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Hybrid materials, or hybrids incorporating both organic and inorganic constituents,

are emerging as a very potent and promising class of materials due to the diverse,

but complementary nature of the properties inherent of these different classes of

materials. The complementarity leads to a perfect synergy of properties of desired

material and eventually an end-product. The diversity of resultant properties andmaterials

used in the construction of hybrids, leads to a very broad range of application areas

generated by engaging very different research communities. We provide here a general

classification of hybrid materials, wherein organics–in-inorganics (inorganic materials

modified by organic moieties) are distinguished from inorganics–in–organics (organic

materials or matrices modified by inorganic constituents). In the former area, the surface

functionalization of colloids is distinguished as a stand-alone sub-area. The latter area—

functionalization of organic materials by inorganic additives—is the focus of the current

review. Inorganic constituents, often in the form of small particles or structures, are

made of minerals, clays, semiconductors, metals, carbons, and ceramics. They are

shown to be incorporated into organic matrices, which can be distinguished as two

classes: chemical and biological. Chemical organic matrices include coatings, vehicles

and capsules assembled into: hydrogels, layer-by-layer assembly, polymer brushes,

block co-polymers and other assemblies. Biological organic matrices encompass bio-

molecules (lipids, polysaccharides, proteins and enzymes, and nucleic acids) as well

as higher level organisms: cells, bacteria, and microorganisms. In addition to providing

details of the above classification and analysis of the composition of hybrids, we also

highlight some antagonistic yin-&-yang properties of organic and inorganic materials,

review applications and provide an outlook to emerging trends.

Keywords: inorganic, organic, nanoparticles, polymers, lipids, hybrid, hydrogels, cells

INTRODUCTION

The integration of both organic and inorganic materials is typically performed to improve
properties or to obtain additional functionalities in resultant hybrid materials (Ruiz-Hitzky et al.,
2008). A classic example here is the incorporation of hard and soft–two antagonist properties,
which are very different in organic (soft) and inorganic (hard) materials—constituents into hybrids
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GRAPHICAL ABSTRACT | Hybrid Inorganics-in-Organics Materials.

with a tunable stiffness of the resultant composite material.
Interestingly, a combination of different materials has been
present even from the time of ancient Maya, where hybrid
pigments were formed (Sanchez et al., 2005). Different
approaches to the classification of hybrid materials have
been discussed. On the one hand, it can be based either
on interactions (Sanchez and Soler-Illia, 2006), where those
associated with van der Waals, hydrogen bonding, electrostatics
are distinguished from those based on covalent and iono-
covalent bonds, or, on the other hand, a distinction can be
made based on their composition (Kickelbick, 2003). The area
of hybrid materials is continuously and rapidly expanding,
linking new research communities together with their own
structures, specific subjects, and approaches. The resulting pool
of the diversity of approaches is a potent catalyst to spur
innovation, but developments in respective sub-areas may be,
at least temporarily, overlooked by other research communities.
Additionally, it takes a while to establish the same structural
basis, common terms, interconnection and organization of broad
and often still expanding research areas. This provides a general
structural basis for the classification and organization of the
overall hierarchy of hybrid materials.

In this regard, two distinct areas in the field of hybrid
materials have been identified: modification of inorganic
materials by organic molecules and, vice versa, modification of
organic matrices by inorganic constituents. Overall, this can be
structurally classified as follows:

(1) Organic molecule-modified inorganic materials (organics-
in-inorganics), which can be sub-divided:

(a) inorganic structures modified by organic molecules;
(b) colloidal particles stabilized by organic molecules.

(2) Inorganic-modified organic materials (inorganics-in-
organics).

This structure is summarized in Graphical Abstract and is
further reflected in Figure 1 with additional details. In the

first (1a) application area, Figure 1 (left panel): modifications of
inorganic content with organic molecules (organics), organics-
in-inorganics, have been performed even with sol-gel hybrid
nanocomposites, where the addition of organic and inorganic
phases allowed combining complementary properties of these
two classes of materials to produce those with a lower density
and higher strength (Novak, 1993). Numerous applications,
many of which have been commercialized to become household
items, have emerged (Sanchez et al., 2005) and their number
is continuing to grow. Generally speaking, another application
sub-area (1b) can be viewed as a stand-alone sub-area, albeit
that a clear distinction is not always made (Mir et al., 2018).
First and foremost and in contrast to modifications in the
first area (1a), where they (modifications) bring in additional
properties, a functionalization of colloids by organic surfactants,
with the exception of the electrostatic stabilization, is essential
for their stability and it has become an inherent part of the
ensuing research on small particles and clusters. It is therefore
not surprising that colloidal science, which deals with inorganic
nanoparticles, nanorods, nanotubes, nanostars, etc. and their
stabilization, has become a distinct discipline. This area (1b),
which can also be referred to as a surface modification or
functionalization with ligands (Erathodiyil and Ying, 2011;
Chanana and Liz-Marzan, 2012), is designated as a stand-alone
sub-area (1b) in the classification chart, Figure 1 (bottom-row,
in the middle).

In the last area (2), also depicted in Figure 1, inorganic
modifiers such as colloidal (and Nano-) particles of minerals,
clays metals, semiconductors, carbons, and ceramics are
incorporated into organic materials of: (a) chemical (synthetic
molecules, monomers, polymers, etc. as well as materials based
on them: hydrogels, LbL, brushes, block copolymers both in
the form of coatings and vehicles) or (b) biological origin (i.e.,
naturally occurring molecules, lipids, polysaccharides, proteins,
nucleic acids including cells, bacteria, microorganisms). What
further points to a distinct character of these areas is the
fact that they are often developed by researchers with either

Frontiers in Chemistry | www.frontiersin.org 2 April 2019 | Volume 7 | Article 179

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Saveleva et al. Hybrid Materials

FIGURE 1 | General classification of hybrid materials incorporating both organic and inorganic components. Functionalization of inorganic materials (the base material

or matrix) by organic molecules, referred to as organics-in-organics, is shown on the left-hand side (shown in gray-dashed lines out outline the overall hierarchy of

hybrids, but without being the focus of this research). Incorporation of inorganic constituents or components into organic materials (matrices) is referred to as

inorganics-in-organics and is shown on the right-hand side (shown in solid dark lines, being the focus of this overview). The composition of inorganics-in-organics is

outlined in a separate panel (right-hand side, in the middle). The bottom row depicts schematics of actual materials for each corresponding category of hybrids.

inorganic chemistry or physical/organic chemistry backgrounds.
It should be noted that organic-inorganic hybrids were described
earlier (Chujo, 1996), but extensive systematic classification and
organization needs to be updated.

This review focuses on the latter area (2): modification of
organic matrices with inorganic components, as underlined
by distinct solid black lines in Figure 1. We discuss their
composition and highlight applications. The organic based
materials, also referred to as matrices, are briefly introduced,
highlighting the need for hybrids. Then, inorganic modifiers
(inorganics) are briefly introduced identifying the range of
properties they can enable. Hybrid materials for each class of
organics are then described followed by a table-summary and
conclusions with an outlook.

ORGANIC MATRICES

Organic materials, also referred to as matrices, may play
an important role in hybrid materials (Mastria et al.,

2015), and they can be logically divided into chemical and
biological materials.

Organic chemical matrices are predominantly constructed
from synthetic molecules, monomers, polymer-based materials
structurally distinguished as coatings and vehicles, while
compositionally assembled in the form of: hydrogels, layer-by-
layer (LbL) assemblies, polymer brushes, and block copolymer
based constructs. Some examples of inorganic constituents are
presented in Figure 2 (left-hand panel) and of organic matrices
in Figure 2 (right-hand panel).

ORGANIC CHEMICAL MATRICES

Hydrogels
Hydrogels are polymer based materials, Figure 2 (right-hand
panel) formed by cross-linked polymers leaving a substantial
volume for water (Drury andMooney, 2003). They can consist of
networks of crosslinked hydrophilic polymers such as collagen,
alginate, elastin, fibrin, etc. Cross-linking of hydrogels can be
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FIGURE 2 | Classification of selected major classes of inorganic (left) and organic (right) components of hybrid materials as depicted by electron microscopy images.

The inorganic constituents: minerals (SEM image of the calcium carbonate particles reproduced from Parakhonskiy et al., 2012 with permission Wiley-VCH), clays

(TEM image of halloysites, reproduced from Fix et al., 2009 with permission Wiley-VCH), metals (TEM image of metal nanoparticles, reproduced from Simakin et al.,

2019 with permission the ACS), semiconductors (TEM image of CdSe based nanocrystals, reproduced from Franzl et al., 2007), carbons (SEM image of carbon

nanotubes, reproduced from Niazov-Elkan et al., 2018 with permission Wiley-VCH), ceramics (SEM images of TiO2, which is used in ceramics and reproduced from

Weir et al., 2012 with permission of the ACS). The organic matrices are represented by the following chemical: polymers (SEM image of the polycaprolactone scaffold

reproduced from Savelyeva et al., 2017 with permission Wiley-Blackwell), hydrogels (an optical photograph of the Image of an DNA hydrogel removed from

atubeonapipette tip reproduced from Xu et al., 2017 with permission Wiley-VCH), LbL (SEM image of a polyelectrolyte capsule reproduced from Bedard et al., 2009c

with permission the Royal Society of Chemistry), brushes (AFM image of the brush polymer film, reproduced from Lemieux et al., 2003 with permission of the ACS),

block copolymers [TEM image micelles formed by amphiphilic diblock co-polymer poly(ethylene glycol)-block-polystyrene-PS310 reproduced from (Geng et al., 2016)

with permission of Wiley-VCH]; and biological: lipids (TEM image of liposomes, reproduced from Ruozi et al., 2011 with permission of Dove Medical Press), proteins

(TEM image of the BSA, reproduced from Longchamp et al., 2017 with permission of the Natl. Acad. Sci.), carbohydrates (TEM image of pectin, reproduced from

Hernandez-Cerdan et al., 2018 with permission of the ACS), nucleic acids (TEM image of DNA brick Cuboid structure assembly, reproduced from Wei et al., 2014 with

permission from Wiley-VCH) materials.

achieved by chemical methods: by aldehydes, addition and
condensation reactions as well as physical methods: ionic
interactions, crystallization. In addition, the following methods
can be used for crosslinking: protein interactions, hydrogen
bonds, reactions of amphiphilic block and graft copolymers
(Hennink and Van Nostrum, 2002). Hydrogels are very versatile
(Tokarev and Minko, 2010). The three-dimensional (3D)
microenvironment of the hydrogel structures allows the supply
of nutrients, gases, and wastes, as well as the delivery of active
biomolecules, particularly important in tissue engineering and
regenerative medicine (Stowers et al., 2015). Their properties can
be precisely controlled in space and time (Place et al., 2009).
The hydrogel stiffness influences cell behavior and can serve

as a multidimensional cell culture platform to simulate tissue
(Robitaille et al., 2013). The stiffness of hydrogels containing
tissue/organ extracellular matrix supports cell morphology,
while cell attachment, viability, and organization of the actin
cytoskeleton can be controlled by adjusting the stiffness of
hydrogels. It is desirable here to: control the stiffness, provide
additional means for assembly, for example, biomineralization,
and bring additional functionalities.

Layer-By-Layer
Layer-by-Layer (LbL) assembly, Figure 2 (right-hand panel),
has emerged as a simple and versatile method for coating
biological and non-biological surfaces by alternatively depositing
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oppositely charged polyelectrolyte polymers (Decher, 1997). Its
particular advantages are the flexibility to control the thickness,
architecture, composition, and possibilities of incorporation of
various materials (Lavalle et al., 2011) accompanied by various
stimuli to control the properties (Delcea et al., 2011b). Research
activities in the area of LbL include planar films (Von Klitzing,
2006; Selin et al., 2018) and capsules. In addition to nanometer-
thin LbL films, so-called micrometer thick exponentially grown
LbL films were developed (Lavalle et al., 2004), which can host
an enormous amount of both small and high molecular weight
substances due to a large thickness ofmultilayers, e.g., thosemade
of biopolymers (Sustr et al., 2015, 2018; Velk et al., 2016; Vikulina
et al., 2016; Prokopovic et al., 2017). The uptake of the molecules,
with various natures, is driven by the molecule interaction with
free (uncompensated) charges of the inter-polymer complexes in
the multilayers. Cell adhesion to PEM films is mediated through
electrostatic interactions and, more indirectly, via adsorbed
serum proteins (Muller et al., 2010). The adsorption of enzymes
was reported to be beneficial for cell growth (Liang et al., 2017).
The amount of protein adsorption primarily depends on the
final terminating layer (Wittmer et al., 2008), pH of the solution
(Kreke et al., 2005), and the ionic strength (Ma et al., 2013b).
In addition to the influence of electrostatic interactions, the
cell adhesion increases with an increasing rigidity (Thompson
et al., 2005). Soft and very hydrated multilayers can become
cell-adhesive through the enhancement of mechanical properties
via a coating with metal nanoparticles, or, cells can be localized
into patterned multilayers made by microfluidics without any
chemical or physical modification (Madaboosi et al., 2012a,b;
Schmidt et al., 2012). Depositing semipermeable LbL layers onto
colloidal particles has led to PEM capsules, which are freely
suspended in a solution. Improving mechanical properties of
PEM assemblies, adding sensory and remote release capabilities
are desired functionalities in this area.

Polymer Brushes
Polymer brushes or brushes, Figure 2 (right-hand panel)
represent another type of coating. They are constructed using
long-chain polymer molecules, in which one end is attached
to a surface or interface. The density of attached polymers
is typically high, forcing the chains to stretch away from the
interface. Under these circumstances, the behavior of polymers,
which can also be controlled by solvents, is different compared
to that of flexible polymer chains in a solution. In some cases,
diblock polymers can be used for the chain attachment between
interfaces (Milner, 1991; Zhao and Brittain, 2000). It has been
described that polymer brushes prepared from block polymers
and synthesized by ionic polymerization can be absorbed onto
flat substrates (Pyun andMatyjaszewski, 2001), while free-radical
polymerization, which can be used to control the thickness, has
also been used as a route to covalently bind polymer chains
from surfaces with high grafting densities (Prucker and Ruhe,
1998). Atom transfer radical polymerization (ATRP) is known
as a versatile technique for this purpose (Pyun et al., 2003),
while thermal treatment of polymer brushes (Schroeder et al.,
2018; Stetsyshyn et al., 2018) has been shown to affect the
structure. Polymers can be tethered in a high density in an

arrangement known as a bottle brush (Chremos and Douglas,
2018). Some examples of applications are the prevention of
bacterial adherence, cell attachment, electrochemistry and the
formation of colloidal crystals (Ayres, 2010), while additional
functionalities are sought here.

Block Copolymers
Block copolymers, Figure 2 (right-hand panel), represent a
more general class of material assembled using polymers
with at least two polymeric sub-units. Various polymerization
routes, including atom transfer radical polymerization, addition-
fragmentation chain transfer and ring-opening polymerization
can be used to synthesize polymers with a tight polydispersity
index and well-controlled molecular weight. Realizing that
amphiphilic block copolymers can assemble in a similar
fashion (as lipids form liposomes) has led to the research
area of polymersomes (Discher and Eisenberg, 2002). What
is particularly important is the fact that self-assembly of
amphiphilic polymers (Zhao et al., 2013) can be made in such
a way that the vesicles become even more stable than liposomes
(Tanner et al., 2011). The area of polymersomes has seen a rapid
growth and many new structures and assemblies, particularly
relevant for biomedicine (Chécot et al., 2002; Palivan et al.,
2016), have been designed (Cui et al., 2007; Christian et al.,
2009; Van Oers et al., 2013). Furthermore, optimization of the
loading efficiency has been done (Sanson et al., 2010) and
various other structures, including micelles (Li et al., 2004)
and micelles with different shapes (Wang et al., 2007) have
been obtained. In a similar way to liposomes, membrane fusion
has lso been demonstrated (Zhou and Yan, 2005). Various
stimuli (Delcea et al., 2011b) can also be used in the area of
polymersomes to control their properties (Che and Van Hest,
2016). Further development of responsive polymer vesicles is
desired in this area.

ORGANIC BIOLOGICAL MATRICES

Organic biological matrices are predominantly constructed from
biologically relevant molecules including lipids, carbohydrates,
proteins, nucleic acids (Cooper, 2000) as well as such higher
level organisms as cells, bacteria, microorganisms. Some of
the structures of organic biological materials are presented in
Figure 2 (right-hand panel).

Lipids
Lipid bilayers, also referred to as lipid membranes, are thin
membranes comprised of two layers of lipid molecules (Nagle
and Tristram-Nagle, 2000). Although lipid bilayer membranes
undergo some changes of their state (Andersen and Koeppe,
2007), their permeability to molecules and ions is an essential
functionality and has been the subject of intensive research.
A particular relevance of lipid bilayers is associated with cells,
because they form a continuous barrier surrounding cells
providing the identity, communication with the environment,
compartmentalization and protection (Hauser et al., 1972). It
is due to these very important functions that the area of lipid
bilayers is one of the most researched areas. The research
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area of liposomes (Pick et al., 2018)—small spherical vesicles
comprised of lipids, which are used for the delivery of nutrients
and nutrient supplements—is closely associated with lipids.
Liposomes have always been important drug delivery carriers;
they were reported to be multicarriers (Torchilin, 2006) capable
of delivering doxorubicin, daunorubicin, and cisplatin. A desired
functionality in the area of lipid membranes and liposomes is to
control their permeability or to add functionalities.

Proteins and Enzymes, Carbohydrates,
Nucleic Acids
Proteins and enzymes, carbohydrates, nucleic acids and lipids are
constituents of cells (Cooper, 2000). It can be noted that, on the
one hand, these molecules constitute cells, while on the other
hand, they can facilitate cell interaction with coatings through
integrin-ligand interactions (e.g., collagen, fibrin, polypeptides)
or other cell surface receptors (e.g., HA). Functionalization by
these molecules is relevant for all coatings, including hydrogels
(Devolder and Kong, 2012). Enzymatic functionalization of
coatings is another important property (Sigolaeva et al., 2018),
because enzymes are also excellent candidates to create tissue-
like extracellular matrices (Caliari et al., 2016) and can even be
used to encapsulate cells to create pre-seeded scaffolds (Hoffman,
2012). Drug delivery vehicles or coatings can directly be
modified by inorganic constituents, mostly by nanostructures for
sensing, enhancing mechanical properties (also in drug delivery),
or promoting cell-surface interaction. Furthermore, a direct
functionalization of molecules with inorganic nanostructures,
nanoparticles and clusters can bring additional functionality in
this area.

Cells, Bacteria, Microorganisms
Cells, bacteria and microorganisms consist of organic molecules
specified in the category organic biological matrices. But
they are at a higher level of organization, making them
stand in a separate category. In Figure 1, a subsection in
the bottom-right panel points to the fact that this category
stands apart in the overall organization. Both plant and
mammalian cells (Cooper, 2000) as well as bacteria (Shapiro,
1998) are the building blocks of cell biology and microbiology.
Single cells allow one to obtain essential information about
fundamental processes in cell biology, while studying other
multicellular organisms, i.e., bacteria, worms, insects, tissue,
biofilms, and other microorganisms allows one to understand
more sophisticated organisms.

INORGANIC MODIFIERS

Structurally, inorganic modifiers exist in many different shapes:
particles of various shapes, coatings of different geometries as
well as a variety of sizes ranging from clusters of atoms, nano-,
and micro- particles to larger structures. The size is particularly
essential, because they determine the overall properties due
to specific effects associated with the behavior of electrons or
induced charges.

Regarding compositionally, they can be divided into the
following classes: minerals, clays, metals, semiconductors,

carbons, ceramics as shown in Figure 2 (left-hand side). Minerals
include a very broad range of materials, including rocks, stones,
some oxides, and can either occur in nature or be synthesized
(hydroxyapatites and carbonates, for biomineralization). Clays
comprise of several groups: montmorillonite, kaolinite, Illite,
chlorite. Hardness of clays is a property, which can be used
in hybrid materials. Metals possess many attractive properties
with their free electrons providing high electrical and thermal
conductivity as well as enhanced absorption. At the nanoscale
confinement comparable with the free electron path defines
essential properties (Kelly et al., 2003). Semiconductors exhibit
conductivity values between those of metals and insulators; the
structure of their electron states makes them perfect candidates
for sensing (Alivisatos, 2004). Carbon, as an element, is fairly
abundant in the Earth’s crust and universe. But what brings
carbon to this list is its well-known forms: carbon nanotubes,
graphene, carbon dots, whose absorption and conductivity make
them attractive materials (Novoselov et al., 2004). Ceramics is
another class of inorganic material with predominantly covalent
or ionic bonds between atoms. Although many oxides constitute
ceramics, its structure is generally more ordered than that of
glass, which can be also considered here.

Various routes for assembling hybridmaterials exist, including
in situ synthesis (Adnan et al., 2018). But adsorption or
interaction of already pre-made components is still frequently
used in assembly by incorporating inorganic constituents in
the form of nanoparticles, nanorods, particles, etc. and are
comprised of the above-mentioned materials, Figure 2, into
organic materials to obtain hybrids.

We note that the composition of the major classes provided
in Figure 2 is not absolutely strict, but it provides a convenient
way of classifying these major components of both classes
of materials.

HYBRID AND COMPOSITE MATERIALS

Some examples include the improvement or modification
of mechanical properties and elasticity for cell adhesion,
optical, catalytic and electrochemical properties, sensors,
waterproofing, anticorrosion, insulation, etc. Figure 3 provides
selected applications of inorganics-in-organics hybrid materials
illustrating some images of the corresponding materials.

The diverse range of applications shown in Figure 3 is a result
of combining complementary properties of the corresponding
materials. We discuss further applications of these materials.

Hybrid Hydrogels
Introduction of inorganic particles into hydrogel coatings
allows the production of catalytically active interfaces (Agrawal
et al., 2013), while on the other hand optical properties
of hydrogels can be controlled through the addition of
nanoparticles (Agrawal et al., 2013). Incorporation of magnetic
nanoparticles into organic coatings has been used for the
induction of release functionality (Hu et al., 2008) and
manipulation of tissue for tissue engineering (Vidiasheva
et al., 2018). Magnetic nanoparticles have also been used for
adding magneto-responsive properties to magnetic hydrogels
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FIGURE 3 | Various modifications of organic matrices by inorganic components classified according to their applications. The left-hand schematics shows a more

general range of applications of hybrid materials, in which inorganic constituents are added to organic matrices, including: biomineralization, biomimetics, retartation

of flames, antibacterial properties and catalysis, fuel and solar cells, packaging and applications in dentistry, sensors and membranes, release from drug delivery

vehicles, cells or delivery into cells, enhancement of mechanical properties, electrical and thermal conductivity. The right-hand images illustrate selected objects

assembled by incorporating inorganic constituents in organic materials for: enhancement of mechanical properties (Optical image of the cell adhesion behavior and

the film surface morphology for different AuNP surface coverage, reproduced from Schmidt et al., 2012 with permission of the ACS), sensoric functions (SEM image of

BSE on hydroxyapatite with silver nanoparticles as SERS platform, reproduced from Parakhonskiy et al., 2014 with permission of Elsevier Science BV),

electroconductivity (SEM images of the surface of CNT/PS nanocomposites, reproduced from Grossiord et al., 2008 with permission of Wiley-VCH), remote release by

an external action of a laser (TEM images of the shell of the polyelectrolyte capsule with Ag-nanoparticles, reproduced from Skirtach et al., 2004 with permission of the

ACS); biomimetics (SEM image of the Polycaprolactone scaffolds mineralized with vaterite, reproduced from Savelyeva et al., 2017 with permission of

Wiley-Blackwell), catalysis (TEM images of poly(N-vinylcaprolactam-co- acetoacetoxyethyl methacrylate-co-acrylic acid) P(VCL-AAEM-AAc) microgels reproduced

from (Agrawal et al., 2013) with permission of the Royal Society of Chemistry), flame retardation (SEM images of polyurethane foam, with 3-bilayer halloysite

nanotubes coatings, reproduced from Smith et al., 2018 with permission from the Wiley VCH); packaging (SEM images of zein-Kaolin nanocomposites containing

2.5% Kaolin, reproduced from Arora and Padua, 2010 with permission from Wiley-Blackwell); solar cells (cross-sectional SEM image of a complete perovskite device,

reproduced from Jeon et al., 2014 with permission of Nature Publish. Group).

(Jaiswal et al., 2014). Stimuli responsiveness of hybrid interfaces
produced by radical polymerization at the surface has also been
shown (He et al., 2009).

Various functionalities and ways of incorporating inorganic
contents (Zou and Kim, 2012) of organic/inorganic coatings
have been shown, Figure 3. Properly designed inorganic/organic
interfaces or hybrid (Schroeder et al., 2018) and functional hybrid
(Sanchez, 2005) materials with special properties can address
several biomedical challenges, including regeneration of bone
tissues (Wang et al., 2012). The addition of nano- or macro-
particles is beneficial for biomineralization, Figure 3. Calcium
carbonate (vaterite) microparticles containing RGD peptide
sequences can act as a template for stimulation of mineralization
and mesenchymal stromal cell (MSC) differentiation in vitro
and augment in vivo bone formation and impact on bone
grafting (Green et al., 2009). Calcium carbonate has been
applied in various areas. The crystallization process of calcium
carbonate is complicated and includes the formation of different
crystalline phases such as calcite, aragonite, and vaterite. Vaterite
can hardly be found in nature and is an unstable polymorph
(Shirsath et al., 2015). Porous vaterite calcium carbonate

particles are spherical mesoporous polycrystals, with abundant
advantageous properties like biocompatibility and high bio-
macromolecule capacity, which is useful for drug delivery
applications. Vaterite microparticles have also been utilized as a
stabilizer in suspension polymerization in industrial settings and
for regenerative medical approaches (Parakhonskiy et al., 2012;
Shirsath et al., 2015). One of the most promising utilizations
of these particles is as the active coating or efficient drug
delivery, due to their entrance to micrometer-sized structures
like cells and tissues (Parakhonskiy et al., 2012). Synthesis of
CaCO3 particles with variable properties such as size, surface
area, porosity, and hydrophobicity makes them a good candidate
for surface coatings (Shirsath et al., 2015; Feoktistova et al.,
2016) while the loading of bioactive macromolecules makes them
attractive carriers for drug protection and release (Vikulina et al.,
2018). The morphology and crystal form of calcium carbonate
has been transformed, relating to protein-mediated nucleation
during biomineralization (Xue et al., 2011). CaCO3-lentinan
microspheres with a hierarchical composite pore structure have
been produced by the self-assembly of nanoparticles. These
structures could clearly decrease the release rate and prolong the
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release time of anticancer drugs, reducing potential side effects
(Ma et al., 2013a). Hybrid crystals of CaCO3 with bovine serum
(CaCO3/BSA) in the shape of a flying plate have been synthesized
using nanoparticles. It has been illustrated that the nucleation
and aggregation of the crystals affect the secondary structure
of proteins, providing a promising way for encapsulation and
delivery of different substances for pharmaceutical applications
(Yang et al., 2009). It should be noted that biomineralization with
calcium phosphate is also an important process (Cai and Tang,
2008). In addition, vaterite CaCO3 crystals can serve as sacrificial
templates to assemble bio-functional structures for drug delivery,
such as mesoporous carriers made of PEG and proteins (Behra
et al., 2012; Schmidt et al., 2014; Balabushevich et al., 2015, 2016).
In addition to mechanical properties, surface functionalization
of the coatings has been identified as an important functionality
(Azevedo et al., 2005). In this regard, functionalization of the
coatings with enzymes and proteins has been identified to
stimulate and promote cell growth. Recently, the addition of
ALP (alkaline phosphates) on the surface of hybrid scaffolds has
been shown to promote the cell adhesion (Muderrisoglu et al.,
2018), where functionalization of titanium implants modified
with hydrogels and calcium carbonate particles resulted in
∼1.4 times higher cell viability. Antibacterial properties of the
coatings have always been an important attribute of the coatings.
Enhancing them by adding green materials, for example, pectins
is seen as a significant development (Douglas et al., 2019).
It can be stated that hybrid organic-inorganic coatings are
continuing (Rezwan et al., 2006) to attract significant attention,
particularly in tissue engineering, and mechanical properties is
an important criterion here. Traditionally, tuning the mechanical
properties plays a prominent role in controlling the cell adhesion.
The addition of nanoparticles to a polymeric matrix has been
linked to the formation of additional chemical bridges with
polymers, resulting in enhanced mechanical properties (Bedard
et al., 2009b) which, in turn, needs to be tuned for cell and
tissue adhesion, Figure 4. Functionalization of polymeric films
and coatings with remotely activatable microcapsules opens
up further possibilities for drug delivery from the coatings
(Volodkin et al., 2009a). Metal nanoparticles can also serve as
local heating centers (Skirtach et al., 2005), which are shown
to guide cells on a polymeric/nanoparticle surface (Kolesnikova
et al., 2012) and can also selectively control polymer surfaces
using a laser (Skirtach et al., 2010) releasing molecules adsorbed
on their surface (Volodkin et al., 2009b). Morphological surface
modifications represent another desirable functionality; here
gradient coatings (Pinchasik et al., 2014) as well as recently
proposed sponge-like structures (Manda et al., 2018) are seen
as important functional building blocks. Tuning mechanical
properties is identified as a very important functionality
enhanced by adding inorganic particles to the polymer matrix.
This is tailored to match materials necessary to host various cells,
which possess very different mechanical properties, Figure 4.
It can be seen from Figure 4 that by adjusting the inorganic
fraction (weight percent), organic coatings can be used to adjust
the mechanical properties matching those of cells. Enhancement
of mechanical properties by combining organic molecules with
inorganic nanoparticles has been shown (Schmidt et al., 2012). A

similar effect has also been observed by adding carbon nanotubes
(Yashchenok et al., 2010) and by precipitating carbon nanotubes
with calcium carbonate particles (Chojnacka-Gorka et al., 2016).
Furthermore, very different filler, nanocellulose, has also been
applied to enhance mechanical properties of soft coatings (Lee
et al., 2014). Investigation of the influence of the inorganic
fraction on mechanical properties of softer coatings has also been
carried out (Fu et al., 2008).

Hybrid LbL Materials
Enhancement of mechanical properties, additional sensor
functions, catalysis, and remote release capabilities have been
implemented through the incorporation of nanoparticles in
polyelectrolyte multilayer capsules and films, even in early
research on nanoparticles in LbL layers (Yu et al., 2003).
Nanoparticles, which form additional bonds and are generally
stronger, have been incorporated in the shell of microcapsules
and a remarkable increase of the Young’s modulus has
been observed, by pressing on them with a colloidal probe
AFM (Bedard et al., 2009b). Subsequently, the addition of
carbon nanotubes have been used to both enhance the
mechanical properties and control the permeability through
capsules (Yashchenok et al., 2010). Sensory functions have
been added upon the incorporation of quantum dots in the
PEM network (Ionov et al., 2006), while catalytic properties
of microcapsules have been implemented upon incorporation
of silver nanoparticles in the shell of polyelectrolyte multilayer
capsules (Skirtach et al., 2007). Remote release capabilities
have been developed into a fairly extensive research area with
numerous and continuously developing applications. They can
be achieved by various stimuli (Skirtach et al., 2011), among
which nanoplasmonics is performed by the laser action on
nanoparticles incorporated into PEM layers of capsules. At first,
silver (Skirtach et al., 2004) and gold (Radt et al., 2004; Angelatos
et al., 2005; Skirtach et al., 2005) nanoparticles were tested,
both enabling the release by increasing the localized temperature
increase. Later on, the release was achieved using various laser
wavelengths (Skirtach et al., 2008). Additionally, spatially- and
directionally- selective release was realized on capsules (Bedard
et al., 2009a). One of the first applications of release from
microcapsules was of that inside living cells (Skirtach et al.,
2006), which later on led to the investigation of the surface
presentation of peptides relevant to immunology (Palankar et al.,
2009). Subsequently, release was conducted in organisms, i.e.,
inside Hydra (Anbrosone et al., 2016) and C. elegans worms
(Lengert et al., 2018). In addition to nanoplasmonics, magnetic
nanoparticles have been used to induce release by a magnetic
field. Subsequently, release has been realized by ultrasound,
where metal nanoparticles in PEM layers increased the density
of the shell. Furthermore, capabilities of organic/inorganic
interfaces for LbL have been shown to act as sorbents of
radionucleotides (Bratskaya et al., 2014), UV responsiveness of
polymeric layers was shown to be enhanced by the addition of an
inorganic content (Katagiri et al., 2009). The extension in dual
responsiveness to UV and ultrasound by TiO2/polyelectrolyte
layers has recently been demonstrated (Gao et al., 2016), while
functionalization of phenolic networks with metals has allowed
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FIGURE 4 | Mechanical properties (Youngs’ modulus) of various constituents of organic-inorganic hybrid materials in relation to those of cells, tissue, and organs.

Data are based on Kuznetsova et al. (2007) and Moeendarbary and Harris (2014).

the increase of coating multifunctionality (Guo et al., 2014).
Carbon based materials have also been applied to polyelectrolyte
multilayer structures, where incorporation of graphene (Kulkarni
et al., 2010) has added responsiveness to light (Potts et al., 2011;
Kurapati and Raichur, 2013), while redox potential has been
added by ferrocene (Wang et al., 2011). Inorganic quantum dots
incorporated into polyelectrolyte multilayer capsules functioned
as sensors (Nifontova et al., 2018, 2019). Bringing in inorganic
content improved thermal properties of organoclays (Calderon
et al., 2008) and mitigated the scaling of calcium carbonate
(Sheikhi et al., 2018). A combination of polyelectrolyte polymers
and brushes were reportedly enhanced by the addition of gold
nanoparticles (Boyaciyan et al., 2018). Some other functionalities
include the enhancement of thermal properties (Banjare et al.,
2014) including that in LbL layers (Puhr et al., 2014). An
essential need for modification by inorganic nanoparticles was
fully felt on thick, so called exponential and gel-like coatings,
often produced using PLL (poly-L-lysine) and hyaluronic acid
(HA). The addition of nanoparticles (Skirtach et al., 2010)
strengthened the otherwise weak, gel-like films and enabled
delivery of biomolecules on cells, while adsorption of capsules
to those films added drug delivery capabilities (Volodkin et al.,
2011). Furthermore, PLL/HA films have been used for masking
approximately half of an embedded capsule to produce Janus
capsules(Delcea et al., 2011a). Here, nanoparticles absorbed on
the surface of thick but soft PLL/HA films were used to tune
the rigidity of the film, which allows to control the degree of
protrusion of particles and to control the patchiness of produced
Janus capsules (Kohler et al., 2012).

Hybrid Block Copolymers and
Polymersomes
In functionalization of polymersomes with inorganic
agents the surface plays an important role (Egli et al.,
2011). Responsiveness to light is a very desirable property
of polymeric delivery vesicles, delivering and releasing
sulforhodamine B upon exposure to ultraviolet light (Dinu

et al., 2016). But responsiveness to light can also be used
for propulsion and therapy, which is generated upon the
asymmetric deposition of a thin layer of gold on an erythrocyte
membrane modified polymersome shell (Shao et al., 2018).
Modification of the polymersome shell with magnetic
nanoparticles has been shown to control the release from
such hybrid vesicles (Sanson et al., 2011). Another valuable
additional property of magnetic nanoparticles added onto
the surface of polymersomes, is the enhanced contrast agent
function, for magnetic resonance (MR) imaging and drug
delivery (Yang et al., 2018).

Hybrid Polymer Brushes
Polymer brushes prepared by the end-grafting of chains to/from
flat or curved surfaces can be organic or inorganic in nature.
It was shown that small nanoparticles with good affinity to
polymers interact with polymer brushes without aggregation,
but if the interaction between the polymer brushes and
nanoparticles is weak, then aggregation can take place (Kim
and O’shaughnessy, 2002). Tenability of the properties of hybrid
organic-inorganic brushes is one of the most desired and
frequently used applications. Functionalization of polymeric
brushes by nanoparticles takes place at the interface. There,
nanoparticles can be either adsorbed onto the surface of
brushes or they can be inserted into the brushes with such
factors as pH, temperature, solvent, and the ionic strength
affecting this process (Tokareva et al., 2006). The process
of the swelling and shrinking of polymer brushes can be
performed reversibly, in which case the nanoparticles will either
be exposed or hidden into the interior of the brushes. Various
nanoparticles have been added to brushes including metal Pt, Ag,
Au, and semiconductor CdSe, with predominantly sensor-like
functions (Ionov et al., 2006).

Other Hybrid Materials
There are also other types of matrices not mentioned in the
terminology above. One example is resins, which can either be
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of synthetic or plant nature and which can convert to organic
compounds. Hybrid resin-based materials found applications
not only in the automotive industry, but also as fillers in
dentistry. Dentures are immersed into hybrid materials and then
cured (Jafari et al., 2017). Some other interesting application
examples of polymeric based hybrid materials are membrane
and water treatment (Tripathi and Shahi, 2011), where metal
and metal oxide nanoparticles have been used as the inorganic
phase (Ng et al., 2013).

Hybrid Lipid Membranes
Functionalization of lipid bilayers with inorganic nanoparticles
has traditionally been important not only for a fundamental
understanding of cell function, but also for its practical
applications. Given the nanometer size of lipid bilayer
membranes, typically only nano-sized objects have been
used to functionalize the lipid membrane. Interactions
between lipid bilayers and nanoparticles depend on (a) the
nanoparticles: material and its oxidation state, size, shape,
roughness, charge, hydrophobicity; (b) the stabilizers of
nanoparticles used to retain colloidal stability; and (c) the
interface between nanoparticle/stabilizers and lipid interface.
All these interactions determine the dominant forces upon the
interaction among van der Waals, electrostatic, steric, depletion,
and solvent driven contributions. Some peculiarities of the
interaction in a physiological medium are determined by the
presence of the physiological buffer with ionic strength of
150mM, implying that electrostatic interactions are screened at
relevant distances. Since lipid bilayers are relevant for cells, the
interaction of nanoparticles with living cells and organisms is of
particular important. Here, the NCL (National Characterization
Laboratory) has screened over 100 various nanoparticles and
concluded that size, surface charge and hydrophobicity are
the most relevant parameters with regard to biocompatibility
(Mcneil, 2009). Functionalization of lipid membranes by
nanoparticles provides a number of functionalities and remains
of continuous interest (Chan and Král, 2018). Both the
hydrophilic adsorption of nanoparticles on the other part of
the membrane (Volodkin et al., 2009c) or the incorporation
of nanoparticles into the hydrophobic core of lipid bilayers
(Rasch et al., 2010) is possible. Increasing the stability of lipid
membranes and liposomes has been one of the functionalities
that is enabled by nanoparticles (Zhang and Granick, 2006;
Michel et al., 2013), which is used in drug delivery. It is worth
noting that the interaction between nanoparticles and liposomes
can be controlled, for example, by halides (Liu et al., 2018). The
lipid membranes were functionalized with silica nanoparticles
serving the function of sensors and providing drug delivery
(Zuccarello et al., 2016). Metal nanoparticles adsorbed on the
surface of lipid membranes and liposomes have been widely
used to control the permeability of lipid membranes. For
example, an ionic current has been monitored upon laser
illumination (Palankar et al., 2014; Urban et al., 2016) to gain
a detailed understanding of the re-arrangements within lipid
membranes, where the reversibility of the opening and closing
of membranes upon turning a laser light on- and off-, has
been demonstrated. Nanoplasmonics, or laser-nanoparticles

interaction, has been used to study the phase transition of
lipids (Urban et al., 2009) and has been reported to initiate
the transport of molecules across the lipid membrane (Wu
et al., 2008; Troutman et al., 2009; Volodkin et al., 2009c;
Paasonen et al., 2010). Magnetic iron oxide nanoparticles on
lipid membranes allowed to induce a triggered release from
liposomes upon the application of a magnetic field (Amstad and
Reimhult, 2012; Bixner et al., 2016a). Release from the so-called
bilayer-decorated magneto-liposomes was realized by alternating
current electromagnetic fields (Chen et al., 2010), while metal
oxide nanoparticles have also been proposed for release (Wang
and Liu, 2014). Another important class of lipid bilayer vesicles
is exosomes, which are shed out by the cells. It is important to
determine their composition, which can be linked to diagnostics
of various diseases. Upon linking nanoparticles to the outer
shell of exosomes, enhancement of a rather weak Raman
signal was obtained by means of the surface enhanced Raman
scattering (SERS), which allowed various types of exosomes to
be distinguished (Stremersch et al., 2016).

Hybrid Proteins and Enzymes,
Carbohydrates, Nucleic Acids as Well as
Bacteria and Cells
In hybrid materials, proteins and enzymes, carbohydrates
and nucleic acids are often used in the organic-in-inorganic
assemblies (Alvarez-Paino et al., 2013; Umemura, 2015; Elzoghby
et al., 2016; Compostella et al., 2017; Vetro et al., 2017), this falls
into the subject of modification of the surface of nanoparticles.
But inorganic nanoparticles find a distinct application niche in
inorganics-in-organics assemblies. To fully exploit diversified
properties on inorganic nanoparticles adsorbed onto or
incorporated inside above-mentioned materials, it is essential
to control their spatial distribution or self-assembly. There are
various approaches to achieve that, for example, by adding
polymers to nanoparticles for controlling their distribution and
self-assembly (Parakhonskiy et al., 2010). In this regard, nucleic
acids, specifically DNAmolecules, were shown to drivemolecular
self-assembly at the nanometer scale (Rogers et al., 2016).
Furthermore, DNA molecules can be used for assembling gold
nanoparticles, for example, chiral structures (Kuzyk et al., 2012).
In addition, it was also shown that particles, including
magnetic particles, can be used as sensors for in microrheology
(Ziemann et al., 1994).

Modification of bacteria by nanoparticles is also very useful
for sensing. Indeed, microbial identification and microbial
interactions can be performed with a label-free Raman
spectroscopy (Lorenz et al., 2017). In this area, a very refined
investigation is dedicated to detect phenotypic heterogeneity of
bacteria, where Raman spectroscopy offers advantages over flow
cytometry (Heyse et al., 2019). Coating bacteria with inorganic
noble metal nanoparticles facilitates the enhancement of the
Raman scattering signal (Zhou et al., 2014).

Functionalization of cells has been performed with various
inorganic nanoparticles. Magnetic nanoparticle functionalization
of red blood cells (Brähler et al., 2006) was performed to
enhance the efficiency of MRI detection. In such applications,
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TABLE 1 | Selected examples of hybrid inorganics-in-organics coatings presenting the composition, feature/functionalities and corresponding references.

Organic content Inorganic

content

Features, functionalities, references

Polymers PLGA Hydroxyapatite Enhanced mechanical properties (Kang et al., 2011)

Polyaspartate CaCO3 Biomimetics (Sommerdijk and De With, 2008)

PLL Silica NP Morphology control of biomimetics (Tomczak et al., 2005)

PLA Organoclays Biodegradable bioplastics (Kasuga et al., 2001; Chang et al., 2003)

PSS (polystyrene sulfonate) TiO2 Catalysis, environmental applications (Priya et al., 2009)

PCL Hydroxyapatite Stem cell growth (Priya et al., 2009)

Cellulose AgNP Antibacterial properties (Perez-Masia et al., 2014)

Silk fibroin AuNP Redox activity (Kharlampieva et al., 2009)

Silk fibroin Graphene Enhancement of mechanical properties (Wang et al., 2016)

Latex Carbon nanotubes Electroconductivity increase (Grossiord et al., 2008)

PMMA, PVA, PLA, PAN, PBO,

PA6, PDMS, epoxy

Carbon nanotubes Reinforcement and theory of fiber reinforced composites (Coleman et al., 2006)

PDMS-elastomer Magnetic iron

powder

Tuning surface roughness, wettability (Glavan et al., 2018)

Styrene-butyl acrylate Carbon black Vibrational damping and electrical conductivity (Hu and Chung, 2011)

MDMO-PPV ZnO Solar energy (Beek et al., 2004)

Various polymers Metal/metal oxide Membrane and filtration (Tripathi and Shahi, 2011; Ng et al., 2013)

Hydrogels Silk based injectable hydrogels Hydroxyapatite Enhancement of mechanics (Young’s modulus 21 kPa), osteo-differentiation

(Ding et al., 2017)

Elastomeric (pHEMA) hydrogels Hydroxyapatite Stem cell differentiation (Song et al., 2009)

Various hydrogels Hydroxyapatite Biomineralization (Cai and Tang, 2008)

Gellan gum CaCO3 Biomineralization (Douglas et al., 2016)

Gellan gum Montmorrilo-nite Composition control (Lvov et al., 1996)

LbL polymers PEI/PDADMAC/PAA AuNP Optical properties (Malikova et al., 2002)

PSS/PAH AgNP Remote laser activation and release (Skirtach et al., 2004); catalysis and

ultrasound (Skirtach et al., 2007)

PSS/PAH, PSS/PDADMAC AuNP Remote laser activation (Radt et al., 2004; Angelatos et al., 2005) and

measurement of temperature rise (Skirtach et al., 2005)

PSS/PAH

PDADMAC/montmorrilonite

Quantum dots Sensors (Kharlampieva et al., 2010)

AgNP Mechanical and antibacterial properties (Cheng et al., 2017)

PMAA (poly(methacrylic acid) AuNR Sensors (pH) (Kozlovskaya et al., 2008)

PLL/HA AuNP Sensitivity to laser and enhanced mechanical properties (Volodkin et al., 2009a;

Skirtach et al., 2010)

PSS/PAH Graphene oxide Enhancement of mechanical properties (Kulkarni et al., 2010)

IL-NH2 Graphene Electro-catalysis (Zhu et al., 2010)

PSS/PAH Halloysite Novel functionalization (Konnova et al., 2013)

PUF/PEI/PAA Halloysite Flame retardant (Smith et al., 2018)

PMMA/PS Halloysite Wear resistance (Song et al., 2016)

PEI/PAA TiO2 Dye- solar cells (Chen et al., 2013)

PSS/NTA (nickel-nitrillotriacetic

acid)

TiO2 Desorption of proteins (Andreeva et al., 2016)

PSS with PEI as support TiO2 Hydrophilic to hydrophobic conversion (Lu and Hu, 2016)

PLA Montmorrilo-nite Mechanical properties (Svagan et al., 2012)

PSS/PAH CNT Mechanical properties and release (Yashchenok et al., 2010)

PSS/PAH and alginate AuNP Hydra, metazoan (Anbrosone et al., 2016); in C elegans (Lengert et al., 2018)

Polymer brushes P2-VP AuNP pH sensing (Tokareva et al., 2006)

Brushes PtNP Sensors (Mei et al., 2005)

Brushes AgNP Sensors (Lu et al., 2006)

Brushes AuNP Sensors (Lu et al., 2006), pH sensitivity (Boyaciyan et al., 2018)

P2-VP CdSe Sensors (Ionov et al., 2006)

(Continued)
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TABLE 1 | Continued

Organic content Inorganic

content

Features, functionalities, references

Block co-polymers and

polymer-somes

Poly(trimethylene

carbonate)-b-poly(l-glutamic acid)

Magnetic

nanoparticles

Magnetic resonance imaging and magneto-chemotherapy (Sanson et al., 2011)

PNIPAM-based Magnetic

nanoparticles

Triggered release (Bixner et al., 2016b)

PEG-PPO-PEG, PEG-PBD;

PS-b-PAA

Magnetic

nanoparticles

MR contrast agent (Yan et al., 2015) and delivery (Yang et al., 2018)

Chitosan and heparin Gold layer Propulsion and therapy (Shao et al., 2018)

Lipids Liposomes AuNP Multiple reports on permeability changes and release of contents (Wu et al.,

2008; Troutman et al., 2009; Volodkin et al., 2009b; Paasonen et al., 2010)

Lipid bilayer membranes AuNR, AuNP Ion current modulation of by laser-AuNP and AuNR (Palankar et al., 2014) & by

AuNP (Urban et al., 2016)

Liposomes (DOPC) SiO2, ZnO, TiO2,

Fe3O4

Light-controlled release (Wang and Liu, 2014)

Lipid membranes, phospholipids,

phosphate-dylcholine, liposomes

Magnetic NP Targeted delivery and permeability control (Chen et al., 2010; Amstad et al.,

2011)

Membrane of red blood cells AuNP Remote laser activation and release (Delcea et al., 2012)

Exosomes AuNP Diagnostics (Stremersch et al., 2016)

Inside living cells AuNP-polymeric

capsules & AuNP

Release from AuNP-functionalized capsules: a) inside HeLa cells (Javier et al.,

2006); b) in immunology (Palankar et al., 2009); c) from AuNP inside cells

(Huschka et al., 2010)

On membrane of living cells AuNP Delivery of biomolecules from outside inside neurons (Xiong et al., 2018) and

cells (Xiong et al., 2017)

On membrane of cancer cells AuNP Destruction of leukemia cells (Lapotko et al., 2006), HeLa cells (Javier et al.,

2008), tumors (Lukianova-Hleb et al., 2014)

• Proteins

• Polysaccharides

• Nucleic acids

Alginate, pectin, carrageenan,

xanthan

Montmorillo-nite,

sepiolite, CNT

Enhancement of mechanical properties, sensors (Eduardo Ruiz-Hitzky (Editor)

2008)

Pectin Nanoclay Environmentally friendly packaging (Vartiainen et al., 2011)

Actin Magnetic particles Microrheology (Ziemann et al., 1994)

Galactose CNT Pathogen binding (Xia et al., 2017)

PVA CoO, BiFeO3 Dielectric CoO (Das et al., 2018) as well as thermal & magnetic properties of

BiFeO3 (Halder et al., 2018)

Gelatin, collagen Hydroxyapatite Good cell response of stem cells (Raucci et al., 2018)

Alginate Sr Tissue engineering (Catanzano et al., 2018)

Gelatin, collagen, zein Clay Enhanced properties (Alcantara et al., 2012)

Layered double

hydroxides

Biocomposite non-viral vector (Desigaux et al., 2006)

Chitosan AuNP Biosensors (Rocha-Santos, 2014)

Montmorillo-nite Enhancement stability (Wang et al., 2005)

CaCO3 Biomimetics (Yao et al., 2011)

Hydroxyapatite Control of properties (Ren et al., 2018)

DNA AuNP Sensors based on aggregation of NP (Storhoff et al., 1998)

DNA AuNP Nanostoves for melting DNA (Stehr et al., 2008)

Nucleic acids Layered double

hydroxides

Gene transfection (Kundu et al., 2017)

Red blood cells Interior Magnetic

nanoparticles

Contrast for MRI (Brähler et al., 2006)

Red blood cells Surface modification AuNP Release by laser light (Delcea et al., 2012)

Bacteria Surface modification AgNP, AuNP Sensing and detection (Zhou et al., 2014)

Cells (living) Surface functionalization AuNP Delivery of biomolecules from outside inside neurons (Xiong et al., 2018) and

cells (Xiong et al., 2017)

Cancer cells Surface functionalization AuNP Destruction of leukemia cells (Lapotko et al., 2006), HeLa cells (Javier et al.,

2008), tumors (Lukianova-Hleb et al., 2014)

Other:

dentures-polymers

Composites and polymers Silicon dioxide Filling in dentistry (Jafari et al., 2017)

Other: films Hexadmethyldisiloxane Quartz-like Plasma-induced switching from organic to inorganic (Morent et al., 2009)
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FIGURE 5 | Antagonist (yin and yang), but complementary, properties of most common inorganic and organic compounds motivating their incorporation into hybrid

materials.

red blood cells can be used to deliver medicine and nanoparticles
(Delcea et al., 2012). Here, absorption of gold nanoparticles on
the outer layer of red blood cells was reported (Delcea et al.,
2012) bringing in remote release functionalities. In this case, red
blood cells could be taken from a patient, loaded with a desired
drug, modified with nanoparticles and injected back to the same
patient with remote release enabled functionality. Thermolysis of
leukemia cells was performed by laser-nanoparticle interaction
(Lapotko et al., 2006). Nanoparticles were brought in proximity
to cells for gene delivery (Arita et al., 2011). The outermembranes
of mammalian cells have been also functionalized with gold
nanoparticles and laser light has been can been used in this case
to deliver specifically deliver molecules from the surrounding
cell culture medium into desired cells with a pre-determined
patterning only (Xiong et al., 2014). In the following step in this
area, spatially selective transfection of the chosen living cells has
been achieved (Xiong et al., 2017).

Properties of Inorganic and Organic
Constituents Making Them Perfect
Complementary Materials
By analyzing the above mentioned properties of hybrid materials,
it should be noted that incorporation of inorganic constituents
is made with a specific goal—to bring or complement missing
properties, often these are mechanical strength, conductivity,
optical/electrical/thermal properties or mass. A brief summary is
outlined in Figure 5 to emphasize the contrast between these two
groups of materials; this is similar to the organic vs. inorganic
(oxide) materials discussed earlier (Sanchez et al., 2005). It can be
noted that the same philosophy and the same properties drive
the incorporation of organic materials into inorganic matrices
(organics-in-inorganics), but the difference of approach is that
research in the area of inorganics-in-organics is driven by a
research community working with organic and soft matter, while
research in organics-in-inorganics is put forward by researchers
working and specializing mostly in inorganic materials and who
use organic materials as additives. But, again, when designing
hybrid materials, appropriate complementarity or treatment

methods (Morent et al., 2009) are chosen and utilized to the
advantage of both types of materials.

Overall, the choice of inorganic components would be
determined depending on whether they possess these properties.
Very often the added materials would add functionality
associated with specific stimuli: physical, chemical, or biological
(Delcea et al., 2011b).

A summary of some selected examples of hybrid inorganics-
in-organics materials is presented in Table 1.

CONCLUSIONS

Hybrid coatings incorporating both organic and inorganic
materials maintain a prominent role in developing advanced
applications, where the softness, flexibility, and functionality of
soft matter matrix need to be complemented with hardness and
responsiveness to external stimuli and other properties offered
by inorganic components. In this review, we have described
and analyzed:

- hierarchy and structural organization of the hybrid materials
in general, identifying inorganics-in-organics (inorganic
constituents modifying organic materials), the focus of this
overview, and situating it in the overall hierarchical scheme;

- composition of inorganics-in-organics was also analyzed
identifying and describing the following inorganic
constituents: minerals, clays, metals, semiconductors, carbons,
and ceramics modifying organic materials such as: polymers
in general as well as hydrogels, layer-by-layer assemblies,
polymer brushes, block copolymers, other materials (resins),
lipids, proteins and enzymes, carbohydrates, nucleic acids as
well as higher level organisms: cells, bacteria, microorganisms;

- a diverse range of applications of hybrid inorganics-in-
organics was presented highlighting hybrid:

(1) chemically relevant molecules:

(a) hydrogels where inorganic content has been
used for biomineralization and enhancement of
mechanical properties;
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(b) layer-by-layer assembly, in which inorganic nanoparticles
have widely been used for the release of contents from
capsules and coatings as well as for the enhancement of
mechanical properties and sensor functions.

(c) polymer brushes, where inorganic nanoparticles have
been used as sensors and for the enhancement of
mechanical properties;

(d) block copolymers, where inorganic nanoparticles have
been used for propulsion of polymersomes.

(e) other materials, i.e., resins, where inorganic content has
been used to cross-link the composite fillings in dentistry
or to enhance resins in automotive and other industries;
together with

(2) biologically relevant molecules:

(a) lipids, proteins/enzymes, carbohydrates, nucleic acids;
(b) bacteria, cells and microorganisms.

- yin & yang antagonist properties (hardness <-> softness,
brittleness <-> flexibility, conductivity <-> non-conductive
nature of soft materials, high density <-> low density, high
thermal stability <-> low thermal stability) determining
complementarity of hybrid materials, Figure 5.

Research in the area of hybrid materials is prevalent in
more than one research community: organic-in-inorganics
(structures)—used in a research community mostly working
with inorganic structures, organics-in-inorganics (colloids)—by
scientists designing colloidal particles; inorganics-in-organics—
by researchers working with polymers, soft matter, and
bio- and chemical molecules. Providing the organizational
framework for the overall area of hybrid materials is useful
to share ideas, protocols and developments between these
different research communities. Because what unifies them
is the design of the best performing hybrid materials
which are responsive to stimuli of choice (Delcea et al.,
2011b). Critical mass of knowledge, diverse approaches
of the above-mentioned research communities and the ideal
combination of yin-and-yang properties of organic and inorganic
materials, points to a bright future of research in the area of
hybrid materials.

OUTLOOK

Generally, attractive opportunities are awaiting research in the
area of hybrid materials, because of the extensive range of
diverse properties of very complementary types of materials; the
critical mass of researchers interested in the subject; the diversity
of approaches of different research communities; the extensive
multidisciplinarity of approaches used by researchers working
in this area; the projected high demand from other research
communities, for example, biological sciences, who tap into the
potential of not only hybrid materials, but also the approaches
used to work with them.

More specifically, further research is on-going in various
fields of inorganics-in-organics to utilize the synergy between
materials and research communities. In the area of hydrogels,

development of biomineralization enrichment, where inorganic
particles supply cross-linking ions, utilization of possibilities of
remote modification (cross-linking) or laser activation would
be beneficial. Hydrogels seem to be of paramount importance
in a number of areas, particularly in tissue engineering,
where control and adjustment of mechanical properties is a
challenge. Modification of hydrogels by enzymes, proteins,
active biomolecules as well as nanoparticles provide a rich
environment for further enhancement of the intrinsic properties
of the organic matrix and for the development of desirable
properties. Antibacterial and anticorrosion functionalities,
often achieved through the addition of active compounds in
nanoparticles, are other important characteristics of material
relevant in the biomedical and nanomedicine sector. In LbL,
complementarity between organic and inorganic materials
is expected to impact the design of advanced drug delivery
vehicles and capsules, including remote release in vivo,
control of reactions in micro-compartment volumes as
well as further exploration of ways to produce LbL in a
more simple and reliable fashion. The incorporation of
nanoparticles is seen as an important mechanism to control
mechanical properties and to enable the spontaneous and
remote release of encapsulated biomolecules. LbL coatings on
flat substrates also benefit from mechanical properties control,
sensor functions, remote action of various stimuli obtained
through incorporation of inorganic nanoparticles and nano-
structures. Furthermore, development of gradient coatings
will bring additional functionalities. In polymer brushes, the
introduction of inorganic nanoparticles will further impact
the control of micro- and macro- level properties, where
sensor functions can be particularly remarked. In the area
of block co-polymers and polymersomes, remote release and
sensor functions are desired functionalities to be developed
further using hybrids. In the case of polymersomes as well
as other delivery vehicles, propulsion enabled by addition
of inorganic nanoparticles will allow the development of
advanced applications.

In the area of lipid bilayers, introduction of inorganic
nanoparticles will help to better understand fundamental
mechanisms of lipid membrane functioning, which will
be useful not only for fundamental science, but is also
expected to impact drug delivery. Liposomes, particularly
with the development of the so-called “stealth” liposomes,
are effective delivery vesicles, while their modification by
inorganic nanoparticles would further extend the range of
release capabilities. Such other biologically relevant molecules,
for example DNA, can be utilized for self-assembly of inorganic
nanoparticles, which can eventually be used to build advanced
sensors. Label-free sensing is also relevant for bacteria and
inorganic nanoparticles can provide necessary enhancement.
In cell biology, either of the constructs described above
can be used, or inorganic nanoparticles can release from
cells, providing further effective ways of delivering drugs.
In addition, analytical methods will allow the tailoring
and control of the cell adhesion, where the properties of
inorganic nanoparticles and nanostructures are difficult
to replace.
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A large number of upcoming developments, well-
positioned and interdisciplinary in nature, will both
contribute and benefit from a perfect synergy between organic
and inorganic materials. In short, the outlook is bright
for hybrids.
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