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Abstract  

Use of bioscrubber is attracting increasing attention for exhaust gas treatment in 

intensive pig farm. However, the challenge is to improve the methane (CH4) removal 

efficiency as well as the possibility of pig house wastewater treatment. Three laboratory-

scale bioscrubbers, each equipped with different recirculation water types, livestock 

wastewater (10-times diluted pig house wastewater supernatant), a methanotroph 

growth medium (10-times diluted) and tap water, were established to evaluate the 

performance of CH4 removal and wastewater treatment. The results showed that high 

CH4 removal efficiency (25%) can be rapidly achieved with improved methanotrophic 

activity due to extra nutrient support from the wastewater. The majority of the CH4 was 

removed in the middle to end part of the bioscrubbers, which indicated that CH4 removal 

could be potentially optimized by extending the length of the reactor. Moreover, 52% - 

86% of the ammonium (NH4
+-N), total organic carbon (TOC) and phosphate (PO4

3—P) 

removal were simultaneously achieved with CH4 removal in the present study. Based on 

these results, this study introduces a low-cost and simple-to-operate method to improve 

CH4 removal and simultaneously treat pig farm wastewater in bioscrubbers. 

Keywords: Biofiltration; Climate change control; Greenhouse gas; Methanotroph 

activity; Pig farm wastewater 

1. Introduction  

The continued increase in greenhouse gas (GHG) concentrations due to 

anthropogenic activities has led to significant climatic changes (Cox et al., 2000), which 

have raised the global average temperature by approximately 0.6oC over the past 

century (Hansen et al., 2012). Carbon dioxide (CO2) and methane (CH4) are the two main 

GHGs in the Earth’s atmosphere, but even though CH4 comprises a lower proportion 
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(16%) of the total anthropogenic GHG emission compared with CO2 (76%), CH4 

contributes 28 times the greenhouse effect of CO2 on a molar basis (IPCC, 2014). Thus, 

successfully mitigating CH4 emission could play an important role in global climate 

change control. 

Of all CH4 emission sources, agriculture and its associated waste is a significant 

contributor, and the livestock industry is by far the largest emitter (57%) in this category, 

which estimated at 195 Tg CH4 y-1 (Saunois et al., 2016). Pork is the most widely 

consumed meat product in the world, and more than half of all pork production is now 

from intensive pig farms (Philippe & Nicks, 2015), where CH4 is generated from the pig 

manure and flows out through the ventilation system (Haeussermann et al., 2006). 

Currently, pig farms are the second largest contributor (13%) of GHG emissions in the 

livestock section (McLeod, 2011). Therefore, the treatment of CH4 from intensive pig 

farms represents a crucial issue to ensure sustainability in meat production and 

environmental protection. 

Due to the low-cost and easy maintenance of packed-bed air scrubbers (also 

known as bioscrubbers or biotrickling filters), they have been widely applied as the end-

of-pipe technology to treat pig farm exhaust air in many European countries, including 

Germany, the Netherlands, and Denmark (Liu et al., 2014; Liu et al., 2017a; Melse & Hol, 

2017; Van der Heyden et al., 2015). In bioscrubbers, water is sprayed on the top of the 

packing materials and the exhaust gas enters from beneath the scrubber and flows 

upwards. These contrasting flow directions can provide intensive contact between the 

two, enabling the transfer of pollutants from the gas phase to the liquid phase. The 

packing materials act as the carrier to host methanotrophic bacteria (methanotrophs). 

As the mixture of exhaust gas and water passes through, CH4 can be adsorbed onto the 

surface of the packing material and/or into the attached biofilm and is oxidised by 

methanotrophs to achieve CH4 degradation (Aguilar et al., 2010; Liu et al., 2017b; 

Malhautier et al., 2005; Melse & Timmerman, 2009; Melse & van der Werf, 2005). 

However, compared to ammonia, the CH4 removal efficiencies are often relatively low, 

ranging from 0.9 - 6% (Aguilar et al., 2010; Belzile et al., 2010). Thus, optimization of 

bioscrubbers to intensify CH4 removal is required, the relevant study is still lacking. 

In field-scale bioscrubber systems, tap water is usually chosen as the spray water 

(recirculation water) for convenience. However, tap water contains low levels of 

nutrients and may lead to a long methanotrophic bacteria growth period. It may then 

cause low CH4 removal in bioscrubbers, because the biodegradation of CH4 is heavily 

reliant on methanotrophic abundance and activity (Yargicoglu & Reddy, 2017). In 

addition to generating GHGs, pig farms also produce a large amount of wastewater, 

which need to be treated before discharge (Molina-Moreno et al., 2017). The sustainable 

concept  allows us to consider reusing the high level of nutrients, e.g. nitrogen and 
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phosphors, in the pig farm wastewater (Luo et al., 2017) to fed the methanotrophs. By 

doing so, it is hypothesised that the CH4 removal rate could be improved and the pig 

farm wastewater could simultaneously be purified in bioscrubbers after using this 

wastewater as the recirculation water. Moreover, using isolated methanotrophs as the 

biological additives has been demonstrated to significantly improve CH4 removal in 

bioscrubbers (Liu et al., 2017b). Whether the combination of pig farm wastewater and 

methanotroph addition could further improve bioscrubber performance requires 

investigation.  

In this study, three laboratory-scale bioscrubbers equipped with different 

recirculation water types (pig farm wastewater (10-times diluted pig farm wastewater 

supernatant), methanotroph growth medium (10-times diluted) and tap water) were 

established to evaluate the CH4 treatment performance. The performance of the 

bioscrubbers by a stepwise change of the recirculation water to pig farm wastewater 

were also tested. Then, the methanotrophic activity and spatial variability of CH4 

removal in bioscrubbers were studied to understand the underpinning mechanism. 

Furthermore, the pollutant (organic matter, nitrogen and phosphorous) removal 

efficiencies of the pig farm wastewater were investigated. With these results, this study 

aims to optimise bioscrubber systems to a low-cost and easy-to-operate technology to 

improve the CH4 removal and simultaneously treat pig farm wastewater. 

2. Materials and Methods 

2.1 Experimental setup  
 

  

The three lab-scale bioscrubbers used in this study were made of identical 

polyvinyl chloride (PVC) columns with dimensions of 125 x 30 x 30 cm in height, length 

and width, respectively (Fig. 1). Each column was filled with stacks of coarse plastic 

square plate from 10 to 120 cm height with a final effective volume of 99 L. This packing 

material was collected from the field-scale bioscrubbers with an operation time of 

around 7 years, which were employed at an intensive pig farm in Niedersachsen 

(Cloppenburg area), northern Germany. The packing material was made of polyethylene 

with 0.3 m in both length and width and 1.0 cm in thickness. The distance between each 

plate in the bioscrubbers was around 1 cm. The stack was vertically packed with a 45o 

tilt to the airflow direction in the columns. In the bottom of the column, 10 cm of 

recirculation water collection area was connected to the exterior 20 L water tank for 

water recirculation in the bioscrubber (Figure 1a). The total volume of the recirculation 

water for each bioscrubber was around 20 L, comprised of 9 L water in the bottom of 

the bioscrubber and 11 L water in the recirculation tank. To sample from different heights 

of the bioscrubber, four tubes were placed at 35, 65, 95 and 125 cm height in the column 

and reached the centre of the column to exclude edge effects. All tubes were equipped 

with valves for gas sampling. The gas mixer device (HTK Hamburg GmbH, Hamburg, 

Germany) was used to control the inflow gas composition and flow rate by mixing the 
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methane and air (Fig. 1a). The mixed air flowed upwards through the packed bed while 

water was sprayed simultaneously from the top.  

 

 

 

 

 

 

 

 

 

 

Fig.1 Schematic (a) and photo (b) of the lab-scale bioscrubber. 

2.1 Experimental conditions  

The experiment was conducted between May and December 2017, with a total 

duration of approximately 240 days. The experimental bioscrubbers were placed in the 

indoor laboratory at the Institute of Soil Science, Universität Hamburg, Germany (Fig. 

1b). The indoor temperature ranged from 18 to 24oC during this period. Four continuous 

experimental phases (I, II, III and IV) were involved, based on varying recirculation water 

types and methanotroph addition (Table 1). To simulate the CH4 influent loading rate in 

the field-scale bioscrubber (~100 g/m3/h), the CH4 inflow concentration, gas flow rate, 

empty bed retention time (EBRT), and recirculation water flow rate were kept at 

approximately 100 mg/m3, 100 m3/h, 3.5 s and 0.15 m3/h, respectively, throughout the 

experimental phases.  

To investigate the effect of recirculation water types on the bioscrubbers’ 

performance, tap water-diluted pig farm wastewater supernatant (90:10 by volume), tap 

water-diluted methanotroph cultivation medium (90:10 by volume) and tap water (100%) 

were selected as the recirculation waters for bioscrubber 1 (BS1), bioscrubber 2 (BS2) 

and bioscrubber 3 (BS3), respectively, in phase I (60 days). In phase II (60 days), 2 L (10% 

of the recirculation water) of methanotrophic solution was added to the recirculation 

water tanks for all BS recirculation tanks. In phase III (60 days), half the volume (10 L) of 

the recirculation water in BS2 and BS3 was changed to pig farm wastewater (same 

preparation as BS1 in phase I). For comparison, 10 L of fresh pig farm wastewater was 

also used to substitute the recirculation water in BS1. Finally, to confirm the effect of pig 

farm wastewater, the recirculation water in all the bioscrubbers was changed to fresh 

pig farm wastewater in phase IV (60 days). 

(a) (b) 
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Table 1 

Operating conditions of the three bioscrubbers across the experimental phases. 

BS 

Recirculation water of each experimental phase in 3 BSs Operating conditions of 3 BSs during the whole experiment 

Phase I Phase II Phase III Phase IV 
Packing 
Volume 

(m3) 

CH4 inflow  
concentration 

(mg/m3) 

Air 
flow 
rate 

(m3/h) 

EBRT 
(s) 

CH4 
loading 

rate 
(g/m3/h) 

Recirculation  
water flow 
rate (m3/h) 

BS1 
Wastewater 

(20L) 
Wastewater (18L) 

+Methanotroph (2L) 
no change Wastewater (20L) 

0.099 100 100 3.5 101 0.15 BS2 
NMS medium 

(20L) 
NMS medium (18L) 
+Methanotroph (2L) 

10 L was 
replaced 

with 
wastewater 

Wastewater (20L) 

BS3 
Tap Water 

(20L) 
Tap water (18L) 

+Methanotroph (2L) 

10 L was 
replaced 

with 
wastewater 

Wastewater (20L) 

BS, EBRT, and NMS medium represent the bioscrubber, empty bed retention time and 10-time diluted methanotroph growth medium;  
The wastewater represents 10-times diluted pig farm wastewater supernatant. 
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The fresh pig farm wastewater supernatant was collected from the intensive pig 

farm in Niedersachsen (Cloppenburg area), northern Germany. The wastewater was kept 

in the storage tank after a pre-treatment of solid-liquid separation. The methanotrophic 

growth medium was prepared in the laboratory, which was a slightly modified nitrate 

mineral salts (NMS) medium (Whittenbury et al., 1970) and contained a CuSO4 

concentration of 1 mg/L.  

Methanotrophs were isolated from the biofilm on the packing materials that were 

obtained from the field scale bioscrubber employed at the intensive pig farm in 

Niedersachsen. Type I methanotrophs, one species of Gammaproteobacteria, was the 

main methanotrophic bacteria in the biofilm, based on previous detection by an electron 

microscope (Liu et al., 2017b). The aforementioned NMS medium was used for bacterial 

enrichment. Enrichment occurred at 28°C under orbital shaking in rubber-stoppered 

120 mL bottles, containing 30 mL of NMS medium, 0.3 mL of phosphate buffer solution, 

and the rest in gas phase. The gas phase was 10% methane synthetic air (80% N2, 20% 

O2, and 0.03% CO2, Fa. Messer Griesheim) and the gas in the bottle was replaced every 

week for 2 months. After enrichment, the methanotroph solution was transferred and 

stored in 1 L amber bottles with 10% methane synthetic air at 4 °C in the dark prior to 

use. 

2.3 Sampling and analysis  
 

  

2.3.1 Gas sample 

In each experimental phase, the first 32 days were run to stabilise the system under 

the new operation conditions. Triplicated samples were taken every seven days in the 

last four weeks of each phase for analysis. The gas samples from the inflow, the sample 

heights of 35, 65 and 95 cm and the outflow (125 cm) of the columns were taken. During 

sampling, 12 mL of gas was first discarded by a three-way cock, then 10 mL sample 

volumes were taken by a vacuum glass tubes (10 mL) equipped with single 

polypropylene fittings for gas analysis. The CH4 concentration was determined by a gas 

chromatograph (7890A, Agilent Technologies, US). The injection volume for analysis was 

250 µL. Gases were separated on a Porapak Q column (1.8 m length, 2 mm ID) and 

quantified with a flame ionization detector (FID). The inflow, oven, and detector 

temperatures were 75°C, 35°C, 280°C (FID), respectively. Helium served as the carrier 

gas (30 mL/min). 

2.3.2 Water sample 

Following the gas sampling frequency, the pH and electrical conductivity (EC) of 

the recirculation water were measured in the recirculation tank, using a pH meter 

(pH/Cond 340i, WTW, Germany) and a potentiometer (Multi 350i, WTW, Germany), 

respectively. In experimental phase IV, 50 mL water samples were collected from each 

recirculation tank for quality analysis every week after the stabilization period. The 
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analysed parameters included ammonia (NH4
+-N), nitrate (NO3

--N), nitrite (NO2
--N), total 

organic carbon (TOC) and phosphate (PO4
3--P). NH4

+-N concentration was determined by 

a photometer according to German standard methods (DIN 38406-E5-1). NO3
--N and 

NO2
--N were measured using a High Performance Liquid Chromatograph (HPLC 1200 

Series, Agilent Technologies, USA) equipped with a C-18 column (Hypersil ODS, 125 x 4.0 

mm, 5 µm, Agilent Technologies, USA) with a UV-Detector (model 430), according to the 

description by (Sanders et al., 2010). The total nitrogen (TN) content was calculated by 

the sum concentration of NH4
+-N, NO3

--N and NO2
--N. The TOC content was measured 

by a C/N analyser (Variomax elementar CNMS). The PO4
3--P concentration was 

determined using the colorimetric molybdenum blue reaction (Beermann et al., 2015). 

All the measurements were conducted in triplicate. 

2.3.3 Methanotrophic activity 

The methanotrophic activities in all bioscrubbers were estimated by measuring 

the methane removal intensity. Briefly, 150 mL interstitial water samples were collected 

from the water outlet in each bioscrubber at the end of each experimental phase. The 

150 mL samples were placed in 250 mL plasma flasks filled with 50 mL NMS medium. 

The flasks were then sealed with a rubber-stopper and cultivated under room 

temperature (~25oC) conditions for 20 days. An initial concentration of about 100 ppm 

of CH4 was placed as the overlying gas in the flask. Each treatment was conducted in 

triplicate. In each flask, 250 µL of the gas sample was taken to analyse the CH4 

concentration by the previously described gas chromatography method (7890A, Agilent 

Technologies, US) on days 2, 3, 13 and 20, respectively. Thus, the CH4 degradation rate 

was used to reflect the potential methanotrophic activity. 

2.4 Calculation 

Methanotrophic activities were analysed for all the different BSs in each 

experimental phase. The CH4 degradation in the flask test was simulated by the first 

order kinetics model (equation 1): 

Ct = C0 * e-kt                                                                  (1) 

Where Ct is the CH4 concentration at time point t in ppm; C0 is the initial concentration in ppm; k 

is the reaction rate d-1; t is the reaction time. 

After the simulation, the reaction rate (k value) was used to represent the 

potential methanotrophic activity. 

2.5 Statistical analysis  

Statistical analyses were carried out using the XLStat Pro® statistical software 

(XLStat, Paris, France). A one-way ANOVA and post-hoc Tukey’s HSD test were used to 

compare average CH4 removal efficiencies, the potential methanotrophic activity, and 

the pollutants’ removal abilities in pig farm wastewater between the three bioscrubbers 

under different experimental phases. All comparisons were assessed at the 95% (p < 
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0.05) and 99% (p < 0.01) confidence levels. A linear regression model was used to 

simulate the methanotrophic activities and CH4 removal efficiencies in all bioscrubbers. 

3. Results 
3.1 CH4 removal  

The CH4 removal efficiencies in different bioscrubbers across the four 

experimental phases are shown in Fig. 2. After 32 days stabilization, BS1, equipped with 

the pig farm wastewater, showed significantly higher CH4 removal (average of 11%) than 

that of BS2 (average of 6%) and BS3 (average of 5%), which were equipped with the NMS 

medium and tap water, respectively. In phase II, the CH4 removal performances in BS1 

and BS2 showed significant improvement after adding methanotrophs and reached 23% 

and 9%, respectively. However, BS3 showed a slight improvement and achieved 6% CH4 

removal. After changing half of the recirculation water to pig farm wastewater in phase 

III, the CH4 removal efficiencies in BS2 and BS3 improved significantly to 15% and 12%, 

respectively. In phase IV, all bioscrubbers showed similar CH4 removal (25%) after totally 

substituting the recirculation water with wastewater. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 CH4 removal performance of the three bioscrubbers (BS) from Phase I to IV. 

3.2 CH4 removal profiles along the bioscrubbers  

CH4 concentrations gradually decreased from the inlet (bottom) to the outlet (top) 

along the gas flow pathway in all bioscrubbers (Fig. 3). Generally, the CH4 concentrations 

in three bioscrubbers did not show a clear difference at the sampling heights of 35 cm 

and 65 cm in any of the experiment phases. Significantly lower CH4 concentrations were 

observed at the sampling heights of 95 cm and 120 cm (out) in BS1 compared with those 

in BS2 and BS3 in phase I, II and III. When the operations were same in the three 

bioscrubbers in phase IV, the CH4 concentration profiles along the depth were similar 

between themselves (Fig. 3d).  
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Fig. 3 Concentrations of CH4 at different depths in the three bioscrubbers (BS) from Phase I to 

phase IV. 

3.3 Methanotrophic activity 

In order to better understand the effect of pig farm wastewater and 

methanotroph addition on CH4 removal in bioscrubbers, the activities of methanotrophs 

were measured in the four experimental phases (Fig. 4). The experimental process was 

simulated using the first order kinetics model and the reaction rates (k values) were 

calculated to represent the methanotrophic activity. In phase I, the methanotrophic 

activity (k of 0.21 d-1) in BS1 was around 1~3 times higher than that of BS2 (k of 0.07 d-

1) and two orders of magnitude higher than that in BS3 (k of 0.003 d-1). After adding 

methanotrophs from Phase II, BS1 kept a relatively stable methanotrophic activity (k of 

0.34 d-1) until phase IV. Methanotrophic activity slightly increased in BS2 (k of 0.09 d-1) 

and BS3 (k of 0.05 d-1) in phase II. Nevertheless, after the replacement of the 

recirculation water in phase III and IV, methanotrophic activity in BS2 and BS3 

continually improved and achieved a similar level (k of 0.31 d-1) to that of BS1.  
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Fig. 4 Simulated methanotrophic activity in all bioscrubbers (BS) from Phase I to IV. 

3.4 Wastewater treatment performance 

To evaluate whether the pig farm wastewater can be purified during CH4 removal 

in bioscrubbers (BS), the water quality, pH and EC, and concentrations of pollutants 

(NH4
+-N, NO3

--N, NO2
--N, TOC and PO4

3--P) were tested in phase IV (Table 2). The total 

nitrogen (TN) was calculated by the sum concentration of NH4
+-N, NO3

--N and NO2
--N. 

At the beginning of phase IV, all bioscrubbers were equipped with fresh pig farm 

wastewater as their recirculation water. Generally, the bioscrubbers did not show 

significant differences for all the measured parameters. When compared with the initial 

10-time diluted pig farm wastewater, the EC values significantly increased from around 

2.4 mS/cm to 5.2-5.9 mS/cm in the three bioscrubbers. The pH values did not show 

significant changes (6.2 - 7.3) compared with the initial wastewater (7.9).  
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The initial pig farm wastewater contained high levels of PO4
3--P (11 ± 3 mg/L), TOC 

(152 ± 11 mg/L), TN (39.4 ± 5.3 mg/L), and NH4
+-N (36 ± 5 mg/L). The removal of PO4

3--P 

reached 73 ± 3%, 64 ± 3% and 64 ± 4% in BS1, BS2 and BS3, respectively. The removal of 

TOC in the three bioscrubbers was found to be in the range of 74 - 86%. The bioscrubbers 

provided removed 29 ± 3%, 29 ± 7%, and 52 ± 11% of the TN in BS1, BS2 and BS3, 

respectively. For different species comprising the TN, NH4
+-N removal was 64 ± 4%, 52 ± 

8%, and 73 ± 15% in BS1, BS2 and BS3, respectively, while concentrations of NO3
--N (2.3 

± 0.2 mg/L) and NO2
--N (1.1 ± 0.1 mg/L) increased to 13 ± 0.1 and 3 ± 0.2 mg/L in BS1, 9 

± 1 and 2 ± 0.2 mg/L in BS2, and 8 ± 1 and 1 ± 0.1 mg/L in BS3, respectively.  

Table 2 

Pig farm wastewater treatment performance from the three bioscrubbers (BS) in phase IV. 

Parameters Initial  BS1 BS2 BS3 

Value Value Removal 

(%)  

Value Removal 

(%)  

Value Removal 

(%)  

pH 7.9±0.1 7.3±0.2 - 6.2±0.4 - 6.9±0.3 - 

EC (mS/cm) 2.4±0.5  5.7±0.9* - 5.2±1.2* - 5.9±0.8* - 

PO4
3--P (mg/L) 11±3 3±1* 73±3 4±2* 64±3 4±3* 64±4 

TOC (mg/L) 152±11 21±4* 86±5 32±2* 79±6 39±6* 74±7 

TN (mg/L) 39.4±5.3 28±0.8* 29±3 28±4.2* 29±7 19±7.1* 52±11 

NH4
+-N (mg/L) 36±5 12±0.5* 66±4 17±3* 52±8 10±6* 73±15 

NO3
--N (mg/L) 2.3±0.2  13±0.1* - 9±1* - 8±1* - 

NO2
--N (mg/L) 1.1±0.1 3±0.2* - 2±0.2* - 1±0.1* - 

* these values represent significant differences compared with the original 10-times diluted pig 
farm wastewater supernatant. 

4. Discussion  
According to the 2018 Global Report on Food Crises from the WFP (World Food 

Programme) (WFP, 2018), an estimated 124 million people in 51 countries are currently 

facing food insecurity and shortages. In order to produce more meat to fulfil the world 

consumption, livestock production has shifted from traditional, extensive, decentralized 

family farms to intensive livestock farms (Ilea, 2009). As a result, the livestock sector is 

now becoming one of the most significant contributors to environmental problems, 

including greenhouse gases emissions (Dennehy et al., 2017; Melse & Mosquera, 2014), 

and water pollution (Mallin et al., 2015). 

Traditionally, exhaust gases and wastewater from the intensive pig farms are 

treated separately by different technologies. Ecologically friendly biodegradation 

technologies, e.g. bioscrubbers and biofilters, are mainly equipped to purify the exhaust 

gases (Melse & Timmerman, 2009). Pig farm wastewater, characterized by high 

concentrations of nutrients, e.g. organic matter and nitrogen, are usually treated by 

anaerobic digestion (Ni et al., 2017) which is followed by post-treatment for nitrogen 

removal, such as ammonia stripping (Wu et al., 2018). However, a previous study has 
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demonstrated the simultaneous removal of nitrogen from the swine wastewater and 

H2S from the exhaust gas using a bubble column reactor (Deng et al., 2009). The present 

study uses an integrated approach to achieve simultaneous CH4 mitigation and 

wastewater treatment, which could provide a new insight for the future application of 

this technology. 

The biodegradation of the pollutants from either the gas or water phase is heavily 

dependent on the bacterial growth in bioreactors, such as membrane bioreactors 

(Lebrero et al., 2014), anaerobic digesters (Zhang et al., 2012), constructed wetlands 

(Kizito et al., 2017), and bioscrubbers (Melse & Hol, 2017). Thus, substances, such as 

activated sludge and livestock manure, with relative high concentrations of nutrients, 

are commonly used to prime the systems for bacteria growth. Based on the same 

concept, significantly higher CH4 removal in BS1 (11%), compared with BS2 (6%) and BS3 

(5%) in phase I (Fig. 2), could be due to the extra nutrients from pig farm wastewater for 

methanotroph growth. The CH4 removal in BS2 is higher than that in BS3 but lower than 

BS1, which may be because the 10-times diluted NMS medium contained less available 

nutrients for methanotroph growth compared with pig farm wastewater. Increasing the 

concentration of the NMS medium may improve the CH4 removal ability, however, the 

cost will also dramatically rise to affect the scalability.  

Coupled with recirculating pig farm wastewater in the bioscrubber, extra 

methanotroph addition could further improve the CH4 removal from an average of 11% 

to 25% (Fig. 2). BS1 presented significantly higher CH4 removal percentages than BS2 

and BS3 after the addition of methanotrophs, which may due to the nutrients from 

wastewater that can be utilized by the added bacteria to form a biofilm on the packing 

materials. This hypothesis was supported by the results of the potential methanotrophic 

activity, which had its highest value in BS1 after methanotroph addition (Fig. 4). The 

methanotroph activity was significantly positively correlated with the amount of CH4 

removed (Fig. 5), which indicated that the methanotrophic activity in the recirculation 

water could be used to diagnose the CH4 removal ability of a bioscrubber.  

To understand the CH4 removal processes inside bioscrubbers, the dynamics of 

the CH4 concentrations profile along the depth of the bioscrubbers though the four 

experimental phases were investigated (Fig. 3). The CH4 concentration changed the least 

at the bottom of the columns, however, the amount of CH4 heavily decreased (increased 

CH4 removal) from the middle to the outlet of the bioscrubbers. This increase in CH4 

removal may be caused by an increased methanotrophic presence and activity at the 

middle to end part of the system. Recirculation water flows from the top to the bottom 

in bioscrubbers, thus, the nutrients may accumulate at the top first and to be easily and 

quickly utilized by methanotrophs. Previous studies have also demonstrated that the 

middle and top part of the biofilter system contained 1.1–2.5 fold methanotrophic 
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activity compared with the bottom part when treating CH4 emissions from landfill 

(Pawłowska & Stępniewski, 2006). The higher contact time between CH4 and the 

microbial community could also be contributing to the significant increase in CH4 

removal along the length of the column (Gómez-Cuervo et al., 2016). However, more 

research is required to quantify the proportion and activity of the methanotrophs along 

the length of the bioscrubbers. 

 

 
Fig. 5 The correlation between methanotrophic activity and CH4 removal efficiency  

Under the present optimization methods, the bioscrubbers removed 52 - 86% of 

the PO4
3--P, TOC, and NH4

+-N from the wastewater (Table 2), when associated with CH4 

removal. PO4
3--P, as an important nutrient, can be assimilated by numerous bacterial 

cells and supports their basic metabolisms (Liu et al., 2001; Smith & Prairie, 2004). It can 

potentially support different bacteria, e.g. methanotrophs, organic degradation bacteria, 

nitrification/denitrification bacteria, which grow on the packing materials in 

bioscrubbers after introduced by wastewater. In addition to the oxidation of CH4, 

methanotrophic bacterial could also co-metabolise and degrade organic pollutants 

(Benner et al., 2015; Lyew & Guiot, 2003), which may support TOC removal in 

bioscrubbers. The potential organic degradation bacteria may also contribute to the TOC 

removal (Li et al., 2018; Yamashita et al., 2015), however, the quantity and activity of 

this bacteria needs to be determined in future studies. 

Methanotrophs has been demonstrated to be able to oxidize both CH4 and NH4
+-

N (Bodelier & Frenzel, 1999; Su et al., 2017), thus, the considerable NH4
+-N removal in 

the bioscrubbers may be partly due to methanotrophic nitrification (Sutka et al., 2003). 
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Moreover, the significantly increased concentrations of NO3
--N and NO2

--N (Table 2) 

supports the idea that the potential nitrification process (Kizito et al., 2017; Melse & Hol, 

2017), which was not measured in the present study, occurred in the bioscrubbers. 

Nevertheless, the TN removal was in the range of 29 - 52% in the three bioscrubbers 

(Table 2), which relatively low compared with other bioreactor systems for wastewater 

treatment (Yu et al., 2007). This may due to the preparation of artificial gas by mixing 

pure CH4 and air, which could aerate the bioscrubbers and result in aerobic conditions. 

The denitrification process, which could convert NO3
--N and NO2

--N to N2 for final 

nitrogen removal, would be heavily prohibited under these aerobic conditions. Real pig 

house exhaust gases could also contain other substances, such as CO2, N2O, NH3 (Melse 

& Mol, 2004; Melse & Mosquera, 2014), which could consume oxygen in the bioscrubber 

to reduce the aerobic condition. Thus, the TN removal may be improved when used in 

the real pig house exhaust gas treatment plant, however, this requires further study. 

Theoretically, once the EC of the recirculation water exceeds 22 mS/cm in 

bioscrubber systems, the water needs to be refreshed to avoid the inhibition of the CH4 

removal ability due to the high concentration of ions, e.g. NH3
+, in the water. However, 

the EC in the present study, for all systems, only reached 5.9 mS/cm in phase IV when 

using 10-times diluted pig farm wastewater, making the implementation of this system 

feasible. However, it should be noted that the original pig farm wastewater may contain 

a high concentration solid particles and other pollutants, such as heavy metals (Shen et 

al., 2016), that may influence the bioscrubber efficiency. Thus, appropriate wastewater 

pre-treatments should be considered before applying these optimisations. 

5. Conclusions  

The proposed optimization methods for bioscrubbers, selecting pig farm 

wastewater as the recirculation water combined with isolated methanotroph addition, 

was demonstrated to be a promising strategy to simultaneously remove CH4 and purify 

pig farm wastewater. High CH4 removal efficiency (25%) can be rapidly achieved with 

improved methanotrophic activity due to the extra nutrient support from the 

wastewater. The majority of the CH4 was removed in the middle to end part of the 

bioscrubbers. For the wastewater, removal of 52 - 86% of the NH4
+-N, TOC and PO4

3--P 

can be achieved in the present study.  
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