
2379-8920 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2909355, IEEE
Transactions on Cognitive and Developmental Systems

TCDS-2018-0127

1

Abstract— A common learning task for a spiking neuron is to

map a spatiotemporal input pattern to a target output spike train.

There is no prescribed method for selection of the target output

spike train. However, the precise spiking pattern of the target output

spike train (output encoding) can affect the learning performance of

the spiking neuron. Therefore, systematic methods of finding the

optimum spiking pattern for a target output spike train that can be

learned by spiking neurons are needed. Here, a method is proposed

to adaptively adjust an initial sub-optimal output encoding during

different learning epochs to find the optimal output encoding. A time

varying value of a local event called a spike trace is used to calculate

the amount of a required adjustment. The Remote Supervised

Method (ReSuMe) learning algorithm is used to train the weights,

and the proposed method is used for finding optimized output

encoding (optimized desired spikes). Experimental results show that

optimizing the output encoding during the learning phase increases

the accuracy. The proposed method was applied to find optimized

output encoding in classification tasks and the results revealed

improvements up to 16.5% in accuracy compared to when using the

non-adapted method. It also increases the accuracy in a

classification task from 90% to 100%.

Index Terms—Encoding, learning, spatiotemporal patterns,

spike trace, spike train, spiking neural network.

I. INTRODUCTION

HE ability of the brain to solve complex problems has

inspired researchers to study its processing functions and

learning procedures. Artificial Neural Networks (ANNs) are

powerful engineering tools in many domains such as pattern

recognition, control, bioinformatics, and robotics. Despite the

fact that rate-based coding is commonly used in traditional

ANNs, it is unlikely that rate-based coding can convey all the

information related to a rapid processing task such as colour,

odour, and sound processing [1][2]. Spikes are an important

part of information transmission between neurons in the brain,

and there is biological evidence to show that information is

encoded in the precise timing of the spikes [3][4].

This work was supported by The Leverhulme Trust Research Project Grant

RPG-2016-252 entitled “Novel Approaches for Constructing Optimised

Multimodal Data Spaces”.
A. Taherkhani is with the Computational Neuroscience and Cognitive

Robotics Research Group, Nottingham Trent University, Nottingham NG11

8NS, U.K. (e-mail: aboozar.taherkhani@ntu.ac.uk).
G. Cosma is with the Computational Neuroscience and Cognitive Robotics

Research Group, Nottingham Trent University, Nottingham NG11 8NS, U.K.

(e-mail: georgina.cosma@ntu.ac.uk)
T.M McGinnity is with the Computational Neuroscience and Cognitive

Robotics Research Group, Nottingham Trent University, Nottingham NG11

8NS, U.K. (e-mail: martin.mcginnity@ntu.ac.uk) and with the Intelligent
Systems Research Centre, Ulster University, N. Ireland

(tm.mcginnity@ulster.ac.uk).p).

SpikeProp [5] was one of the first learning algorithms for

Spiking Neural Networks (SNNs). It is a gradient based

learning method and trains a neuron to fire a single desired

output spike. In SpikeProp [5] each class is labelled by a desired

output spike, i.e. each output neuron is fired at a desired time

when an input from the class related to the desired output spike

is applied to the network. The supervised multi-spike learning

algorithm [6] is another gradient-based learning algorithm that

can train a SNN to fire a desired output spike train with non-

adapted spike times corresponding to each class. This method

does not find the optimal desired spike times for different

classes. ReSuMe (Remote Supervised Method) [7] is a

biologically plausible learning algorithm that works based on

Spike Timing Dependent Plasticity (STDP) and anti-STDP to

train a neuron firing desired output spikes at non-adapted times.

QuickProp [8], RProp [9], Chronotron [10], SPAN [11], EMPD

[12], BPSL [13], EDL [14], and the supervised method

proposed in [15] are other examples of learning algorithms for

training spiking neurons to fire at non-adapted desired output

times. The times of desired output spikes are usually set

randomly, and the random target spikes might not be an

appropriate choice for a classification task, which can result in

a reduction in learning efficiency. For example, a neuron cannot

learn to fire a target spike which is randomly set at a time that

there are no or an insufficient number of input spikes in a time

window around the target time.

Tempotron [16] is a biologically plausible supervised

learning method that does not force a neuron to fire at non-

adapted predefined times. It can train a neuron to fire an output

spike, however the spike time is not restricted. A dynamic

evolving spiking neural network (deSNN) was proposed by

Kasabov et al. [17] for classification tasks, and it is a semi-

supervised learning method to capture the temporal dynamics

of input patterns. deSNN does not set predefined constant times

for firing neurons. Yu et al. [18] designed a scheme to make

decisions on output spikes of a feedforward network. They used

N on/off neurons to encode the output of the network to 2N

classes. In the scheme proposed by Yu et al. [18], if one neuron

acts incorrectly, it completely changes the output of the

network. Pham et al. [19] proposed a learning method for a self-

organising spiking neural network for pattern clustering. In this

method, each spiking neuron acts as a Coincident Detector

(CD). A Hebbian based rule is applied to shift the synaptic

delays. The neuron threshold level is set to a small value at the

beginning of the learning phase and it is then increased during

different learning epochs. Similar to other methods such as

Tempotron [16], this method has no predefined constant times

for firing neurons.

Optimization of output spike train encoding for a spiking

neuron based on its spatiotemporal input pattern

Aboozar Taherkhani, Georgina Cosma, and, T.M McGinnity

T

mailto:georgina.cosma@ntu.ac.uk
mailto:martin.mcginnity@ntu.ac.uk

2379-8920 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2909355, IEEE
Transactions on Cognitive and Developmental Systems

TCDS-2018-0127

2

The temporal spiking pattern of a desired output spike train

has a significant effect on the performance of a learning

algorithm for SNNs. It is hypothesised that finding an optimum

desired output spike train encoding can improve the

performance of the learning algorithm, by making the task of

the learning algorithm easier. Mohemmed et al. [4] have shown

that the spiking patterns of desired output spike trains, which

are used for labelling different classes, affect the performance

of SNN learning algorithms. They used spatiotemporal input

patterns which were applied to a neuron with 200 input

synapses. Spikes in the input pattern were generated using a

uniform random distribution in the interval [0, 200] ms. They

have shown that shifting the firing time of a desired output spike

from a very early time (at 33 ms) to a late time (165ms), can

significantly improve classification performance. In particular,

classification accuracy increased from 51% to 99% when

shifting the firing time of a spike to a later time [4].

Legenstein et al. [20] constructed a desired output spike train

for a spatiotemporal input pattern, when synaptic weights were

chosen randomly. Xu et al. [6] have investigated the effect of

the number and the times of desired output spikes on the

performance of a SNN learning algorithm for a pattern

classification task. In the classification task, a desired spike

train is assigned to each class. A teacher signal is used in each

learning epoch to train a spiking neuron. The teacher signal is

called desired spike train and it contains a number of desired

spikes. Xu et al. [6] have shown that appropriate selection of

the time of a desired output spike can improve the performance

of the learning algorithm. They set the time of the first desired

output spike to an arbitrary value, then extracted the time of the

second desired output spike based on the distribution of actual

output spikes after the first run of learning on the first desired

spike. Note that the term “actual output spikes” describes those

spikes generated by a spiking neuron in response to an applied

input spatiotemporal pattern. Then the SNN was trained with

the new desired output spike train (composed of the first spike

and the newly extracted desired spike). The method proposed

by Xu et al. [6] does not combine the desired output spike

extraction with the learning procedure of a SNN, and it does not

provide any mechanism to adjust the time of the first desired

output spike. In general, there is a need for methods which can

identify optimum output spike patterns to encode outputs for

training spatiotemporal input patterns in spiking neurons, and

hence to improve the learning capabilities of SNNs [21].

Biological evidence shows that the firing times of a

biological neuron are dynamically changed, and irregular

behavior has been reported with respect to the firing activity of

neurons in in-vivo and in-vitro experiments [22]. Stochastic

behavior of cortical neurons has been reported in

many biological experiments. These experiments show that

spikes may shift from trial to trial, even though the same trial is

performed several times [22]. In biological experiments, a time-

dependent current is injected into a neuron several times in a

controlled situation and typically results in output traces as

shown in Fig. 1 from repeated experimental runs. The firing

times of the biological neuron are not constant, even if exactly

the same input is applied, and there is a fluctuation around the

time of a spike from trial to trial. In the method proposed here,

this biological property was used to design a method to

dynamically change the times of desired output spikes to find

an appropriate spiking pattern for the desired spikes that

minimises the challenge to the learning algorithm in learning

the spatiotemporal input.

More specifically, this paper proposes a method for finding

an optimal desired output spike train (optimal output encoding)

for a spiking neuron. An initial sub-optimal desired spike train

composed of a number of spikes is generated randomly, and

then the sub-optimal spikes are adjusted in time to create an

optimized set of spikes via controlled shifts in the initial spike

times. The spiking neuron can be trained to map the

spatiotemporal input pattern to the shifted desired spikes with

high accuracy. In the proposed method, the times of initial sub-

optimal desired output spikes evolve to reach a pattern of

spiking activity that the spiking neuron can learn with a high

accuracy. The method can be applied to different learning

algorithms for SNNs. Section II discusses the proposed method

for finding desired output spikes; Section III provides the

experiment results; and a discussion and conclusion are

presented in Section IV and V, respectively.

II. PROPOSED METHOD FOR FINDING DESIRED OUTPUT SPIKES

The aim of the learning task is to map a spatiotemporal input

pattern composed of a number of spike trains to a desired spike

train. This section proposes a method to find compatible desired

output spikes with the spatiotemporal input pattern. In the

proposed method, ReSuMe is used to adjust the learning

parameters (i.e. synaptic weights) of a spiking neuron to train

the neuron although any similar learning algorithm could be

employed. In addition, to utilising the ReSuMe learning

algorithm to adjust the synaptic weights of a spiking neuron, a

new method is proposed to gradually shift the desired spikes

toward the nearest actual output spikes, thus easing the task of

the learning algorithm. The proposed mechanism gives

flexibility to the learning task to increase the accuracy of the

learning procedure.

For example, Fig. 2 shows an initial sub-optimal desired

spike train, and the actual output spike train of a spiking neuron

before training. The initial desired spike train is far from the

actual output of the spiking neuron. There are three desired

spikes in the sub-optimal desired spike train, and the proposed

method shifts each desired spike in the train to find an optimum

time for each spike in different learning epochs. For the

situation shown in Fig. 2 in addition to weight learning, we

propose to shift the desired output spikes towards the nearest

existing actual output spikes. The first and the second desired

spikes are shifted to the firing times of their nearest actual

output spikes. The shift directions of the two spikes are shown

by two arrows in Fig. 2. The third desired spike does not shift

in the current learning epoch because there are no output spikes

close enough for the third desired spike in the current learning

epoch. The shifting of the desired output spike can improve the

learning by removing the extra weight adjustment related to

weight enhancement at the time of the first and second desired

output spikes. The shifting of the desired spike can also prevent

the weight adjustment required for removing the two nearest

actual output spikes (as shown in Fig. 2) to the first and the

second desired spikes. In this case the ReSuMe algorithm

2379-8920 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2909355, IEEE
Transactions on Cognitive and Developmental Systems

TCDS-2018-0127

3

adjusts the weights to remove only the 8 extra spikes instead of

10 spikes.

Each desired output spike shifts according to a heuristic rule

proposed in subsection II.A. In each learning epoch, each sub-

optimal desired output spike is compared to its surrounding

actual output spikes, and it shifts right or left to reach the nearest

actual output spike. Fig. 3 shows a desired output spike at

t=31.6 ms. There are two actual output spikes around the

desired output spike. The first actual output spike is at t=27.6

ms and the second one is at t=40.2 ms. The desired spike is close

to the left actual output spike, and therefore it is shifted slightly

to the left in the current learning epoch. The shift is small.

Additionally, the learning algorithm adjusts the learning

parameters of the neuron to generate an actual output spike at

the current desired spike. It takes a number of learning epochs

to fire output spikes at the desired time. During the learning

phase, weight learning occurs and this may change the sequence

of the actual output spikes and, consequently, this may also

change the direction of the shift of the desired spike. If there is

an actual output spike at a desired time, then the desired spike

shift is stopped.

A. Proposed method to find the direction and amount of a

desired spike shift

The proposed method uses local variables, called spike traces,

to find the nearest actual output spike around a desired spike,

and to calculate the distance between the nearest actual output

spike and the desired spike. First, the time distance of the

nearest output spike after the desired spike and the nearest

output spike before the desired spike are found. Then these two

time intervals are compared to find the nearest actual output

spike to the desired spike. In this paper, a method is proposed

to calculate the time intervals in an online manner, i.e. this

method uses the momentary value of local variables (spike

traces) to calculate the time intervals and consequently the

nearest actual output spike to the desired spike. This method

does not save the previous spike times and it works based on

current events which are generated by the previous spiking

activities.

Similar to Morrison et al. [23], the proposed method uses a

saturation method to model the spike traces, and we adopted a

similar approach to that proposed in our previous work, DL-

ReSuMe [1], to calculate time intervals using spike traces. xd(t)

is defined as the trace of a desired spike train. Each desired

spike causes a jump to a constant value A and then it decays

exponentially according to (1).

𝑥𝑑(𝑡) = {
𝐴 𝑓𝑜𝑟 𝑡= 𝑡𝑑

1, … ,𝑡𝑑
𝑓−1

, 𝑡𝑑
𝑓

,𝑡𝑑
𝑓+1

, …

𝐴𝑒
−(𝑡−𝑡

𝑑
𝑓

)/𝜏
𝑓𝑜𝑟 𝑡𝑑

𝑓
<𝑡<𝑡𝑑

𝑓+1

 ()

where τ is the exponentially decay time constant, and

amplitude A is a constant value where the trace jumps at the

time of a desired spike. td
f is the time of the 𝑓𝑡ℎ spike in the

desired spike train. Each actual output spike, after a desired

spike, resets the desired spike trace to zero (Fig. 4 (b)). The time

of the first actual output spike after a desired spike is of interest.

Similarly, xa(t) is defined as the trace of an actual output spike

train, as follows:

𝑥𝑎(𝑡) = {
𝐴 𝑓𝑜𝑟 𝑡=𝑡𝑑

1, …,𝑡𝑎
𝑓−1

, 𝑡𝑎
𝑓

,𝑡𝑎
𝑓+1

,…

𝐴𝑒−(𝑡−𝑡𝑎
𝑓

)/𝜏 𝑓𝑜𝑟 𝑡𝑎
𝑓

<𝑡<𝑡𝑎
𝑓+1

 (2)

where ta
f is the firing time of the 𝑓𝑡ℎactual output spike (Fig. 4

(c)).

 The time interval between the desired spike and the first

previous actual output spike, dtad, is calculated and compared

Fig. 1. Variable spike times in various trials with same time dependent input

stimulus (Adopted from [22]).

Fig. 2. A desired spike train and its corresponding actual output spike train
before learning.

Fig. 3. A desired spike and its neighbour actual output spikes. The desired

spike is close to the actual output spike on the left side.

Fig. 4. (a) A desired spike; (b) The trace of a desired spike, xd(t): there is a

jump to a constant value A=2 × 10−6 at the time of a desired spike, then it

decays exponentially. The value of xd(t) is reset to zero at the time of an actual

output spike. (c) The trace of an actual output spike train, xa(t); (d) Actual

output spike train.

2379-8920 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2909355, IEEE
Transactions on Cognitive and Developmental Systems

TCDS-2018-0127

4

to dtda (the time interval between a desired spike and the first

actual output spike after the desired spike) to find the closest

actual output spike to the desired spike (as shown in Fig. 4 (a)).

In the proposed method, calculations of dtad and dtda are

performed at the time of the first actual output spike after the

desired spike, 𝑡𝑎 in Fig. 4 (d). In the first step, dtaa(ta), i.e. the

time interval between the actual output spikes before and after

the desired spike, and 𝑑𝑡𝑑𝑎(𝑡𝑎) are calculated at time ta. Then

𝑑𝑡𝑎𝑑(𝑡𝑎) is calculated by 𝑑𝑡𝑎𝑑(𝑡𝑎) = 𝑑𝑡𝑎𝑎(𝑡𝑎) − 𝑑𝑡𝑑𝑎(𝑡𝑎).

This procedure can be performed for each desired spike in the

desired spike train.

The time interval of an actual output spike at time 𝑡𝑎and its

previous desired spike, 𝑑𝑡𝑑𝑎(𝑡𝑎), can be calculated by the value

of the nearest previous desired spike trace, 𝑥𝑑(𝑡𝑎), at the time

of the actual output spike, 𝑡𝑎. The trace 𝑥𝑑(𝑡) starts from the

value of A at the time of the previous desired spike and it decays

exponentially by the time constant τ as shown in (1). By

considering (1), the time interval, dtda(ta), between an actual

output spike and its previous desired spike can be calculated by

(3).

𝑑𝑡𝑑𝑎(𝑡𝑎) = −𝜏ln(
𝑥𝑑(𝑡𝑎)

𝐴
) ()

where dtda(ta) is the time interval between an actual output

spike at time ta and its previous desired spike. In other words,

dtda(ta) is the time interval of the desired spike and the first

actual output spike after the desired spike. xd(ta) is the value

of the desired spike trace at the time of the actual output ta. The

time interval dtaa(ta) is calculated by (4).

𝑑𝑡𝑎𝑎(𝑡𝑎) = −𝜏ln(
𝑥𝑎(𝑡𝑎

−)

𝐴
) ()

where xa(ta
−) is the momentary value of the actual output trace

at the time of ta just before jumping to the saturation value A.

Thus dtad(ta), which is the time interval of the nearest actual

output spike before the desired spike, can be calculated by (5).

𝑑𝑡𝑎𝑑(𝑡𝑎) = 𝑑𝑡𝑎𝑎(𝑡𝑎) − 𝑑𝑡𝑑𝑎(𝑡𝑎)

= −𝜏𝐿𝑛 (
𝑥𝑎(𝑡𝑎

−)

𝐴
) + 𝜏𝐿𝑛 (

𝑥𝑑(𝑡𝑎)

𝐴
)

= 𝜏𝐿𝑛(𝑥𝑑(𝑡𝑎)/𝑥𝑎(𝑡𝑎
−))

()

At the time of the first spike after a desired spike, ta, first

dtda(ta) and dtad(ta) are calculated by (3) and (5) respectively.

Then they are compared and the nearest actual spike time

interval to the desired spike is determined as dtmin. If the time

interval is smaller than a maximum shift, dtM, the desired spike

is shifted toward the nearest actual output spike. Therefore, the

shift, dtshift(f), applied to the f th desired spike can be

calculated by (6)

𝑑𝑡𝑠ℎ𝑖𝑓𝑡(𝑓) = {
𝑑𝑡𝑚𝑖𝑛(𝑓), 𝑑𝑡𝑚𝑖𝑛(𝑓) ≤ 𝑑𝑡𝑀

0, 𝑑𝑡𝑚𝑖𝑛(𝑓) > 𝑑𝑡𝑀
 ()

where dtmin(f) is the time interval of the closest actual output

spike to the f th desired spike. If the nearest actual spike train is

far from the desired spike, i.e. its time distance from the desired

spike is larger than dtM, the desired spike does not shift, and it

waits for a weight learning procedure to generate an actual

output spike close to the desired spike.

The desired spike train shift, dtshift(f), is scaled to a small value

at the start of the learning and it grows during the learning. At

the beginning of the learning phase, because the weights are not

well trained, the actual output spike train may be far from the

desired spike train. Therefore, during the early epochs of the

learning phase the desired spike shift is restricted to small

values. The weight learning algorithm has higher impact on

learning than the desired spike shift, when the desired spike

shift is limited in the earlier epochs. The weight adjustment

trains the neuron to fire at the desired time or a time close to the

desired times. At the last epochs of the learning some of the

desired spikes are trained and it might be difficult for the neuron

to fire at the other desired times. In this situation the limitation

on the desired output spike shift should be reduced to move the

desired (target) spike toward the existing actual output spikes.

To achieve this aim after each learning epoch and calculation

of dtshift(f), the shift is scaled by the epoch number as shown

in (7).

𝑑𝑡𝑎(𝑓, 𝑒) = 𝑑𝑡𝑠ℎ𝑖𝑓𝑡(𝑓) ×
𝑒

50
 ()

where 𝑒 is the number of the current epoch, dta(f, e) is the

time shift that is applied to the f th desired spike at epoch

number 𝑒. The denominator of (7) is set to 50 because the

learning is continued until epoch 50. Equation (7) can be refined

for higher number of learning epochs by setting the

denominator of (7) with the new higher number of learning

epochs. Thus in epoch 50 the exact calculated shift from (6),

dtshift(f), is applied to the desired spikes.

The main strategy of learning in the proposed method is to

place the focus on weight learning during the beginning of the

training process. The effect of the desired spike shift increases

during the final epochs of the learning process when the weight

learning has stabilised. In the proposed method, first, learning

of spatiotemporal pattern is performed by weight adjustment

and the impact of a desired spike shift is gradually increased as

the number of epochs increases.

At the start of the learning process, when e=1, the applied

shift, dta(f, e), has a small value which is one fiftieth of

𝑑𝑡𝑠ℎ𝑖𝑓𝑡(𝑓), i.e. dta(f, e) = 𝑑𝑡𝑠ℎ𝑖𝑓𝑡(𝑓) ×
1

50
 (see (7)). When the

epoch number, e, increases, the weights are updated, and the

neuron learns to spike closer to the desired spikes. In the last

learning epoch, where e=50, all weight learning is completed

and there are no more learning epochs to train the neuron

weights to fire at that desired times. In this stage, during the last

epoch of the learning process, and after the weight learning

procedure, the learning is completed by applying all the

required desired spike shifts using (7), and dta(f, e) =

𝑑𝑡𝑠ℎ𝑖𝑓𝑡(𝑓) ×
50

50
= 𝑑𝑡𝑠ℎ𝑖𝑓𝑡(𝑓) .

 The neuron weights are adjusted according to the ReSuMe

[7] learning method as follows:
𝑑𝑤𝑖(𝑡)

𝑑𝑡
= [𝑠𝑑̃(𝑡) − 𝑠𝑜(𝑡)][𝑎 + ∫ 𝑇𝑤(𝑠)𝑠𝑖(𝑡 − 𝑠)𝑑𝑠

+∞

0

] ()

where wi is the synaptic weight of the ith synapse, s𝑑̃(t) is an

adapted desired spike train that is updated after each learning

2379-8920 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2909355, IEEE
Transactions on Cognitive and Developmental Systems

TCDS-2018-0127

5

epoch (note that an adapted desired spike train is a shifted

version of the initial sub-optimal desired spike), so(t) is actual

output desired spike train, the parameter a is the ReSuMe non-

Hebian term and is a constant value, and si(t) is th ith input

spike train in the spatiotemporal input pattern. 𝑇𝑤(s) is the

ReSuMe learning window, and it is an exponential function as

shown in (9).

𝑇𝑤(𝑠) = {
𝐴𝑒−𝑠/𝜏 𝑓𝑜𝑟 𝑠 ≥ 0
0 𝑓𝑜𝑟 𝑠 < 0

 ()

where A is a constant parameter and is the amplitude of the

learning window. It has same value as the parameter A used in

(1) 𝑇𝑤(s) , similar to STDP learning window has an exponential

function that decays with a time constant τ.

B. Correlation-based metric

The correlation-based metric (C) proposed in [24] is used to

evaluate the similarity between two spike trains to assess the

performance of the proposed method. The metric is used to

evaluate the similarity between the actual output of a neuron

and its desired spike train. Additionally, it is used in a

classification task. In the classification task a spiking neuron is

trained to map different input patterns to their corresponding

desired spike trains. Each spatiotemporal input pattern is

assigned to the class with the desired spike train that has the

highest correlation with the actual output of the neuron

compared to the other classes. Then the classification accuracy

is calculated based on the number of correct assignments.

The similarity coefficient C is equal to one for two identical

spike trains, and it is zero for two completely uncorrelated spike

trains. Therefore, the closer the value of C to one, the greater

the similarity between two spike trains. C is calculated as

follows:

C =
vd. vo

|vd||vo|
 ()

where vd and vo are two vectors and they are the convolution

of a desired spike train, sd(t), and an actual output spike train,

so(t), by a symmetric Gaussian filter, respectively. The spike

trains which consist of series of Dirac delta functions are

converted to continuous functions. “vd. vo”, the numerator of

(10), is the inner product of the two vectors, and |vd| and |vo|
represent the length of the vectors vd and vo, correspondingly.

The symmetric Gaussian function which is convolved with

the spike trains is given by (11).

𝑓(𝑡, 𝛿) = 𝑒
−𝑡2

2𝛿2
()

where the parameter δ is a constant value and determines the

width of the symmetric Gaussian function.

III. RESULTS

Experiments were performed to investigate the effect of the

proposed method for shifting desired spikes and optimising the

output encoding. ReSuMe is used to train synaptic weights.

Two learning tasks are considered. The first learning task is to

map a random spatiotemporal input pattern to a desired spike

train. The spatiotemporal input pattern and the desired spike

train was produced by a random Poisonian process. The

spatiotemporal input pattern contains 200 spike trains with 20

HZ (or 15 Hz where mentioned) mean spiking frequency, and

the frequency of the desired spike train is set to 100Hz. The time

duration of the spike trains is 650 ms. The experiment results

for the first learning task are described in Sections III.A and

III.B. For the first learning task, the correlation between actual

output of a trained neuron and its desired spike train is

calculated using (10) and reported to determine the accuracy of

the proposed SNN. The second learning task concerns the

classification of spatiotemporal input patterns, and the results

of the classification task are described in Section III.C. In the

classification a spiking neuron is trained to map different input

patterns to their corresponding desired spike trains. In this case,

each spatiotemporal input pattern is assigned to the class with

the desired spike that has the highest correlation with the actual

output of the neuron compared to the other classes. Then the

classification accuracy is calculated based on the number of

correct assignments.

The proposed learning algorithm has four hyper parameters that

should be set before learning. The four hyper parameters are

shown in Table I. The second column in Table I shows the

equations that use the hyperparameters. In this paper the

simulation time step is 0.1 ms,

𝑑𝑡 = 1 ms. The other variables in the equations are

automatically generated during usual activity of the spiking

neuron when it fires actual output spikes in response to an

applied spatiotemporal input pattern and they also depend on

the desired spike train. Note that the hyperparameter 𝐴 is

dimensionless, and it shows the ratio of two weight adjustment.

This section discusses the results of three sets of experiments.

In the first experiment, the effect of the shifting of the desired

spikes on the accuracy of the learning method is investigated

for the first learning task, i.e. mapping a spatiotemporal input

pattern to a desired spike train. Then the effect of the maximum

allowable shift, 𝑑𝑡𝑀, is presented. Finally, the classification

accuracy of the proposed method for the second learning task is

reported.

A. The effect of the proposed spike shifting method on the

learning efficiency of SNNs

In this section the proposed method is used for mapping a

spatiotemporal input pattern to a desired spike train. Two

experiments were carried out to determine the effect of the

proposed spike shifting method on the accuracy of SNNs. In the

first experiment a neuron was trained, as a benchmark

comparison, with a non-adapted desired spike train. In the

second experiment, the sub-optimal desired spikes are shifted

TABLE I

THE HYPER PARAMETERS OF THE PROPOSED ADAPTED DESIRED SPIKE TRAIN.

Hyper

parameter

Equation Value

𝜏 (1), (2), (3), (4), (5), (9) 1 ms

𝐴 (1), (2), (3), (4), (5), (9) 2× 10−6

𝑑𝑡𝑀 (6) [2, 10] ms

𝑑𝑡 (8) 0.1 ms

𝛿 (11) 2 ms

2379-8920 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2909355, IEEE
Transactions on Cognitive and Developmental Systems

TCDS-2018-0127

6

during the learning process such that each spike in the desired

spike train is shifted toward the nearest actual output spike

using the proposed method.

The experimental results are shown in Fig. 5. In the plot

presented in Fig. 5, the y-axis shows the correlations between

the neuron’s actual output spike trains and the desired spike

trains for the first learning task. The desired spike shift causes

the performance of ReSuMe to reach a correlation level of 0.99

at epoch 50. However, the correlation is 0.84 at epoch 50 when

a non-adapted desired spike train is used. The non-adapted

method cannot reach the correlation level of the adapted method

for a comparatively high number of training epochs. In the

experiments, the non-adapted method reached its maximum

correlation level of 0.86 at 500 learning epochs, whereas the

adapted method reached a correlation value close to 1.00 in only

50 learning epochs. The experimental results show that the

adapted desired spike method increases the performance of the

learning and changes the pattern of the desired spike train. Fig.

6 illustrates the desired spike trains before and after 15 learning

epochs. The similarity between these two spike trains (the

initial sub-optimal desired spike train and the shifted desired

spike train) can be calculated by the correlation-based metric

method, C. The calculated C is 0.80.

Fig. 7 shows the similarity between the adapted desired spike

and the initial sub-optimal desired spike train (Adapted-Initial)

during various learning epochs. The experiment is run 20 times

and the mean values are reported. At the start of learning,

similarity is 1.00 (i.e. the adapted desired spike train is the same

as the initial sub-optimal desired spike train), and at each

learning epoch the spikes in the adapted desired spike train are

shifted. During the shift, the similarity between the adapted

desired spike train and the initial sub-optimal desired spike train

changes. Additionally, Fig. 7 shows the similarity between the

neuron actual output spike train and the adapted desired spike

train during various epochs.

B. The effect of the maximum allowable shift

In the next experiment the maximum allowable shift for the

desired spikes, 𝑑𝑡𝑀, is reduced from 10 to 1 ms. The result is

shown in Fig. 8. The correlation between the actual output and

the adapted desired spike train, which is shown by the legend

(Adapted (1 ms)) in Fig. 8, is reduced compared to the

correlation value which is shown in Fig. 5 where 𝑑𝑡𝑀 was 10

ms. The reduction of 𝑑𝑡𝑀 prevents the high modification of

desired spike times. When 𝑑𝑡𝑀 = 1 𝑚𝑠, the weight adjustment

has more contribution in the generation of actual output spikes

at the desired times, compared to the previous situation where

𝑑𝑡𝑀 was 10 ms. The low 𝑑𝑡𝑀 is closer to the situation that the

desired spike train is non-adapted and the generation of actual

output spikes relies more on weight adjustment, and similarly it

has lower accuracy. The maximum allowable shift controlled

by 𝑑𝑡𝑀 gives a freedom to the neuron to stop its weight

adjustment and consequently the learning is stabilised, and it

prevents the learning algorithm to make more weight

adjustment which consequently increases the accuracy of the

method. The adapted desired spikes stay close to the initial sub-

optimal desired spike train when 𝑑𝑡𝑀is reduced to 1 ms. In Fig.

8, the curve with the Adapted-Initial legend shows that the

correlation between the learned adapted spike train and the

initial sub-optimal desired spike train is higher than the

Fig. 5. Comparison of the performance of ReSuMe during various learning

epochs when non-adapted desired spike and adapted desired spike are used

(T=650; Fin=20Hz, Fo=100Hz and dtM=10 ms).

Fig. 6. The desired spike train before and after 15 learning epochs. C value

that shows the similarity between the two spike trains is 0.80414.

Fig. 7. Actual-Adapted: The correlation between the actual output spike

train and the adapted desired spike train during various learning epochs.
Adapted-Initial: The correlation between adapted desired spike train and the
initial sub-optimal desired spike train during various learning epochs.

Fig. 8. Adapted-initial: the correlation between the adapted desired spike

train and initial sub-optimal desired spike train when the desired spike train

evolves in various learning epochs. Adapted (1m): The correlation metric, C,

between the adapted desired spike train and the neuron actual output spike
train across various learning epochs when the maximum allowable shift for

the desired spike is reduced to 1ms. Non-adapted: is the C value of the neuron

actual output when non-adapted desired spike train is used. (T=650;

Fin=20Hz, Fo=100Hz and dtM=1 ms)

.

2379-8920 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2909355, IEEE
Transactions on Cognitive and Developmental Systems

TCDS-2018-0127

7

situation that 𝑑𝑡𝑀=10 ms (Fig. 7). Therefore, there is a smaller

change in the learned desired spike compared to the initial sub-

optimal desired spike train.

Fig. 9 shows the correlation between the actual output and

adapted desired spike trains for different values of 𝑑𝑡𝑀 in [1,

10] interval. The figure shows that the correlation is increased

until 𝑑𝑡𝑀 = 5 𝑚𝑠. Any further increase to 𝑑𝑡𝑀 than 5 ms

reduces the correlation between the neuron actual output and

the adapted desired spike trains. Because a high value for 𝑑𝑡𝑀

causes a high desired spike shift and consequently reduces the

correlation between the adapted desired spike train and the

initial sub-optimal desired spike train. The high shift in the

desired spike requires new weight values which are different

from the previously learned weights, and it reduces the

correlation. Fig. 9 also shows the correlation between the

adapted desired spike train and the initial sub-optimal desired

spike (Adapted-Initial) for different values of 𝑑𝑡𝑀. The

correlation is reduced when 𝑑𝑡𝑀 is increased.

The histogram of the initial synaptic weights before learning

is shown in Fig. 10 (a), the initial weights are normal random

number with the mean value and standard deviation of

1.2× 10−5. Fig. 10 (a) shows that a lower portion of the weights

are negative (inhibitory inputs) and a higher portion of weights

are positive (excitatory input). Fig. 10 (b) shows the histogram

of the synaptic weights after training when 𝑑𝑡𝑀 is set to 5 ms.

Fig. 10 (b) shows that the weights after training are distributed

around the initial weigh values as demonstrated in Fig. 10 (a).

Fig. 11 shows the evolution of weights during 50 learning

epochs. Fig. 11 shows that almost all the weights are trained

after about 45 learning epochs, and hence the weights stabilized

at 45 epochs. In order to investigate the effect of 𝑑𝑡𝑀 on weight

learning, the histogram of weights

before and after learning when the desired spikes are non-

adapted, i.e. 𝑑𝑡𝑀 = 0, are shown in Fig. 12. The weights after

learning are in the range [-3.88× 10−5, 6.99× 10−5] when

𝑑𝑡𝑀 = 0, whereas the weights are in the range [-3.22× 10−5,

3.57× 10−5] when 𝑑𝑡𝑀 = 5 𝑚𝑠. These results revealed that the

weights are in a wider interval when 𝑑𝑡𝑀 = 0, when the desired

spikes are non-adapted. However, the weights during training

of an optimal desired spike train obtained by 𝑑𝑡𝑀 = 5 𝑚𝑠

needs less weight adjustment. Fig. 13 shows the evolution of

weights during different learning epochs when the desired

spikes are non-adapted, i.e. 𝑑𝑡𝑀 = 0. The figure shows that

quite a number of the weights keep adapting even after the 50th

epoch.

Fig. 14 illustrates the correlation between the actual output

spike train of the trained neuron and the initial sub-optimal

desired spike train (Actual-Initial) during various learning

epochs when the adapted desired spike method is used. Fig. 14

also shows the correlation between the actual output spike train

and the initial sub-optimal desired spike train when non-

adapted desired spike train is used. The experimental result

shows that when 𝑑𝑡𝑀 is set to 1 ms, the adapted desired spike

increases the performance of ReSuMe, to learn initial sub-

optimal desired spike train. It increases the correlation metric

from C=0.84 to C=0.88. The output spike optimization method

brings a desired spike to the time of an actual output spike

which is close to the desired spike. This prevents the weight

adjustment related to generation an output spike at the time of

the desired spike through weight learning, and it prevents the

weight adjustment related to the cancelation of the nearby

actual output spike. Consequently, the desired spike shift settles

the weight adjustment and prevents extra adjustment of weights

that may interfere in the learning of the other desired spikes, at

the cost of acceptance of a small error.

Fig. 9. Correlation between the actual output and adapted desired spike

trains for different values of 𝑑𝑡𝑀.

.

Fig. 10. Histogram of the initial synaptic weights when 𝑑𝑡𝑀 is set 5 ms (a)

before learning (b) after learning.

Fig. 11. Evolution of 200 synaptic weights during different learning epochs

when 𝑑𝑡𝑀 = 5 ms.

Fig. 12. Histogram of the initial synaptic weights when non-adapted desired

spikes are used, i.e. 𝑑𝑡𝑀 = 0 (a) before learning (b) after learning.

2379-8920 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2909355, IEEE
Transactions on Cognitive and Developmental Systems

TCDS-2018-0127

8

C. Classification of spatiotemporal input patterns

In this section, the performance of the proposed method is

investigated within a classification task. In the classification

task, two sets of synthetic spatiotemporal spiking input patterns

are used. Each spatiotemporal input pattern composed of

several spike trains. The two sets of spatiotemporal patterns

belong to two different classes. The two sets of spatiotemporal

input patterns are generated by Poisonian process with two

different spike rates. The spatiotemporal input patterns of the

first class has the same property of the spatiotemporal input

patterns which are used in the previous experiment described in

the beginning of Section III. A random Poissonian process with

the mean spike rate of 20 Hz is used to generate the

spatiotemporal input patterns of the first class. The input

patterns of the second class are random patterns with the rate of

15 Hz. Fig. 15 shows the raster plot of a spatiotemporal input

pattern from the second class. The spatiotemporal input pattern

is composed of 200 spike trains. The spike trains are generated

by 200 input neurons. Additionally, two random desired spike

trains are assigned as the label of the two classes of

spatiotemporal input patterns. A spiking neuron is trained to

assign each input pattern to its corresponding desired spike

train.

In the experiments described in this section, classification

performance was initially evaluated when the neuron was

trained on non-adapted desired spike trains. Then the neuron

was trained on the proposed adapted desired spike trains. The

proposed method is used to shift desired spikes for the different

classes to find optimum times for the desired spikes for the two

classes, and classification performance is compared when using

the proposed adapted desired spikes versus the non-adapted

desired spikes.

1) Experiment results on two random spatiotemporal

input patterns per class

In the first experiment each class has a set of spatiotemporal

input patterns composed of two spiking patterns. A SNN is

trained to assign each pattern to its corresponding desired spike

train. The results achieved by the non-adapted desired spike

train and the proposed adapted desired spike train method are

shown in Table II. The results show that the proposed adapted

desired spike method can shift the initial sub-optimal desired

spikes to appropriate desired times with higher accuracy than

the method using non-adapted desired spike trains, and

consequently it increases classification accuracy by 10%.

2) Experimental results on spatiotemporal input patterns

generated by time jitters

A similar method used in [25] is used to generate a higher

number of training and testing samples. The 4 spatiotemporal

input patterns generated by the random Poissonian process with

frequencies of 20 Hz and 15Hz in Section III.C.1 are considered

as base patterns. Then a number of testing and training

spatiotemporal patterns are generated by adding random jitters

to the spike times of the base patterns. Each spike in a base

spatiotemporal input pattern is moved by a random time jitter

extracted from a uniform distribution on [-2,2] ms interval. In

total the resulted training set contains 20 spatiotemporal input

patterns, composed of the 4 base patterns and 16 noisy patterns.

The test set is composed of other 20 noisy spatiotemporal

patterns that have been generated by adding random jitter to the

four base patterns. The task concerns training a spiking neuron

to generate desired spikes corresponding to the class of an

applied spatiotemporal input pattern. The simulation is

continued for 50 learning epochs on the training dataset. The

Fig. 13. Evolution of 200 synaptic weights during different learning epochs

when the non-adapted desired spikes are used, i.e. 𝑑𝑡𝑀 = 0.

Fig. 14. Actual-Initial: Correlation, C, between actual output spike train and

initial sub-optimal desired spike train when ReSuMe uses the adapted desired

spike train method. Non-adapted: Correlation, C, between actual output spike
train and the non-adapted desired spike train when ReSuMe is used to train a

neuron by the non-adapted desired spike train.

Fig. 15. Raster plot of a spatiotemporal input pattern from the first class.

There are 200 spike trains in the spatiotemporal pattern generated by 200 input

neurons.

TABLE II

COMPARISON OF THE PROPOSED ADAPTED DESIRED SPIKE METHOD AGAINST

THE METHOD WHICH USES A NON-ADAPTED DESIRED SPIKE TRAIN
A

Method Classification Accuracy

Proposed adapted desired spike train method 100.00%

non-adapted desired spike train method 90.00%

AFour spatiotemporal input patterns are generated by the Poissonian process

2379-8920 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2909355, IEEE
Transactions on Cognitive and Developmental Systems

TCDS-2018-0127

9

results are reported in Table III. The results reveal that the

proposed method can improve the testing accuracy more than

12.25%.

3) Experimental results on different numbers of random

spatiotemporal input patterns

In this set of experiments, more challenging tasks are

considered. Instead of generating training and testing data by

adding a noisy jitter to the base patterns, a number of training

and testing patterns are directly generated by the Poissonian

process with the firing rate of 15 Hz and 20 Hz for the two

different classes. Fig. 16 shows the mean value of classification

accuracy when the number of spatiotemporal input patterns is

increased from 4 to 20. Each classification task is repeated for

20 different runs and the mean values are reported in Fig. 16.

The vertical error bars in Fig. 16 show standard errors of the

mean values. The results show that the proposed method has

higher accuracy for the different numbers of spatiotemporal

input patterns. When the number of the patterns increases, the

difficulty of the learning task also increases. Consequently, the

accuracy of the two methods shown in Fig. 16 is reduced when

the number of spatiotemporal patterns increases. The

improvement of the proposed method can reach more than 16%

when the number of the spatiotemporal patterns reaches 10 (see

Table IV). The proposed method shifts the initial sub-optimal

desired spikes to appropriate times when different patterns are

trained. At the end, the desired spikes can reach optimum times

for all the trained input patterns depending on the distribution

of spikes in the input patterns. The optimum times for desired

spikes reduced required weight adjustment and consequently

prevents distortion in the learning of previously trained patterns

and increases the overall classification accuracy (see Fig. 16).

IV. DISCUSSION

The discontinuous nature of the activity of spiking neurons

makes it difficult (or impossible) to use classical methods, such

as the backpropagation learning algorithm, to train spiking

neurons. One challenge in training a spiking neuron is that a

spiking neuron cannot generate every possible encoding of

desired output spike trains in response to a specific

spatiotemporal input pattern. A spiking neuron can be trained

to produce output spikes that are compatible with the

distribution of its input spatiotemporal spikes. A SNN generates

output spikes at specific times in response to an input pattern,

provided the input spikes occur within a suitable time window.

The input spikes in that time window cause a high level of Post

Synaptic Potential (PSP) and force the neuron to fire, ideally at

the desired times. Training involves adjustment of the network

parameters so as to ensure the output spikes occur at the correct

times in response to such an input spike train. However, if there

are not enough input spikes in the relevant time window, the

learning method has difficulties and the network parameter

adjustment is increased without reaching the training aim.

Comparison of Fig. 11 and Fig. 13 reveals that the weight

adjustment stabilises when the proposed method is used to find

appropriate desired spikes. However, the neuron finds it

difficult to learn the non-adapted desired spike train and the

weights do not stabilize during all the training epochs (see Fig.

13). Additionally, the weight adjustments are constrained to be

within a shorter interval when an appropriate desired spike is

used to train the spiking neuron.

A learning algorithm for a spiking neuron adjusts learning

parameters and forces the neuron to fire actual output spikes at

desired times. On the other hand, training a neuron to fire in

some specific times when there are no input spikes in the time

windows around the desired times can reduce the performance

of a learning algorithm. For instance, consider the situation

where there is a large number of spikes in the input

spatiotemporal pattern within a short time interval. If there are

no desired output spikes corresponding to that time interval, an

undesired output spike may be generated. If the learning

algorithm adjusts the learning parameters to remove such an

undesired spike, it may adversely interfere with learning of

other desired output spikes. Fig. 13 shows that weights with

negative value are continuously increased when the number of

learning epochs is increased. This negative growth of the

weights is the learning method’s reaction to removing the

undesired output spikes which are generated because of the high

Fig. 16. Classification accuracy of the SNN when it uses the proposed

method for finding the optimum desired spikes is higher than when it uses non-

adapted desired spikes.

TABLE III

TRAINING AND TESTING CLASSIFICATION ACCURACY ON THE DATA THAT IS

GENERATED BY ADDING NOISY JITTERS TO THE BASE PATTERNS

Method Training

accuracy

Testing

accuracy

Proposed adapted desired
spike train method

96.00% 96.75%

Non-adapted desired spike

train method

88.25% 84.50%

TABLE IV
NUMBER OF INPUT PATTERNS VS. IMPROVEMENT IN ACCURACY

Number of input patterns Improvement in Accuracy (%)

(Adapted)-(Non_adapted)

4 10.00

6 11.67

8 14.38

10 16.50

12 15.84

14 13.57

16 10.93

18 9.44

20 13.75

2379-8920 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2909355, IEEE
Transactions on Cognitive and Developmental Systems

TCDS-2018-0127

10

number of input spikes in the undesired time interval.

Additionally, a neuron may have difficulty producing a desired

output spike where there are not enough input spikes shortly

before the desired spike. A very low number of input spikes

leads to a low level of PSP at the desired time, which

consequently causes difficulty in the generation of an actual

output spike at the desired time. Fig. 13 shows that ReSuMe

learning method continuously increases the weights to generate

desired spikes that do not have input spike close to desired times

without reaching the learning goal. Therefore, an inappropriate

selection of a desired (target) output spike train (i.e. output

encoding) for a spatiotemporal input pattern might lead to low

performance or convergence problems for the spiking neural

network learning algorithm.

Considering Fig. 15, the total time length of the

spatiotemporal spiking pattern is 650 ms, and the

spatiotemporal input pattern has 200 spike trains. The

distribution of spikes in the spatiotemporal input pattern shows

that the concentration of the spikes is high in some parts and

sparse in other parts. This distribution changes depending on

the class to which the pattern belongs and can be considered as

characteristic of the class. In other words, each class can be

identified according to the distribution of spikes in its

spatiotemporal input patterns. The critical point is that, based

on the distribution of spikes in the spatiotemporal input pattern,

the learning ability of a neuron is different for different desired

output spike trains i.e. how the output is encoded in spike times.

Spike times are the most crucial part of information

transmission in spiking neural networks. The proposed method

optimizes the performance of an SNN through improving the

learning process. The experimental results show that the

original learning algorithm, ReSuMe, used for training the sub-

optimal desired spike train, could not learn all the desired spikes

in the sub-optimal desired spike train precisely. This was

because weight adjustment could not be stabilized as less

relevancy existed between the input and the sub-optimal desired

output spikes; which caused continuous weight change and

consequently reduced the correlation of the actual output spikes

of the trained neuron with the initial sub-optimal desired spike

train. However, the shift of the desired spikes around the times

of the original desired spikes stabilises the learning process of

the neuron, and the shift prevents continuous changes of

learning parameters, i.e. weights, and consequently increased

the correlation between the actual output and the original

desired spikes. Fig. 14 shows that the correlation between the

actual output of the neuron with the initial desired spike train

when the proposed method is used to shift the desired spikes is

higher than when the proposed method is not used.

In the proposed method, the desired spike can be adjusted

around the original desired spike train, and this shift provides

flexibility to stabilise the learning and consequently to increase

the accuracy. Multi-Spike Tempotron [26] also provides

flexibility by permitting a neuron to fire at any time in a

specified window to enable fast conversion.

The proposed spike shift method does not rely on any

specific weight learning algorithm, but instead has its separate

procedure which performs in parallel with the weight learning

method. In each learning epoch, a desired spike train is

considered as a fixed desired spike train for the weight learning

method, and therefore the learning method can work as usual.

At the end of each learning epoch, updates are made for the

desired spikes, then they become fixed for the next learning

epoch for the weight learning algorithm. Therefore, any other

learning rules like SPAN [11], or the Linear Algebraic Method

[27] which perform weight learning in different epochs are

compatible with the proposed method.

Noisy spike patterns are common in SNNs. A time jitter can

be added to a base spike pattern to generate noisy spike patterns.

In Section III.C.2, a time jitter has been added to generate noisy

testing data which was used to test the performance of the

proposed method on noisy data. Table III shows that the

proposed method can achieve higher accuracy for noisy data

compared to the non-adapted desired spike train method.

V. CONCLUSION

In this paper a method is proposed to adaptively adjust a

desired spike train. The experimental results show that a spiking

neuron can learn adjusted desired spikes with significantly high

accuracy. For instance, it can increase the correlation level from

0.84 to 0.99. A biologically plausible local variable called spike

trace is used to calculate the required shift for desired spikes in

different epochs for different spikes. The desired spike trace

and actual output spike trace are used to find the appropriate

shift for each desired spike. The proposed method calculates the

time interval of the nearest actual output spike before and after

a desired spike and compares these time intervals and finds the

nearest actual spike to a desired spike using time varying spike

trace. Selection of a low value for the maximum allowable shift

for desired spikes improves the performance of the algorithm

for learning of not only adapted desired spike train but also the

initial sub-optimal desired spike train. For instance, the

proposed method can increase the accuracy of ReSuMe on a

sub-optimal desired spike train by 4%. Small shifts in the

desired spike train help the neuron weight adjustment to settle

and prevent unnecessary weight adjustment and distraction of

previously trained weights. In this paper the adapted desired

spike train learning method is applied to the ReSuMe weight

learning method, however, the proposed method can be applied

to other learning methods for spiking neural networks.

The higher performance of the adapted desired spike train

method can be used to improve the classification ability of a

SNN. For instance, in a classification task, output spike train

encodings act as labels for different classes. The proposed

method can be used to find the optimum output spiking pattern

for different classes and to increase the performance of

classification tasks. A spiking neural network can learn optimal

desired spike trains which are compatible with its

spatiotemporal input patterns. The network can learn each

spatiotemporal input pattern with less weight adjustment and it

can achieve a higher accuracy with the proposed desired spike

shift method. In a classification task there are not many

restrictions because the encoding can be arbitrary provided the

classes can be distinctly segregated.

This paper proposes a method to find appropriate desired

2379-8920 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2909355, IEEE
Transactions on Cognitive and Developmental Systems

TCDS-2018-0127

11

spike trains based on a classification problem. Although finding

appropriate desired spike train for different classes increases the

classification accuracy, it has not been investigated

significantly in previous studies, with the result that arbitrary

spikes at precise times or uniformly spaced spike trains are

usually used in classification tasks which reduces the accuracy.

The arbitrary or uniformly spaced spikes may not be compatible

with the input spike trains, and it is not possible for a neuron to

generate them. The proposed method adds a degree of

flexibility to the desired spike times and it leads to faster

convergence and improvement of the accuracy of the learning

algorithm. The proposed method can be used to improve

classification accuracies of different SNNs such as the SNNs

proposed in [28][29][30].

References

[1] A. Taherkhani, A. Belatreche, Y. Li, and L. P. Maguire, “DL-

ReSuMe: A delay learning-based remote supervised method for
spiking neurons,” IEEE Trans. Neural Networks Learn. Syst., vol. 26,

no. 12, pp. 3137–3149, 2015.

[2] H. Paugam-Moisy and S. Bohte, “Computing with Spiking Neuron
Networks,” in Handbook of Natural Computing, G. Rozenberg, T.

Bäck, and J. N. Kok, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012, pp. 335–376.
[3] P. A. Cariani, “Temporal codes and computations for sensory

representation and scene analysis,” IEEE Trans. neural networks, vol.
15, no. 5, pp. 1100–1111, 2004.

[4] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, “Training

spiking neural networks to associate spatio-temporal input-output
spike patterns,” Neurocomputing, vol. 107, pp. 3–10, 2013.

[5] S. M. Bohte, J. N. Kok, and H. La Poutré, “Error-backpropagation in

temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, pp. 17–37, 2002.

[6] Y. Xu, X. Zeng, L. Han, and J. Yang, “A supervised multi-spike

learning algorithm based on gradient descent for spiking neural

networks,” Neural Networks, vol. 43, pp. 99–113, 2013.

[7] F. Ponulak and A. Kasiński, “Supervised Learning in Spiking Neural

Networks with ReSuMe: Sequence Learning, Classification, and
Spike Shifting,” Neural Comput., vol. 22, no. 2, pp. 467–510, 2010.

[8] S. McKennoch, D. L. D. Liu, and L. G. Bushnell, “Fast Modifications

of the SpikeProp Algorithm,” 2006 IEEE Int. Jt. Conf. Neural Netw.
Proc., pp. 3970–3977, 2006.

[9] S. Ghosh-Dastidar and H. Adeli, “Improved Spiking Neural

Networks for EEG Classification and Epilepsy and Seizure
Detection,” Integr. Comput. Eng., vol. 14, no. 3, pp. 187–212, Aug.

2007.

[10] R. V. Florian, “The chronotron: A neuron that learns to fire
temporally precise spike patterns,” PLoS One, vol. 7, no. 8, 2012.

[11] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, “SPAN:

SPIKE PATTERN ASSOCIATION NEURON FOR LEARNING
SPATIO-TEMPORAL SPIKE PATTERNS,” Int. J. Neural Syst.,

vol. 22, no. 04, p. 1250012, 2012.

[12] M. Zhang, H. Qu, A. Belatreche, and X. Xie, “EMPD: An Efficient
Membrane Potential Driven Supervised Learning Algorithm for

Spiking Neurons,” IEEE Trans. Cogn. Dev. Syst., vol. 8920, no. c,

pp. 1–1, 2017.
[13] A. Taherkhani, A. Belatreche, Y. Li, and L. Maguire, “A new

biologically plausible supervised learning method for spiking

neurons,” ESANN2014 proceedings, Eur. Symp. Aritificial Neural
Networks, Comput. Intell. Mach. Learn., no. April 23-25, pp. 11–16,

2014.

[14] A. Taherkhani, A. Belatreche, Y. Li, and L. P. Maguire, EDL: An
extended delay learning based remote supervised method for spiking

neurons, vol. 9490. 2015.

[15] A. Taherkhani, A. Belatreche, Y. Li, S. Member, and L. P. Maguire,
“A Supervised Learning Algorithm for Learning Precise Timing of

Multiple Spikes in Multilayer,” pp. 1–14, 2018.

[16] R. Gütig and H. Sompolinsky, “The tempotron: a neuron that learns
spike timing–based decisions,” Nat. Neurosci., vol. 9, p. 420, Feb.

2006.
[17] N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri, “Dynamic

evolving spiking neural networks for on-line spatio- and spectro-

temporal pattern recognition,” Neural Networks, vol. 41, no. 1995,

pp. 188–201, 2013.

[18] Q. Yu, H. Tang, J. Hu, and K. C. Tan, “Rapid feedforward

computation by temporal encoding and learning with spiking
neurons,” Intell. Syst. Ref. Libr., vol. 126, no. 10, pp. 19–41, 2013.

[19] D. T. Pham, M. S. Packianather, and E. Y. A. Charles, “Control chart

pattern clustering using a new self-organizing spiking neural
network,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 222, no.

10, pp. 1201–1211, 2008.

[20] R. Legenstein, C. Naeger, and W. Maass, “What Can a Neuron Learn
with Spike-Timing-Dependent Plasticity?,” Neural Comput., vol. 17,

no. 11, pp. 2337–2382, 2005.

[21] S. Ghosh-Dastidar and H. Adeli, “A new supervised learning
algorithm for multiple spiking neural networks with application in

epilepsy and seizure detection,” Neural Networks, vol. 22, no. 10, pp.

1419–1431, 2009.
[22] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal

dynamics: From single neurons to networks and models of cognition.

Cambridge University Press, 2014.

[23] A. Morrison, M. Diesmann, and W. Gerstner, “Phenomenological

models of synaptic plasticity based on spike timing,” Biol. Cybern.,

vol. 98, no. 6, pp. 459–478, 2008.
[24] S. Schreiber, J. M. Fellous, D. Whitmer, P. Tiesinga, and T. J.

Sejnowski, “A new correlation-based measure of spike timing
reliability,” Neurocomputing, vol. 52–54, pp. 925–931, 2003.

[25] A. Taherkhani, A. Belatreche, Y. Li, and L. P. Maguire, “Multi-DL-

ReSuMe: Multiple neurons Delay Learning Remote Supervised
Method,” Proc. Int. Jt. Conf. Neural Networks, vol. 2015–Septe,

2015.

[26] R. Gütig, “Spiking neurons can discover predictive features by
aggregate-label learning,” Science (80-.)., vol. 351, no. 6277, pp.

272–283, 2016.

[27] A. Carnell and D. Richardson, “Linear algebra for time series of
spikes,” in Proc. of ESANN, 2005, no. April, pp. 363–368.

[28] J. Hu, H. Tang, K. C. Tan, H. Li, and L. Shi, “A Spike-Timing-Based

Integrated Model for Pattern Recognition,” Neural Comput., vol. 25,
no. 2, pp. 450–472, 2013.

[29] N. Anwani and B. Rajendran, “Normad-normalized approximate

descent based supervised learning rule for spiking neurons,” in
Neural Networks (IJCNN), 2015 International Joint Conference on,

2015, pp. 1–8.

[30] S. R. Kulkarni and B. Rajendran, “Spiking neural networks for
handwritten digit recognition — Supervised learning and network

optimization,” Neural Networks, vol. 103, pp. 118–127, 2018.

Aboozar Taherkhani, received the

Ph.D. degree from Ulster University,

Londonderry, UK, in 2017. He also

received the B.Sc. degree in electrical and

electronic engineering from Shahid

Beheshti University, and the M.Sc. degree

in biomedical engineering from the

Amirkabir University of Technology,

Tehran. He is currently a Research Fellow at the Computational

Neuroscience and Cognitive Robotics Laboratory, at

Nottingham Trent University, Nottingham, UK. Dr.

Taherkhani’s current research interests include artificial

intelligence, deep neural network, spiking neural network,

complex system theory, and nonlinear signal processing.

2379-8920 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2019.2909355, IEEE
Transactions on Cognitive and Developmental Systems

TCDS-2018-0127

12

Georgina Cosma, Dr. received the Ph.D

degree in Computer Science from the

University of Warwick, UK, in 2008 and a

First Class Honours BSc degree in

Computer Science from Coventry

University, UK, in 2003. She is

currently Associate Professor

at Nottingham Trent University, UK. Dr

Cosma is a member of the IEEE Computer Society with

Computational Intelligence, Big Data Community, and Brain

Community memberships. She is Principal Investigator of the

Leverhulme Trust project grant entitled “Novel Approaches for

Constructing Optimised Multimodal Data Spaces”. Her

research interests are in data science, computational

intelligence, nature-inspired and deep feature selection, feature

extraction, conventional machine learning and deep learning

algorithms.

Martin McGinnity (SMIEEE, FIET)

received a First Class (Hons.) degree in

Physics in 1975, and a Ph.D. degree from

the University of Durham, UK in 1979.

He currently holds a part-time

Professorship in both the Department of

Computing and Technology at Nottingham

Trent University (NTU), UK and the School of Computing,

Engineering and Intelligent Systems at Ulster University, N.

Ireland. Before taking semi-retirement, he was formerly Pro

Vice Chancellor and Head of the College of Science and

Technology at NTU. He is the author or coauthor of over 330

research papers and has attracted over £25 million in research

funding. His research interests are focused on computational

intelligence, computational neuroscience, modelling of

biological information processing in software and

reconfigurable hardware and cognitive robotics.

