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ABSTRACT: Here we address research directions and trends
developed following novel concepts in 2D/3D self-assembled
polymer structures established in the department led by
Helmuth Möhwald. These functional structures made of
hybrids of polymer multilayers, lipids, and nanoparticles
stimulated research in the design of the cellular microenviron-
ment. The composition of the extracellular matrix (ECM) and
dynamics of biofactor presentation in the ECM can be
recapitulated by the hybrids. Proteins serve as models for
protein-based biofactors such as growth factors, cytokines,
hormones, and so forth. A fundamental understanding of
complex intermolecular interactions and approaches devel-
oped for the externally IR-light-triggered release offers a powerful tool for controlling the biofactor presentation. Pure protein
beads made via a mild templating on vaterite CaCO3 crystals can mimic cellular organelles in terms of the compartmentalization
of active proteins. We believe that an integration of the approaches developed and described here offers a strong tool for
engineering and mimicking both extra- and intracellular microenvironments.

Nowadays, self-assembled polymer-based structures repre-
sent a powerful and versatile tool that has attracted

considerable attention from modern scientists and is widely
employed for various biological and medical applications.
Polymeric and hybrid self-assemblies can be composed from
natural and synthetic biomolecules and recapitulate essential
features of biological cells and/or the extracellular matrix
(ECM). The concept of artificial cells and cellular micro-
environments is not well established yet and is continuously
developing. Although it is hard to predict further trends in the
development of the “artificial cell” concept, one can already see
the significant influence of original research developed in
Helmuth Möhwald’s group that to varying degrees brought the
researchers closer to the recapitulation of major principle units
of living cells and tissues.
Scheme 1 shows schematics highlighting these biological

structures (ECM, the interface between the cell membrane and
the ECM, and the cellular organelles) and their artificial
analogues developed in Moehwald’s group (polyelectrolyte
multilayers, liposome−multilayer hybrids, and protein beads,
respectively). The green spheres migrating within the multi-
layers represent soluble ECM biofactors (e.g., growth factors,
cytokines, and hormones). Special attention has been paid to
the external control over the presentation of biofactors to cell
receptors and the biofactor diffusion through the cell

membrane; both can remotely be achieved noninvasively via
infrared (IR) light. This provides a unique opportunity to
control the availability of biofactors for cell receptors up to the
level of a single cell. This is a key to tackling fundamental
questions in cell biology related to signal dynamics in the ECM
and intracellular communication.
Below, the development of the individual directions in

building the concept of an artificial cellular microenvironment
are described together with expected future perspectives.

■ MULTILAYERS POSTLOADED WITH BIOFACTORS
(ECM MIMICS)

Nowadays, the layer-by-layer (LbL) assembly of natural ECM
components is well known and perhaps represents the most
promising approach to mimicking the ECM to high accuracy
and on the nanometer level.1 Seeing the potential of the LbL
technique, Helmuth Möhwald was one of the first scientists
who took an interest in investigating the molecular dynamics of
bioactive molecules (biofactors) in the LbL-assembled
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structures. These studies are tightly associated with the
approach of the postloading of biomacromolecules into the
preformed multilayers. In this case, the multilayers serve as an
insoluble matrix that can host soluble biomacromolecules that
migrate between binding cites of the matrix. This recapitulates
very well the real ECM where an insoluble scaffold of
glucosaminoglucans and other still polymers serves as a matrix
for the diffusion of soluble signals/biofactors such as growth
factors, cytokines, hormones, and so forth.
The assembly of matrix-type capsules, as 3D analogues of

the planar multilayers, was first shown in 2004.2 It was
demonstrated that the LbL polymer coating of porous vaterite
CaCO3 crystals results in filling the pores with multilayers, and
after core elimination, it yields the nonhollow structures made
of polymer network−matrix-type capsules (Figure 1A).2 These
capsules have been employed to host such biomacromolecules
as various proteins and dextranes.3 The loading mechanism is
based on complex electrostatic and nonelectrostatic inter-
actions of the loaded molecules with the polymer network
possessing free charges due to the extrinsic (driven mostly by

counterions but not permanent polymer charges) charge
compensation into multilayers. This compensation results in a
number of defects in the multilayers or simply pores for the
loading of externally added molecules. Such a simple concept
of postloading proteins has further been translated from 3D
capsules to planar multilayers, with an increasing number of
publications showing loading of growth factors into the
multilayers and a biofunction of the multilayers (cellular
response in cellular differentiation, proliferation, adhesion, so
forth.) i. For an overview, see ref 4.
Furthermore, the multilayers have been successfully utilized

as reservoirs for not only biomacromolecules but also rather
small bioactives such as drugs. The first demonstration of the
loading and release of the indicator dye methylene blue was
shown in 2002,5 but extensive use of the multilayers as
reservoirs for small drugs has attracted attention together with
the employment of the multilayers for the loading of bioactive
macromolecules such as proteins. Later on, a number of
bioactives and model dyes were postloaded into the multi-
layers, including antibiotics and hydrophobic compounds.6−11

This makes the postloading principle extremely powerful for
the assembly of the artificial ECM with biomolecules of various
natures, thus bringing about a high level of complexity.
It is of note that the soft and highly hydrated hyaluronic

acid/polylysine or HA/PLL multilayers are probably the most
studied artificial ECM system with regard to the fundamental
understanding of the multilayer structure, internal dynamics of
the film components including postloaded ones, and cellular
adhesion to this soft multilayer film.12−17 HA is a real and very
important ECM component, and the HA/PLL multilayers are
one of first studied multilayers made of biopolymers.13 PLL is a
mobile polymer, and HA is immobile, which makes this system
similar to ECM where a network of immobile polymers serves
as a scaffold for soluble biofactors.
One has to provide additional support for the use of

postloading to assemble the artificial ECM. Postloading is
often called postdiffusion or postinfiltration. The obvious way
that comes to mind in order to load a biomacromolecule inside
the multilayers is to add it during the deposition steps as one of
the constituents. This approach was employed in the 1990s in
the assembly of multilayers made of proteins.18 Postloading has
significant benefits because of no need to add an excess
of typically expensive biomacromolecule (otherwise, at a lack

Scheme 1. Schematics Showing Polymer-Based Structures
Used for Mimicking Components of the Intra- and
Extracellular Microenvironmenta

aBiopolymer multilayers mimic the ECM, the liposome shell (lipid
bilayer) mimics the cell membrane, and protein beads assembled on
vaterite CaCO3 crystals mimic cellular organelles. The liposome−
multilayer hybrids described below mimic the interface between the
cell membrane and the ECM. Biofactors (in green) diffuse into
multilayers and through the liposome shell, also under control of
externally applied IR-light stimulation (yellow lighting).

Figure 1. Schematics of fabrication of (A) matrix-type multilayer capsules with postloaded protein and (B) porous and spontaneously
formed compact protein beads. Protein molecules are in green. (C−E) Scanning electron microscopy (SEM) images of the matrix-type
(polystyrene sulfanate/poly(allylamine hydrochloride))3 or (PSS/PAH)3 capsules, CaCO3 crystals, and insulin beads, respectively. Adopted from
refs 2 and 27 with permission from the American Chemical Society and Elsevier.
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of adsorbing moelcules the LbL assembly is not promoted).
The multilayer component is typically “contaminated” by
another component during the assembly because the
disassembly process also takes place. This would require a
step of purification of the biomacromolecule to be used after
the assembly procedure. For postloading, the yield of the
loading is typically very high, reaching the ratio between the
protein/charged substance in the bulk and in the multilayers of
more than 2 orders of magnitude.4,15,19,20 Thus, almost
complete loading can be achieved within a single step if the
multilayers are incubated in the protein solution.
Nowadays, the mimicking of the ECM using the polymer

multilayers has been significantly improved, and the linkage
between the mobility of the loaded biofactors and their
presentation to cell receptors is the main challenge and the
main fundamental question. Different approaches, including
fluorescence recovery after photobleaching, have been
employed to probe the internal structure and mobility of the
multilayer-loaded substances on various time scales, including
the assessment of lateral diffusion and multifractional
molecular diffusion.14,21−24 Moreover, approaches for the
reproducible and fast (deposition time down to seconds)
fabrication of multilayers (also patterned) at highly controlled
polymer mass transport have been reported using micro-
fluidics.25,26

In our opinion, the issue of the bioactive presentation/
mobility of biofactors in the multilayers will define the success
of the employment of the multilayers as artificial ECMs to
develop a tissue in a controlled manner and to serve as
effective biocoatings of implants guiding tissue regeneration.
However, the stimuli to tune the presentation/mobility of the
loaded biofactors have to be noninvasive and ideally will have a
remote effect that does not have any influence on functions of
cells in contact with the multilayers. Light is an ideal stimulus
because it can be well focused to affect a single cell, and light
irradiation modalities can be well adjusted and controlled. The
next section is devoted to the employment of light for the light-
triggered release of biofactors for external control over the
presentation of the biofactors in the multilayers.

■ MULTILAYER-LIPOSOME HYBRIDS (CELL−ECM
INTERFACE MIMICS)

After the recognition of the power of the LbL deposition
approach to precisely assemble complex multicomponent
structures, the necessity to mimic the interface between the
ECM and the cell has arisen. The cell membrane can be well
reconstituted as the intact lipid bilayer. However, the
integration of the LbL approach with lipid bilayer reconstruc-
tion faced a serious obstruction of low stability and
spontaneous disruption of the bilayer in contact with the
multilayers that is governed by the electrostatic interactions of
lipids with the polymer cushion of polyelectrolyte multilayers.
In 2008, Volodkin et al. successfully constructed and

investigated quasi-2D liposome−multilayer hybrids (Figure
2A,B) compartmentalized with the strata of intact unilamellar
liposomes that were anticipatorily stabilized28,29 with polycat-
ion poly-L-lysine.30,31 These papers demonstrate the potential
of such assembles for the inclusion of biofactors into the
liposome lumen as well as controlled-release opportunities.
These works have driven the development of a new research

direction for the design of functional compartmentalized
polyelectrolyte multilayers that provides the multilayer films
with a higher level of hierarchy and an option to include small
and large molecules into liposomes and multilayers,
respectively.32,33 The loading of both hydrophobic and
hydrophilic molecules can be achieved via the liposome−
multilayer hybrids.34 After the works of Volodkin et al., the
subsequent studies introduced alternative assembly concepts
for the entrapment of the liposomes without the need for their
stabilization prior to immobilization, for instance, using
cholesterol- or oleic acid-modified polymers.35 In recent
years, hybrid liposome-containing multilayers have been
extensively used for surface-mediated drug delivery.32 Exter-
nally triggered release from surface-immobilized liposome−
multilayer hybrids has been reported.36,37

On the other hand, aiming at the mimicry of the cellular
environment, the initial approach to liposome integration into
planar multilayers has been modified toward the 3D spatial
organization. Thus, capsosomes, which are polymer-based
multilayer capsules that contain liposomal subcompartments,
have been constructed. Encapsulated enzymatic reactions
within capsosomes were successfully carried out with the aim

Figure 2. (A) AFM image of the film with embedded vesicles. (B) Schematics of HA/PLL films with embedded liposomes assembled by the LbL
method. PLL, in blue; HA, in red. The film composition is (PLL/HA)12/PLL-liposome/HA/PLL/HA. (C−E) Schematics of the fabrication of
capsosomes using HA and chitosan as polymers. Adopted from refs 31 and 39 with permission from The Royal Society of Chemistry and Elsevier.
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of mimicking metabolic activities.38 Recently, the multi-
compartment 3D architecture that has been assembled via
additional liposome adsorption onto the core capsosome has
generated almost infinite possibilities for the construction of
compartmentalized microreactor and artificial cells (Figure
2C−E).39
Nowadays, the enormous potential for the translation of

multilayer−liposome hybrids for the concept of artificial cell is
evident. Further improvement of the initial concept of
multilayer-coated liposomes is expected. This might be focused
on the coupling of the LbL technique with giant liposome
formulation as one of the central modern approaches for the
concept of artificial cell. Herein, recent advancements in the
powerful microfluidic approach might play a crucial role. At the
same time, the step from introducing different assembly
concepts toward implementing biofunctions into the engi-
neered assemblies is expected. This includes not only the
development of multilayer−liposome hybrids as microreactors
that have a high potential for biomedical application but also
the generation of novel cell-mimicking platforms that will allow
the integration of the features of different components of the
cell and the cellular microenvironment in order to decipher the
fundamental mechanisms of essential cellular processes.

■ LIGHT-TRIGGERED PRESENTATION OF
BIOFACTORS (ECM SIGNALING MIMICS)

The control over the presentation of biofactors in multilayers
as artificial ECM is indispensable. This gives an option to
mimic the dynamics of the biofactors as in the real ECM with a
high precision in space and time. The localization of biofactors
and their controlled release has been proposed as an effective
way to control the biofactor presentation down to the level of a
single cell. The IR light serves a noninvasive external stimulus
that is able to permeate the highly hydrated multilayers and
biological cells without affecting cellular functions.
In 2009, in the department of Helmuth Möhwald, the IR-

light triggered release of biofactors (e.g., DNA, dextranes) in
multilayers has been developed, demonstrating both film- and
capsule-assisted release at a low light irradiation power (Figure

3A,B).40,41 The mechanism is both cases is based on the local
heating of multilayers with integrated metal nanoparticles. The
nanoparticles can convert light energy into heat, which results
in either the redistribution of polymers in multilayers (film-
assisted release) or the local destruction of the capsule shell by
overheating (capsule-assisted release). In these cases, the
heating is slightly above room temperature to enhance polymer
diffusion into multilayers or very strong (hundreds of °C) but
highly localized, respectively. The temperature variation in
multilayers may significantly affect the multilayer growth that is
caused by both a change of the multilayer structre and
enhancement of molecular transport within the multi-
layers.42,43 Microcapsules capable of targeted drug delivery
have been reported to open new biofunctional opportunities.44

It is of note that the localization of biofactors in capsule
planar multilayers allows us to protect the biofactors from
biodegradation (degradation by enzymes) and complexation
with other undesired molecules that can inactivate the
biofactors. Light-responsive capsules based on a localized
temperature rise, measured using fluorescent probes, were
designed earlier45 and have been used for intracellular delivery
as covered in another another article in this special issue. The
light-responsive capsules have also been integrated into
biopolymer-based HA/PLL multilayers in a manner similar
to that for smaller carriers (i.e., liposomes).31,46 This
integration allows us to construct surface-based carriers made
of only multilayers that are able to host biofactors in the empty
cavities of the embedded capsules. Such systems have been
employed for extracellular delivery triggered by light.
The multilayer capsules are themselves mimics of ECM,

being made of a multilayer film. Light-triggered delivery from
the nanoparticle-modified multilayer capsules can mimic
biofactor presentation in the presence of multilayers as the
artificial ECM. The capsules, along with those immobilized
onto a surface, can be used for the controlled delivery of
biofactors into cells noninvasively at a low dosage of IR light. A
number of light-triggered multilayer-based structures have also
been developed for light-triggered delivery to a cell. For a
review, see refs 47−49. For instance, multilayer disruption by
light and ultrasound has been demonstrated to be an effective

Figure 3. Schematics of IR-light-triggered release from gold nanoparticle (AuNP, gray spheres) containing planar multilayers, multilayer capsules,
and liposomes supported by the following confocal laser scanning microscopy (CLSM) images underneath the schematics before and after IR-light
irradiation (at a wavelength of 830 nm; for more light modalities, see the references below). (A) (PLL/HA)24/PLL film with embedded DNA and
gold AuNPs. DNA is labeled with ethidium bromide. The blue molecule is dextran released from the capsule into a cell. (B) AuNP-coated
(poly(diallyldimethylammonium chloride)/PSS)4 microcapsules loaded into the (PLL/HA)24/PLL multilayers. (C) Scheme of formation of
liposome−AuNP assemblies by the variation of the AuNP aggregation state induced by salt. Remote release of carboxyfluorescein from the
assemblies of type II. Adopted with permission from (A) ref 41, (B) ref 41, and (C) ref 53. The scale bars are (A) 1, (B) 5, and (C) 10 μm.
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externally triggered release system.50 Lipid-coated polymer
multilayer capsules have been used for in vivo anticancer drug
delivery induced by IR light.51 Chlorhexidine composite
capsules can effectively release antimicrobial components in a
stepwise manner.52

In the same year, 2009, light-triggered release from
liposome−polymer complexes was demonstrated in Möhwald’s
department.53 Figure 3C shows the structure of the complexes
of liposomes and nanoparticles (with sizes that can be adjusted
by the ionic strength) formed by mixing the components in the
presence of salt. Such structures can be selectively activated by
light, resulting in local heating over the phase-transition
temperature followed by enhancing the permeability of the
liposome bilayer and finally the release of the liposome cargo
(Figure 3C).
The integration of such liposome-based light-sensitive

structures into multilayers can obviously be done as described
in the Multilayer-Liposome Hybrids section in order to endow
the multilayers with externally activatable features. Such
systems can definitely serve as strong mimics of real ECM
where the temporally and spatially controlled presentation of
biofactors in 2D and 3D can be achieved. For instance,
electrochemically induced release from liposomes embedded
into planar multilayers (and also into cells) has been
demonstrated.36,37 The light-induced release of doxorubicin
from liposome−nanorod assemblies in vitro and in vivo has
been shown.54

The review of the light-triggered release from multilayers
highlighting aspects of light as a trigger and a presentation of
biofactors to a single cell is given elsewhere.55,56 The formation
of nanoparticle−polymer complexes for light-triggered release
has been discussed.57

■ PROTEIN BEADS VIA HARD TEMPLATING ON
VATERITE CACO3 (CELL ORGANELLES MIMICS)

Cellular metabolism is a cascade of chemical reactions (mostly
enzymatic catalytic reactions) within a living cell. To mimic the
metabolism, one needs to design artificial organelles where the
reactions take place in highly compact compartments mainly
composed of proteins with a concentration of up to tens of
percent by mass. Moreover, the organelles should be divided
into separate compartments with simultaneously occurring
reactions, similar to natural processes taking place in confined
volumes of organelles.58 Thus, there was a strong need to

assemble protein structures with well-defined architecture and
separate compartments.
In 2010, we developed the approach to assemble pure

protein particles using hard templating on vaterite CaCO3
crystals (Figure 2B).27 The approach is similar to the idea
behind that proposed for the assembly of multilayer matrix-
type capsules described in the Multilayers Postloaded with
Biofactors section. However, the infiltration of the crystal pores
(by cosynthesis or solvent exchange) is done using only one
component (i.e., protein molecules) instead of at least two
polyelectrolytes. Protein molecules infiltrating the pores should
be cross-linked (physically or chemically) to retain the
integrity of the formed porous protein particles after the core
elimination by EDTA (Figure 2B). In the case of physical
cross-linking such as for insulin particles,27 the porous particles
are spontaneously shrunk to compact particle as a result of the
hydrophobic interactions between protein molecules. Later,
the approach of formulating protein particles was extended to
be applied to virtually any protein.59,60

Below, we show how the approach proposed above has been
utilized for the assembly of multicompartment structures in
order to mimic cellular organelles. Coupled enzyme reactions
inside microparticles separated by the multilayer membrane to
make compartments have been reported. The first example of a
capsule in a capsule nanoreactor involves the glucose oxidase
(GOX) and horseradish peroxidase (HRP) bienzymatic system
assembled by means of the double cosynthesis of vaterite
CaCO3 crystals.61 The polyelectrolyte shell retained the
enzymes in separate compartments, while small substrate and
product molecules diffused in and out (Figure 4). Moreover,
the mixing of the contents of microcapsules upon laser
illumination demonstrates the applicability of remote control
over bioreactions in multicompartment capsules.62

Later, coupled reactions inside five concentrically built
CaCO3 compartmentalized particles with three separated
cross-linked enzymes (i.e., HRP, GOX, and β-glucosidase)
have been shown,63 demonstrating an influence of the spacing
on the enzymatic reaction rate, which can be delayed from
seconds to minutes.
The assembly of non-protein-based structures using the hard

templating on vaterite CaCO3 has also been shown using
functional biologically relevant molecules such as poly-
(ethylene glycol)64 and poly(N-isopropylacrylamide).65 Such
structures can endow the protein-based particles with a

Figure 4. General route for the synthesis of shell-in-shell microcapsules. A = initial core; B = core−shell particle; C = ball-in-ball particle (type I); D
= ball-in-ball particle (type II); and E = shell-in-shell microcapsule. Adopted from ref 61 with permission.
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number of biofunctionalities such as biological inertness,
reduced immunogenity, and temperature-dependent behavior.
The general concept proposed in this chapter opens a path

for carrying out coupled reactions in well-defined and
structured systems, where parameters such as the micro-
environment of the enzyme, the spacing between compart-
ments, and the properties of the separating compartments can
be adjusted. Recent progress in the synthesis of pure vaterite
CaCO3 crystals with controlled pore sizes66 and an under-
standing of the mechanism of protein loading via most
probably the most attractive loading approach (i.e., cosyn-
thesis67) can open new perspectives on fine-tuning the internal
structure and biological characteristics of the protein-based
compartmentalized particles as organelle mimics.

■ FUTURE PERSPECTIVES VIA THE INTEGRATION
OF THE ABOVE APPROACHES

The approaches described in the sections above represent
mimics of the ECM and ECM−cell interface. These
approaches are, first of all, of interest for a fundamental
understanding of the high dynamics of soluble signals
(biofactors) that actually drives the proper development/
organization of a tissue.68 However, the mimics and control
over the ECM composition and signal dynamics are of direct
applied interest in guiding tissue development and the growth
of a tissue with function similar to that of the living body. The
development of such a “real” tissue is possible only when the
composition and signal dynamics are well controlled. Thus, a
formulation of scaffolds (temporal supports to initiate and
instruct tissue growth) made of ECM mimics described above
would be indispensable in reaching a novel level of tissue
engineering.
Multilayer capsules have been utilized as building blocks to

assemble porous scaffolds made of interconnected capsules
(Figure 5).69 Microfluidics has been used to assemble scaffolds
under highly controlled conditions by packing vaterite CaCO3
crystals in microfluidic chambers followed by LbL loading in

the chamber, elimination of the carbonate core by EDTA, and
opening the chamber to remove the scaffold that has the same
dimensions as the chamber. It is important that the packing of
prefilled and empty crystals gives an option to localize the
biofactors previously loaded into the crystals (Figure 5D). This
is a simple approach to distributing biofactors in three
dimensions, protecting them, and adjusting the presentation
of the biofactors by light as described in Light-Triggered
Presentation of Biofactors. This gives a unique opportunity to
control biofactors in three-dimensional tissue that is typically
possible only by invasive micropipetting. It is of note that a
thick shell of the interconnected capsules ensures the integrity
and stability of the scaffolds. This is because of polymer
diffusion into pores of the mesoporous CaCO3 forming a thick
shell.
Multilayer complex core−shell structures such as multishells,

multicores, and other types of multicompartmentalized micro-
particles have been reported using porous agarose beads.70

These structures show high promise for tissue engineering
applications such as scaffolds. (Poly-L-arginine/dextran sodium
salt)x capsules assembled on vaterite CaCO3 crystals have been
mixed with collagen scaffolds to make the scaffolds more
functional, with no significant effect on the physical−chemical
properties of the scaffolds.70 CaCO3-based capsules can be
integrated into alginate scaffolds, giving so-called capsules-in-
bead scaffolds with an option to separate bioactive compounds
well in 3D space.71 Not only spherical multilayer capsules but
also multilayered tubes made of biopolymers can be produced
for tissue engineering purposes such as scaffold fabrication.72

CaCO3 can be used as a shell material for a soft core to
assemble inorganic shell microcapsules to be employed as
scaffolds for hard tissue engineering.73

The current trends in the mimetics of biological processes
indicate that significant effort will be put into the future
development of scaffolds with externally controlled properties.
This will allow the adjustment of scaffold properties in real
time and thus the control of tissue development, especially on

Figure 5. (A) Schematics of fabrication of porous scaffolds made of interconnected multilayer capsules. The scaffolds are assembled in microfluidic
channels by packing CaCO3 crystals, followed by crystal LbL coating, elimination of the carbonate crystals, and opening the chamber to remove the
scaffold that has the same dimensions as the channel used. (B and C) CLSM and SEM images of the scaffold. (D) CLSM combined image of the
scaffolds assembled using 20% of the CaCO3 crystals preloaded with BSA to reach a controlled localization of the biomolecule-loaded capsules.
Adopted from ref 69.
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the level of a microtissue. This is, however, a big challenge
because of difficulties in adjusting scaffold properties upon
request in 3D. This is not a problem in 2D and a number of
approaches have been developed, but in 3D, the external
triggers (light and electromagnetic fields) are likely the only
possible approaches to adjusting scaffold properties in real
time. We believe that the integration of the approaches
described above and developed in Möhwald’s department will
help researchers to tackle this issue.
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Sukhorukov, G. B.; Duschl, C.; Möhwald, H.; von Klitzing, R. One-
Step Formulation of Protein Microparticles with Tailored Properties:
Hard Templating at Soft Conditions. Adv. Funct. Mater. 2012, 22 (9),
1914−1922.
(60) Schmidt, S.; Behra, M.; Uhlig, K.; Madaboosi, N.; Hartmann,
L.; Duschl, C.; Volodkin, D. Mesoporous Protein Particles Through
Colloidal CaCO3 Templates. Adv. Funct. Mater. 2013, 23 (1), 116−
123.
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