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The engineering education and research sectors are interlinked, and there exists a need

within both for readily deployable low-cost systems. Smartphones are affordable and

easy to use technology available to almost everyone. Images or video frames taken with

smartphone cameras, of structures subjected to loadings, can be analyzed to measure

structural deformations. Such applications are very useful for university students and

researchers when performing tests in laboratory environments. This paper investigates

the feasibility of using smartphone technologies to measure structural deformation in the

laboratory environment. Images and videos collected while structures are subjected to

static, dynamic, and quasi-static loadings are analyzed with freeware and proprietary

software. This study demonstrates capabilities of smartphone technologies, when

coupled with suitable image processing software, for providing accurate information

about structural deformations. Smartphones and open source software are affordable

and available in comparison to professional cameras and proprietary software. The

technology can be further developed to be used in real world environments to monitor

deformation of engineering structures.

Keywords: image processing, deformation monitoring, vision-based, laboratory tests, smartphone technologies,

static test, dynamic test, quasi-static test

INTRODUCTION

The demand for advanced engineering education in many universities makes the use of low-cost
laboratory equipment a very attractive option, particularly in developing countries and remote
colleges (Al-Habaibeh and Parkin, 2003). Fundamental components of laboratory equipment that
are used to measure deformations of test-beds include mechanical dial gauges, strain gauges,
and displacement sensors with supporting data acquisition systems. Displacement sensors such
as linear variable differentiation transformers (LVDTs) and strain gauges usually require careful
installation/calibration and data translation (Abdel-Jaber and Glisic, 2016), for example the
conversion of volts/ohms to engineering units. Usually trained specialists are required to install
sensors, increasing the overall cost of the measurement collection. Therefore, low-cost and easy to
use sensor technologies with supporting software are promising alternatives for students, academics
and researchers (Girolami et al., 2017).

Vision-based systems are non-contact and can be set at a certain distance from a structure
(depending on the size of the structure, required measurement accuracy among other factors).
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Systems predominantly consist of one or more cameras and an
operating systemwith image processing algorithms. Applications
of vision-based systems inmonitoring deformations of structures
dates back to early 90 s, when Stephen et al. (1993) measured
static and dynamic responses of the Humber Bridge. Since then
numerous methods such as photogrammetry and digital image
correlation have been developed and validated to accurately
measure deformations of laboratory and real-world structures
from image frames collected with high-resolution industrial
cameras and user grade camcorders such as GoPro cameras (Choi
et al., 2011; Ho et al., 2012; Brownjohn et al., 2017; Khuc and
Catbas, 2017; Kromanis and Liang, 2018). Cameras with zoom
lenses offer image collection of certain locations on structures
from long distances (Ye et al., 2013; Feng and Feng, 2017).
Frequently measured structural parameters include dynamic
and static displacements and cracks in concrete structures
(Adhikari et al., 2014). Substantial information about the theory
underpinning image processing and case studies on deformation
monitoring are summarized in recently published review papers
(Brownjohn et al., 2017; Xu and Brownjohn, 2017).

Camcorders or professional cameras might not always be
available, however almost every student, academic and researcher
has a smartphone. Due to the economy of scale and use of
smartphones on a global level, they can be acquired at a
low-cost. Smartphones are equipped with powerful computer
systems and high-resolution cameras, which allow capture of
high quality images and videos. The increasing processing power
and camera capabilities of smartphones make them a powerful
measurement collection tool when integrated with appropriate
applications (apps) (Nayeem and Want, 2014). Preliminary
studies report applications of smartphones as a component
for bridge monitoring systems. For example the incorporation
of smartphone sensors such as the global navigation satellite
systems tracking and integrated accelerometer to a monitoring
system (Yu et al., 2015; McGetrick et al., 2017). Smartphone
based object tracking apps have been proposed to dynamically
collect structural displacements utilizing smartphone cameras
(Min et al., 2015; Zhao et al., 2015). However, currently there is no
freeware readily available for obtaining structural deformations
from images collected of structures under loadings. The above
examples make smartphones and free apps an attractive, low-cost
option for deformation measuring of laboratory structures and
educational activities. Free displacement analysis apps could be
integrated into engineering and educational courses.

Smartphone technology is expected to improve even further,
driven by phone companies providing more options and
capabilities for their customers than ever before. Today some
smartphones have the capability to record 4 k [3,840 × 2,160
pixel (px)] videos at 60 frames per second (fps) or even stereo
vision for 3D reconstruction. Furthermore, when adding an
optical zoom lens to a smartphone, deformation monitoring
of full-scale bridges can be made possible. Kromanis and Al-
Habaibeh (2017) obtained accurate movements of a pedestrian
footbridge using a smartphone with a 20X zoom optical lens.
The first natural frequency of the bridge as calculated from
displacements obtained with vision-based technologies was in
a good match to the frequency calculated from GNSS (Yu
et al., 2014). A comparative study between high resolution and

low-cost infrared vision systems has shown that equally good
results can be obtained when considering appropriate analysis
algorithms suggesting that with high resolution output even
better results could be obtained (Shakmak and Al-Habaibeh,
2015). The studies of applications of smartphone technologies in
long-term monitoring projects are not yet reported.

This study examines the performance of structural
deformation monitoring using photos and videos collected
with professional and smartphone cameras of beams subjected
to static, dynamic and quasi-static loadings in the laboratory
environment. Collected images/videos are analyzed with
freeware and proprietary software. Obtained deformations are
compared in terms of root mean square of deviation between
selected measurement collection and image analysis methods.
Results demonstrate that equally accurate structural responses
can be obtained from contact sensors and images collected
with professional and smartphone cameras, both analyzing
images with freeware and proprietary software. A discussion is
provided on the advantages, challenges, and benefits of using
smartphone technologies over conventional measurement
collection technologies, to measure deformations of structures in
the laboratory environment.

SMARTPHONE SYSTEM FOR
MEASUREMENT COLLECTION

A schematic representation of a smartphone system for
measuring structural response such as vertical deflections in the
laboratory environment is provided in Figure 1. A cantilever
beam is considered as a structure under loading. Artificial
markers (or objects of interest) are drawn on its surface. The
markers mimic structural features such as bolts in real-life
structures. Structural deformations are determined from the
location of markers, which are calculated using image processing
software for each consecutively collected image or recorded
video frame (further referred to as an image frame) while the
beam is loaded. A smartphone is used to capture image frames
of the deformation event. Marker locations are decided based
upon required tasks and anticipated deformations. The load-
response mechanism can also be used to assess the condition
of the beam. For example, after an initial test the beam could
be damaged and, once more, subjected to the same loading.
Deflections in damaged and undamaged conditions could be
compared for conditions assessment. Such a process could form
a useful student activity in a taught structures course.

The following sections describe processes underpinning image
processing approaches for deformation calculations of structures,
comparisons of selected algorithms with regard to the accuracy of
deformationmeasuring of structures and amethod that is used to
evaluate the measurement accuracy between measurement.

IMAGE PROCESSING APPROACH AND
TECHNIQUES FOR DEFORMATION
CALCULATIONS

Collecting useful information from images/photographs has
been research for more than a century. In some context,
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FIGURE 1 | A schematic representation of measurement collection process of a structure under loadings using a smartphone.

photogrammetry, which is a measurement technique used to
determine the two- and three-dimensional geometry of objects
from photographs, casts the foundation for many available image
processing tools (Colwell, 1983). Photogrammetry has originated
from the production of topographic maps (Hartley and Mundy,
1993). Developments of this technique have grown since the
beginning of the technological era. Its expansion to video-
processing shares considerable overlap in goals and algorithms
with the computer vision (Hartley and Mundy, 1993) and has
been implemented for deflection monitoring of bridge structures
(Jiang et al., 2008). The fundamentals, however, of analyzing
images of structures subjected to loadings and estimating their
response remain the same.

Before images can be analyzed, there are some prerequisites
that are influenced by the selected image processing algorithm
and desired measurement accuracy. For example, camera
calibration is a method of determining the intrinsic and extrinsic
parameters of the camera used to record the structure motion,
to remove lens distortion effects and to provide a conversion
from pixel units to engineering units. There is a variety of
approaches used to determine a scaling factor for converting
pixels to physical distance. A pre-testing calibration method
involves setting up the camera in the laboratory in an identical
manner to that of the field test, i.e., focal length, angle etc.
(Khuc and Catbas, 2017). The camera can be calibrated using
the checkerboard pattern, which consists of white and black
squares with known dimensions. Camera variables are used to
remove lens distortion and provide a scaling factor for the image
frames captured in the field trials. The scaling factor (SF) can be
estimated as follows:

SF =
d

D
=

f

p× Z
(1)

where d is a distance on the image, D is a known physical
dimension, f is the focal length of the camera, p is the unit length
of the camera sensor (mm/pixel) and Z is the distance from the

camera to the monitoring location. A simpler method can also
be used:

SF =
Dknown

Iknown
(2)

where Dknown is the known physical length on the object surface
and Iknown is the corresponding pixel length on the image plane.
Considering that the focus of this study is on the measurement
collection of laboratory structures, Equation 2 is selected. It also
should be noted that smartphone manufacturers have already
embedded relevant algorithms to remove the lens distortion.
The laboratory environment offers easy access to the structure,
therefore a smartphone can directly (at no angle) face the
structure (or the region of interests of the structure).

Figure 2 shows the image analysis process for deformation
calculations. The process is initiated by choosing a reference
image or image frame in a video. Preferably, this should be a
clear image, in which there are no obstructions in front of the
structure. The next step is to select a region of interest (ROI)
which contains structural features such as corners, rivets or
natural decay in a concrete or steel structure, physical features
such as knots in timber beams or voids in concrete beams
or artificially created features such as paint sprays. The listed
features are referred to as structural features. This step can also
be skipped, and structural features can be selected directly from
the reference image. The step largely depends on the method
that is considered for the extraction of mathematical features
from the structural feature. Mathematical features, which could
be edges, corners and blobs, characterize the structural feature.
An analogy to a structural feature is a person’s face. The nose,
eyes, mouth and other face parts characterize the person’s face.
Once the structural feature is characterized, it can be located and
tracked in other images.

A range of factors govern the accuracy of measurement
calculations from images. The computational complexity and
resources are increased when real-time images are processed.
In addition, the embedded artificial intelligence in an image
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FIGURE 2 | Diagram of image analysis process.

processing algorithm can require high order of computation,
hence, requiring even faster and more powerful computers to
analyse real-time images. The focus of this study is on low-
cost measurement collection systems and free/available image
processing tools that can be used to obtain deformations of
experimental setups in the laboratory environment.

IMAGE PROCESSING ALGORITHMS

Three different image processing algorithms/software are
considered and compared: (a) DeforMonit, developed at
Nottingham Trent University (Kromanis and Al-Habaibeh,
2017), (b) QUB image processing method (further referred to
as QUBDisp), developed at Queen’s University Belfast (Del
Rincon et al., 2018), and (c) “Video Gauge” (VG) software,
a proprietary software built on a patented algorithm (Potter
and Setchell, 2014). DeforMonit and QUBDisp are created
using available Matlab algorithms. The aim is to demonstrate
that comparable measurement accuracies can be obtained
using the three image processing tools, hence, emphasizing
the availability of low-cost vision-based technologies for
measurement collection. These are especially attractive for
educational institutions.

DeforMonit
DeforMonit is an app developed at Nottingham Trent University
by R Kromanis. The app is a freeware which runs on
Matlab platform, on Windows PCs. DeforMonit can be used
to analyse both images and videos. At the current stage, it
is designed to tracks locations of blob-like surface features
(regions in an image that differs in properties such as
brightness/color from surrounding regions), which are within
a user’s specified ROIs. The app does not have real-time
capabilities, and image frames can only be analyzed after they
are collected.

Image processing steps employed in DeforMonit are
illustrated on an ROI drawn on a timber beam in Figure 3.
ROIs of ith image extracted from photos taken of the structure
under loadings are converted to grayscale images and analyzed
as matrices:

Ui =







y11 · · · y1n
...

. . .
...

yp1 · · · ypn






(3)

y is a gray scale value for a pixel in p by n matrix U, where
p and n is a row and column, respectively. The sharpness of
ROIs is adjusted and the number of pixels is increased before

they are converted to binary images. Binary images are analyzed
for connected components—two or more pixels with the same
color—black or white. The largest connected component (blob)
in an image is the object of interest (marker). Local coordinates
(x, y) for the marker are calculated for each ROI and converted
to global coordinates (coordinates in the entire image not only
in individual ROIs). Vertical, horizontal, and total movements
of markers and strains generated from any two markers are
calculated from the global coordinates. The location of the blob
is calculated in the subsequent ROIs.

VG Software
The Vision System originating from research at the University
of Bristol (Macdonald et al., 1997) led to the VG software that
was commercialized via the university spin-out Imetrum formed
in 2003. For bridge displacement monitoring, high-resolution
cameras equipped with long focal length lens are connected
to the controller (computer) via Ethernet cables and a group
of cameras are available for time-synchronized recording and
real-time video processing in VG software.

In VG software, the target tracking algorithms used are
correlation-based template matching and super resolution
techniques which enable better than 1/100 pixel resolution at
sample rates beyond 100Hz in field applications. The tracking
objects could be either artificial targets or existing features
such as bolts and holes on bridge surface. The system supports
exporting either two-dimensional displacement data via single-
camera set-up or three-dimensional displacement information
throughmulti-camera configuration. The VG software associated
with the Imetrum hardware has been trialed by researchers in
University of Exeter on several field tests. Results indicate that the
system provides comparable sensing accuracy for deformation
measurement as LVDT short-span bridge testing (Hester et al.,
2017) and even better performance than GPS measurement in
long-span bridge testing (Xu et al., 2017). In this study, video
records by professional cameras or smartphones are imported
to the VG software to extract ROI locations in the image plane
which are then exported to convert to displacement information
via a pre-defined scaling factor.

QUBDisp for Displacement Estimations
The processing framework of QUBDisp for displacement
calculation is composed of three main blocks of motion pixel
tracking (see Figure 2). A feature based approach is chosen due
to being more reliable and robust than digital image correlation
approaches (Hameed et al., 2009) and, when paired with a reliable
feature extraction technique, with similar precision.
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FIGURE 3 | A ROI is selected on a timber beam (A). Image processing steps in DeforMonit for ROI (B): (C) convert ROI to a grayscale image, (D) create binary image,

(E) leave only the largest blob and increase the image size, (F) calculate the location of the blob in each image.

The feature extraction process selected for use in the algorithm
is SURF (Bay et al., 2008) a robust and computationally
inexpensive extension of SIFT (Lowe, 1999). The keypoints
provided by SURF are scale and rotation invariant and are
detected using a Haar wavelet approximation of the blob detector
based on the Hessian determinant. These approximations are
used in combination with integral images (the sum of pixel values
in the image) to encode the distribution of pixel intensity values
in the neighborhood of the detected feature. More on QUBDisp
can be found in Del Rincon et al. (2018).

Once the points are detected, they must be tracked through
subsequent frames to filter outliers and improve the displacement
dynamic estimation. Careful application of threshold values must
be maintained during this process, as features may become
occluded or vary during the progression of images or a video.
QUBDisp makes use of a Kanade-Lucas Tomasi (KLT) (Tomasi
and Kanade, 1991) tracker to determine movement of the
features detected. This method takes the points detected by the
feature extractor and uses them as initialization values. The
system removes outliers using the statistically robustM-estimator
SAmple Consensus (MSAC) algorithm (Torr and Zisserman,
2000) which is a variant of the RANSAC algorithm. The MSAC
algorithm scores inliers according to the fitness to the model
and uses this together with a user-specified reprojection error
distance to minimize the usage of outliers in the displacement
calculation. Any features that do not meet these thresholds
are rejected, with the inliers then tracked on the next video
frame using the KLT algorithm. The displacement of the object
is measured in pixels by calculating the relative movement
between frames of the centroid of a matrix containing the
extracted features.

Evaluation of Displacement Accuracy
The accuracy of the obtained/measured displacements are
compared in terms of the root mean square (RMS) of
deviation between two measurement collection methods such as
DeforMonit and VG software. The first step is to find the RMS

value of a vector (x) representing displacement measurements
of ith marker (xRMS,Mi ) over the observation period, in which n
measurements are collected, which is calculated as follows:

xRMS,Mi =

√

1

n

∑n

j=1
xj,Mi (4)

In the next step, a vector of all xRMS,Mi values is created
and the RMS value of the selected measurement collection
method (xRMS,Method) such as DeforMonit is found using
Equation 4. The RMS of deviation between two methods is
a single positive number, which results from subtracting one
xRMS,Method value from another xRMS,Method value. For example,
the RMS of deviation between DeforMonit and VG software is
∣

∣xRMS,DeforMonit − xRMS,VG software

∣

∣.

LABORATORY TESTS

Three test scenarios are considered: (i) static, (ii) dynamic and
(iii) quasi-static. Test specimens are set and monitored with
contact sensors, cameras and smartphones in the structure’s
laboratory at NTU. Measurement collection technologies for
the test set-ups are listed in Table 1. Motion pixels of selected
markers drawn on the surface of test specimens are calculated
using DeforMonit, VG software and QUBDisps. Real world
displacements are estimated for static and quasi-static tests using
Equation (2), in which a known dimension such as the depth of
the beam is used. The accuracy of measured and/or calculated
deflections are compared using RMS of deviation between all
measurement collection methods.

Static Test
In the static test a 45mm wide, 70mm high and 950mm long
timber beam is chosen. The beam is firmly fixed at its left end,
thus making it a cantilever beam. Its setup and measurement
collection systems are shown in Figure 4. Ten markers (M-i,
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TABLE 1 | Measurement collection technologies employed in the laboratory tests.

Dial gauge LVDT Professional camera Lenovo A806 Samsung A3 or A5 Samsung S8 Accelerometer Strain gauge

Static test • • • • • ◦ ◦ ◦

Dynamic test ◦ ◦ ◦ ◦ ◦ • • ◦

Quasi-static test ◦ • ◦ ◦ • ◦ ◦ •

•-yes; ◦-no.

i=1,2, . . . , 10) are drawn on the surface of the beam. M-1 to
M-10 are approximately 100mm apart. Beam deformations are
measured with three linear variable differentiation transformers
(LVDT’s) at the marker positions M5, M7, and M9 and one
electronic dial gauge at M9. The load is applied manually by
placing weight plates on a platform that is connected to the free
end of the cantilever with a steel rod. The load steps are as follow:
0N (self-weight of the weight platform), 100, 150, 170, 180, and
185N. The load is removed taking off the weights as follows:
185N (largest load), 180, 170, 150, 100, and 0N. A professional
camera (Sony FS7) and two phone cameras (Samsung A3 and
Lenovo A806) are employed to capture images while the load
is applied/removed.

Figure 4 shows an image captured with Sony camera, which
is set 2m from the beam. All markers are visible in an image
frame to allow for collection of measurements of the entire
beam. Sony camera captures 4,096 × 2,160 pixel images at 1Hz.
Samsung and Lenovo smartphones, which are placed closer to the
beam, capture 4,128×2,322 pixel and 4,208×3,120 pixel images,
respectively, at 0.5Hz.

A deflection (δx) of a cantilever beam of a length (L) subjected
to a point load (P) at its free end at a distance x from its support
is calculated using Equation (5).

δx =
Px2

6EI
(3L− x) (5)

where E is the Young’s modulus of the material and I is the
secondmoment of area. According to Equation (5), the deformed
shape of the cantilever is a parabola. Considering the laboratory
setup described above, δx changes linearly with the change of
the applied load. For example, if the beam rigidity (EI) is 6.2
× 10 Nmm², δ@900mm at 100N and 150N loads is 4.26 and
6.4mm, respectively, which is proportional to the increments of
the applied load.

Time histories of vertical deformations of the cantilever
measured with LVDTs and dial gauge are given in Figure 5A. The
plot shows that deflections at specific locations are directly related
to the applied load. For example, at LVDT-3 location the beam
deforms approximately 46.5 µm/N. The vertical displacement
plot of LVDT-3 reads 4.6 and 6.8mm at 100 and 150N
loads, respectively. Vertical displacements obtained with image
processing methods for markers that are close to LVDT locations
are plotted in Figure 5B. Pixel motion values are multiplied by
SF and converted to engineering units. The SF value is obtained
by manually selecting a known distance, which for this test is
the height of the beam close to M-8 location. All image analysis
methods provide almost identical results and measurement

variations are not discernible in the time-history plot shown in
Figure 5B. A closer look at the vertical displacements of M-9
between 82 and 124 s, when 170 and 180N are applied, show
some measurement discrepancies between the three methods.
DeforMonit does not remove outliers (QUBDisp employs outlier
removal algorithm) or smooth measurements using a moving
average filter, therefore some measurement noise remains in time
histories. Displacements measured with LVDT-3 and dial gauge
are plotted together with M-9 vertical displacements calculated
from images collected with all cameras using DeforMonit (see
Figure 5D). LVDT-3 measured displacements are slightly lower
than those calculated using vision-based methods for periods
when the load is applied. However, dial gauge measurements are
the lowest for periods when the load is removed. This could be
attributed to the load application mechanism and inertia force.

M-1 to M-4 vertical displacements calculated with
DeforMonit are analyzed to assess the camera performance
against measurement accuracy of smartphones and the
professional camera. Figure 6A shows M-1 to M-4 displacement
time histories. Measurements from Sony camera are assumed to
present reference measurement sets. Measurements from Lenovo
are noisier than Samsung measurements. Statistical analysis of
measurement errors between Sony and smartphones are given
in Figure 6B. The error bar plot shows the difference between
Sony and smartphones. Lenovo has much larger standard
deviation values in comparison to Samsung for measurements
obtained from all marker locations. This could be attributed to
the quality of camera sensor, which is related to the price of the
phone—Samsung A is more expensive than Lenovo A806.

RMS values of vertical displacements for all markers obtained
using all image processing methods from images collected with
Sony camera are very similar. RMS of deviations between
vertical displacements collected with LVDTs and the dial gauge
and calculated from images using three image processing
methods are presented in Figure 7. The smallest RMS values are
calculated from Lenovo images and LVDTs. Figure 5D shows
that M-9 Lenovo displacements have smaller offset from LVDT-
3 measurements than M-9 Sony and Samsung. This is also
observed for other Lenovo and LVDT measurements (not shown
in the plots). Deformations obtained from Sony and Samsung
images are very close and less noisy than deformation estimated
from Lenovo, which is the most noisy camera (see Figure 6A).
RMS of the deviation between Sony and Samsung is the smallest.
The difference between obtained displacements can be attributed
to the selection of the scaling factor. One pixel in images collected
with all cameras ranges from 0.224 to 0.238mm. Dknown is the
cantilever height. Its selection might be slightly different in all
images, thus creating deviation in estimated displacements. This
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FIGURE 4 | Static test set-up. Sony FS7 image.

FIGURE 5 | Vertical displacements of the beam: (A) measured with LVDTs and dial gauge, (B) calculated using all image processing methods for M-5, M-7, and M-9

from images collected with Sony camera, (C) a closer look at M-9 displacements from (B), and (D) measured with LVDT-3 and dial gauge and derived using

DeforMonit for M-9 from images collected with all cameras.
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FIGURE 6 | Vertical displacements of M-1 to M-4 derived using DeforMonit from images collected with all cameras (A). Statistical analysis of measurement accuracy

from Samsung and Lenovo cameras (B).

FIGURE 7 | RMS of deviations between all measurement collection methods.

could be the reason why displacement values estimated from
images collected with Lenovo for M-9 are closer to LVDT-
3 measurements.

Dynamic Test
The beam that served for the static test is also used in the
dynamic test. The length of the beam is increased to 1,000mm.
Dynamic properties of the cantilever are determined using a step-
relocation method. In this measured input excitation method a
load that is applied to a point of the structure is suddenly released
(Farrar et al., 1999). In the dynamic load test (see Figure 8), a
200Nweight is applied 40mm from the free end of the cantilever.
The weight is connected to the cantilever with a cable tie. The
cable tie is cut and the weight is suddenly dropped, exciting the
cantilever. Beam accelerations aremeasured at 1,000Hzwith four
uniaxial DeltaTron R© model 4,514 accelerometers placed on the
top side of the beam (see Figure 8). A high frame rate (240 fps)
video is recorded with Samsung S8 to evaluate the performance
of the selected image processing methods.

Vertical displacements are estimated only using image
processing therefore, displacement values are provided in pixels.

Accelerations of accelerometer A-4 and vertical displacements
of M-10 (estimated using VG software) are plotted in
Figure 9A. VG software is selected as it is expected to
provide the most accurate results. The wavelength of vertical
displacements measured with accelerometer and calculated
with VG software match. Similar results are obtained with
other image processing methods. The first natural frequency
(f ) of the cantilever is found from the power spectral
density (PSD) values. PSD signal is calculated using Welch’s
method, which is applied on detrended acceleration and vertical
motion measurements. First natural frequencies found from
A-4 and M-10 values are very close 30.64 and 30.59Hz,
respectively (see Figure 9B). A great advantage using vision-
based technologies for collection of dynamic response is the
ability to find frequencies at a range of locations on the
structure. A plot of normalized PSD values with a fit line is
shown in Figure 9C. The plot shows the mode shape of the
test beam.

All image processing methods perform well on the dynamic
data sets. For the period shown in Figure 9A, the RMS of the
deviation between vertical pixel values is:
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FIGURE 8 | Dynamic test setup. Accelerations are monitored with four accelerometers (A-i, i = 1, 2, 3, 4).

FIGURE 9 | Dynamic test results: (A) accelerations collected with A-4 and vertical displacements of M-10 estimated using VG software, (B) power density spectrum

of cantilever motion calculated from A-4 and M-10 value shown in (A,C) normalized PSD values for each marker locations with a fitted line.

• 0.005 pixel, between VG software and DeforMonit
• 0.158 pixel, between VG software and QUBDisp
• 0.163 pixel, between QUBDisp and DeforMonit

The first frequencies calculated from measurements of all four
accelerometers are the same, 30.64Hz. The first frequencies

obtained using image processing methods range from 30.59 to
30.70Hz. The average frequencies are as follows:

• VG software 30.59Hz. f for all markers is 30.59Hz,
• DeforMonit 30.63Hz. fM−6, fM−7 and fM−10 are 30.70Hz, for

other markers 30.59Hz,
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• QUBDisp 30.67Hz. fM−3 and fM−6 are 30.58Hz, for other
markers 30.70Hz.

Quasi-Static Test
An aluminum beam with width 8mm, height 51mm and length
800mm is considered for the quasi-static tests. The right end
of the beam is fixed and the left end is placed on a cylindrical
support allowing for thermal movements. The friction between
the bottom side of the beam and the top side of the support
marginally affects the expansion/contraction of the beam, and
therefore it is not considered in this study. The beam is
instrumented with three LVDTs, two strain gauges (SGs) and
four thermocouples (TCs). One thermocouple measures ambient
temperature in the laboratory. Measurements from the named
sensors in Figure 10 only are considered in the study. The
location of sensors and test setup are shown in Figure 10.
Daily temperature cycles are simulated using two 500W infrared
heaters. The heaters are placed 200mm way and 100mm above
the beam and connected to the mains via a timer plug. LED
lamp is installed close to the left end of the beam to cast light
continuously on the region of interest, in which artificial markers
are drawn. Samsung A5 smartphone is placed in a close proximity
to the left end of the beam. Images are captured every 30 s. The
test lasts 26:00 h. The temperature load schedule is shown and
explained in Table 2.

Temperature histories are plotted in Figure 11A. TC-1
and TC-2 show simulated temperature cycles. TC-3 measures
ambient temperature in the structures lab. 08:00 h from the
beginning of monitoring (6:00 p.m. local time), there are
no activities in the lab, and the central heating is turned
off. This results in a gradual decrease of temperature until
20:00 h (6:00 a.m. local time), when heating is turned on.
Fluctuations in TC-3 indicate activities in the lab. For example
at 21:00 h the external gate to the laboratory is opened to
receive deliveries creating a drop in ambient temperature.
Strain time-history closely reflects temperature changes (see
Figure 11B). When considering the third simulated temperature
cycle (between 4:00 and 5:30 h), TC-1 measures temperature
increase from 20 to 30◦C. During this period, SG-1 measures
235 µε increase in strain, which is a reasonable increase of
material strain considering that linear thermal expansion of
aluminum (αAl) is between 21 ×10−6 m/mK and 24 ×10−6

m/mK. Horizontal and vertical displacements are provided in
Figures 11C,D, respectively. Assuming that αAl is 23.5 ×10−6

m/mK and temperature increases by 10◦C, anticipated lateral
and longitudinal expansions of the beam are 0.013 and 0.19,
respectively. However, LVDT measurements do not provide
expected results. Vertical (lateral) thermal movements of the
beam (measured with LVDT-1) closely follow temperature
changes, however, vertical displacements are much larger than
calculated values. Longitudinal thermalmovements poorly reflect
temperature changes (see Figure 11D). Applied temperature
affects the test setup/rig (surrounding environment), on
which the beam is supported, hence resulting in complex
thermal effects.

An image showing a part of the beam captured with the
smartphone is shown in Figure 12A. The smartphone is located
close to the beam resulting in a slight distortion of the image,
see the top/bottom left corner of the beam. For this reason,
raw (as captured) and undistorted images are analyzed using
only DeforMonit. Camera parameters are obtained and applied
to images, before they are analyzed. An undistorted image is
shown in Figure 12B. When comparing raw and undistorted
images, it can be seen that corners of the beam in the raw
and undistorted images are rounded and stretched, respectively.
Three artificial markers away from distorted image regions are
selected for analysis.

Vertical displacements of M-1 computed with DeforMonit
from raw images are shown in Figure 13A. M-1 vertical
displacements from raw and undistorted images are pre-
processed using a moving average filter. Displacements between
0:50 and 7:30 h are shown in more detail in Figure 13B. RMS
of deviation between measurements from raw and undistorted

TABLE 2 | Temperature load schedule.

Time [HH:MM] Description

00:00 to 01:00 Ambient temperature in the structures lab.

01:01 to 07:00 Four 1:30 h cycles, in which heaters are turned

on for 0:45 h and then off for 0:45 h.

07:01 to 21:30 Ambient temperature in the structures lab.

21:31 to 24:45 and 24:46 to

26:00

Heaters are turned on for the first 0:45 h and

then turned off.

FIGURE 10 | Quasi-static test set-up.
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FIGURE 11 | Time-histories of (A) temperatures, (B) strains and (C,D) displacements.

FIGURE 12 | Raw (A) and undistorted (B) images of the left end of the aluminum beam. White spots are artificial markers. Three markers (M-i, i = 1, 2, 3) are selected

for the displacement monitoring.

images for M-1 vertical displacements is 0.7 ×10−3 mm, which
is 0.6% of the vertical displacement range. Recognizing that the
difference between displacements is very small, the following
analysis is carried out using raw images only.

Raw vertical displacements of M-1 computed using all
three image processing methods are plotted in Figure 14A.
Displacements calculated with VG software and QUBDisp are
less noisy than those computed with DeforMonit. Displacements
computed with DeforMonit have a larger amplitude than

displacements computed with other methods. Displacements
computed with QUBDisp drift after 7:30 h and are different from
displacements computed with DeforMonit and VG software.
Pre-processed M-1 vertical displacements computed with all
three methods and measured with LVDT-3 for the period
between 0:50 and 7:30 h are shown in Figure 14B. Vertical
displacement cycles measured with LVDT-3 are much larger
than those obtained from image processing. VG software
and DeforMonit calculated displacements follow similar patter,
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FIGURE 13 | M-1 vertical displacements computed with DeforMonit from (A) raw images for the entire monitoring period and (B) undistorted and raw images from

0:50 to 7:30 h.

FIGURE 14 | Vertical displacements (A) of M-1 for the entire monitoring period and (B) of M1 and LVDT-1 between 0:50 and 7:20 h.

however, DeforMonit provides larger displacement values than
VG software.

Horizontal displacements obtained with LVDT-2 reflect both
thermal response of the beam and temperature induced effects
on the environment such as the test rig where the beam is set
up. Figure 15 shows displacements for M-3 estimated using
all image processing methods and measured with LVDT-2. A

εM−l,M−k =

√

(

xM−l,1 − xM−k,1

)2
+

(

yM−l,1 − yM−k,1

)2
−

√

(

xM−l,i − xM−k,i

)2
+

(

yM−l,i − yM−k,i

)2

√

(

xM−l,1 − xM−k,1

)2
+

(

yM−l,1 − yM−k,1

)2
(6)

typical range of horizontal movements for a simulated cycle as
obtained with image processing methods are 0.04 and 0.06mm.
QUBDisp and VG software produce very similar results for
the first 5 h of the test. Later QUBDisp displacements begin
to deviate from VG software results. DeforMonit calculated
displacements follow closely VG software results, however peaks
during the high temperatures are more amplified. An interesting

observation is that LVDT-2 shows contraction of the beam
when the temperature reduces slowly between 7:00 h and 20:00 h
(see Figure 11A), however, image processing methods find the
horizontal displacement to increase over this period.

The change of a vector length between two markers over the
original vector length between the samemarkers [further referred
to as pixel strains (ε)] is calculated as follows:

where x and y are coordinates of two markers M − l and M − k
at the 1st and ith measurements. εM−1,M−2 and strain histories
of SG-1 are plotted in Figure 16. Pixel strains are much larger
than strains obtained from the foil strain gauge. Strains calculated
from marker coordinates from DeforMonit and VG software are
generally similar, although strain peaks during the simulations of
temperature cycles vary in magnitude.

Frontiers in Built Environment | www.frontiersin.org 12 April 2019 | Volume 5 | Article 44

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


Kromanis et al. Measuring Structural Deformations Using Smartphones

FIGURE 15 | Horizontal displacements of M-3 and LVDT-2.

FIGURE 16 | εM−1,M−2 and strain measured with SG-1.

RMS of deviations between image processing approaches
and contact sensor measurements are not provided for this
experimental setup. Deviations between all measurement
collection methods are clearly discernible. LVDT-2 measured
displacements are larger than the anticipated vertical
displacements. This can be attributed to the complexity of
thermal effects and their influence on the entire test setup. The
best match between contact and vision-based measurements is
for vertical displacements (see Figure 14B). It is also important
to take into account that thermal response for this test setup
is much smaller than static and dynamic response of the
timber setup beam. For example a 0.1mm change in vertical
displacement is actually 4 pixels, and 2,000 µε (from pixel) is
equivalent to 0.002 pixel. The strain phenomenon, especially for
thermal response, has to be researched in more detail. If strain
range is 235 µε it is a challenging task to obtain such a high
resolution from images. On average the frame size of a 12 MP
image is 4,200× 2,800 pixel (width× height). If considering that
a distance between two markers is 4,000 pixels, then to obtain a
235 µε change the accuracy of 4000 × 235 × 10−6 = 0.94 pixel
is required.

DISCUSSION

Response measurements of three laboratory setups are obtained
using contact sensors and analyzing image frames collected
with smartphones and a professional camera. Image frames are

then analyzed using a freeware (DeforMonit), free algorithm
(QUBDisp) and proprietary software (VG software). Overall,
when analyzing images collected with smartphone, a very good
correlation of the different methods is obtained.

Images of static tests are captured with a professional camera
Sony FS7, and then compared with data collected from Samsung
A3 and Lenovo A803 smartphones. The Sony camera with an
adequate lens used for the collection of image in the test costs
around £7,000, whilst both phones cost no more than £200,-
each. Plots in Figure 5 show that the smartphone technology with
suitable software can provide a simple low-cost option to estimate
deformations of laboratory structures. Deformations estimated
with freeware (DeforMonit) and free algorithm (QUBDisp)
agree well with LVDT and dial gauge measurements and are
very similar to results obtained from the expensive proprietary
software (VG software).

The dynamic test, in which the beam is excited by a
sudden release of applied weight, can be easily performed in
the laboratory environment, and to obtain a range of modes
the weight can be dropped from different locations on the
structure. When selecting less stiff structures than the beam
in this study, tapping the surface of the structure with a
hammer could also provide the required excitation. For example,
vertical movements of less than five pixels can be detected (see
Figure 6A). Measurements collected with accelerometers and
estimated from a high frame rate video are very similar. The
difference between the first natural frequency obtained with
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TABLE 3 | Summary of the capability (high, medium, low) of the technologies used in the laboratory environment and their estimated implementation costs.

Technology Capabilities in Implementation costs

Static test Dynamic test Quasi-static test

Dial gauge Medium – – Low

LVDT Medium – Medium High

Professional camera High – – High

Lenovo A806 Medium – – Low

Samsung A3 or A5 High – Medium Low

Samsung S8 – High – Medium

Accelerometer – High – High

Strain gauge – – High High

contact sensors and from the video is just under 0.2% [(30.64Hz−
30.59Hz)÷30.64Hz×100%]. Today some smartphones can boost
a 240 fps video up to 960 fps, however the boost lasts only for 0.3 s
and it is not easily controllable. Therefore, today from a 240 fps
video the highest detectible frequency can go up to 120 Hz.

When analyzing quasi-static tests results, LVDTs provide
displacements that are difficult to interpret. The entire lab
setup is affected by changing temperature. Vertical displacements
obtained using image processing methods are close to those
measured with LVDT. Reliable results are obtained from the
strain gauge, but when finding pixel strains from images, strain
values are ten times higher than those measured with the strain
gauge. However, trends of strain signals are very similar. This
could be attributed to camera lens parameters, though results
from undistorted images are almost the same as from raw
images, or a difference between expansion of the aluminum
section and the paint on the top surface of the beam. Quasi-
static experiments can be coupled with a thermal imaging
camera to obtain detailed information of applied temperature
(Kromanis and Kripakaran, 2017).

Applications of smartphone technologies for estimations
of deformations in the laboratory environment were proven
to be successful. Smartphones are much easier to set up
and use in comparison to contact sensors such as LVDTs
and accelerometers, which need special connection (clamps
or glued connections), have wires, need data acquisition
units and sometimes technicians’ help. If engineering units
are required, then using the correct scale factor in image
processing is important. Also installing a LVDT with its
aperture perpendicular in two planes to the measured surface
is challenging. DeforMonit and QUBDisp at the moment do
not offer real-time measurement collection. VG software with
appropriate hardware can be used in real-time tracking multiple
targets simultaneously. It needs video frames at the first 2 s for
training tracking parameters. A series of images for measurement
should be converted to specific video files before they can be
imported to VG software for post-processing.

All three image processing methods showed almost the
same results in static and dynamic tests. However, there were
slight deviations in estimated structural response for the quasi-
static setup, in which VG software provided better results
than DeforMonit and QUBDisp. The above discussions are

summarized in Table 3. The table lists all technologies, next
to which a qualitative evaluation based on their capability of
providing accurate measurements for each test are provided
together with their implementation costs. These are qualitative
observations based on authors’ opinions and test results.

CONCLUSIONS

This study proposes a low cost vision-based system using
smartphones for monitoring deformations in the laboratory
environment, and compares structural response of laboratory
structures against contact sensors and expensive image-
based systems that make use of professional cameras and
proprietary software. Very good agreements with structural
response obtained from contact and vision-based systems are
obtained for the static and dynamic tests. The quasi-static
test brings more challenges that need to be addressed in the
future studies. The following conclusions are drawn from
the study:

• For the static test similar measurement accuracies are
achieved from a professional camera and smartphones when
analyzing images with both free image processing tools and
proprietary software.

• The dynamic test presents that the high-grade Samsung
S8 smartphone offers very similar results compared to
standard contact sensors for a fraction of the cost of
traditional sensors. In comparison to accelerometers, values
obtained from the vision sensor repeatedly correlated
with movement pattern and magnitude. Significant
advantages of the vision sensor over traditional sensors
include, but are not limited to, the contactless nature of
measurement, no requirement for a power supply on site
and cost.

• Low cost vision-based systems deploying smartphones for
deformation monitoring have potential applications in
laboratory environments. These systems could reduce costs of
data acquisition systems and labor. The performance of such
a proposed system has to be calibrated and compared with
professional cameras and proprietary sensing systems (both
contact and non-contact). It is anticipated that in near future
smartphones will become faster and more powerful in their
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vision-based capacities than they are currently. Smartphones
will allow taking high quality photos at high frequencies,
therefore broadening their applications for measurement
collection of full-scale structures.

• The consistency and repeatability of the results obtained from
low-cost vision sensor/displacement calculation algorithms in
a diverse variety of laboratory trials provide confidence in their
usage. Further development of this system would involve a
series of field trials to determine the accuracy of the systems
in an uncontrolled environment and maybe even in long-
term applications.

The results show that smartphone vision systems can provide
accurate estimations of structural deformations at a fraction of
the cost of using professional top of the range cameras. It is
anticipated that with upcoming developments in smartphone

technologies, smartphone applications are expected to become
widely used in both the educational environment and for
engineering applications.
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