWW and the compared 

approaches. In this figure, the positive value represents that NCWW outperforms the 

compared approach. Table 5-3 illustrates that there are 7 out of 19 experiments (Exp. 

no. 3, 5, 10, 14, 15, 16 and 19 in fig. 5-6.) where NCWW performs comparable or 

better, with statistical significance over the rest. Such comparable or outperforming 

result’s differences are in the range of -0.15% ~ 5.29%.  Compared to the best result 

achieved by the other approaches, there are 6 experiments (Exp. no. 1, 6, 8, 11, 13 and 

17 in fig. 5-6.) where NCWW performs less effective in the moderate range of -0.96% 

~ -1.38%. For the rest of the experiments, NCWW is significantly underperforming. 

From fig. 5-6, it can be seen that these are experiments 2, 4, 7, 9, 12 and 19. The best 

approaches outperform NCWW in the range of -1.77% ~ -5.88%.    

 

     Based on the analysis above, and considering that NCWW is a conceptual simple 

and fast, parameters can be easily obtained from the training samples without using a 

specific algorithm and does not require careful modelling of the score distributions, 

NCWW is an alternative fusion approaches to the other conventional state-of-the-art 

approaches.  
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NIST-
BSSR1 

Exp. 
No. 

NCWW LREG SVM JLLR MLLR 

1 92.36(1.62) 93.32(0.41) 93.14(0.50) 92.70(0.88) 92.05(1.17) 

2 89.07(1.90) 91.53(1.51) 91.74(1.52) 92.88(0.71) 91.93(2.03) 

3 95.40(1.18) 95.55(0.96) 95.30(1.01) 95.33(1.17) 95.30(1.72) 

4 92.34(1.94) 94.71(2.07) 94.65(1.62) 94.12(2.12) 93.75(3.54) 

      

Xm2vts 
Exp. 
No. 

NCWW LREG SVM JLLR MLLR 

1 96.56(0.93) 96.59(1.04) 96.65(1.03) 95.91(1.21) 96.14(1.00) 

2 88.58(1.05) 88.07(0.83) 88.22(0.85) 88.93(2.57) 89.84(2.19) 

3 85.87(2.51) 83.95(3.27) 83.89(3.37) 89.01(3.72) 91.75(1.06) 

4 91.76(1.77) 92.12(1.26) 92.41(1.21) 93.05(1.18) 93.13(1.10) 

5 79.11(2.20) 80.40(0.96) 80.88(1.48) 78.85(3.59) 80.35(1.61) 

6 83.32(2.90) 82.10(2.73) 82.10(2.87) 79.17(4.94) 81.50(3.38) 

7 96.27(1.30) 97.30(1.13) 97.47(0.85) 96.94(1.02) 97.65(0.78) 

8 84.44(3.19) 87.28(2.60) 87.19(2.60) 87.86(2.38) 87.11(2.79) 

9 91.71(1.95) 92.45(1.30) 92.87(1.78) 92.18(2.12) 92.53(1.43) 

10 94.37(4.32) 89.08(12.85) 92.08(6.71) 92.20(3.00) 92.76(4.96) 

11 77.12(4.05) 76.19(5.32) 76.21(5.26) 72.86(2.94) 73.59(3.36) 

12 83.92(2.58) 83.58(2.46) 83.56(2.49) 79.18(3.63) 81.58(2.19) 

13 86.85(3.17) 86.63(3.10) 86.73(3.15) 86.34(2.83) 87.98(1.82) 

14 63.16(3.52) 62.52(3.92) 62.40(3.93) 57.96(3.78) 62.94(2.43) 

15 78.70(2.40) 81.08(3.43) 80.99(3.36) 77.32(1.72) 79.67(2.10) 

      

* The shaded figures represent the best average fusion results. The figures with border represent the 
average fusion results that are not significantly different from the best results tested using t-test 
at 95% confidence interval. 
 

Table 5-3. NCWW comparisons with conventional fusion methods at lowest operating points. 
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* The error bars are plotted at +/- 1 standard error (sample no. = 30).  

Fig 5-6. NCWW performance difference (GAR at lowest FAR) to other conventional approaches in 19 experiments. 
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     Subsequently, the approach is applied to higher dimensional score space to further 

examine its effectiveness and compared to the state-of-the-art method. As an example, 

the Gaussian Mixture Modelling likelihood ratio based fusion in [56] is used for 

comparison. In this work, all the matchers in both databases are fused respectively in 

a multi-biometric fusion experiment. In NIST-BSSR1, four biometrics sources (Fli, 

Fri, Fg and Fc) are fused whereas eight sources (F1~F5 and S6~S8) are combined in 

the Xm2vts benchmark database. Table 5-4 shows the comparison results. 

 

          The compared fusion method in [56] requires the fitting algorithm presented in 

[138] to search for a suitable component numbers for GMM. Both the modelling and 

fitting processes are complicated and time consuming. This is especially the case 

when dealing with large scale biometrics data evaluation. NCWW only requires the 

minimum genuine user score and maximum impostor score as input parameters. 

Moreover, it involves only simple addition, therefore it is conceptually simple and 

very easy to implement. The results show that this simple approach outperforms or 

performs comparable to the complicated fusion method in [56] in the higher 

dimensional fusion experiments.  
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Likelihood Ratio 

Based Fusion 
NCWW 

 
Mean GAR at 
0.01% FAR 

 

99.1% 99.2% 

NIST-BSSR1 
 

95% Confidence 
Interval on increase 
in GAR at 0.01% 

FAR 
 

[13.5%,  14.0%]* [14.0%,  14.4%]** 

 
Mean GAR at 
0.01% FAR 

 

98.7% 99.0% 

Xm2vts 
Benchmark 
Database 

 
95% Confidence 

Interval on increase 
in GAR at 0.01% 

FAR 
 

N/A N/A 

* With refer to best single matcher’s performance at GAR equals to 85.3%. 
** With refer to best single matcher’s performance at GAR equals to 85.0%. 

 
Table 5-4. Higher dimensional fusion comparisons of NCWW to [56]. 

 
 

5.5   Conclusions 

     It was demonstrated that NCWW consistently outperforms the conventional 

Weighted Sum rule in most of the experiments. While it is possible to further enhance 

the conventional rule based fusion methods, by carefully choosing the normalisation 

algorithm on a case by case basis, NCWW can achieve the best result without having 

to make this choice or using any normalisation algorithm.  

 

     NCWW performs comparably well to the conventional state-of-the-art fusion 

approaches not only in bimodal biometrics fusion but also at higher dimensional 

biometrics fusion. However such performance can only be assured provided that the 
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biometrics scores’ distributions are close to the assumed model in fig. 5-3. In this case, 

NCW, as defined in (5.1), can be effectively used as weighting reference.  

 

     While the conventional approaches provide comparable fusion results, NCWW has 

the advantage that it is conceptually simple and easy to implement and to understand. 

Its parameters can be easily obtained from the training samples without the need of 

using specific algorithms and does not need to model the biometrics score 

distributions. Furthermore, the fusion can be done almost instantly as it only involves 

simple arithmetic and in fact training is not required. 

 

     Basing the NCW on I

kMax   and 
G

kMin  difference alone is sensitive to outliers and 

may lead to unreliability and degradation of this fusion approach. However, NCW can 

be extended to include the corresponding density and other overlap region’s 

information. By doing this, unreliability and degradation can be reduced and a further 

improvement can be achieved. 

 

 

 

 

 

 

 



 

 

6 A NEW APPROACH TO LIKELIHOOD RATIO BASED 

MULTIMODAL BIOMETRICS SCORE FUSION 

 

     Density based score fusion for biometrics has the advantage of not needing score 

normalisation or tuning of the parameters and additional biometric information can be 

easily incorporated. It is able to consistently achieve a high verification rate at any 

operating point, provided the score densities are estimated accurately. The Gaussian 

Mixture Model has been successfully used to estimate the biometrics score density of 

impostor and genuine user. However, the estimation accuracy highly relies on the 

selected component numbers and this selection can be a very time consuming process, 

especially when encountering a significant amount of training samples. This restricts 

the usability of this fusion approach. In this chapter, only the non-confidence samples 

are used to train the Gaussians Mixture Model by applying random component 

numbers. By doing this, not only a comparable verification rate can be achieved in 

most of the experiments without having to use the component number searching 

algorithm, but the method also demonstrates a considerable reduction in training time.  

 

6.1   Introduction 

     Likelihood Ratio (LLR) based fusion is one of the density based score fusions. It 

transforms the score into a density before it employs the LLR to make a decision. One 

of the main advantages of this method is that it enables additional probability based 

biometrics information to be incorporated into the algorithm directly without having 

to modify it [56]. Furthermore, a multimodal biometric application covering a large 

scale population has a better chance of overcoming the missing data problem as 

mentioned in section 2.2.3.3. By assigning unity probability to the missing biometrics 
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value, the missing data does not influence the use by a claimant who does not possess 

sufficient biometrics traits [57].  

 

     Unlike the linear separation boundary, e.g. in the rule based approach and some of 

the classification based fusion methods, density based fusion achieves optimal 

performance at any desired operating point directly, provided the density estimation is 

accurate. By transforming the score into density, the score normalisation which has to 

be carefully chosen by the rule based fusion method, is not needed.  

 

     Eight state-of-the-art fusion strategies are chosen in [133] for comparison. They 

are from three different fusion categories and are selected based on their reported 

performance. Their work confirms that the product of LLR fusion is the most accurate 

method. However, it is very important to estimate the genuine user and impostor’s 

densities reliably and accurately, because the LLR fusion performance highly depends 

on these estimations. This method is therefore complicated to implement because 

accurate curve fitting and density estimation is needed. In this work, Kernel of 

Density Estimator (KDE) is used. Gaussian Mixture Model (GMM) is successful in 

modelling density in [150] and [151] and Nandakumar et. al. demonstrate that it is not 

only effective in modeling the score densities, but it is also easier to implement [56].   

 

     Regardless of the fact that the parameter for tuning is not required for GMM, 

choosing the precise component numbers is a critical issue. The modeling accuracy is 

very sensitive to this parameter. Higher component number causes over fitting but 

lower component number results in a less accurate estimation. The work in [56] 

determines the component numbers automatically by using the state-of-the-art fitting 
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algorithm available from [138]. However, it is a very time consuming searching 

process.  

 

     For practical implementation, one not only has to consider the availability of this 

searching algorithm, the required searching time restricts the usability of this method. 

For example, the real world biometrics systems are easily affected by the 

environmental factors, template aging, incorrect interaction with the sensors etc. The 

pre-trained models might not account for all these variations. Furthermore, enrolments 

of new users might affect these density models’ accuracy [148]. Recall that LLR 

fusion relies on the accuracy of the modeling. The factors mentioned above are able to 

degrade the performance especially in large scale applications. Therefore to ensure the 

density models are always reliable, online learning or training is necessary, whereas 

such retraining has to be time-efficient.     

 

     This work presents a new approach to LLR based fusion that uses GMM. The 

proposed method is able to achieve comparable verification rates compared to 

conventional LLR based fusion. It is less sensitive to the selected component numbers, 

does not require a specific component searching algorithm and it requires significantly 

less in training time.  

 

     This novel method of improving the LLR based score fusion is inspired by the 

experiments described in chapter 4, i.e. on separating the score space into confidence 

and non-confidence regions. Fig. 6-1 shows an example of the entire score space 

including the confidence and non-confidence partitions. The non-confidence samples 

shown in fig. 6(b) are partitioned using the Min-max Sum rule fusion. The rest of the 



Chapter 6: A New Approach to Likelihood Ratio Based Multimodal Biometrics Score 

Fusion  

 

 - 134 - 

samples are regarded as confidence region samples. According to the findings of 

chapter 4, without considering the verification threshold, samples in the confidence 

region can be verified directly as impostor or genuine user. Therefore it can be say the 

verification performance is mainly affected by the samples in the non-confidence 

region. 

 

(a) 

 

(b) 

Fig 6-1. Bimodal biometrics score distribution: (a) entire sample (b) Min-max Sum rule separated 
non-confidence samples. 
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     As a result, it is suggested to use only the non-confidence samples for building the 

GMM. Elimination of the confidence region samples greatly reduces the training set 

and hence the training time can be reduced significantly. Also because the modeling is 

restricted to a smaller and more important region (the non-confidence region), the 

fusion performance is less affected by the component numbers, i.e. approximate 

component numbers can be used so the component number searching algorithm is not 

needed. 

  

     In the following sections, the proposed method is introduced. The conventional 

state-of-the-art GMM likelihood ratio based fusion and the concept of confidence and 

non-confidence regions are outlined. Section 6.3 presents the experimental results 

using 19 bimodal biometric fusion experiments which are also used in the previous 

chapters. The likelihood ratio fusion uses three GMMs in parallel. The first is a 

conventional model built by using the entire training set and the component numbers 

searched by the state-of-the-art algorithm. The second and third models are built by 

applying random component numbers to the entire training samples and non 

confidence samples. Likelihood ratio based fusion using three different models are 

compared and it is further compared using conventional fusion methods presented in 

chapter 3.   

 

6.2   New Approach of Likelihood Ratio Based Score Fusion 

     The basic idea of the new fusion approach is to directly accept or reject the users 

when their biometrics vectors are in the confidence region or to apply the GMM-LLR 

fusion when the vectors are in non-confidence region.  So in this method, the density 

models are built specifically for non-confidence regions only for impostor and 
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genuine users. The non-confidence region is where the impostor and the genuine user 

scores co-exist.    

 

6.2.1 Gaussian Mixture Model and Likelihood Ratio Fusion  

     GMM is formed by combining multiple Gaussian distribution density with a single 

component. The following shows the original model and the estimation of the 

densities: 

 

Gaussian Mixture Model:       

                                                                                                 (6.1) 

 

     Where K is the number of mixture components, wk is the weight assigned to the kth 

mixture component )|( k

k xp θ  with mean vector kµ  and covariance matrix, kΣ   

and 11 =Σ = k

K

k w . x is the vector of J matcher scores x=[x1, x2, …, xJ]. The equation for 

the individual component is shown in (6.2) 

                                                                                                                                                        

 

 (6.2) 

     

      Genuine user and the impostor score density estimation models are expressed in 

(6.3) and (6.4):  

    (6.3)  
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     From (6.3) and (6.4), it is necessary to choose the appropriate component numbers, 

Kgn and Kim to avoid over fitting or inaccurate modelling. Here the GMM fits to the 

training samples by using the expectation maximisation (EM) algorithm to achieve a 

maximum likelihood estimation of the parameters. This fitting method uses an 

iterative algorithm that converges to a local optimum. x represents the vector 

constructed by first and second modality’s biometric scores in this work. 

 

     Bimodal biometrics score transformed densities of claimant whose biometrics 

score vector falls in non-confidence region are applied to find the log likelihood ratio, 

LLR(x) which is shown in (6.5). LLR(x) is used to classify the claimant into the 

impostor or genuine user categories based on the verification threshold. 

 

                                                            

  (6.5) 

 

6.2.2 Non-Confidence Samples and Sum Bounded Likelihood Ratio Fusion 

     Fig. 6-2 shows that the confidence region is a region where only a single class of 

users is available. The overlap part, referred to as non-confidence region, lies between 

the confidence regions. It represents the part where both impostor and genuine user 

scores co-exist. 
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(6.6) 

 

     To choose the non-confidence samples for GMM training, the samples which lie in 

non-confidence region of the Min-max Equal Weighted Sum fusion score, Sfi are used. 

For the biometrics, which uses the similarity measure, a sample that fulfils the rule 

(6.6) is treated as a non-confidence sample. 
I

S fi
Max and

G

S fi
Min represent the 

maximum impostor Sum fusion score and the minimum genuine user Sum fusion 

score respectively. The Sum rule, as mentioned in section 2.2.3.1 is well known for its 

simplicity and outperformance to many complicated fusion methods. As a result, it is 

deemed appropriate to be used to identify the confidence and non-confidence region 

samples. The Min-max score normalisation is used for the Sum fusion so the score 

distribution’s shape can be retained. By doing this the proposed approach can be 

evaluated without any side effects of the normalisation algorithm. Details of Sum rule 

fusion and the score normalisation can be found in chapter 2 and 3.  

 
Fig 6-2. Non-confidence samples bounded by Sum rule fusion. 

 

G

Sfi

I

S fifi
MinSMax ≤≤
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     In the testing or verification phase, if a claimant’s score vector is located in a 

confidence region, the claimed identity is accepted or rejected directly. Otherwise, the 

vector is evaluated by the likelihood ratio fusion as shown in (6.7). The score vector is 

transformed into densities using fgn(x) and fim(x). These are the density models created 

using the non-confidence or bounded training samples. Varying the verification 

threshold, η can be used to produce the ROC curve. This innovative density based 

score level fusion is referred to as Sum Bounded Likelihood Ratio fusion (SBLLR). 

 

                                    Genuine User, when log ,
)(

)(
η≥

xf

xf

im

gn
  

         Impostor, when log η<
)(

)(

xf

xf

im

gn
                                             (6.7)   

 

6.3   Experiment Set Up and Results Analysis  

     To evaluate this proposed approach feasibility before introducing further 

complexity, it is again tested using bimodal biometrics fusion experiments. 19 

bimodal biometrics fusion experiments that are used in chapter 3 and 5 are used again 

to test the proposed method. Each of the experiments has two stages: training and 

testing. Because the training and testing sets are not defined in NIST-BSSR1, half of 

the impostor and genuine user matching scores are randomly chosen to form the 

training set. The rest of the matching scores are used as testing set. Such partitions and 

the random assignments of the component numbers both in NIST-BSSR1 and Xm2vts 

are repeated 30 times for a statistical significant result. For the Xm2vts, the training 

and testing sets defined in [146] are used. All the parameters and models are strictly 

=)(xLLR
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obtained in the training stage. The experiments are carried out on Matlab which is 

under Microsoft Windows environment with 1.6GHz CPU speed and 2GB RAM. 

 

      To investigate the SBLLR, three joint density models are built in parallel. The first 

model is built with the entire training sample by applying the best component 

numbers estimated using the effective algorithm given in [138], which was 

successfully applied in [56]. This is denoted B-LLR in the following discussion. The 

second and the third model are built by applying the same component numbers, which 

are randomly chosen. The only difference between R-LLR and R-SBLLR is that the 

GMM likelihood ratio based fusion is applied to the entire training samples and only 

to the non-confidence samples respectively. They are denoted R-LLR and R-SBLLR 

respectively. The best component numbers are estimated from the range of 1-20 for 

both impostor and genuine user joint density models. The genuine user training 

sample size is much smaller than the impostor training sample size, therefore less 

components might be sufficient to cover the genuine user score density distribution. 

So the random component numbers are chosen from the range of 1-20 for the 

impostor models and 1-5 for the genuine user model.  

 

     The experimental results of the three models together with the Min-max Equal 

Weighted Sum fusion (denoted by SUM) are presented and discussed. Their 

comparison is carried out over four operating points that include the lowest operating 

point and the point of EER. It is then compared with the conventional state-of-the-art 

approaches which are detailed in chapter 3.  
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6.3.1 Results and Discussions 

     The experimental results are presented numerically in tables 6-1, 6-2 and 6-3. M1 

and M2 represent the two matchers used in the experiments. The results presented are 

the average GAR over 30 trials of the 19 experiments and its standard deviation is 

shown in the bracket. For the total better results over R-SBLLR in the tables, it adds 

up all the better results solely based on average performance. The number shown in 

the bracket is the total better result with statistical significance. These statistical 

significances are tested using t-test in the 95% confidence interval.    

 

     From NIST-BSSR1 fusion results in table 6-1, it can be seen that all the fusion 

strategies outperform individual single matchers. R-SBLLR outperforms most of the 

SUM rules except the experiments involving Fg (Exp. no. 2 and 4) at the lowest 

operating point. NCWW, which is the approach proposed in chapter 5, also struggles 

in these experiments. As shown in fig. 3-3, this is because Fg’s score distributions 

contain long tails and multiple components resulting in an inability to effectively 

extract the non-confidence regions by just using the 
I

S fi
Max  and 

G

S fi
Min . Such 

ineffectiveness causes the R-SBLLR, in the experiments involving Fg at the lowest 

operating point with relative high performance variation (standard deviation >1.9), to 

degrade. However, only Exp. no. 2 is more statistically significant than R-SBLLR 

under this operating point. 

 

     R-LLR has more or equal better results than R-SBLLR at three higher operating 

points. However most of these results exhibit a higher performance variation because 

of the random component numbers. Among these results, R-SBLLR has performance 

differences of not more than 0.65% but performs more consistently (standard 
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deviation < 1%).  Furthermore, R-SBLLR at the lowest operating point, as depicted in 

fig. 6-3, significantly outperforms R-LLR in the range of 1.06%~3.59%. At the same 

time, it greatly enhances the performance consistency as shown in fig. 6-4. The 

statistical significance test indicates that the R-LLR has no performances significantly 

better than R-SBLLR at two lower operating points. However, it is comparable to or 

outperforms the R-SBLLR at two higher operating points. Therefore, it can be said 

that R-SBLLR’s performance is better or comparable to R-LLR at three lower 

operating points but is performing more consistently over all experiments in this 

database. 

 

     A comparison with B-LLR, that employs state-of-the-art component numbers 

searching algorithm, shows that the proposed method is comparable without having to 

use the searching algorithm. Except the 1.37% performance difference at the lowest 

operating points of the Exp. no. 2, all the rest of the operating points and experiments’ 

performance differences are approximately 1% or less. The performance standard 

deviations presented by B-LLR and R-SBLLR are shown in fig. 6-4. R-SBLLR is as 

robust as B-LLR when producing these comparable results.  

 

     Fig 6-5 and 6-8 plot the fusion processing time reduction against the verification 

rate changes at the lowest operating point for R-SBLLR over B-LLR. This is to show 

how much the fusion processing time is required for the proposed method to achieve 

the comparable performance. It can be seen that R-SBLLR greatly reduces B-LLR 

training and fusion time because of the reduction of training samples and without 

having to use any component number searching algorithm. At least 95% of the 

training and fusion time is saved for this database.  For example, the average training 
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time for Exp. no. 1 requires 1456s to build the B-LLR model and do the fusion 

whereas the proposed approach just requires 9.05s.   
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  GAR(%) at FAR equals to 0.001% 

Exp. 
No.  M1 M2 SUM B-LLR R-LLR R-SBLLR 

1 71.25(3.07) 54.81(3.61) 90.48(0.61) 92.94(0.91) 88.96(6.95) 92.27(0.99) 

2 73.18(2.64) 59.91(1.29) 92.21(0.99) 92.20(2.82) 87.23(7.55) 90.82(2.24) 

3 82.62(1.71) 56.92(5.19) 92.06(1.13) 95.46(1.17) 95.54(2.24) 95.32(0.93) 

4 82.69(1.63) 60.55(2.10) 94.91(1.13) 95.77(1.57) 93.69(3.08) 94.76(1.97) 

Total Better Results Over R-SBLLR 
(with statistical significance) 

2(1) 4(3) 1(0)  

  
(a)  

  

  GAR(%) at FAR equals to 0.01% 

Exp. 
No.   M1 M2 SUM B-LLR R-LLR R-SBLLR 

1 77.36(1.27) 74.29(2.67) 94.02(0.81) 96.13(0.65) 94.58(2.61) 95.98(0.52) 

2 77.81(1.68) 67.37(1.10) 94.47(1.11) 95.80(0.66) 94.24(3.55) 94.82(0.80) 

3 85.42(2.06) 75.20(2.57) 96.29(0.82) 97.74(0.74) 97.71(1.85) 97.28(0.74) 

4 84.63(1.25) 68.66(2.23) 96.58(0.84) 98.39(0.81) 97.96(1.55) 97.68(0.91) 

Total Better Results Over R-SBLLR 
(with statistical significance) 

0(0) 4(3) 2(0) 
 

  

(b)  

  

  GAR(%) at FAR equals to 0.1% 

Exp. 
No.   M1 M2 SUM B-LLR R-LLR R-SBLLR 

1 82.56(1.52) 84.86(1.16) 96.97(0.45) 98.39(0.49) 98.12(1.18) 97.98(0.66) 

)2 83.76(1.24) 76.29(1.71) 96.49(0.55) 97.91(0.41) 97.38(2.57) 97.51(0.77) 

3 89.81(1.51) 84.84(1.23) 97.47(0.78) 98.87(0.44) 98.81(0.60) 98.21(0.51) 

4 89.64(0.87) 78.02(1.63) 97.47(0.69) 99.55(0.52) 99.46(0.75) 98.97(0.86) 

Total Better Results Over R-SBLLR 
(with statistical significance) 

0(0) 4(4) 3(2)  

  
(c)  

  

  EER 

Exp. 
No.   M1         M2 SUM B-LLR R-LLR R-SBLLR 

1 8.12(0.94) 4.36(0.29) 1.19(0.35) 0.90(0.25) 0.93(0.34) 1.32(0.27) 

2 7.92(0.66) 6.31(0.76) 1.63(0.21) 1.01(0.38) 0.95(0.25) 1.38(0.15) 

3 4.68(0.45) 4.29(0.26) 0.76(0.17) 0.41(0.10) 0.43(0.14) 0.73(0.24) 

4 5.34(0.48) 5.67(0.76) 1.81(0.71) 0.27(0.25) 0.28(0.29) 0.74(0.54) 

Total Better Results Over R-SBLLR 
(with statistical significance) 

1(0) 4(4) 4(4)  

 
(d) 

* The shaded results are the average results (without consider statistical significance) that 
outperform R-SBLLR.  
  
Table 6-1. GMM based likelihood ratio fusion performance (average GAR) in four NIST-BSSR1 
bimodal biometrics fusion experiments under (a) FAR=0.001% (b) FAR=0.01% (c) FAR=0.1% and 

(d) EER. 
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* The error bars are plotted at +/- 1 standard error (sample no.= 30) 

Fig 6-3. GMM based likelihood ratio fusion lowest operating point performance in NIST-
BSSR1. 

 

 

Fig 6-4. GMM based likelihood ratio fusion lowest operating point performance’s 
standard deviation in NIST-BSSR1 to show fusion performance consistency. 
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     It is clear from the Xm2vts experiments that the proposed method outperforms 

SUM and R-LLR significantly. The SUM fusion achieves 2.01% and 1.62% 

performance differences that are better than R-SBLLR in Exp. no. 2 and 4 

respectively under the lowest operating point. Aside from these performance 

differences, the SUM rule outperformance differences are just within the range up to 

0.53% for other better results under all operating points and experiments. For the 

better results of R-SBLLR over SUM, the performance differences are up to 19.28%. 

Also, there are just 2 ~ 4 experiments outperforming with statistical significance using 

SUM in all operating points and experiments.     

 

 
* The sample points show all 30 trials of the four bimodal biometrics experiments. 
 
Fig 6-5. Performance variation of R-SBLLR over B-LLR in terms of verification rate at 

lowest operating points and processing time in NIST-BSSR1. 
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     R-LLR outperforms R-SBLLR with 4.85% difference in Exp. no. 10 under lowest 

operating point. However, the rest of the outperformance is just within the range up to 

0.57% for all experiments and operating points. R-SBLLR on the other hand is able to 

produce much better results that are up to 8.18% better compared to R-LLR. 

Furthermore, by considering the better average results’ statistical significance, there 

are just 1 ~ 4 out of 15 R-LLR’s fusion results outperforming with statistical 

significance in all operating points and experiments.     

 

     As shown in fig. 6-6, B-LLR obtains 5 better fusion results over R-SBLLR under 

the lowest operating points. These differences are in the range of 0.72% ~5.91%. 

Despite of this, R-SBLLR obtains 10 better fusion results over B-LLR with 

performance differences in the range of 0.11% ~ 3.12%. At the second lowest 

operating point, there are 7 experiments in which B-LLR outperforms R-SBLLR. 

Aside from 2.57% and 1.80% differences presented by Exp. no. 2 and 13 

correspondingly, the other outperformance differences are in the range just up to 

0.57%. For the other two operating points, the better performance’s differences 

remain in the range up to 0.76%.  There are just 4 and 6 experiments in which B-LLR 

that have better statistical significances than R-SBLLR at two lower operating points 

and 8 and 7 experiments at two higher operating points. This demonstrates that the 

proposed method is outperforming or comparable to the conventional state-of-the-art 

approach for this database.   

 

     Fig. 6-7 shows the lowest operating point average results’ standard deviation. It 

can be seen that the experiments involving F4 and F5 (Exp. no. 10~15) are with 

significant performance variation for R-LLR. From table 6-2 it can be seen that these 
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matchers (F4 and F5), which are denoted as M1 in the table, exhibit a verification rate 

of 0 ~ 0.31% verification rate at the lowest operating point. The matchers with near-

zero performance are the reason for such high performance variation. However, by 

using R-SBLLR, these variations can be significantly reduced.  

 

     The performance improvement for R-SBLLR over B-LLR in terms of verification 

rate at lowest operating point and corresponding training time reduction for all 

Xm2vts experiment trials are shown in fig. 6-8. At least 97% of the fusion and 

training time is improved. For example, the average training time for Exp. no. 10 

requires 1126s to do the fusion and to build the B-LLR model, whereas the proposed 

approach just requires 0.77s.   
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 GAR(%) at FAR equals to 0.001% 

Exp. 
No.  M1 M2 SUM B-LLR R-LLR R-SBLLR 

1 0.78(0) 60.12(0) 91.81(0) 96.55(0.60) 94.46(2.42) 94.32(1.88) 

2 0.78(0) 19.04(0) 88.25(0) 86.13(0.59) 84.82(1.55) 86.24(1.64) 

3 0.78(0) 40.37(0) 88.12(0) 89.98(0.26) 88.49(2.72) 88.86(1.89) 

4 61.72(0) 59.05(0) 93.43(0) 90.63(1.65) 91.22(1.36) 91.81(1.38) 

5 61.72(0) 19.46(0) 78.62(0) 78.79(0.69) 78.94(0.95) 79.12(1.44) 

6 61.72(0) 41.49(0) 79.56(0) 79.61(1.32) 79.46(1.47) 80.30(0.72) 

7 81.49(0) 59.05(0) 96.25(0) 95.98(2.08) 96.05(1.91) 96.06(1.82) 

8 81.49(0) 19.46(0) 80.87(0) 86.11(2.01) 85.67(2.32) 86.77(1.89) 

9 81.49(0) 41.49(0) 91.75(0) 90.45(0.67) 90.44(1.48) 91.61(0.31) 
10 0.31(0) 59.05(0) 75.56(0) 87.99(0.74) 86.93(2.99) 82.08(3.00) 

11 0.31(0) 19.46(0) 65.81(0) 69.23(1.14) 68.86(4.18) 68.51(2.25) 

12 0.31(0) 41.49(0) 67.31(0) 77.32(1.24) 75.11(8.88) 80.44(1.83) 

13 0(0) 60.12(0) 63.87(0) 83.40(0.50) 79.28(4.41) 81.80(1.51) 

14 0(0) 19.04(0) 47.55(0) 60.92(2.32) 54.71(11.54) 62.89(5.61) 

15 0(0) 40.37(0) 57.05(0) 78.53(1.87) 73.65(6.57) 78.65(2.29) 

Total Better Results Over R-SBLLR 
(with statistical significance) 

4(3) 5(4) 3(1)  

  
(a)  

  

   GAR(%) at FAR equals to 0.01% 

Exp. 
No.   M1 M2 SUM B-LLR R-LLR R-SBLLR 

1 80.7(0) 70.18(0) 92.50(0) 97.52(0.48) 97.09(1.93) 97.94(0.50) 

2 80.7(0) 34.04(0) 89.34(0) 93.63(0.32) 90.61(1.51) 91.06(1.91) 

3 80.7(0) 56.75(0) 91.39(0) 93.58(0.47) 93.28(1.39) 94.64(0.81) 

4 71.00(0) 70.10(0) 95.77(0) 96.16(0.16) 96.14(0.20) 95.91(0.31) 

5 71.00(0) 34.04(0) 84.84(0) 84.77(0.36) 85.08(0.48) 84.51(0.63) 

6 71.00(0) 56.75(0) 88.53(0) 88.26(0.66) 88.11(0.53) 88.51(0.49) 

7 89.30(0) 70.10(0) 98.50(0) 98.20(0.84) 98.25(0.85) 97.97(0.92) 

8 89.30(0) 34.04(0) 91.65(0) 93.74(0.96) 93.83(0.93) 93.98(0.80) 

9 89.30(0) 56.75(0) 94.52(0) 95.12(0.19) 94.97(0.25) 94.72(0.28) 

10 14.43(0) 70.10(0) 81.75(0) 96.59(0.39) 95.57(2.92) 96.02(1.30) 

11 14.43(0) 34.04(0) 71.30(0) 77.30(0.72) 76.33(4.41) 81.15(2.13) 

12 14.43(0) 56.75(0) 77.25(0) 84.25(0.78) 81.58(6.58) 85.94(0.82) 

13 11.86(0) 70.18(0) 70.00(0) 91.08(0.34) 87.83(3.59) 89.28(1.52) 

14 11.86(0) 34.04(0) 57.05(0) 69.93(2.97) 62.69(9.79) 70.33(4.34) 

15 11.86(0) 56.75(0) 64.48(0) 82.10(0.83) 78.62(4.15) 83.29(0.87) 

Total Better Results Over R-SBLLR 
(with statistical significance) 

3(2) 7(6) 4(3)  

  
(b)  
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   GAR(%) at FAR equals to 0.1% 

Exp. 
No.   M1 M2 SUM B-LLR R-LLR R-SBLLR 

1 92.5(0) 88.50(0) 94.57(0) 99.31(0.11) 98.82(1.21) 98.99(0.05) 

2 92.5(0) 58.35(0) 94.25(0) 96.88(0.12) 96.10(1.15) 96.46(0.23) 

3 92.5(0) 71.22(0) 94.50(0) 98.49(0.11) 98.17(1.17) 98.57(0.12) 

4 81.98(0) 88.50(0) 98.32(0) 98.76(0.04) 98.75(0.06) 98.76(0.04) 

5 81.98(0) 58.22(0) 92.66(0) 94.09(0.16) 93.91(0.22) 93.47(0.31) 

6 81.98(0) 71.29(0) 95.40(0) 95.35(0.20) 95.40(0.21) 95.23(0.22) 

7 94.50(0) 88.50(0) 99.25(0) 99.18(0.38) 99.18(0.38) 99.03(0.40) 

8 94.50(0) 58.22(0) 96.00(0) 97.29(0.38) 97.23(0.40) 96.82(0.54) 

9 94.50(0) 71.29(0) 97.53(0) 97.62(0.12) 97.60(0.15) 97.35(0.21) 

10 78.75(0) 88.50(0) 90.25(0) 99.00(0.00) 98.58(1.09) 98.75(0.02) 

11 78.75(0) 58.22(0) 88.97(0) 93.72(0.34) 92.78(1.29) 93.82(0.34) 

12 78.75(0) 71.29(0) 87.29(0) 95.30(0.30) 94.06(2.33) 95.74(0.19) 

13 52.00(0) 88.50(0) 78.50(0) 97.62(0.17) 95.25(2.88) 97.56(0.33) 

14 52.00(0) 58.35(0) 74.20(0) 85.44(0.43) 81.11(6.09) 84.68(1.07) 

15 52.00(0) 71.22(0) 74.71(0) 90.69(0.64) 89.14(1.28) 91.07(0.78) 

Total Better Results Over R-SBLLR 
(with statistical significance) 

3(3) 10(8) 5(4)  

  
(c) 

   

  EER 

Exp. 
No.   M1 M2 SUM B-LLR R-LLR R-SBLLR 

1 1.82(0) 1.11(0) 0.91(0) 0.31(0.04) 0.47(0.17) 0.57(0.11) 

2 1.82(0) 6.50(0) 1.25(0) 1.07(0.06) 1.26(0.25) 0.95(0.06) 

3 1.82(0) 4.51(0) 1.10(0) 0.75(0.00) 1.00(0.11) 0.75(0.00) 

4 4.12(0) 1.11(0) 0.50(0) 0.59(0.02) 0.57(0.06) 0.68(0.10) 

5 4.12(0) 6.50(0) 1.63(0) 1.50(0.00) 1.65(0.11) 1.71(0.07) 

6 4.12(0) 4.50(0) 1.19(0) 1.25(0.00) 1.24(0.02) 1.21(0.05) 

7 1.82(0) 1.11(0) 0.46(0) 0.51(0.08) 0.53(0.17) 0.50(0.14) 

8 1.82(0) 6.50(0) 1.25(0) 0.97(0.09) 1.17(0.21) 1.25(0.19) 

9 1.82(0) 4.50(0) 0.75(0) 0.85(0.03) 0.85(0.08) 0.88(0.08) 

10 3.50(0) 1.11(0) 1.16(0) 0.38(0.03) 0.41(0.11) 0.50(0.03) 

11 3.50(0) 6.50(0) 1.38(0) 0.78(0.05) 0.81(0.10) 0.75(0.01) 

12 3.50(0) 4.50(0) 1.50(0) 0.85(0.06) 0.98(0.21) 0.85(0.11) 

13 6.50(0) 1.11(0) 2.60(0) 0.56(0.05) 0.70(0.18) 0.58(0.05) 

14 6.50(0) 6.50(0) 3.53(0) 2.44(0.09) 2.45(0.22) 2.44(0.08) 

15 6.50(0) 4.51(0) 3.79(0) 1.69(0.08) 1.79(0.18) 1.78(0.05) 

Total Better Results Over R-SBLLR 
(with statistical significance) 

5(4) 8(7) 6(4)  

 
(d) 

* The shaded results are the average results (without consider statistical significance) that 
outperform R-SBLLR.  
 

Table 6-2. GMM based likelihood ratio fusion performance (average GAR) in fifteen Xm2vts 
bimodal biometrics fusion experiments under (a) FAR=0.001% (b) FAR=0.01% (c) FAR=0.1% and 

(d) EER. 
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* The error bars are plotted at +/- 1 standard error (sample no.= 30) 
 

Fig 6-6. GMM based likelihood ratio fusion lowest operating point performance in Xm2vts. 
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* The sample points show all 30 trials of the fifteen bimodal biometrics experiments. 

 
Fig 6-8 Performance variation of R-SBLLR over B-LLR in terms of verification rate at lowest 

operating points and processing time in Xm2vts. 
 

 
 

Fig 6-7. GMM based likelihood ratio fusion lowest operating point performance’s standard 
deviation in. Xm2vts to show fusion performance consistency. 
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6.3.2 SBLLR Comparison to Other Conventional Approaches 

Table 6-3 shows the fusion results achieved by the proposed method and the 

conventional state-of-the-art approaches at the lowest operating point, which are 

detailed in chapter 3. The shaded results in the table are the results that are statistically 

significant better than the proposed method. In both databases, it is clear that R-

SBLLR is a better choice than SUM, SVM and MLLR. This is because R-SBLLR 

obtains more comparable or better results than the rest. 

 

     For the LREG, there are 10 experiments out of 19 that perform better than the 

proposed method. Aside from 5.17% performance difference in Exp. no. 14 in 

Xm2vts, the other outperformances are just in the range of 0.14% ~ 2.10%. In contrast 

to this, LREG achieves the performances which are 23.59%, 38.69%, 29.11% and 

20.11% less comparing to R-SBLLR in Xm2vts Exp. no. 4, 7, 10 and 13 respectively. 

These large performance variations are caused by the inconsistent performance of 

LREG at very low operating points as mentioned in chapter 3.  
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NIST- 
BSSR1 

GAR(%) at FAR equals to 0.001% 

Exp. 
No.  M1M2 SUM LREG SVM MLLR R-SBLLR 

1 FliFc 90.48(0.61) 92.85(0.59) 93.24(0.52) 92.30(1.32) 92.27(0.99) 

2 FliFg 92.21(0.99) 91.89(1.16) 91.53(1.20) 88.41(7.29) 90.82(2.24) 

3 FriFc 92.06(1.13) 96.08(0.94) 95.26(1.11) 94.96(1.72) 95.32(0.93) 

4 FriFg 94.91(1.13) 94.44(0.95) 95.11(1.20) 95.02(1.53) 94.76(1.97) 

Xm2vts GAR(%) at FAR equals to 0.001% 

Exp. 
No. M1M2 SUM LREG SVM MLLR R-SBLLR 

1 F1S6 91.81(0) 95.25(0) 95.78(0) 96.39(0.52) 94.32(1.88) 

2 F1S7 88.25(0) 86.25(0) 86.31(0) 83.63(0.59) 86.24(1.64) 

3 F1S8 88.12(0) 82.66(0) 81.84(0) 90.46(0.35) 88.86(1.89) 

4 F2S6 93.43(0) 68.22(0) 90.56(0) 93.26(0.24) 91.81(1.38) 

5 F2S7 78.62(0) 80.31(0) 79.28(0) 78.06(0.50) 79.12(1.44) 

6 F2S8 79.56(0) 81.05(0) 80.28(0) 78.61(1.03) 80.30(0.72) 

7 F3S6 96.25(0) 57.37(5.44) 94.76(0) 96.25(0.04) 96.06(1.82) 

8 F3S7 80.87(0) 85.18(5.44) 85.31(0) 85.22(0.43) 86.77(1.89) 

9 F3S8 91.75(0) 91.75(0) 91.78(0) 92.15(0.17) 91.61(0.31) 
10 F4S6 75.56(0) 52.97(9.26) 80.31(0) 83.86(1.25) 82.08(3.00) 

11 F4S7 65.81(0) 68.55(0) 69.65(0) 71.04(0.63) 68.51(2.25) 

12 F4S8 67.31(0) 81.02(0) 79.56(0) 79.70(0.50) 80.44(1.83) 

13 F5S6 63.87(0) 61.69(0) 78.81(0) 80.42(0.57) 81.80(1.51) 

14 F5S7 47.55(0) 68.06(0) 60.96(0) 62.29(0.33) 62.89(5.61) 

15 F5S8 57.05(0) 80.75(0) 78.87(0) 76.29(0.84) 78.65(2.29) 

* The shaded results are the average results that statistical significantly outperform R-SBLLR.  

 
Table 6-3. R-SBLLR performance comparisons with conventional state-of-the-art approaches. 

 

6.4 Conclusions 

     From the analysis of the fusion results in both databases, the proposed method is 

demonstrated to significantly outperform R-LLR in most of the experiments at most 

operating points. It successfully reduces the performance variations of R-LLR caused 

by using random component numbers. This proposed method achieves comparable 

performance to the conventional state-of-the-art B-LLR especially at lower operating 

points in most of the experiments without having to use component number searching 

algorithm. Because of the reduction in the number of samples and not needing to 

search for the component number, at least 95% of the fusion and training time can be 

saved. Also, this method is very easy to understand and to implement because of its 
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simplicity. R-SBLLR achieves comparable performance to B-LLR and outperforms 

the conventional state-of-the-art fusion approaches in terms of performance and 

consistency.     

 

     Regardless of the effectiveness and the benefits offered by the proposed method, 

there are also some limitations on this approach. Firstly, choosing the non-confidence 

samples just based on the 
I

S fi
Max and

G

S fi
Min  is not reliable. Such a choice can be 

affected by the outlier. Furthermore, when the non-confidence region contains 

multiple clusters, it requires a more accurate density model to achieve optimum 

performance. R-SBLLR, which uses an approximate model, performs less effectively 

than B-LLR in these cases. In future work, a more accurate separation of the 

confidence and non-confidence samples should be investigated to further enhance the 

SBLLR performance. Also, a criterion to choose this fusion approach as an effective 

fusion approach has to be investigated. 

 

 

 

 

 

 

 

 

 

 

 



 

 

7 CONCLUSIONS AND FUTURE WORK 

 

7.1   Conclusions 

     Multimodal biometrics alleviates many restrictions of single biometrics. Based on 

the literature, to improve the biometrics authentication performance, one can increase 

the information gain or design a more effective fusion algorithm. Due to the lower 

correlation between the sources, multimodal biometrics provides maximum 

information gain for authentication.  

 

     The work presented in this thesis demonstrates that information from the non-

confidence region can be used as additional information to further improve 

conventional state-of-the-art fusion approaches for combining the multimodal 

biometrics. In the literature, additional information such as biometrics quality, soft 

biometrics, modality reliability measure, failure prediction model, etc., are embedded 

into the conventional fusion approaches. The use of non-confidence information for 

biometrics score level fusion, to the best of author’s knowledge, has not been reported 

yet.  

 

     In the literature, different fusion approaches from three different categories (rule 

based, classification based and density based fusion) have been utilised to combine 

the biometrics information. Some of the approaches, such as Sum Rule, Logistic 

Regression, Support Vector Machine and Likelihood Ratio based fusion, are reported 

in the literatures to achieve top performance and outperforming others. However, 

which fusion approach (amongst the above mentioned) achieves the best results when 

combining multimodal biometrics score remained unknown in this research 
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community. In this work, these approaches are simultaneously compared and 

extensively evaluated by using 19 bimodal biometrics experiments conducted from 

two large scale databases. It is found that these approaches have comparable fusion 

performance. Even though these conventional state-of-the-art approaches have been 

claimed to achieve the best performance, there is no single fusion method which 

outperformed others in all experiments and operating thresholds. Furthermore, aside 

from the fusion performance, there are other factors have to be considered to choose 

an appropriate strategy. This suggests to the community that the strategy with the best 

performance might not necessarily be an appropriate one. The selection of an 

appropriate strategy has to comprehensively consider the prerequisites and other 

factors. For instance, the required fusion and training time, implementation 

requirements, resource availability as well as their advantages and disadvantages. This 

explains the existence of three different approaches. 

 

     Applying a fusion strategy selection mechanism is a way of improving fusion 

performance. However, this is not common in the biometrics fusion research 

community. The only work reported uses the estimated errors and classifier to make 

the selection [62]. Different biometrics score spaces exhibit different confidence in 

discriminating a claimant. This region information might be employed for the 

selection scheme. However, whether it is feasible for further fusion improvement is 

unknown. The proposed Hybrid Fusion in chapter 4 answers this question. This 

method manually assigns the confidence partitions and replaces the Sum rule with 

more confidence rules (Min and Max) in these partitions. This hybrid method 

achieves increases in the range of 0.3% ~ 1.7% compared to the Min-max Equal 

Weighted Sum rule. However, the results rely on careful manual assignment of the 
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confidence and non-confidence partitions. It is found that such assignment of the 

partitions has to successfully increase the separation of the non-confidence sample 

(but not the entire sample) to achieve an improvement. Therefore, the answer to the 

research question, whether selecting different rules for different confidence partitions 

will further improve the authentication rate, is no. This is to say that there is no fusion 

improvement even though a further separation of the samples in the confidence region 

is achieved. The fusion improvement depends on the non-confidence region samples 

only but not on the samples from the entire score space. Nevertheless, this finding 

confirms the importance of non-confidence region related information for fusion 

improvement.  

 

     The Weighted Sum rule has been widely used for biometrics score level fusion in 

the literature. The commonly used Weighted Sum rules use d’ Weighting, EER 

Weighting and Equal Weighing. However, through the experimental results obtained 

from a wide range of experiments, it can be concluded that these commonly used 

weighting scheme are not able to achieve generalisation performance. In the literature, 

the optimal fusion performance can be achieved by using a specific optimal weight 

searching algorithm. Nevertheless, this searching has to be repeated whenever the 

operating point is changed. Therefore, there is a need to explore for a new weighting 

parameter that will enable consistent fusion performance. From chapter 4, it is found 

that the non-confidence region is directly related to the fusion improvement. 

Therefore, it is proposed to minimise the non-confidence region to achieve 

generalisation fusion performance, by using the non-confidence region width as the 

weighting parameter. By doing this, the gradient of the linear separation boundary can 

be adjusted to enable the minimisation of the non-confidence region.  
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     The proposed NCWW Sum rule in chapter 5 successfully demonstrates that it has 

better generalisation ability than the rival weighting methods. In 19 experiments, it 

outperforms the rest (EER, d’ and Equal Weighted Sum rule) with obtaining 10, 14, 

16 and 18 best results at the lowest operating point to the EER operating point 

respectively. At the lowest operating point, the NCWW Sum rule performs up to 

26.27% better than the compared schemes. This experimental result also gives the 

answer that the commonly used Weighted Sum rules (EER, d’ and Equal Weighted 

Sum rule) are not optimal enough although of these approaches are regularly used in 

the literature. Not only the NCWW Sum rule achieves the generalisation performance, 

it is also comparable to the conventional state-of-the-art fusion approaches. From the 

lowest operating point fusion results, it can be seen that NCWW is comparable or 

outperforms the other methods with statistical significance, e.g. the LREG, SVM and 

LLR based fusions with 7 out of 19 experiments. Such comparable or outperforming 

differences are in the range of -0.15% ~ 5.29%. There are another 6 experiments 

where NCWW performs less effective just in the moderate range of -0.96% ~ -1.38%. 

In a higher dimensional score space, it achieves comparable fusion results to the state-

of-the-art fusion presented in [56] with verification results of more than 99%. 

Considering these results and the simplicity of this approach, it is considered an 

alternative option to the conventional state-of-the-art approaches. Furthermore, this 

approach also does not require the score normalisation which is required by other rule 

based fusion approaches in the literature. 

      

     SBLLR (or referred to as R-SBLLR) proposed in chapter 6 is an attempt to use the 

GMM based likelihood ratio fusion without having to assign accurate component 

number. Other works in the literature focus in looking for the optimal component 
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number to boost the fusion performance. This work is novel in the way that it tries to 

reduce the impact of an inaccurate assignment of the components number to the 

fusion performance. By doing this, fewer resources are needed whilst the fusion 

performance can be maintained. Furthermore, the component number searching time 

can be saved to improve this method’s usability. Without using any component 

number searching algorithm, it is found that the proposed method is comparable to the 

one that uses the state-of-the-art component number searching algorithm. The 

component numbers used by the non-confidence sample model have been randomly 

chosen and this likelihood ratio fusion is only applied in the non-confidence region. 

At the lowest operating point, the proposed method outperforms the other algorithms 

with statistical significance or is comparable in 12 experiments (out of 19). This 

performance differences are in the range of -0.14% ~ 3.12%.  For the experiments in 

which R-SBLLR did not outperform the others, except 2 experiments with 2.23% and 

5.91% differences, the differences are just equal or less than 1.38%. At least 95% and 

97% of the modelling and fusion time can be saved for both databases. For example, 

the average training time for Exp. no. 10 in Xm2vts was 1126s for doing the fusion to 

build the B-LLR model, whereas the new approach required just 0.77s. From these 

results, it can be concluded that this work successfully addresses the identified gap. It 

presents a new GMM based likelihood ratio fusion method that eliminates the need of 

component searching algorithm which is required by other algorithms reported in the 

literature. Furthermore, the fusion time required by the conventional GMM based 

likelihood ratio fusion is also significantly reduced.  

 

     Two of the proposed methods use non-confidence information to improve the 

conventional biometrics score level fusion approaches. While this information is not 
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explored before, the experimental results presented in this work suggest that this 

region is informative for multimodal biometrics score level fusion. 

 

     The remaining sections give the suggestions based on the experiences and findings 

gained whilst this research work was conducted. These suggestions include the 

extension of the conducted work on the partially working or non-working cases, and 

how the findings of this work are applicable to other applications.  

 

7.2  Future Work 

     This work has achieved significant progress to improve the conventional state-of-

the-art fusion methods’ performance and usability by using non-confidence 

information. However, it is believed that these devised methods can be further refined, 

expanded and applied in other applications. In this final part of thesis, a non-

exhaustive list for potential extension of this work is given: 

 

• Non-confidence region width redefinition. Using the difference between the 

maximum impostor score, IMax  and minimum genuine user score, GMin  alone to 

define the non-confidence region is not accurate enough. Such a definition can be 

easily affected by outliers, which Grubbs defines as: “An outlying observation, or 

outlier, is one that appears to deviate markedly from other members of the sample 

in which it occurs” [152]. Density related information from this region should be 

included in the definition. This redefined non-confidence region is expected to be 

more representative for specific biometrics authentication ability. It therefore can 

be used more reliable as a weighting reference for Weighted Sum rule to further 

enhance the proposed approach. 
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• NCWW extension. NCW defined in this work relies on searching through a large 

scale training sample set. However, the parameters used by the NCW definition, 

maximum impostor score, IMax  and minimum genuine user score, GMin  can be 

searched through the worst impostor and genuine user authentication cases for a 

specific biometrics. Therefore, the large training set is not needed to save sample 

collection times. NCWW demonstrates the importance of testing the biometrics 

over a series of critical cases. However, it leads to the research question of how 

these cases can be identified for a specific biometrics. For instance, a fingerprint 

biometrics’ low genuine user score might be caused by a damaged fingerprint or 

contamination of the fingerprint capturing device. A high impostor score might be 

the result of interclass similarity or spoof attack (e.g. using rubber fingerprints). 

NCWW work extension can be directed to collection of a series of problematic 

cases to critically evaluate the specific biometrics. NCW therefore can be used as 

a parameter to evaluate the specific biometrics performance, as well as using it as 

a reliable weighting reference for biometrics score level fusion, without requiring 

a large training sample set.  

 

• SBLLR extension. A density based method relies on the availability of sufficient 

training samples to create an accurate density model. For SBLLR, there might be 

an insufficient number of training samples available for modeling, because only 

the non-confidence samples are used. A training sample size assessment has to be 

included to ensure the appropriateness of applying this method. To enhance the 

proposed approach, finding the appropriate range for the random component 

numbers needs to be studied further as well. Using only the non-confidence 

samples for training is tested on joint density models in this work. It is interesting 
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to investigate the benefits of applying it to the marginal density modeling as well 

as other classification based fusion methods. 

 

• Intelligent switcher. No single fusion strategy, including the proposed methods, 

has achieved the best results in all biometrics fusion experiments and at all 

operating points. Switching between different fusion algorithms enables a more 

robust performance. The effectiveness for such switching can be explained using 

the consistent fusion concept presented in [128]. This kind of algorithm is also 

termed a multiple classifier system or dynamic score selection in the literature. 

This is demonstrated in several applications in [153], [154]. The comparison of 

the fusion result using this switching scheme and the optimised individual 

classifiers in [149] further shows the feasibility of this idea. 

 

• Higher dimensional fusion and sources selection. Only bimodal biometrics is 

explored in this work. More biometrics sources can be included to further evaluate 

the proposed method’s effectiveness. With the availability of multi biometrics 

sources, whether the inclusion of as many sources as possible in the fusion is of 

benefit has to be answered. If not, the new research question will be how to find 

the best combination amongst different sources to achieve an optimum 

performance. Since the non-confidence region is the key region to determine the 

fusion performance, the non-confidence region formed by multiple sources can 

potentially be used as a guide for searching for such best combination.   

 

• Biometrics Identification System. The central concept of the work is to increase 

the authentication performance by combining multimodal biometrics and using the 
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non-confidence information. In this work, this is implemented in verification 

mode only. Since the proposed method is effective in verification mode, it 

probably helps to improve the fusion in identification mode as well. In contrast to 

the two class problem presented by the verification mode, the identification mode 

is a more complicated multiclass problem. While identification is another 

important authentication task, it is desired to investigate the modification of the 

proposed fusion method to deal with the identification problems. By doing this, 

wider applications can be covered.  

 

• Bioinformatics Application. Fusion of different evidences or information 

enhances the classification performance. Machine learning algorithms proposed or 

mentioned in this work are not only applicable to biometrics, they may be applied, 

for example, to the fusion of genomic, proteomic and transcriptomic data in 

bioinformatics community [155].     
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Abstract.  Sum rule fusion is a very promising multimodal biometrics 
fusion approach. However, it is proposed not to widely applying it across 
the multimodal biometrics score space. By examining the score 
distributions of each biometric matcher, it can be seen that there exist 
confidence regions which enable the introduction of the Confidence 
Partition in multimodal biometric score space. It is proposed that the Sum 
rule can be replaced by the Min or the Max rule in the Confidence 
Partition to further increase the overall verification performance. The 
proposed idea which is to apply the fusion rules in a hybrid manner has 
been tested on two publicly available databases and the experimental 
results shows 0.3% ~ 2.3% genuine accept rate improvement at relatively 
low false accept rate.  

1  Introduction 

Multimodal biometrics have attracted great interest in the biometric research field in 
recent years. Given its potential to out perform single biometrics verification, many 
researchers have put their efforts in exploration of different integration techniques. 
However, integration at the score level is the most preferred approach due to the 
effectiveness and ease in implementation [1]. The Sum rule, one of the well known 
score level fusion rule is a method that simply utilises the addition of each biometric 
scores as fusion result. Surprisingly, it appears to be outperforming many complicated 
fusion algorithms [2] and being widely employed in biometric research [3, 4, 5, 6, 7, 
8]. Through sensitivity analysis, Kittler concluded that the superior performance of 
the Sum rule is due to it resilient ability to estimate error [9].  
     In this paper, the assignment of Confidence Partitions (CP) in multimodal 
biometrics score space has been introduced. Instead of applying the Sum rule over the 
complete region of multimodal biometrics score space, we suggest to replace the Sum 
rule in the different CPs with more appropriate rules (Min and Max rule in this paper). 
This scheme enables the fusion of multimodal biometrics in a hybrid manner 
including the Sum rule.  
     Figure 1 illustrates a typical biometric matcher score distribution that includes a 
genuine user and an impostor score distributions. There is a significant overlap region 
of the curves that causes the main difficulty to classify the claimant into the genuine 
user or impostor groups. The shaded regions outside the overlap part are confidence 
regions. They represent the regions where only a single class of users can be found. 
Although the Sum rule performs well to produce reliable fusion scores, when the 
biometric scores are located in a confidence region it is suggested to apply a more 
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appropriate rule instead of the Sum rule for a more reliable fusion score, for example 
the Min, Max rule [9] or the decision fusion rule [10]. 
     The rest of the paper is organised as follows: Section 2 provides details about the 
proposed integration method. Section 3 presents the databases used, experiments, 
results and their analysis. Finally section 4 concludes the paper. 
  

 

Fig. 1. Biometric matcher score distribution. 

2  Confidence Partition and Hybrid Fusion  

Even though the proposed idea is feasible in higher dimensional score space, it has 
only being used for the bimodal biometrics fusion in this paper. First of all, the score 
distributions of bimodal matchers are constructed (the distributions will be modeled 
by density estimation algorithm in future research). The regions within the 
distribution where only one type of user (either genuine user or impostor) is present 
are marked. Within the genuine user score distribution, the marked region is termed as 
genuine user confidence region whereas the region within the impostor score 
distribution is termed as impostor confidence region. Consequently, a two 
dimensional score space is created. The Genuine User Confidence Partition (GCP) in 
the score space is assembled from both modalities’ genuine user confidence regions. 
Also the Impostor Confidence Partition (ICP) in the score space is formed by both 
modalities’ impostor confidence regions.  
     Prior to applying the fusion rule, we need to normalise the scores from different 
biometric matchers into a common domain before they can be effectively combined 
[11]. The simplest normalisation technique is the Minmax normalisation [11] which is 
showed in (1). It is a rule that maps the biometric scores into the interval between 0 
and 1. The minimum value (min) and the maximum value (max) of the score 
distribution can be estimated from a set of matching scores. The notations shown in 
the equation represent the follows:  Si is the biometric score of user i, S’i represents 
the normalised score for user i, Sfi is the after fusion score for the particular user, K 
represents the total number of matchers.  
 

minmax

min
'

−

−
= i

i

S
S  

(1) 

 
     By introducing the CP, multiple rules can be applied over the multimodal 
biometric system in a hybrid manner. In this work, the rules (2) ~ (4) have been 
applied. The hybrid fusion scheme is implemented according to scenario shown in (5). 
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1. Sum Rule:  

∑
=

=
K

k

kifi SS
1

,' , i∀  
(2) 

 
2. Min Rule: 

)',...,','min( 2,1, Kiifi SSSS = , i∀  (3) 

 
3. Max Rule: 

)',...,','max( ,2,1, Kiiifi SSSS = , i∀  (4) 

 
4. Hybrid Rule: 
 
                         Apply Min Rule, when < S’i,1 , S’i,2 ,…,S’i,K > fall in ICP. 

      Sfi     =           Apply Max Rule, when < S’i,1 , S’i,2 ,…,S’i,K > fall in GCP. 

                         Apply Sum Rule, elsewhere. 

(5) 

 
     As shown in equation (5), for the partitions where we have high confidence from 
the biometric matchers we can apply the Min or Max rule which is considered as the 
more appropriate rule than the Sum rule. The non-confidence partition which is the 
complement region of the CP exhibits the part that can be easily misclassified. Due to 
the superior performance of Sum rule in dealing with the estimation error mentioned 
in section 1, we employ this rule to these non-confidence partitions. 
 

3  Experimental Results 

The proposed method has been tested on two publicly available databases, which are 
the NIST-BSSR1 multimodal database [12] and the XM2VTS benchmark database 
[13]. In the NIST-BSSR1 multimodal database, there are 517 genuine user scores and 
266,772 impostor scores, whereas the XM2VTS database (evaluation set) includes 
400 genuine user scores and 111,800 impostor scores. Both the databases are truly 
multimodal (chimeric assumption is not in used [14]). The performance graphs of 
each matcher in the databases are depicted in figure 2.  
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                                        (a)                                                       (b) 

Fig. 2. Performance of baseline matchers (a) NIST-BSSR1 Multimodal Matchers and 
(b) XM2VTS Matchers Performance. 

Only the best and the worst biometric matchers from each modality are chosen for the 
experiments. In the NIST-BSSR1 multimodal database, the right index fingerprint has 
been paired with the facial matcher C and the left index fingerprint has been paired 
with the facial matcher G to develop the best and worst multimodal biometrics fusion 
respectively. For the XM2VTS database, the best facial matcher DCTb-GMM is 
paired with the best speech matcher LFCC-GMM whereas the worst DCTb-MLP 
facial matcher is paired with the worst speech matcher PAC-GMM in the experiments. 

The GCP and ICP are assigned manually according to the figures in table 1. All the 
fusion results based on the best and worst multimodal matcher’s combination are 
graphically shown in figure 3 and figure 4. Their numerical results are also presented 
in table 2 and table 3. This is worth mention that the genuine accept rate (GAR) listed 
in the tables is reported to be 0.001% of the false accept rate (FAR). 
 
 

Table 1. Assignment of Confidence Partitions in the experiments. 

 
                                     Impostor                      Genuine User                             Non- 

                             Confidence Partition          Confidence Partition          Confidence Partition 

        NIST-BSSR1                    Sface < 0.55                                        Sface > 0.34                             Other than Confidence 
           Best Matchers                   Sfinger < 0.15                       Sfinger > 0.20                Partitions 
 
            NIST-BSSR1                    Sface < 0.35                                        Sface > 0.20                              Other than Confidence 
           Worst Matchers                 Sfinger < 0.09                      Sfinger > 0.20                Partitions 
 
           XM2VTS                          Sspeech < 0.48                                    Sspeech > 0.41                          Other than Confidence 
           Best Matchers                   Sface < 0.44                         Sface > 0.60                  Partitions        
 
           XM2VTS                          Sspeech < 0.43                                     Sspeech  >  0.67                       Other than Confidence 
           Worst Matchers                 Sface < 1.00                         Sface > 0.79                  Partitions 

 
 
From the graphical and numerical results shown in figures 3 and 4 and tables 2 and 3, 
we can conclude that the proposed method outperforms the Sum rule fusion especially 
at lower FAR even though there are no significant improvements of the equal error 
rate (EER) which is the rate where FAR is equal to the false reject rate (FRR).  
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 The best matchers hybrid fusion for the NIST-BSSR1 dataset achieved 93% GAR 
which is 0.7% more than the Sum rule whereas in the XM2VTS the best matchers 
hybrid fusion achieved 96.3% GAR which is 0.3% better than the Sum rule. The GAR 
improvement becomes more obvious in the worst matchers hybrid fusion in both 
databases. The hybrid fusion gains additional 2.1% and 2.3% GAR improvement 
compared to the Sum rule in NIST-BSSR1 and XM2VTS databases respectively. The 
relative Sum rule performances are 91.9% and 62.0% in NIST-BSSR1 and XM2VTS. 
As it can be observed from the scatter plots, the best matchers achieved very good 
separation between the genuine user and impostor score distribution. Therefore the 
Sum rule is able to produces a very reliable fusion score. As a result no significant 
hybrid fusion improvement can be obtained when comparing it with the Sum rule. 
However, the Sum rule performs poorer to fuse multimodal biometrics with lower 
authentication rate. In this case, the use of a hybrid fusion rule leads to an 
improvement over the Sum rule fusion. Like the work shown in [4], our work justifies 
again that the higher accuracy biometric system leaves less room for improvement. 

  In a bimodal biometric system, the Sum fusion score can be considered as the 
average value between the Min fusion score and the Max fusion score. Further, within 
the confidence partition the difference between minimum score and maximum score 
will not be significant. As a result, the improvements of the GAR achieved in the 
experiments are within the range between 0.3%~2.3%. It is assumed that the 
improvement can be further increased when the Min and Max rules being replaced by 
a higher degree confidence fusion rule, for example the decision fusion rule. 

  In fact, the improvement also relies on a more accurate assignment of the CP and 
depends on the amount of claimants whose multimodal biometric scores are falling in 
the confidence partitions. The more scores falls in the CP, the more improvement of 
the hybrid fusion can be obtained. 

            

                                                   (a)                                                                          (b) 

Fig. 3. Performance of the NIST-BSSR1 bimodal biometrics fusion on (a) the best 
multimodal matchers and (b) the worst multimodal matchers. 
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Table 2. Accept rates and error rates of NIST-BSSR1 Multimodal database single 
biometrics and the combined multimodal biometrics.  

 
                             Fingerprint                   Face                        Sum                     Hybrid 

                            EER     GAR          EER     GAR          EER     GAR          EER     GAR            

  
         Best Matchers           8.6%    70.0 %         5.8%    61.1%        1.6%     92.3%        1.3%    93.0% 
 
         Worst Matchers        4.5%     82.7%          4.3%    56.9%        0.5%     91.9%        0.5%    94.0% 

 
 

             

                                                   (a)                                                                          (b) 

Fig. 4. Performance of the XM2VTS bimodal biometrics fusion on (a) the best 
multimodal matchers and (b) the worst multimodal matchers. 

 

Table 3. Accept rates and error rates of XM2VTS single biometrics and their 
combined multimodal biometrics.  

 
                                 Face                       Speech                     Sum                     Hybrid 

                            EER     GAR          EER     GAR          EER     GAR          EER     GAR            

  
       Best Matchers           1.8%    81.3%          1.1%    58.3%        0.5%     96.0%        0.5%    96.3% 
 
       Worst Matchers        6.4%     0.0%            6.4%    19.0%        2.5%     62.0%        2.5%    64.3% 

 

4  Conclusions  

After the introduction of the confidence partition, we have proposed to use more 
appropriate fusion rules (Min and Max rule in this paper) in the confidence partitions 
instead of Sum rule. This approach enables the rule based fusion to be applied in a 
hybrid manner that includes Sum, Min and Max rules. In the preliminary experiments, 
we showed that the manually operated hybrid rule performed better than the Sum rule. 
The future exploration will be focusing on automatic assignment of confidence 
partitions across the biometric score space. An investigation into integration of 
decision rule in the developed hybrid fusion framework will also be conducted. 
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Abstract 

 

Owing to effectiveness and ease of 

implementation Sum rule has been 

widely applied in the biometric research 

field. Different matcher information has 

been used as weighting parameters in 

the weighted Sum rule. In this work, a 

new parameter has been devised in 

reducing the genuine/imposter 

distribution overlap. It is shown that the 

overlap region width has the best 

generalization performance as the 

weighting parameter amongst other 

commonly used matcher information. 

Furthermore, it is illustrated that the 

equal weighted Sum rule can generally 

perform better than the Equal Error 

Rate and d-prime weighted Sum rule. 

The publicly available databases: the 

NIST-BSSR1 multimodal biometric and 

Xm2vts score sets have been used.  

 

1. Introduction 

Combining several modalities of 
biometrics is a promising approach to 
achieve high verification rate.  The Sum 
Rule is one of the effective score level 
fusion approaches for multiple 
biometric score combination. Although 
it is a very simple algorithm, it out 
performs some of the complex fusion 
methods [1] and has been extensively 
applied in various biometric fusion 
attempts. However, different biometrics 

tend to perform differently. A weighted 
Sum rule is preferred since it can be 
used to indicate the importance of each 
biometric modality in the fusion.   

The Weighted Sum Rule is a linear 
boundary in bimodal biometric score 
space where the weighting can be 
viewed as a means to adjust its gradient. 
There exists a best linear boundary for 
every single operating point. An 
exhaustive search for this best linear 
boundary through searching for the 
optimal weights has been conducted and 
other similar works have been reported 
in [2, 3]. Although exhaustive searching 
promises high verification rate, a 
training session that might be complex 
or time consuming is requested for 
every single operating point.  

For the biometric verification 
problem the classification errors arise 
from the overlap region. A smaller 
overlap region tends to produce less 
classification error. Therefore the aim of 
this work is to achieve the best linear 
combination by reducing the overlap 
region through adjusting the gradient of 
the linear boundary. This proposed 
method is described in the following 
section.  

The Equal Weighted (EW), Equal 
Error Rate Weighed (EERW) and D-
Prime Weighted (DW) Sum rules are 
commonly used methods. A further 
contribution of this work is to carry out 
the comparison between these methods 
and the proposed work. To the best of 
our knowledge, similar comparative 
work has not been reported. The third 
section describes the experimental setup 
and the results analysis and the fourth 
section concludes the paper 
 

2. Non-Confidence Width Weighted 

Sum Rule 

Fig. 1 illustrates a typical biometric 
matcher score distribution that includes 
the genuine user and impostor score 
distributions. There is a significant 
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overlap region of the curves that causes 
the difficulty to classify the claimant 
into genuine or impostor groups. The 
grey regions outside the overlap part are 
confidence regions where only a single 
class of users can be found and therefore 
the samples can be safely rejected or 
accepted. Whereas the samples in the 
overlap region can only be classified 
with referring to the threshold boundary.  

The width of the overlap region is 
termed Non-Confidence Width (NCW). 
NCW can be determined from the 
difference between the matcher k’s 

maximum impostor score I

kMax  and the 

minimum genuine user score G

kMin  as 

shown in (1). 

 
Figure 1. Biometric matcher score 

distribution. 

 

            G

k

I

kk MinMaxNCW −=            (1) 

 
In a practical biometric matcher, the 

NCW will always exist. Some of the 
reasons for formation of non-confidence 
region are the noise in the sensed data, 
the interclass similarities in the feature 
space of multiple users and intraclass 
variations that are typically caused by 
users who incorrectly interacting with 
the sensor [4].  

 

Figure 2. Reducing the overlap region 

by adjusting the gradient of the linear 

boundary. 

 

Fig. 2 illustrates how the NCW 
weighted Sum rule can aid in reducing 
the overlap region in bimodal biometric 
score space to maximise the verification 
rate. Two of the overlap circles in this 
figure represent the approximated 
scatter of the genuine user and impostor 
scores. The straight lines are separation 
boundaries with different verification 
thresholds. It denotes varying the 
decision threshold is a process of 
moving the boundary while preserving 
its gradient. As shown by 2(a), the 
circles’ area between the separation 
boundaries is at maximum. The 
bounded area is the area where the 
samples cannot be clearly classified by 
the boundary. However, by adjusting the 
gradient of the boundary, the bounded 
area can be reduced as shown in 2(b). 
When the boundary is parallel to the line 
connecting the intersection points of the 
two circles, the bounded area is 
restricted to a minimum as shown in 
2(c). A smaller bounded area contains 
less non-confidence samples so a better 
ROC can be obtained. Therefore it is 
desired that the boundary has the same 
gradient with the line connecting the 
circle’s points of intersection. As 2(d) 
depicts, this specific gradient m can be 
approximated by the NCW of the two 
matchers where m in 2(d) equals to (2). 

                                                                                                        

            
GI

IG

MinMax

MaxMin
m

11

22

−

−
=                   (2) 

            cy
NCW

x
NCW

=+
21

11            (3) 

 
By using the common form of a 

linear equation (3) can be derived. c is 
an adjustable threshold for controlling 
the boundary position. In this weighted 
Sum rule, biometric matcher’s scores x 
and y are inverse proportionally 
weighted by their NCW. Their 
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respective weights Wk can be obtained 

by applying (4) so that ∑
=

=
K

k

kW
1

1  where 

the K is the total matcher number. 
Therefore (3) can be rewritten as (5), Si  

is the fused score for user i and S’i,k is 
his biometric score that is generated by 
matcher k.  

                 

k

K

k

k

k

NCW

NCW
W

1

1

1=
Σ

=
                  (4) 

                  ∑
=

=
K

k

kiki SWS
1

,'                  (5) 

 
 This method is termed as Non-

Confidence Width Weighted Sum rule 
(NCWW). Three of the following 
commonly used weighted schemes are 
carried out in the experiments for 
comparison and used to evaluate the 
effectiveness of the proposed method.  

 
a) Equal Weighted: Multiple biometrics 
will be assigned the same weight, Wk:   
                                    

                          
K

W Kk

1
...1 ==

                 (6) 

 
b) EER Weighted: Equal Error Rate 
(EER) is where the Falsely Accept Rate 
(FAR) equals to Falsely Reject Rate 
(FRR). It is inverse proportionally used 
as weighting parameter in (7). 
 

                           

k

K

k

k
k

EER

EER
W

1

1

1=
Σ

=
                (7) 

 
c) D-Prime Weighted: D-prime has been 
used to statistically measure the 
separation of impostor and genuine user 
biometric scores as depicted in (8). The   

G

kµ and I

kµ  are the genuine score and 

impostor score mean where G

kσ  and I

kσ  

are their standard deviations. The 
associated matcher weight is directly 
proportional to its d-prime as shown in 
(9). 

 

                  
22 )()(
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=               (8) 

                             
'

1

'

k

K

k

k
k

d

d
W
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Σ
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3. Experimental Setup and Results  

     Although the proposed method can 
be generalized to higher dimensions, it 
was decided to focus on investigating 
the performance of bimodal biometric 
fusion. This is because it is desirable to 
examine the effectiveness of the 
proposed method before introducing 
further complexities. The NIST-BSSR1 
multimodal database [5] and the Xm2vts 
benchmark database [6] are used for the 
experiments. These databases are truly 
multimodal. Since no matcher 
information is given, each of the 
databases has been evenly separated into 
two parts. The weighting parameters are 
obtained through the first half part and 
the rest for the testing purpose.  
     The BSSR1 multimodal database 
consists of 517 genuine user scores and 
266,772 impostor scores from the user’s 
left and right fingerprints (Fli and Fri) 
and facial scores from two matchers (Fc 
and Fg). Fli and Fri are paired with Fc 
and Fg to form four different bimodal 
biometric fusion experiments.  
     For the Xm2vts score database, there 
are five facial matchers (F1~F5) and 
three speech matchers (S6~S8). It 
contains 295 individuals’ speech and 
facial scores. There are 1000 genuine 
scores and 151,800 impostor scores 
from both the development set and 
evaluation set. Even though the training 
and testing partitions have been defined 
by the author, in our experiments this 
partitioning has not been done. To 
examine the statistical significance of 
the proposed method, the testing and 
training scores are mixed and randomly 
chosen to form equal training and 
testing sets. Different permutations 
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between five facial matchers and three 
speech matchers create 15 bimodal 
biometric fusion experiments. 
     Before the weighted Sum rule is 
applied, the biometric scores are 
normalised through Min-Max 
normalisation [7]. Each of the 
experiments has been repeated 100 
times through different partitions of the 
databases. Due to the page constraint, 
only the average EER are reported 
graphically in fig. 3. In the figure, the 
M1 and M2 represent the matchers 
involve in the experiments      
     The superior performance of the 
NCWW can be justified from the figure 
that NCWW’s EER seem to be always 
the lowest in both of the databases. In 
NIST-BSSR1, the NCWW obtains the 
best EER over all the experiments 
where the obtained EERs are in the 
range of 0.41%~1.35%. Whereas in the 
Xm2vts database, the NCWW obtains 
the best EER from 9 experiments out of 
15. The rest of the results are very 
comparable to the best EER where the 
differences from the best EER is just in 
the range of 0.01%~0.08%. However, 
the NCWW EERs vary in the range of 
0.29%~~1.72%. At lowest operating 
points, NCWW and EW obtain 2 best 
GAR respectively at FAR equals to 
0.001% in BSSR1 experiments. EW, 
EERW and DPW obtain 3 best GAR 
correspondingly at FAR equals to 
0.002% in Xm2vts whereas NCWW 
obtains 6 best GAR out of 15. 
 

 

 
Figure 3. NIST BSSR1 (a) and 

Xm2vts (b) bimodal biometric 

fusion average results.  

 

     It can be seen from fig. 4, that 
NCWW not only obtains the best EERs 
in all the NIST-BSSR1 experiments, 
their performance standard deviations 
are the lowest also. The standard 
deviations are no more than 0.35 for the 
NIST-BSSR1 where the Xm2vts 
standard deviations are no more than 
0.23.  
     It is clear that NCWW has the best 
generalisation capability in producing 
the best EER. From the comparison of 
the other three methods, surprisingly, 
the EW which is independent of any 
parameters performs broadly better than 
the other two parametric methods. From 
fig. 4, in contrast to the EW and 
NCWW, the DPW and EERW generally 
perform more inconsistently and worse 
in several experiments. This is because 
of the EER and d-prime is very sensitive 
against the sample variation. 
Furthermore EER cannot be a key factor 
in weighting the discrimination power 
of a matcher. For example a matcher 
with a lower EER may have higher 
lowest FAR than the other one. As for 
the d-prime, it includes the samples 
outside the overlap region for its 
calculation. However the errors of 
verification arise from the overlap 
region. Therefore it cannot be 
appropriately used as a weighting 
parameter. Due to the nature of the 
biometric matcher that produce 
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similarity score tends to give a high 
score for a genuine user and a low score 
for an impostor (i.e. like the circles in 
fig. 2 shown, the two circles will 
normally align from lower left to upper 
right direction), EW which has an 
gradient of -1 for its linear boundary 
will generally out perform the other two 
methods. 

 

Figure 4. NIST BSSR1 (a) and 

Xm2vts (b) 100 bimodal biometric 

fusion averaged result standard 

deviations.  

 

  4. Conclusion 

Although EER and d-prime have 
been applied in the weighted Sum 
Rule in biometric research, it is 
shown that they cannot be reliably 
used. EW can generally perform 
better than both of them but NCWW 
will be preferred. This is because it is 
aimed at reducing the overlap region 
and in fact the score normalization 
process can be eliminated by using 
NCWW. 

Furthermore, NCWW is preferred not 
only due its simplicity, parameter 
accessibility and no need for 
parameter tuning, but because it out 

performs other non-linear methods. 
As an example the Gaussian Mixture 
Modeling likelihood ratios test in [8] 
is considered. The multi-biometric 
fusion research conducted through 
NIST-BSSR1 obtains mean GAR at 
99.1% (with FAR equals to 0.01%). 
The 95% confidence interval on 
increase in GAR with respect to the 
best single matcher performance is 
[13.5%, 14%]. By using the same 
experimental setting, the NCWW can 
generate mean GAR at 99.2% with 
the 95% confidence interval on 
increase in GAR is [13.7%, 14.1%]. 
The Xm2vts multibiometric 
experiment that follows the partition 
in [6] obtains 98.7% GAR in (9) 
whereas NCWW performs better 
again at 99.1% GAR.  

In this work, we have demonstrated 
how to maximize the verification rate 
by reducing the overlap region in a 
bimodal biometric linear fusion 
problem. However, basing the 
detection of the overlap width on 

I

kMax  and G

kMin  difference alone is 

sensitive to outliers and may lead to 
unreliability. Therefore for a more 
consistent performance, the NCW’s 
definition needs to be extended to 
include the corresponding density 
and other overlap region information.  
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