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Abstract— A common learning task for a spiking neuron is to 

map a spatiotemporal input pattern to a target output spike train. 

There is no prescribed method for selection of the target output 

spike train. However, the precise spiking pattern of the target output 

spike train (output encoding) can affect the learning performance of 

the spiking neuron. Therefore, systematic methods of finding the 

optimum spiking pattern for a target output spike train that can be 

learned by spiking neurons are needed. Here, a method is proposed 

to adaptively adjust an initial sub-optimal output encoding during 

different learning epochs to find the optimal output encoding. A time 

varying value of a local event called a spike trace is used to calculate 

the amount of a required adjustment. The Remote Supervised 

Method (ReSuMe) learning algorithm is used to train the weights, 

and the proposed method is used for finding optimized output 

encoding (optimized desired spikes). Experimental results show that 

optimizing the output encoding during the learning phase increases 

the accuracy. The proposed method was applied to find optimized 

output encoding in classification tasks and the results revealed 

improvements up to 16.5% in accuracy compared to when using the 

non-adapted method. It also increases the accuracy in a 

classification task from 90% to 100%. 

 
Index Terms—Encoding, learning, spatiotemporal patterns, 

spike trace, spike train, spiking neural network.  

 

I. INTRODUCTION 

HE ability of the brain to solve complex problems has 

inspired researchers to study its processing functions and 

learning procedures. Artificial Neural Networks (ANNs) are 

powerful engineering tools in many domains such as pattern 

recognition, control, bioinformatics, and robotics. Despite the 

fact that rate-based coding is commonly used in traditional 

ANNs, it is unlikely that rate-based coding can convey all the 

information related to a rapid processing task such as colour, 

odour, and sound processing [1][2]. Spikes are an important 

part of information transmission between neurons in the brain, 

and there is biological evidence to show that information is 

encoded in the precise timing of the spikes [3][4]. 
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SpikeProp [5] was one of the first learning algorithms for 

Spiking Neural Networks (SNNs). It is a gradient based 

learning method and trains a neuron to fire a single desired 

output spike. In SpikeProp [5] each class is labelled by a desired 

output spike, i.e. each output neuron is fired at a desired time 

when an input from the class related to the desired output spike 

is applied to the network. The supervised multi-spike learning 

algorithm [6] is another gradient-based learning algorithm that 

can train a SNN to fire a desired output spike train with non-

adapted spike times corresponding to each class. This method 

does not find the optimal desired spike times for different 

classes. ReSuMe (Remote Supervised Method) [7] is a 

biologically plausible learning algorithm that works based on 

Spike Timing Dependent Plasticity (STDP) and anti-STDP to 

train a neuron firing desired output spikes at non-adapted times. 

QuickProp [8], RProp [9], Chronotron [10], SPAN [11], EMPD 

[12], BPSL [13], EDL [14], and the supervised method 

proposed in [15] are other examples of learning algorithms for 

training spiking neurons to fire at non-adapted desired output 

times. The times of desired output spikes are usually set 

randomly, and the random target spikes might not be an 

appropriate choice for a classification task, which can result in 

a reduction in learning efficiency. For example, a neuron cannot 

learn to fire a target spike which is randomly set at a time that 

there are no or an insufficient number of input spikes in a time 

window around the target time. 

Tempotron [16] is a biologically plausible supervised 

learning method that does not force a neuron to fire at non-

adapted predefined times. It can train a neuron to fire an output 

spike, however the spike time is not restricted. A dynamic 

evolving spiking neural network (deSNN) was proposed by 

Kasabov et al. [17] for classification tasks, and it is a semi-

supervised learning method to capture the temporal dynamics 

of input patterns. deSNN does not set predefined constant times 

for firing neurons. Yu et al. [18] designed a scheme to make 

decisions on output spikes of a feedforward network. They used 

N on/off neurons to encode the output of the network to 2N 

classes. In the scheme proposed by Yu et al. [18], if one neuron 

acts incorrectly, it completely changes the output of the 

network. Pham et al. [19] proposed a learning method for a self-

organising spiking neural network for pattern clustering. In this 

method, each spiking neuron acts as a Coincident Detector 

(CD). A Hebbian based rule is applied to shift the synaptic 

delays. The neuron threshold level is set to a small value at the 

beginning of the learning phase and it is then increased during 

different learning epochs. Similar to other methods such as 

Tempotron [16], this method has no predefined constant times 

for firing neurons.  
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The temporal spiking pattern of a desired output spike train 

has a significant effect on the performance of a learning 

algorithm for SNNs. It is hypothesised that finding an optimum 

desired output spike train encoding can improve the 

performance of the learning algorithm, by making the task of 

the learning algorithm easier. Mohemmed et al. [4] have shown 

that the spiking patterns of desired output spike trains, which 

are used for labelling different classes, affect the performance 

of SNN learning algorithms. They used spatiotemporal input 

patterns which were applied to a neuron with 200 input 

synapses. Spikes in the input pattern were generated using a 

uniform random distribution in the interval [0, 200] ms. They 

have shown that shifting the firing time of a desired output spike 

from a very early time (at 33 ms) to a late time (165ms), can 

significantly improve classification performance. In particular, 

classification accuracy increased from 51% to 99% when 

shifting the firing time of a spike to a later time [4].  

Legenstein et al. [20] constructed a desired output spike train 

for a spatiotemporal input pattern, when synaptic weights were 

chosen randomly. Xu et al. [6] have investigated the effect of 

the number and the times of desired output spikes on the 

performance of a SNN learning algorithm for a pattern 

classification task. In the classification task, a desired spike 

train is assigned to each class. A teacher signal is used in each 

learning epoch to train a spiking neuron. The teacher signal is 

called desired spike train and it contains a number of desired 

spikes. Xu et al. [6] have shown that appropriate selection of 

the time of a desired output spike can improve the performance 

of the learning algorithm. They set the time of the first desired 

output spike to an arbitrary value, then extracted the time of the 

second desired output spike based on the distribution of actual 

output spikes after the first run of learning on the first desired 

spike. Note that the term “actual output spikes” describes those 

spikes generated by a spiking neuron in response to an applied 

input spatiotemporal pattern.  Then the SNN was trained with 

the new desired output spike train (composed of the first spike 

and the newly extracted desired spike). The method proposed 

by Xu et al. [6] does not combine the desired output spike 

extraction with the learning procedure of a SNN, and it does not 

provide any mechanism to adjust the time of the first desired 

output spike. In general, there is a need for methods which can 

identify optimum output spike patterns to encode outputs for 

training spatiotemporal input patterns in spiking neurons, and 

hence to improve the learning capabilities of SNNs [21]. 

Biological evidence shows that the firing times of a 

biological neuron are dynamically changed, and irregular 

behavior has been reported with respect to the firing activity of 

neurons in in-vivo and in-vitro experiments [22]. Stochastic 

behavior of cortical neurons has been reported in 

many biological experiments. These experiments show that 

spikes may shift from trial to trial, even though the same trial is 

performed several times [22]. In biological experiments, a time-

dependent current is injected into a neuron several times in a 

controlled situation and typically results in output traces as 

shown in Fig. 1 from repeated experimental runs. The firing 

times of the biological neuron are not constant, even if exactly 

the same input is applied, and there is a fluctuation around the 

time of a spike from trial to trial. In the method proposed here, 

this biological property was used to design a method to 

dynamically change the times of desired output spikes to find 

an appropriate spiking pattern for the desired spikes that 

minimises the challenge to the learning algorithm in learning 

the spatiotemporal input. 

More specifically, this paper proposes a method for finding 

an optimal desired output spike train (optimal output encoding) 

for a spiking neuron. An initial sub-optimal desired spike train 

composed of a number of spikes is generated randomly, and 

then the sub-optimal spikes are adjusted in time to create an 

optimized set of spikes via controlled shifts in the initial spike 

times. The spiking neuron can be trained to map the 

spatiotemporal input pattern to the shifted desired spikes with 

high accuracy. In the proposed method, the times of initial sub-

optimal desired output spikes evolve to reach a pattern of 

spiking activity that the spiking neuron can learn with a high 

accuracy. The method can be applied to different learning 

algorithms for SNNs. Section II discusses the proposed method 

for finding desired output spikes; Section III provides the 

experiment results; and a discussion and conclusion are 

presented in Section IV and V, respectively. 

II. PROPOSED METHOD FOR FINDING DESIRED OUTPUT SPIKES 

The aim of the learning task is to map a spatiotemporal input 

pattern composed of a number of spike trains to a desired spike 

train. This section proposes a method to find compatible desired 

output spikes with the spatiotemporal input pattern. In the 

proposed method, ReSuMe is used to adjust the learning 

parameters (i.e. synaptic weights) of a spiking neuron to train 

the neuron although any similar learning algorithm could be 

employed. In addition, to utilising the ReSuMe learning 

algorithm to adjust the synaptic weights of a spiking neuron, a 

new method is proposed to gradually shift the desired spikes 

toward the nearest actual output spikes, thus easing the task of 

the learning algorithm. The proposed mechanism gives 

flexibility to the learning task to increase the accuracy of the 

learning procedure.   

For example, Fig. 2 shows an initial sub-optimal desired 

spike train, and the actual output spike train of a spiking neuron 

before training. The initial desired spike train is far from the 

actual output of the spiking neuron. There are three desired 

spikes in the sub-optimal desired spike train, and the proposed 

method shifts each desired spike in the train to find an optimum 

time for each spike in different learning epochs. For the 

situation shown in Fig. 2 in addition to weight learning, we 

propose to shift the desired output spikes towards the nearest 

existing actual output spikes. The first and the second desired 

spikes are shifted to the firing times of their nearest actual 

output spikes. The shift directions of the two spikes are shown 

by two arrows in Fig. 2. The third desired spike does not shift 

in the current learning epoch because there are no output spikes 

close enough for the third desired spike in the current learning 

epoch. The shifting of the desired output spike can improve the 

learning by removing the extra weight adjustment related to 

weight enhancement at the time of the first and second desired 

output spikes. The shifting of the desired spike can also prevent 

the weight adjustment required for removing the two nearest 

actual output spikes (as shown in Fig. 2) to the first and the 

second desired spikes. In this case the ReSuMe algorithm 
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adjusts the weights to remove only the 8 extra spikes instead of 

10 spikes. 

Each desired output spike shifts according to a heuristic rule 

proposed in subsection II.A. In each learning epoch, each sub-

optimal desired output spike is compared to its surrounding 

actual output spikes, and it shifts right or left to reach the nearest 

actual output spike. Fig. 3 shows a desired output spike at 

t=31.6 ms. There are two actual output spikes around the 

desired output spike. The first actual output spike is at t=27.6 

ms and the second one is at t=40.2 ms. The desired spike is close 

to the left actual output spike, and therefore it is shifted slightly 

to the left in the current learning epoch. The shift is small. 

Additionally, the learning algorithm adjusts the learning 

parameters of the neuron to generate an actual output spike at 

the current desired spike. It takes a number of learning epochs 

to fire output spikes at the desired time. During the learning 

phase, weight learning occurs and this may change the sequence 

of the actual output spikes and, consequently, this may also 

change the direction of the shift of the desired spike. If there is 

an actual output spike at a desired time, then the desired spike 

shift is stopped.  

A. Proposed method to find the direction and amount of a 

desired spike shift 

The proposed method uses local variables, called spike traces, 

to find the nearest actual output spike around a desired spike, 

and to calculate the distance between the nearest actual output 

spike and the desired spike. First, the time distance of the 

nearest output spike after the desired spike and the nearest 

output spike before the desired spike are found. Then these two 

time intervals are compared to find the nearest actual output 

spike to the desired spike. In this paper, a method is proposed 

to calculate the time intervals in an online manner, i.e. this 

method uses the momentary value of local variables (spike 

traces) to calculate the time intervals and consequently the 

nearest actual output spike to the desired spike. This method 

does not save the previous spike times and it works based on 

current events which are generated by the previous spiking 

activities.  

Similar to Morrison et al. [23], the proposed method uses a 

saturation method to model the spike traces, and we adopted a 

similar approach to that proposed in our previous work, DL-

ReSuMe [1], to calculate time intervals using spike traces. xd(t) 

is defined as the trace of a desired spike train. Each desired 

spike causes a jump to a constant value A and then it decays 

exponentially according to (1). 

𝑥𝑑(𝑡) = {
𝐴                         𝑓𝑜𝑟 𝑡= 𝑡𝑑

1,   … ,𝑡𝑑
𝑓−1

, 𝑡𝑑
𝑓

,𝑡𝑑
𝑓+1

,   …  

𝐴𝑒
−(𝑡−𝑡

𝑑
𝑓

)/𝜏 
𝑓𝑜𝑟  𝑡𝑑

𝑓
<𝑡<𝑡𝑑

𝑓+1
 

 () 

 

where τ is the exponentially decay time constant, and 

amplitude A is a constant value where the trace jumps at the 

time of a desired spike.  td
f  is the time of the 𝑓𝑡ℎ spike in the 

desired spike train. Each actual output spike, after a desired 

spike, resets the desired spike trace to zero (Fig. 4 (b)). The time 

of the first actual output spike after a desired spike is of interest. 

Similarly,  xa(t) is defined as the trace of an actual output spike 

train, as follows: 

𝑥𝑎(𝑡) = {
𝐴                         𝑓𝑜𝑟 𝑡=𝑡𝑑

1,   …,𝑡𝑎
𝑓−1

, 𝑡𝑎
𝑓

,𝑡𝑎
𝑓+1

,…  

𝐴𝑒−(𝑡−𝑡𝑎
𝑓

)/𝜏 𝑓𝑜𝑟  𝑡𝑎
𝑓

<𝑡<𝑡𝑎
𝑓+1

 
 (2) 

where ta
f  is the firing time of the 𝑓𝑡ℎactual output spike (Fig. 4 

(c)). 

   The time interval between the desired spike and the first 

previous actual output spike, dtad, is calculated and compared 

 
Fig. 1. Variable spike times in various trials with same time dependent input 

stimulus (Adopted from [22]). 

 
Fig. 2. A desired spike train and its corresponding actual output spike train 
before learning.  

  

 
Fig. 3. A desired spike and its neighbour actual output spikes. The desired 

spike is close to the actual output spike on the left side. 

 
Fig. 4. (a) A desired spike; (b) The trace of a desired spike, xd(t): there is a 

jump to a constant value A=2 × 10−6 at the time of a desired spike, then it 

decays exponentially. The value of xd(t) is reset to zero at the time of an actual 

output spike. (c) The trace of an actual output spike train, xa(t); (d) Actual 

output spike train. 
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to dtda (the time interval between a desired spike and the first 

actual output spike after the desired spike) to find the closest 

actual output spike to the desired spike (as shown in Fig. 4 (a)). 

In the proposed method, calculations of dtad and dtda are 

performed at the time of the first actual output spike after the 

desired spike, 𝑡𝑎 in Fig. 4 (d). In the first step, dtaa(ta), i.e. the 

time interval between the actual output spikes before and after 

the desired spike, and 𝑑𝑡𝑑𝑎(𝑡𝑎) are calculated at time ta. Then 

𝑑𝑡𝑎𝑑(𝑡𝑎) is calculated by 𝑑𝑡𝑎𝑑(𝑡𝑎) = 𝑑𝑡𝑎𝑎(𝑡𝑎) − 𝑑𝑡𝑑𝑎(𝑡𝑎). 

This procedure can be performed for each desired spike in the 

desired spike train. 

The time interval of an actual output spike at time 𝑡𝑎and its 

previous desired spike, 𝑑𝑡𝑑𝑎(𝑡𝑎), can be calculated by the value 

of the nearest previous desired spike trace, 𝑥𝑑(𝑡𝑎), at the time 

of the actual output spike, 𝑡𝑎. The trace 𝑥𝑑(𝑡)  starts from the 

value of A at the time of the previous desired spike and it decays 

exponentially by the time constant τ as shown in (1). By 

considering (1), the time interval, dtda(ta), between an actual  

output spike and its previous desired spike can be calculated by 

(3). 

𝑑𝑡𝑑𝑎(𝑡𝑎) = −𝜏ln(
𝑥𝑑(𝑡𝑎)

𝐴
) () 

where dtda(ta) is the time interval between an actual output 

spike at time ta and its previous desired spike. In other words, 

dtda(ta) is the time interval of the desired spike and the first 

actual output spike after the desired spike. xd(ta) is the value 

of the desired spike trace at the time of the actual output ta. The 

time interval dtaa(ta) is calculated by (4). 

𝑑𝑡𝑎𝑎(𝑡𝑎) = −𝜏ln(
𝑥𝑎(𝑡𝑎

−)

𝐴
) () 

where xa(ta
−) is the momentary value of the actual output trace 

at the time of ta  just before jumping to the saturation value A. 

Thus dtad(ta), which is the time interval of the nearest actual 

output spike before the desired spike, can be calculated by (5). 

𝑑𝑡𝑎𝑑(𝑡𝑎) = 𝑑𝑡𝑎𝑎(𝑡𝑎) − 𝑑𝑡𝑑𝑎(𝑡𝑎) 

= −𝜏𝐿𝑛 (
𝑥𝑎(𝑡𝑎

−)

𝐴
) + 𝜏𝐿𝑛 (

𝑥𝑑(𝑡𝑎)

𝐴
) 

= 𝜏𝐿𝑛(𝑥𝑑(𝑡𝑎)/𝑥𝑎(𝑡𝑎
−)) 

 

 

() 

At the time of the first spike after a desired spike, ta, first 

dtda(ta) and dtad(ta) are calculated by (3) and (5) respectively. 

Then they are compared and the nearest actual spike time 

interval to the desired spike is determined as dtmin. If the time 

interval is smaller than a maximum shift, dtM, the desired spike 

is shifted toward the nearest actual output spike. Therefore, the 

shift, dtshift(f), applied to the f th desired spike can be 

calculated by (6) 

𝑑𝑡𝑠ℎ𝑖𝑓𝑡(𝑓) = {
𝑑𝑡𝑚𝑖𝑛(𝑓), 𝑑𝑡𝑚𝑖𝑛(𝑓) ≤ 𝑑𝑡𝑀

0, 𝑑𝑡𝑚𝑖𝑛(𝑓) > 𝑑𝑡𝑀
 () 

where dtmin(f) is the time interval of the closest actual output 

spike to the f th desired spike. If the nearest actual spike train is 

far from the desired spike, i.e. its time distance from the desired 

spike is larger than dtM, the desired spike does not shift, and it 

waits for a weight learning procedure to generate an actual 

output spike close to the desired spike.  

The desired spike train shift, dtshift(f), is scaled to a small value 

at the start of the learning and it grows during the learning. At 

the beginning of the learning phase, because the weights are not 

well trained, the actual output spike train may be far from the 

desired spike train. Therefore, during the early epochs of the 

learning phase the desired spike shift is restricted to small 

values. The weight learning algorithm has higher impact on 

learning than the desired spike shift, when the desired spike 

shift is limited in the earlier epochs. The weight adjustment 

trains the neuron to fire at the desired time or a time close to the 

desired times. At the last epochs of the learning some of the 

desired spikes are trained and it might be difficult for the neuron 

to fire at the other desired times. In this situation the limitation 

on the desired output spike shift should be reduced to move the 

desired (target) spike toward the existing actual output spikes. 

To achieve this aim after each learning epoch and calculation 

of dtshift(f), the shift is scaled by the epoch number as shown 

in (7). 

𝑑𝑡𝑎(𝑓, 𝑒) = 𝑑𝑡𝑠ℎ𝑖𝑓𝑡(𝑓) ×
𝑒

50
 () 

where 𝑒 is the number of the current epoch, dta(f, e) is the 

time shift that is applied to the f th desired spike at epoch 

number 𝑒. The denominator of (7) is set to 50 because the 

learning is continued until epoch 50. Equation (7) can be refined 

for higher number of learning epochs by setting the 

denominator of (7) with the new higher number of learning 

epochs. Thus in epoch 50 the exact calculated shift from (6), 

dtshift(f), is applied to the desired spikes. 

The main strategy of learning in the proposed method is to 

place the focus on weight learning during the beginning of the 

training process. The effect of the desired spike shift increases 

during the final epochs of the learning process when the weight 

learning has stabilised. In the proposed method, first, learning 

of spatiotemporal pattern is performed by weight adjustment 

and the impact of a desired spike shift is gradually increased as 

the number of epochs increases.  

At the start of the learning process, when e=1, the applied 

shift, dta(f, e),  has a small value which is one fiftieth of 

𝑑𝑡𝑠ℎ𝑖𝑓𝑡(𝑓), i.e. dta(f, e) = 𝑑𝑡𝑠ℎ𝑖𝑓𝑡(𝑓) ×
1

50
 (see (7)). When the 

epoch number, e, increases, the weights are updated, and the 

neuron learns to spike closer to the desired spikes. In the last 

learning epoch, where e=50, all weight learning is completed 

and there are no more learning epochs to train the neuron 

weights to fire at that desired times. In this stage, during the last 

epoch of the learning process, and after the weight learning 

procedure, the learning is completed by applying all the 

required desired spike shifts using (7), and dta(f, e) =

𝑑𝑡𝑠ℎ𝑖𝑓𝑡(𝑓) ×
50

50
=  𝑑𝑡𝑠ℎ𝑖𝑓𝑡(𝑓) .  

 The neuron weights are adjusted according to the ReSuMe 

[7] learning method as follows: 
𝑑𝑤𝑖(𝑡)

𝑑𝑡
= [𝑠�̃�(𝑡) − 𝑠𝑜(𝑡)][𝑎 + ∫ 𝑇𝑤(𝑠)𝑠𝑖(𝑡 − 𝑠)𝑑𝑠

+∞

0

] () 

where wi is the synaptic weight of the ith synapse, s�̃�(t) is an 

adapted desired spike train that is updated after each learning 
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epoch (note that an adapted desired spike train is a shifted 

version of the initial sub-optimal desired spike), so(t) is actual 

output desired spike train, the parameter a is the ReSuMe non-

Hebian term and is a constant value, and si(t) is th ith input 

spike train in the spatiotemporal input pattern. 𝑇𝑤(s) is the 

ReSuMe learning window, and it is an exponential function as 

shown in (9). 

𝑇𝑤(𝑠) = {
𝐴𝑒−𝑠/𝜏  𝑓𝑜𝑟 𝑠 ≥ 0
0           𝑓𝑜𝑟 𝑠 < 0

 () 

where A is a constant parameter and is the amplitude of the 

learning window. It has same value as the parameter A used in 

(1) 𝑇𝑤(s) , similar to STDP learning window has an exponential 

function that decays with a time constant τ. 

B.  Correlation-based metric  

The correlation-based metric (C) proposed in [24] is used to 

evaluate the similarity between two spike trains to assess the 

performance of the proposed method. The metric is used to 

evaluate the similarity between the actual output of a neuron 

and its desired spike train. Additionally, it is used in a 

classification task. In the classification task a spiking neuron is 

trained to map different input patterns to their corresponding 

desired spike trains. Each spatiotemporal input pattern is 

assigned to the class with the desired spike train that has the 

highest correlation with the actual output of the neuron 

compared to the other classes. Then the classification accuracy 

is calculated based on the number of correct assignments. 

The similarity coefficient C is equal to one for two identical 

spike trains, and it is zero for two completely uncorrelated spike 

trains. Therefore, the closer the value of C to one, the greater 

the similarity between two spike trains. C is calculated as 

follows: 

C =
vd. vo

|vd||vo|
 () 

where vd and vo are two vectors and they are the convolution 

of a desired spike train, sd(t), and an actual output spike train, 

so(t), by a symmetric Gaussian filter, respectively. The spike 

trains which consist of series of Dirac delta functions are 

converted to continuous functions. “vd. vo”, the numerator of 

(10), is the inner product of the two vectors, and |vd| and |vo| 
represent the length of the vectors vd and vo, correspondingly. 

The symmetric Gaussian function which is convolved with 

the spike trains is given by (11). 

𝑓(𝑡, 𝛿) = 𝑒
−𝑡2

2𝛿2  
() 

where the parameter δ is a constant value and determines the 

width of the symmetric Gaussian function. 

III.  RESULTS 

Experiments were performed to investigate the effect of the 

proposed method for shifting desired spikes and optimising the 

output encoding. ReSuMe is used to train synaptic weights. 

Two learning tasks are considered.  The first learning task is to 

map a random spatiotemporal input pattern to a desired spike 

train. The spatiotemporal input pattern and the desired spike 

train was produced by a random Poisonian process. The 

spatiotemporal input pattern contains 200 spike trains with 20 

HZ (or 15 Hz where mentioned) mean spiking frequency, and 

the frequency of the desired spike train is set to 100Hz. The time 

duration of the spike trains is 650 ms. The experiment results 

for the first learning task are described in Sections III.A and 

III.B. For the first learning task, the correlation between actual 

output of a trained neuron and its desired spike train is 

calculated using (10) and reported to determine the accuracy of 

the proposed SNN. The second learning task concerns the 

classification of spatiotemporal input patterns, and the results 

of the classification task are described in Section III.C.  In the 

classification a spiking neuron is trained to map different input 

patterns to their corresponding desired spike trains. In this case, 

each spatiotemporal input pattern is assigned to the class with 

the desired spike that has the highest correlation with the actual 

output of the neuron compared to the other classes. Then the 

classification accuracy is calculated based on the number of 

correct assignments. 

The proposed learning algorithm has four hyper parameters that 

should be set before learning. The four hyper parameters are 

shown in Table I. The second column in Table I shows the 

equations that use the hyperparameters. In this paper the 

simulation time step is 0.1 ms,  

𝑑𝑡 = 1 ms. The other variables in the equations are 

automatically generated during usual activity of the spiking 

neuron when it fires actual output spikes in response to an 

applied spatiotemporal input pattern and they also depend on 

the desired spike train. Note that the hyperparameter 𝐴 is 

dimensionless, and it shows the ratio of two weight adjustment. 

This section discusses the results of three sets of experiments. 

In the first experiment, the effect of the shifting of the desired 

spikes on the accuracy of the learning method is investigated 

for the first learning task, i.e. mapping a spatiotemporal input 

pattern to a desired spike train. Then the effect of the maximum 

allowable shift, 𝑑𝑡𝑀, is presented. Finally, the classification 

accuracy of the proposed method for the second learning task is 

reported.  

A. The effect of the proposed spike shifting method on the 

learning efficiency of SNNs 

In this section the proposed method is used for mapping a 

spatiotemporal input pattern to a desired spike train. Two 

experiments were carried out to determine the effect of the 

proposed spike shifting method on the accuracy of SNNs. In the 

first experiment a neuron was trained, as a benchmark 

comparison, with a non-adapted desired spike train. In the 

second experiment, the sub-optimal desired spikes are shifted 

TABLE I 

THE HYPER PARAMETERS OF THE PROPOSED ADAPTED DESIRED SPIKE TRAIN.  

Hyper 

parameter 

Equation Value  

𝜏 (1), (2), (3), (4), (5), (9) 1 ms 

𝐴 (1), (2), (3), (4), (5), (9) 2× 10−6 

𝑑𝑡𝑀 (6) [2, 10] ms 

𝑑𝑡 (8) 0.1 ms 

𝛿 (11) 2 ms 
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during the learning process such that each spike in the desired 

spike train is shifted toward the nearest actual output spike 

using the proposed method.  

The experimental results are shown in Fig. 5. In the plot 

presented in Fig. 5, the y-axis shows the correlations between 

the neuron’s actual output spike trains and the desired spike 

trains for the first learning task. The desired spike shift causes 

the performance of ReSuMe to reach a correlation level of 0.99 

at epoch 50. However, the correlation is 0.84 at epoch 50 when 

a non-adapted desired spike train is used. The non-adapted 

method cannot reach the correlation level of the adapted method 

for a comparatively high number of training epochs. In the 

experiments, the non-adapted method reached its maximum 

correlation level of 0.86 at 500 learning epochs, whereas the 

adapted method reached a correlation value close to 1.00 in only 

50 learning epochs. The experimental results show that the 

adapted desired spike method increases the performance of the 

learning and changes the pattern of the desired spike train. Fig. 

6 illustrates the desired spike trains before and after 15 learning 

epochs. The similarity between these two spike trains (the 

initial sub-optimal desired spike train and the shifted desired 

spike train) can be calculated by the correlation-based metric 

method, C. The calculated C is 0.80. 

Fig. 7 shows the similarity between the adapted desired spike 

and the initial sub-optimal desired spike train (Adapted-Initial) 

during various learning epochs. The experiment is run 20 times 

and the mean values are reported. At the start of learning, 

similarity is 1.00 (i.e. the adapted desired spike train is the same 

as the initial sub-optimal desired spike train), and at each 

learning epoch the spikes in the adapted desired spike train are 

shifted. During the shift, the similarity between the adapted 

desired spike train and the initial sub-optimal desired spike train 

changes. Additionally, Fig. 7 shows the similarity between the 

neuron actual output spike train and the adapted desired spike 

train during various epochs. 

B. The effect of the maximum allowable shift 

In the next experiment the maximum allowable shift for the 

desired spikes, 𝑑𝑡𝑀, is reduced from 10 to 1 ms. The result is 

shown in Fig. 8. The correlation between the actual output and 

the adapted desired spike train, which is shown by the legend 

(Adapted (1 ms)) in Fig. 8, is reduced compared to the 

correlation value which is shown in Fig. 5 where 𝑑𝑡𝑀 was 10 

ms. The reduction of 𝑑𝑡𝑀 prevents the high modification of 

desired spike times. When  𝑑𝑡𝑀 = 1 𝑚𝑠, the weight adjustment 

has more contribution in the generation of actual output spikes 

at the desired times, compared to the previous situation where 

𝑑𝑡𝑀 was 10 ms. The low 𝑑𝑡𝑀 is closer to the situation that the 

desired spike train is non-adapted and the generation of actual 

output spikes relies more on weight adjustment, and similarly it 

has lower accuracy. The maximum allowable shift controlled 

by 𝑑𝑡𝑀 gives a freedom to the neuron to stop its weight 

adjustment and consequently the learning is stabilised, and it 

prevents the learning algorithm to make more weight 

adjustment which consequently increases the accuracy of the 

method. The adapted desired spikes stay close to the initial sub-

optimal desired spike train when 𝑑𝑡𝑀is reduced to 1 ms. In Fig. 

 

 

 
8, the curve with the Adapted-Initial legend shows that the 

correlation between the learned adapted spike train and the 

initial sub-optimal desired spike train is higher than the 

 
Fig. 5. Comparison of the performance of ReSuMe during various learning 

epochs when non-adapted desired spike and adapted desired spike are used 

(T=650; Fin=20Hz, Fo=100Hz and dtM=10 ms). 

 
Fig. 6. The desired spike train before and after 15 learning epochs. C value 

that shows the similarity between the two spike trains is 0.80414. 

 
Fig. 7. Actual-Adapted: The correlation between the actual output spike 

train and the adapted desired spike train during various learning epochs. 
Adapted-Initial: The correlation between adapted desired spike train and the 
initial sub-optimal desired spike train during various learning epochs. 

 
Fig. 8. Adapted-initial: the correlation between the adapted desired spike 

train and initial sub-optimal desired spike train when the desired spike train 

evolves in various learning epochs. Adapted (1m): The correlation metric, C, 

between the adapted desired spike train and the neuron actual output spike 
train across various learning epochs when the maximum allowable shift for 

the desired spike is reduced to 1ms. Non-adapted: is the C value of the neuron 

actual output when non-adapted desired spike train is used. (T=650; 

Fin=20Hz, Fo=100Hz and dtM=1 ms)  

. 
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situation that 𝑑𝑡𝑀=10 ms (Fig. 7). Therefore, there is a smaller 

change in the learned desired spike compared to the initial sub-

optimal desired spike train. 

Fig. 9 shows the correlation between the actual output and 

adapted desired spike trains for different values of 𝑑𝑡𝑀 in [1, 

10] interval. The figure shows that the correlation is increased 

until 𝑑𝑡𝑀 = 5 𝑚𝑠. Any further increase to 𝑑𝑡𝑀 than 5 ms 

reduces the correlation between the neuron actual output and 

the adapted desired spike trains. Because a high value for 𝑑𝑡𝑀 

causes a high desired spike shift and consequently reduces the 

correlation between the adapted desired spike train and the 

initial sub-optimal desired spike train. The high shift in the 

desired spike requires new weight values which are different 

from the previously learned weights, and it reduces the 

correlation. Fig. 9 also shows the correlation between the 

adapted desired spike train and the initial sub-optimal desired 

spike (Adapted-Initial) for different values of 𝑑𝑡𝑀. The 

correlation is reduced when 𝑑𝑡𝑀 is increased.    

The histogram of the initial synaptic weights before learning 

is shown in Fig. 10 (a), the initial weights are normal random 

number with the mean value and standard deviation of 

1.2× 10−5. Fig. 10 (a) shows that a lower portion of the weights 

are negative (inhibitory inputs) and a higher portion of weights 

are positive (excitatory input). Fig. 10 (b) shows the histogram 

of the synaptic weights after training when 𝑑𝑡𝑀 is set to 5 ms. 

Fig. 10 (b) shows that the weights after training are distributed 

around the initial weigh values as demonstrated in Fig. 10 (a). 

Fig. 11 shows the evolution of weights during 50 learning 

epochs. Fig. 11 shows that almost all the weights are trained 

after about 45 learning epochs, and hence the weights stabilized 

at 45 epochs.  In order to investigate the effect of 𝑑𝑡𝑀 on weight 

learning, the histogram of weights 

 

before and after learning when the desired spikes are non-

adapted, i.e. 𝑑𝑡𝑀 = 0, are shown in Fig. 12. The weights after 

learning are in the range [-3.88× 10−5, 6.99× 10−5] when 

𝑑𝑡𝑀 = 0, whereas the weights are in the range  [-3.22× 10−5, 

3.57× 10−5] when 𝑑𝑡𝑀 = 5 𝑚𝑠. These results revealed that the 

weights are in a wider interval when 𝑑𝑡𝑀 = 0, when the desired 

spikes are non-adapted. However, the weights during training 

of an optimal desired spike train obtained by  𝑑𝑡𝑀 = 5 𝑚𝑠 

needs less weight adjustment. Fig. 13 shows the evolution of 

weights during different learning epochs when the desired 

spikes are non-adapted, i.e. 𝑑𝑡𝑀 = 0. The figure shows that 

quite a number of the weights keep adapting even after the 50th 

epoch.  

Fig. 14 illustrates the correlation between the actual output 

spike train of the trained neuron and the initial sub-optimal 

desired spike train (Actual-Initial) during various learning 

epochs when the adapted desired spike method is used. Fig. 14 

also shows the correlation between the actual output spike train 

and the initial sub-optimal desired spike train when non-

adapted desired spike train is used. The experimental result 

shows that when 𝑑𝑡𝑀 is set to 1 ms, the adapted desired spike 

increases the performance of ReSuMe, to learn initial sub-

optimal desired spike train. It increases the correlation metric 

from C=0.84 to C=0.88. The output spike optimization method 

brings a desired spike to the time of an actual output spike 

which is close to the desired spike. This prevents the weight 

adjustment related to generation an output spike at the time of 

the desired spike through weight learning, and it prevents the 

weight adjustment related to the cancelation of the nearby 

actual output spike. Consequently, the desired spike shift settles 

the weight adjustment and prevents extra adjustment of weights 

that may interfere in the learning of the other desired spikes, at 

the cost of acceptance of a small error.

 

 
Fig. 9. Correlation between the actual output and adapted desired spike 

trains for different values of 𝑑𝑡𝑀. 

. 

 
Fig. 10. Histogram of the initial synaptic weights when 𝑑𝑡𝑀 is set 5 ms (a) 

before learning (b) after learning. 

 

 
Fig. 11. Evolution of 200 synaptic weights during different learning epochs 

when 𝑑𝑡𝑀 = 5 ms. 

 

 
Fig. 12. Histogram of the initial synaptic weights when non-adapted desired 

spikes are used, i.e. 𝑑𝑡𝑀 = 0 (a) before learning (b) after learning. 
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C. Classification of spatiotemporal input patterns 

In this section, the performance of the proposed method is 

investigated within a classification task. In the classification 

task, two sets of synthetic spatiotemporal spiking input patterns 

are used. Each spatiotemporal input pattern composed of 

several spike trains. The two sets of spatiotemporal patterns 

belong to two different classes. The two sets of spatiotemporal 

input patterns are generated by Poisonian process with two 

different spike rates. The spatiotemporal input patterns of the 

first class has the same property of the spatiotemporal input 

patterns which are used in the previous experiment described in 

the beginning of Section III. A random Poissonian process with 

the mean spike rate of 20 Hz is used to generate the 

spatiotemporal input patterns of the first class. The input 

patterns of the second class are random patterns with the rate of  

15 Hz. Fig. 15 shows the raster plot of a spatiotemporal input 

pattern from the second class. The spatiotemporal input pattern 

is composed of 200 spike trains. The spike trains are generated   

by 200 input neurons. Additionally, two random desired spike 

trains are assigned as the label of the two classes of 

spatiotemporal input patterns. A spiking neuron is trained to 

assign each input pattern to its corresponding desired spike 

train. 

In the experiments described in this section, classification 

performance was initially evaluated when the neuron was 

trained on non-adapted desired spike trains. Then the neuron 

was trained on the proposed adapted desired spike trains. The 

proposed method is used to shift desired spikes for the different 

classes to find optimum times for the desired spikes for the two 

 
classes, and classification performance is compared when using 

the proposed adapted desired spikes versus the non-adapted 

desired spikes. 

1) Experiment results on two random spatiotemporal 

input patterns per class 

In the first experiment each class has a set of spatiotemporal 

input patterns composed of two spiking patterns. A SNN is 

trained to assign each pattern to its corresponding desired spike 

train. The results achieved by the non-adapted desired spike 

train and the proposed adapted desired spike train method are 

shown in Table II. The results show that the proposed adapted 

desired spike method can shift the initial sub-optimal desired 

spikes to appropriate desired times with higher accuracy than 

the method using non-adapted desired spike trains, and 

consequently it increases classification accuracy by 10%. 

2) Experimental results on spatiotemporal input patterns 

generated by time jitters 

A similar method used in [25] is used to generate a higher 

number of training and testing samples. The 4 spatiotemporal 

input patterns generated by the random Poissonian process with 

frequencies of 20 Hz and 15Hz in Section III.C.1 are considered 

as base patterns. Then a number of testing and training 

spatiotemporal patterns are generated by adding random jitters 

to the spike times of the base patterns.  Each spike in a base 

spatiotemporal input pattern is moved by a random time jitter 

extracted from a uniform distribution on    [-2,2] ms interval. In 

total the resulted training set contains 20 spatiotemporal input 

patterns, composed of the 4 base patterns and 16 noisy patterns. 

The test set is composed of other 20 noisy spatiotemporal 

patterns that have been generated by adding random jitter to the 

four base patterns. The task concerns training a spiking neuron 

to generate desired spikes corresponding to the class of an 

applied spatiotemporal input pattern. The simulation is 

continued for 50 learning epochs on the training dataset. The 

 
Fig. 13. Evolution of 200 synaptic weights during different learning epochs 

when the non-adapted desired spikes are used, i.e. 𝑑𝑡𝑀 = 0. 

 
Fig. 14. Actual-Initial: Correlation, C, between actual output spike train and 

initial sub-optimal desired spike train when ReSuMe uses the adapted desired 

spike train method. Non-adapted: Correlation, C, between actual output spike 
train and the non-adapted desired spike train when ReSuMe is used to train a 

neuron by the non-adapted desired spike train. 

 
Fig. 15. Raster plot of a spatiotemporal input pattern from the first class. 

There are 200 spike trains in the spatiotemporal pattern generated by 200 input 

neurons. 

TABLE II 

COMPARISON OF THE PROPOSED ADAPTED DESIRED SPIKE METHOD AGAINST 

THE METHOD WHICH USES A NON-ADAPTED DESIRED SPIKE TRAIN
A 

Method Classification Accuracy 

Proposed adapted desired spike train method 100.00% 

non-adapted desired spike train method 90.00% 

AFour spatiotemporal input patterns are generated by the Poissonian process 
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results are reported in Table III. The results reveal that the 

proposed method can improve the testing accuracy more than 

12.25%. 

3) Experimental results on different numbers of random 

spatiotemporal input patterns  

In this set of experiments, more challenging tasks are 

considered. Instead of generating training and testing data by 

adding a noisy jitter to the base patterns, a number of training 

and testing patterns are directly generated by the Poissonian 

process with the firing rate of 15 Hz and 20 Hz for the two 

different classes. Fig. 16 shows the mean value of classification 

accuracy when the number of spatiotemporal input patterns is 

increased from 4 to 20. Each classification task is repeated for 

20 different runs and the mean values are reported in Fig. 16. 

The vertical error bars in Fig. 16 show standard errors of the 

mean values. The results show that the proposed method has 

higher accuracy for the different numbers of spatiotemporal 

input patterns. When the number of the patterns increases, the 

difficulty of the learning task also increases. Consequently, the 

accuracy of the two methods shown in Fig. 16 is reduced when  

the number of spatiotemporal patterns increases. The 

improvement of the proposed method can reach more than 16% 

when the number of the spatiotemporal patterns reaches 10 (see 

Table IV). The proposed method shifts the initial sub-optimal 

desired spikes to appropriate times when different patterns are 

trained. At the end, the desired spikes can reach optimum times 

for all the trained input patterns depending on the distribution 

of spikes in the input patterns. The optimum times for desired 

spikes reduced required weight adjustment and consequently 

prevents distortion in the learning of previously trained patterns 

and increases the overall classification accuracy (see Fig. 16). 

IV. DISCUSSION 

The discontinuous nature of the activity of spiking neurons 

makes it difficult (or impossible) to use classical methods, such

 

as the backpropagation learning algorithm, to train spiking 

neurons. One challenge in training a spiking neuron is that a 

spiking neuron cannot generate every possible encoding of 

desired output spike trains in response to a specific 

spatiotemporal input pattern. A spiking neuron can be trained 

to produce output spikes that are compatible with the 

distribution of its input spatiotemporal spikes. A SNN generates 

output spikes at specific times in response to an input pattern, 

provided the input spikes occur within a suitable time window. 

The input spikes in that time window cause a high level of Post 

Synaptic Potential (PSP) and force the neuron to fire, ideally at 

the desired times. Training involves adjustment of the network 

parameters so as to ensure the output spikes occur at the correct 

times in response to such an input spike train. However, if there 

are not enough input spikes in the relevant time window, the 

learning method has difficulties and the network parameter 

adjustment is increased without reaching the training aim. 

Comparison of Fig. 11 and Fig. 13 reveals that the weight 

adjustment stabilises when the proposed method is used to find 

appropriate desired spikes. However, the neuron finds it 

difficult to learn the non-adapted desired spike train and the 

weights do not stabilize during all the training epochs (see Fig. 

13). Additionally, the weight adjustments are constrained to be 

within a shorter interval when an appropriate desired spike is 

used to train the spiking neuron. 

A learning algorithm for a spiking neuron adjusts learning 

parameters and forces the neuron to fire actual output spikes at 

desired times. On the other hand, training a neuron to fire in 

some specific times when there are no input spikes in the time 

windows around the desired times can reduce the performance 

of a learning algorithm. For instance, consider the situation 

where there is a large number of spikes in the input 

spatiotemporal pattern within a short time interval. If there are 

no desired output spikes corresponding to that time interval, an 

undesired output spike may be generated. If the learning 

algorithm adjusts the learning parameters to remove such an 

undesired spike, it may adversely interfere with learning of 

other desired output spikes. Fig. 13 shows that weights with 

negative value are continuously increased when the number of 

learning epochs is increased. This negative growth of the 

weights is the learning method’s reaction to removing the 

undesired output spikes which are generated because of the high 

 
Fig. 16. Classification accuracy of the SNN when it uses the proposed 

method for finding the optimum desired spikes is higher than when it uses non-

adapted desired spikes. 

TABLE III 

TRAINING AND TESTING CLASSIFICATION ACCURACY ON THE DATA THAT IS 

GENERATED BY ADDING NOISY JITTERS TO THE BASE PATTERNS 

Method Training 

accuracy 

Testing 

accuracy  

Proposed adapted desired 
spike train method 

96.00% 96.75% 

Non-adapted desired spike 

train method 

88.25% 84.50% 

 

TABLE IV 
NUMBER OF INPUT PATTERNS VS. IMPROVEMENT IN ACCURACY 

Number of input patterns Improvement in Accuracy (%) 

(Adapted)-(Non_adapted) 

4 10.00 

6 11.67 

8 14.38 

10  16.50 

12 15.84 

14 13.57 

16 10.93 

18 9.44 

20 13.75 
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number of input spikes in the undesired time interval. 

Additionally, a neuron may have difficulty producing a desired 

output spike where there are not enough input spikes shortly 

before the desired spike. A very low number of input spikes 

leads to a low level of PSP at the desired time, which 

consequently causes difficulty in the generation of an actual 

output spike at the desired time. Fig. 13 shows that ReSuMe 

learning method continuously increases the weights to generate 

desired spikes that do not have input spike close to desired times 

without reaching the learning goal. Therefore, an inappropriate 

selection of a desired (target) output spike train (i.e. output 

encoding) for a spatiotemporal input pattern might lead to low 

performance or convergence problems for the spiking neural 

network learning algorithm. 

Considering Fig. 15, the total time length of the 

spatiotemporal spiking pattern is 650 ms, and the 

spatiotemporal input pattern has 200 spike trains. The 

distribution of spikes in the spatiotemporal input pattern shows 

that the concentration of the spikes is high in some parts and 

sparse in other parts. This distribution changes depending on 

the class to which the pattern belongs and can be considered as 

characteristic of the class. In other words, each class can be 

identified according to the distribution of spikes in its 

spatiotemporal input patterns. The critical point is that, based 

on the distribution of spikes in the spatiotemporal input pattern, 

the learning ability of a neuron is different for different desired 

output spike trains i.e. how the output is encoded in spike times. 

Spike times are the most crucial part of information 

transmission in spiking neural networks. The proposed method 

optimizes the performance of an SNN through improving the 

learning process. The experimental results show that the 

original learning algorithm, ReSuMe, used for training the sub-

optimal desired spike train, could not learn all the desired spikes 

in the sub-optimal desired spike train precisely. This was 

because weight adjustment could not be stabilized as less 

relevancy existed between the input and the sub-optimal desired 

output spikes; which caused continuous weight change and 

consequently reduced the correlation of the actual output spikes 

of the trained neuron with the initial sub-optimal desired spike 

train. However, the shift of the desired spikes around the times 

of the original desired spikes stabilises the learning process of 

the neuron, and the shift prevents continuous changes of 

learning parameters, i.e. weights, and consequently increased 

the correlation between the actual output and the original 

desired spikes. Fig. 14 shows that the correlation between the 

actual output of the neuron with the initial desired spike train 

when the proposed method is used to shift the desired spikes is 

higher than when the proposed method is not used. 

In the proposed method, the desired spike can be adjusted 

around the original desired spike train, and this shift provides 

flexibility to stabilise the learning and consequently to increase 

the accuracy. Multi-Spike Tempotron [26] also provides 

flexibility by permitting a neuron to fire at any time in a 

specified window to enable fast conversion.  

The proposed spike shift method does not rely on any 

specific weight learning algorithm, but instead has its separate 

procedure which performs in parallel with the weight learning 

method. In each learning epoch, a desired spike train is 

considered as a fixed desired spike train for the weight learning 

method, and therefore the learning method can work as usual. 

At the end of each learning epoch, updates are made for the 

desired spikes, then they become fixed for the next learning 

epoch for the weight learning algorithm. Therefore, any other 

learning rules like SPAN [11], or the Linear Algebraic Method 

[27] which perform weight learning in different epochs are 

compatible with the proposed method. 

Noisy spike patterns are common in SNNs. A time jitter can 

be added to a base spike pattern to generate noisy spike patterns. 

In Section III.C.2, a time jitter has been added to generate noisy 

testing data which was used to test the performance of the 

proposed method on noisy data. Table III shows that the 

proposed method can achieve higher accuracy for noisy data 

compared to the non-adapted desired spike train method. 

V. CONCLUSION 

In this paper a method is proposed to adaptively adjust a 

desired spike train. The experimental results show that a spiking 

neuron can learn adjusted desired spikes with significantly high 

accuracy. For instance, it can increase the correlation level from 

0.84 to 0.99.  A biologically plausible local variable called spike 

trace is used to calculate the required shift for desired spikes in 

different epochs for different spikes. The desired spike trace 

and actual output spike trace are used to find the appropriate 

shift for each desired spike. The proposed method calculates the 

time interval of the nearest actual output spike before and after 

a desired spike and compares these time intervals and finds the 

nearest actual spike to a desired spike using time varying spike 

trace. Selection of a low value for the maximum allowable shift 

for desired spikes improves the performance of the algorithm 

for learning of not only adapted desired spike train but also the 

initial sub-optimal desired spike train. For instance, the 

proposed method can increase the accuracy of ReSuMe on a 

sub-optimal desired spike train by 4%. Small shifts in the 

desired spike train help the neuron weight adjustment to settle 

and prevent unnecessary weight adjustment and distraction of 

previously trained weights. In this paper the adapted desired 

spike train learning method is applied to the ReSuMe weight 

learning method, however, the proposed method can be applied 

to other learning methods for spiking neural networks.  

The higher performance of the adapted desired spike train 

method can be used to improve the classification ability of a 

SNN. For instance, in a classification task, output spike train 

encodings act as labels for different classes. The proposed 

method can be used to find the optimum output spiking pattern 

for different classes and to increase the performance of 

classification tasks. A spiking neural network can learn optimal 

desired spike trains which are compatible with its 

spatiotemporal input patterns. The network can learn each 

spatiotemporal input pattern with less weight adjustment and it 

can achieve a higher accuracy with the proposed desired spike 

shift method. In a classification task there are not many 

restrictions because the encoding can be arbitrary provided the 

classes can be distinctly segregated.  

This paper proposes a method to find appropriate desired 
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spike trains based on a classification problem. Although finding 

appropriate desired spike train for different classes increases the 

classification accuracy, it has not been investigated 

significantly in previous studies, with the result that arbitrary 

spikes at precise times or uniformly spaced spike trains are 

usually used in classification tasks which reduces the accuracy.  

The arbitrary or uniformly spaced spikes may not be compatible 

with the input spike trains, and it is not possible for a neuron to 

generate them. The proposed method adds a degree of 

flexibility to the desired spike times and it leads to faster 

convergence and improvement of the accuracy of the learning 

algorithm. The proposed method can be used to improve 

classification accuracies of different SNNs such as the SNNs 

proposed in [28][29][30].  
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