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ABSTRACT
Conventional 4D printing technologies are realized by combining 3D
printing with soft active materials such as shape memory polymers
(SMPs) and hydrogels. However, the intrinsic material property limita-
tions make the SMP or hydrogel-based 4D printing unsuitable to
fabricate the actuators that need to exhibit fast-response, reversible
actuations. Instead, pneumatic actuations have been widely adopted
by the soft robotics community to achieve fast-response, reversible
actuations, and many efforts have been made to apply the pneumatic
actuation to 3D printed structures to realize passive 4D printing with
fast-response, reversible actuation. However, the 3D printing of soft
actuators/robots heavily relies on the commercially available UV cur-
able elastomers the break strains of which are not sufficient for certain
applications which require larger elastic deformation. In this paper, we
present two simple approaches to tune the mechanical properties
such as stretchability, stiffness, and durability of the commercially
available UV curable elastomers by adding: (i) mono-acrylate based
linear chain builder; (ii) urethane diacrylate-based crosslinker. Material
property characterizations have been performed to investigate the
effects of adding the two additives on the stretchability, stiffness,
mechanical repeatability as well as viscosity. Demonstrations of fully
printed robotic finger, grippers, and highly deformable 3D lattice
structure are also presented.
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1. Introduction

Recently, four-dimensional (4D) printing as an emerging technology has gained great
attention due to its capability of enabling three-dimensionally (3D) printed structures to
change shape over time upon environmental stimuli such as temperature [1–4], water [5–
11] and light [12,13]. Conventionally, 4D printing can be realized through 3D printing
complex structures using soft active materials (SAM) such as shape memory polymers
(SMPs) and hydrogels. SMPs that exhibit the shapememory effect due to the glass transition
between the glassy and the rubbery states have been applied to realize 4D printing.
Examples include printed active composites [3], active origami [4], 4D printed box with
sequential folding [14], high-resolution multimaterial 4D printing [15] and others [16–19].
However, the fact that it always requires the application of an external load after the
completion of a shape memory cycle makes SMP-based 4D printing unsuitable to applica-
tions that require reversible actuation. In contrast, hydrogel-based 4D printing enables
reversible actuation as the loosely crosslinked hydrogel network swells after absorbing
solvent and shrinks when the solvent evaporates. Nevertheless, the physical diffusion
processes of solvent absorption and evaporation usually take more than minutes and
even hours [9,10], which renders hydrogel-based 4D printing not practical in applications
that require fast actuation rates.

Pneumatic actuations that are realized by applying pressurized air to inflate soft elastic
actuator cavity have been widely adopted by the soft robotics community to achieve fast-
response, reversible actuations [20–23]. Recently, many efforts have beenmade to apply the
pneumatic actuation to 3D printed structures to realize fully 3D printed soft actuators/
robots which can also be referred to as passive 4D printing with fast-response, reversible
actuation [24–28]. However, the 3D printing of soft actuators/robots heavily relied on the
commercially available UV curable elastomers such as Stratasys TangoPlus, Formlab Flexible
and Spot-A Elastic [24], whose failure strains are less than 120% and not sufficient for certain
applications which require larger elastic deformation. In addition, for the researchers with
mechanical engineering background, it is challenging to tune the mechanical performance
of the commercially available UV curable elastomers by adding other chemical ingredients.

In this paper, we present two simple approaches to tune the mechanical properties
such as stretchability, stiffness, and repeatability of the commercially available UV
curable elastomers by adding two chemical additives: (i) mono-acrylate based linear
chain builder; (ii) urethane diacrylate-based crosslinker. After adding the chemical addi-
tives, the stretchability of elastomers can be significantly improved, which greatly
enhances the capability of elastomers to realize the pneumatic actuation based passive
4D printing. We use TangoPlus as the sample elastomer to study the effects of adding
two chemical additives on the mechanical properties. Without losing generosity, the
presented approaches can also be applied to other commercially available elastomers.

2. Material and process

2.1 Materials preparation

The sample commercial UV curable elastomer, TangoPlus, was purchased from Stratasys
(MN, USA). Although the detailed chemical structure of TangoPlus is not revealed, based

2 H. HINGORANI ET AL.



on the safety data sheet, the approximate acrylate-based chemical structure is presented
in Figure 1(a). Epoxy Aliphatic Acrylate (EAA) is chosen as the mono-acylate linear chain
builder, and Aliphatic Urethane-based Diacrylate (AUD) is chosen as the urethane
diacrylate-based crosslinker. Both EAA (tradename: Ebecryl 113) and AUD (tradename:
Ebecryl 8413) were donated by Allnex (Malaysia). The detailed chemical structures of
EAA and AUD are also presented in Figure 1(a). To modify the mechanical performance
of TangoPlus, the EAA/AUD with a certain weight percentage was added to the
TangoPlus resin. For 100% AUD and 100% EAA as control samples, 2% (w/w) TPO was
used as the photo-initiator. The mixtures were stirred on a magnetic stirrer for about 2

Figure 1. Modified TangoPlus. (a) Detailed chemical structures of TangoPlus, EAA, and AUD. (b)
Demonstration of high-resolution structures printed with a modified TangoPlus polymer solution
(TangoPlus/EAA = 6:4). (c) Demonstration of the high elastic deformability of a printed lattice
structure printed with a modified TangoPlus polymer solution (TangoPlus:AUD = 8:2). The scale
bars are 5 mm.
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h and then de-gassed. For the Tango-AUD system, due to the high viscosity of AUD, the
mixing was carried out in an oil bath at 40°C.

2.2 Sample printing

The mechanical testing samples and 3D structures were printed on a self-built digital
processing based high-resolution 3D printing system [15]. Briefly, the 3D printing
system consists of a CEL5500 LED light engine purchased from Digital Light
Innovation (Austin, Texas, USA) with 405 nm wavelength near UV light as the digital
micro-display, and a translation stage (LTS300) with 0.1 μm achievable incremental
movement and 2 μm backlash purchased from Thorlabs (Newton, New Jersey, USA)
as elevator. The projection area is about 3.2 cm×2.4 cm resulting in a pixel size of
∼30 μm × 30 μm. The printed layer thickness was set as 50 μm. Figure 1(b) presents
the printed high-resolution elastomeric structures. Figure 1(c) demonstrates the high
elastic deformability of a printed lattice structure.

3. Material property characterization

3.1 Uniaxial tensile test

Uniaxial tensile tests were performed to investigate the effects of adding EAA/AUD on
the mechanical performance of the modified TangoPlus. All the tests were conducted on
an MTS uniaxial tensile testing machine (Criterion Model 43, MN USA) under 10 mm/min
strain rate. All the samples with 25 mm × 10 mm × 1 mm dimensions were 3D printed.
The digital-image-correlation (DIC) system was used to measure the strain.

Figure 2(a) presents the stress–strain behaviors of the modified TangoPlus with various
weight percentages ranging from 20% to 80%. In addition, the stress–strain behaviors of
pure TangoPlus and EAA are also plotted for comparison. Overall, the increase in the
weight fraction of EAA improves the stretchability of the modified TangoPlus but also
results in the decrease in stiffness. Figure 2(b) summarizes the effect of adding EAA with
different weight fractions on the mechanical performance on the modified TangoPlus.
Increasing the weight fraction of EAA from 0 to 100 wt.% results in the increase in the break
strain from 110% to 520% and the decrease in modulus from 0.7 MPa to 0.1 MPa. To
demonstrate the improvement, we compare the stretchability of a dog-bone sample
printed using pure TangoPlus with that of the one printed using the modified TangoPlus
after adding EAA (TangoPlus:EAA = 6:4). As shown in Figure 2(c), the stretchability is
improved by 83% after adding 40 wt.% EAA. The illustration in Figure 2(d) explains the
mechanism. During UV triggered photopolymerization, the EAA monomers form linear
chains that increase the lengths of the linear chains in the original network of TangoPlus.
The length-increase in the linear chains greatly improve the stretchability of the network
system. However, the addition of the mono-acrylate based EAA reduces the concentration
of crosslinkers in the system, leading to lower stiffness.

Certain applications require the enhancements in both stretchability and stiffness. To
meet this requirement, the crosslinkers that improve the stretchability of the polymer
network are needed. The previous study shows that urethane diacrylate-based cross-
linker, AUD, has the ability to enhance both stretchability and stiffness due to the
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presence of hydrogen bonds between hard domains of AUD [24]. Therefore, we per-
formed uniaxial tensile tests to investigate the effects of adding AUD on the mechanical
improvement of the modified TangoPlus. Figure 3(a) presents the stress–strain behaviors
of the modified TangoPlus with various weight percentages of AUD ranging from 20% to
80% along with the stress–strain behaviors of pure TangoPlus and pure AUD for
comparison. The stretchability of the modified TangoPlus is greatly improved with the
addition of AUD. Besides, the apparent nonlinear stress–strain behavior is observed after
adding AUD with more than 40 wt. %. Figure 3(b) summarizes the effect of adding AUD
with different weight fractions on the mechanical performance on the modified
TangoPlus. The stretchability increases from 100% to more than 400% with the increase
in the weight fraction of AUD from 0% to 100%, and the modulus also increases from 0.7
MPa to more than 8 MPa. Based on the requirements from specific applications, users
can add moderate AUD into TangoPlus to achieve desired stretchability and stiffness. To
demonstrate the improvement, we compare the stretchability of a dog-bone sample
printed using pure TangoPlus with that of the one printed using the modified TangoPlus
after adding AUD (TangoPlus:AUD = 8:2). As shown in Figure 3(c), the stretchability is
improved by 108% after adding 20 wt.% AUD. The illustration in Figure 3(d) depicts the
mechanism. Diacrylate based AUD works as crosslinker, and the increase in AUD results

Figure 2. TangoPlus modified by EAA. (a) Stress–strain behaviors of the samples made of the
modified TangoPlus with different weight fractions of EAA. (b) The effect of weight fractions of EAA
on the mechanical performance of modified TangPlus. (c) The demonstration shows that the
stretchability is increased by 83% after adding 40 wt. % EAA. (d) Illustration explains the mechanism
of adding EAA to improve the stretchability.
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in high crosslinking density of the modified network, therefore, higher stiffness. In
addition, the increase in the AUD also leads to an increase in the hydrogen bonds
between hard domains of AUD [29–31]. As shown in Figure 3(e), upon a mechanical
loading, the breakage of hydrogen bonds dissipates energy and therefore results in the
higher stretchability of the elastomer system [32].

Figure 3. TangoPlus modified by AUD. (a) Stress–strain behaviors of the samples made of modified
TangoPlus with different weight fractions of AUD. (b) The effect of weight fractions of AUD on the
mechanical performance of modified TangoPlus. (c) The demonstration shows that the stretchability
is increased by 108% after adding 20 wt. % AUD. (d) Illustration explains the mechanism of adding
AUD to enhance the stiffness. (e) Illustration explains the mechanism of adding AUD to enhance the
stretchability.
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3.2 Mechanical cyclic tests

In applications such as soft robotics, the constituent materials are required to have good
mechanical durability to allow repeated actuation. Therefore, we performed the loading-
unloading cyclic tests to investigate the improvement on the mechanical durability of the
modified TangoPlus. The tests were conducted on a fatigue tester (Electroforce 3200, TA
Instrument, MN, USA). The printed samples with dimensions of 15mm× 5mm× 1mmwere
subjected to cyclic loading in between 20% and 100% strain. Figure 4(a–c) compare cyclic
testing results of the samples made of pure TangoPlus, TangoPlus modified by EAA
(TangoPlus:EAA = 7:3) and TangoPlus modified by AUD (TangoPlus:AUD = 7:3). The pure
TangoPlus sample fails after 140 loading-unloading cycles (Figure 4(a)). The numbers of the
loading-unloading cycles are increased to 400 and 2000 after adding 30 wt.% of EAA and
AUD, respectively. Figure 4(d–f) present the stress–strain behaviors during the cyclic tests for
TangoPlus, TangoPlus modified by EAA, and TangoPlus modified by AUD. All the tests
exhibit the hysteresis loops indicating the energy dissipation during the loading-unloading
cycles. The energy dissipations on pure TangoPlus and TangoPlus modified by EAA can be
attributed to the permanent damage on the covalent bonds, while the energy dissipation
on TangoPlus modified by AUD mainly comes from the breakage on the reversible hydro-
gen bonds which make it able to sustain 2000 cycles.

3.3 Rheological test

Viscosity of the polymer solutions is one of the key material parameters for the DLP-
based 3D printing. After the completion of one-layer printing, the printing platform
moves up (or down) to the position for the next layer. The motion of the printing
platform disturbs the surface of the polymer solution, and the printer needs to wait for

Figure 4. Loading-unloading cyclic tests. (a–c) Stress variations vs cycling numbers for the samples
made of TangoPlus, TangoPlus modified by EAA, and TangoPlus modified by AUD, respectively. (d–f)
Stress–strain behaviors during the loading-unloading cycles for the samples made of TangoPlus,
TangoPlus modified by EAA, and TangoPlus modified by AUD, respectively.
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the disturbance to cease. Higher viscosity requires a longer waiting time. Therefore, we
performed the rheological tests to investigate the effect of adding EAA/AUD on the
viscosity of the modified TangoPlus solution. The rheological tests were conducted on
a Discovery Hybrid Rheometer (DHR2, TA instruments Inc., UK) with an aluminum plate
geometry (diameter 40 mm). Figure 5(a) shows that for the modified TangoPlus, by
adding EAA, the viscosity is independent of shear rate in the range 10 s−1 to 1000 s−1.
The addition of EAA slightly increases the viscosity of the modified TangoPlus solution,
but overall viscosity is about 0.11 Pa·s which is low enough for 3D printing. For the AUD
modified TangoPlus, as shown in Figure 5(b), the viscosity is independent of shear rate in
the range 0.1 s−1 to 1000 s−1, and the viscosity of the modified TangoPlus increases
remarkably from ~0.1 Pa·s to ~100 Pa·s on increasing the weight fraction of AUD from 0
wt.% to 100 wt. %. Generally, when the viscosity is higher than 1 Pa·s, the polymer
solution is not suitable for the DLP-based 3D printing as the waiting time for each layer
is more than 1 min. Heating is an efficient way to reduce the viscosity of polymer
solution. Therefore, Figure 5(b–f) present the rheological testing results of modified
TangoPlus by adding AUD at 45°C, 55°C, 65°C and 75°C, respectively. Heating signifi-
cantly decreases the viscosity of the polymer solutions. At 75°C, the viscosity of the
modified TangoPlus with 80 wt.% is also reduced to 1 Pa·s which is an acceptable
viscosity of DLP-based 3D printing.

4. Demonstration of passive 4D printing

To demonstrate the high stretchability of modified TangoPlus solutions, we printed
a millimeter-scale (5 mm in width) pneumatic finger actuator using the modified
TangoPlus by adding 30 wt. % of EAA. As shown in Figure 6(a), the initially straight finger
actuator bends after applying the pressurized air into the cavity of the actuator body. We

Figure 5. Rheological tests of the modified TangoPlus solutions. (a) Rheological tests at 25°C of the
modified TangoPlus solutions by adding EAA. (b)–(f) Rheological tests of the modified TangoPlus
solutions by adding AUD at 25°C 45°C, 55°C, 65°C and 75°C, respectively.
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conducted Finite Element (FE) simulations to investigate the local deformations on the
pneumatic finger actuator. The FE simulations were performed on a commercial FE software
ABAQUS (V6.14, Dassault Systèmes Simulia Corp., USA). The Mooney-Rivlin model was used
to describe the stress–strain behavior of the Modified TangoPlus by EAA. The strain energy
potential of the Mooney-Rivlin model is given by U = C10 (�I1 − 3) + C01 (�I2 − 3) + 1/D1 (J−1)

2,
where U is the strain energy density, C10, C01 and D1 are material parameters. By fitting the
stress–strain curve, we obtain C10 = 0.089 MPa, C01 = −0.021 MPa. Figure 6(b) presents the
strain contour on the finger actuator under the largest bending angle. The simulation reveals
that the local maximum strain is about 105%. After assembling three printed pneumatic
finger actuators, we built a mini soft gripper which easily conforms to the surface geometry
of a strawberry and lifts the 15 g fruit (Figure 6(c)) with ease and the maximum load that the
gripper could bear was found to be 50 g (Figure 6(d)). It should be noted that the traditional
molding-casting method has been widely used in the fabrication of pneumatic soft actuators
and robots, but it is not suitable at this millimeter-scale fabrication.

Not only do the modified TangoPlus by AUD sustain large elastic deformation, but
also maintain good mechanical repeatability of more than 1000 times loading/
unloading cycles. Based on this, we fabricated a highly stretchable and electric
conductive 3D lattice structure which can be potentially used as a flexible electronic
device. As shown in Figure 7(a), we first printed out a lattice structure using
TangoPlus modified by 20 wt. % AUD. Then, we coated a thin conductive hydrogel
layer by immersing the lattice structure into a conductive hydrogel solution which
was prepared by mixing acrylamide as the monomer, poly (ethylene glycol) diacrylate
(PEGDA) as the crosslinker, and 2,4,6 – trimethylbenzoyl – diphenylphosphine oxide
as the photoinitiator into 80 wt. % water [33]. A small amount of sodium chloride
was added to make the hydrogel solution conductive. UV irradiation cured the
hydrogel layer. Figure 7(b) shows that the conductive hydrogel coated 3D lattice

Figure 6. Demonstration of the fully printed millimeter-scale soft actuator. (a) The actuator at initial
straight configuration and inflated bent configuration. The scale bar is 5 mm. (b) Strain contour of
the finger actuator under the largest bending angle. (c) A mini soft gripper that grabs and lifts
a strawberry. (d) A mini soft gripper that grabs and lifts a 50 g weight.
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structure has good conductivity. The 3D lattice structure keeps good conductivity
under compression (Figure 7(c)) and stretching (Figure 7(d)).

5. Conclusion

In this paper, we present two simple approaches to tune the mechanical properties such
as stretchability, stiffness, and durability of the commercially available UV curable
elastomers by adding: (i) mono-acrylate based linear chain builder; (ii) urethane diacry-
late-based crosslinker. Material property characterizations have been performed to
investigate the effects of adding the two additives on the stretchability, stiffness,
mechanical durability as well as viscosity. Demonstrations of fully printed robotic finger,
grippers, and highly deformable 3D lattice structure are also presented.
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