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Abstract

Neural models are deployed in order to gain an insight into the function and be-

haviour of the brain at a range of different scales, ranging from the micro-scale

modelling of individual neurons, to the meso- and macro-scale modelling of large

populations of neurons. Neural field models provide a continuous approach to mod-

elling at this larger scale, and typically take the form of a nonlinear partial integro-

differential equation. Such equations are capable of supporting a variety of patterns

and have been linked to neurological phenomena, such as, for example, bumps in

models of working memory, and thus play an important role in the interpretation

and understanding of the complex, dynamic patterns of brain activity observed via

modern brain imaging techniques such as EEG, MEG and fMRI.

In this thesis, we present an approach for solving neural field equations on sur-

faces more akin to the cortical geometries typically obtained from neuroimaging

data. Our approach involves solving the integral of the partial integro-differential

equation directly using collocation techniques, alongside efficient numerical proce-

dures for determining geodesic distances between neural units. To illustrate our

methods we study localised activity patterns in two different neural field models;

namely, the Amari equation, for which we consider stationary bump solutions, and

an extended version of the Amari equation that admits both stationary and travel-

ling bump solutions. We solve both equations on a variety of domains, including a

flat periodic domain, the curved surface of the torus and the folded surface of the

rat cortex. Importantly, we find that collocation techniques are able to replicate

solutions obtained using more standard Fourier based methods on a flat, periodic

domain, independent of the underlying mesh. This result is particularly signifi-

cant given the highly irregular nature of the type of meshes derived from modern

neuroimaging data.

One of the key contributions of this thesis is our ability to solve neural models

on curved geometries for which no analytic formula for the geodesic distance exists.

Indeed, by deploying efficient numerical schemes to compute geodesics, our approach
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is not only capable of modelling macroscopic pattern formation on realistic cortical

geometries, such as the rat brain considered herein, but can also be extended to

include cortical architectures of more physiological relevance. Importantly, such an

approach provides a means by which to investigate the influence of cortical geometry

upon the nucleation and propagation of spatially localised neural activity and be-

yond, and thus promises to provide model-based insights into disorders like epilepsy,

or spreading depression, as well as healthy cognitive processes like working memory

or attention.
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Chapter I

Introduction

The brain is a highly complex system containing billions of connections [2], and so

its understanding will require novel computational approaches capable of solving

the types of large-scale neural models that arise from the physiologically detailed

descriptions necessary to capture fundamental features of neural systems, across

multiple scales [3, 4, 5, 6]. Computational neuroscience is a vast, interdisciplinary

topic that links many scientific fields such as neuroscience, physics, mathematics

and informatics and computer science [7, 8, 9]. The foundations of the subject date

back to the beginnning of the 20th century when Lapicque [10, 11] first proposed

the now famed integrate-and-fire model of a neuron, which despite lacking detailed

biophysics, is still one of the most popular models in computational neuroscience

to date [12, 13, 14, 15]. More detailed models, that account for the biophysics of

excitable membranes, were later introduced, most notably during the 1950’s in the

early work of Beurle [16], and Hodgkin and Huxley [17]. It was these models that

further inspired a multitude of neural models, such as the models of Wilson and

Cowan [18, 19] and Amari [3], the overarching aim of which was to use mathemat-

ical and computational techniques in order to explain/predict brain function and

behaviour.

Recently these goals have gained additional traction, due mainly to recent ad-

vances in experimental neuroscience, particularly neuroimaging. This has led to a

concerted effort in developing and sharing new techniques for understanding the

complex structure and function of the nervous system amongst the scientific com-

munity. For example, the US led Human Connectome Project [20, 21], which is

partly funded by the European Union, aims to provide access to an unparalleled

compilation of neural data, and so is expected to greatly advance our understanding
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of the human brain. Another US led program is the Brain Research through Ad-

vancing Innovative Neurotechnologies (BRAIN) initiative, which was announced in

2013 by the Obama administration to help researchers studying different brain dis-

orders [22, 23, 24]. A similar European program is that of the Virtual Brain Project

[25], which employs cutting edge network and mathematical modelling techniques to

simulate patient specific neural behaviour akin to that observed in clinical scanners.

Examples of UK initiatives that promote the open access and sharing of neurological

data include, for example, the UK Neuroinformatics Society and the Brain Banks

Network [26, 27], both of which were developed to aid cross disciplinary research and

sharing of neurological data of all types (e.g. imaging data, tissue samples, genetic

information, etc.).

This data deluge enables us to consider increasingly detailed models of neural

activity. For example, it is possible to build complicated, multi-scale models of

neural activity [28, 29, 30] that increasingly make use of different imaging modalities

[31, 32]. This has enabled the accurate reproduction of the types of neural activities

observed using imaging technologies, in the same spirit as the Virtual Brain project

[25]. Here, however, we restrict to less detailed neural models from a biological

point of view, as we focus more on the techniques used to solve the underlying

mathematical model, with the overarching aim of solving and studying the solutions

of such models directly on complex curved geometries.

1.1 A brief historical background

In this section we outline a brief history of neural modelling starting with models

of individual neurons and building up to the modelling of large (possibly infinite)

populations of neurons.

1.1.1 Single neuron models

The Hodgkin-Huxley model

In 1952 Sir Alan Lloyd Hodgkin and Sir Andrew Fielding Huxley developed one of

the most widely used microscale models in neuroscience, in order to investigate the

properties of action potentials in the squid giant axon [17, 33, 34]. The Hodgkin-

Huxley model (HH) as it is known, consists of four coupled ordinary differential

equations that describe the voltage across the cell membrane as well as the three

ionic currents responsible for the potential: sodium (Na+), potassium (K+) and a
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so-called ‘leak’ current [35, 36]. Note that Hodgkin and Huxley used an ingenious

clamping technique in order to isolate the ionic currents and thus determine their

functional form [2]. The complete set of HH equations are given by

CV̇ = I − ḡKn
4(V − VK)− ḡNam

3h(V − VNa)− ḡL(V − VL)

ṅ = (n∞(V )− n)/τn(V )

ṁ = (m∞(V )−m)/τm(V )

ḣ = (h∞(V )− h)/τh(V ),

(1.1)

where

n∞ = αn/(αn + βn), τn = 1/(αn + βn),

m∞ = αm/(αm + βm), τm = 1/(αm + βm),

h∞ = αh/(αh + βh), τh = 1/(αh + βh),

with

αn(V ) =
0.01 (V + 55)

1− exp(−0.1 (V + 55))
, αm(V ) =

0.1 (V + 40)

1− exp(−0.1 (V + 40))
,

αh(V ) = 0.07 exp(−0.05 (V + 65)), βn(V ) = 0.125 exp(−0.0125 (V + 65)),

βm(V ) = 4 exp(−0.0556 (V + 65)), βh(V ) =
1

1 + exp(−0.1 (V + 35))
.

Here, n,m and h are dimensionless quantities lying between 0 and 1 that are as-

sociated with K+ channel activation, Na+ channel activation, and Na+ channel in-

activation, respectively; ḡK, ḡNa and ḡL are the maximal conductances for the three

currents; and the functions αp(V ) and βp(V ) for p ∈ {n,m, h} describe the transition

rates between open and closed states of the channels.

Figure 1.1(a) shows a simulation of equations (1.1) for the following parameter

values

I = 0µA cm2, C = 1µF, VK = −77mV, VNa = 50mV, VL = −54.4mV,

ḡNa = 120mmho cm−2, ḡK = 36mmho cm−2, and ḡL = 0.3mmho cm−2.

Here, all potentials are measured in mV, times in ms and currents in µA per cm2.

Initial conditions were chosen as follows

V (0) = −65, n(0) = 0.2, m(0) = 0.05 and h(0) = 0.8.
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Figure 1.1: (a) Simulation of the Hodgkin-Huxley equations in (1.1) for I = 0; and
(b) a bifurcation diagram showing how oscillatory solutions arise via a Hopf bifur-
cation as we increase the external current I (plot was produced using the XPPAUT
package [1]) in the HH model.

Note that for this set-up the system has a solitary stable fixed point and the neuron

is said to be excitable as any small perturbation from the fixed point results in

a strong system response, as can be readily seen from Figure 1.1(a). The above

example considers the rather uninteresting case in which the external current is set

to zero (i.e. I = 0); however, when a positive external current is applied the model

can admit periodic solutions, which arise via a Hopf bifurcation as shown in Figure

1.1(b).

Despite its complexity one can obtain a greatly simplified model of the HH

equations by making the following two observations:

1. τm(V ) is small for all V and so the variable m(t) quickly approaches its equi-

librium value; and

2. 1−h and n behave in a qualitatively similar way and so can be slaved together.

The above ideas have led to a number of simplified models that can replicate many of

the most important features of the HH model, and indeed, we shall briefly consider

a number of such examples below; however, the interested reader should consult, for

example, [37] and references therein for further details.

The Fitzhugh Nagumo model

In 1962 Fitzhugh and Nagumo developed one of the most simple models of spike gen-

eration [38, 39, 40]. This model is a two-dimensional simplification of the Hodgkin-
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Huxley model, and its motivation was to isolate properties of the sodium and potas-

sium ion flow that cause excitation and propagation [41]. The Fitzhugh-Nagumo

model is given by,

dV

dt
= V − V 3

3
−W + I

dW

dt
= 0.08(V + 0.7− 0.8W ).

(1.2)

Here V is the membrane potential, W a recovery variable and I denotes an external

current. Due to the simplicity of the Fitzhugh-Nagumo model its entire phase

trajectory can be observed at once, compared to the HH model where you only

observe projections of its four-dimensional phase trajectories [42]. Thus allowing a

geometrical explanation (i.e. a dynamical systems approach) to phenomena linked

to spike generating mechanisms and excitability of neurons [43].

The Morris-Lecar model

In 1981 the Morris-Lecar (ML) model was derived by Cathy Morris and Harold

Lecar. It was developed to describe voltage patterns of Barnacle muscle fibers [44];

however, it is also useful for modelling fast-spiking neurons [45]. The model is a two-

dimensional excitation model [46] which is again a simplification of the HH model.

It describes the same three currents as in the HH model but uses only two dynamical

variables [47]. This simplification makes the model very popular in computational

neuroscience [48]. The ML model is given by

CM
dV

dt
= −ḡL(V − VL)− ḡCaM∞(V )(V − VCa)− ḡKN(V − VK) + I,

dW

dt
=
W∞(V )−W

τW (V )
.

(1.3)

As usual, V represents the membrane potential, I is an applied external current,

and W a recovery variable that represents the probability that a K+-ion channel

is open [44]. The parameters VCa, VK and VL denote the equilibrium potentials of

Ca2+, K+ and the leak current respectively and the maximum conductances of the

corresponding ionic currents are denoted by ḡCa, ḡK and ḡL. In the model M∞(V )
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Figure 1.2: A bifurcation diagram for the Morris-Lecar model as a function of the
external current I with all other parameters fixed.

and W∞(V ) are open-state probability functions given by

M∞ =
1 + tanh

(
V−V1
V2

)
2

, (1.4)

W∞ =
1 + tanh

(
V−V3
V4

)
2

. (1.5)

Here V1 and V3 represent respectively, the midpoint potential at which the calcium

and potassium currents are half activated, and V2 and V4 represent the respective

slopes of activation for the calcium and potassium currents. In the ML model τW is

a time constant with respect to the K+-channel given by

τW = τ0 sech

(
V − V3

2V4

)
. (1.6)

Here τ0 is the time scale of the recovery process. As can be seen from the bifurcation

diagram displayed in Figure 1.2, the ML model shares many of the features of the

more complicated HH Model and so is a popular choice for modelling cortical neurons

[49, 50, 51].
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Integrate and fire models

Conductance based models such as the ones discussed above incorporate detailed

information about the electrical properties of the neuron and so can be used to

try and understand the mechanisms underlying action-potential generation [52];

however, any attempt to understand the behaviour of large numbers of coupled

neurons requires a much simpler approach. To that end, the integrate-and-fire model

has had considerable success [37, 53, 54]. It is a reduced model of a neuron, in that

it describes the membrane dynamics using typically one or two equations, and so is

much more amenable to larger network studies. Here we consider the leaky integrate

and fire model although many other variations exist [12].

The basic circuit of the leaky integrate and fire model consists of a capacitor C

running alongside a resistor R with a driving current I [55]; see Figure 1.3. The

current I(t) is split into two components: IR, the current passing through the resistor

and IC , the current that charges the capacitor, and so we can write the current as

I(t) = IR + IC . Using Ohm’s law, I = u/R, and the definition of capacity, C = q/u,

we can write,

IR =
u

R

and

IC = C
du

dt
.

Here u is the voltage across the resistor R, and q is the charge of the capacitor C.

Using these two properties we can write

I(t) = IR + IC =
u(t)

R
+ C

du

dt
.

Setting τ = RC we can then rearrange the above to obtain

τ
du

dt
= −u(t) +RI(t). (1.7)

We call τ the membrane time constant of the neuron.

This model as well as other threshold models [56, 57, 58, 59, 60] have been used

extensively to study networks of spiking neurons [61, 62, 63, 64]. For example, a

model composed of integrate and fire neurons labelled by i = 1, .., n, can be written

as follows

τ
dui
dt

= −ui(t) +R
n∑
j=1

aij
∑
m

α(t− Tmj ), i = 1, . . . , n, (1.8)
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Figure 1.3: Schematic diagram of the integrate and fire model taken from [37].

where Tmj is the mth firing time of the jth neuron. The connectivity structure is

given by the network adjacency matrix A = (aij) and α(s) = 1
τs

exp(− s
τs

) is a simple

exponential decay for s > 0 and τs time constant [56].

1.1.2 Population models

Many areas of the brain are organised into units containing thousands of neurons

that are similar from a structural and functional point of view [65, 66, 67]. For this

reason, as well as the meso-scale resolution of most modern neuroimaging technolo-

gies, so-called population models, such as that introduced in the seminal work of

Hugh Wilson and Jack Cowan in the early 1970’s [18, 19], have become increasingly

popular.

The Wilson-Cowan model

Here, we give a brief description of the model due to Wilson and Cowan [18, 19].

This model considers a population consisting of two types of neuron: excitatory and

inhibitory. Here, we present an adaptation of the original equations taken from [68],

in which case average neural activity for the two populations is described by the
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following pair of coupled ordinary differential equations (ODEs):

du

dt
= −u+ S(c1u− c2v + P ),

dv

dt
= −v + S(c3u− c4v +Q).

(1.9)

Here u denotes activity levels of excitatory neurons and v activity levels of inhibitory

neurons. The parameters P and Q represent external inputs to the excitatory and in-

hibitory populations respectively and c1, ..., c4 are the connectivity coefficients which

give the average number of excitatory or inhibitory synapses. The response function,

S, measures the fraction of cells that exceed the threshold value, and usually takes

the form of a sigmoid [69]. Figure 1.4 shows the bifurcation diagram of (1.9) as a

function of P and Q for

S(x) =
1

1 + exp(−x)
,

and parameters c1 = c2 = c3 = 10 and c4 = −2. Note that the dashed curve denotes

the saddle-node bifurcation set, whilst the solid curve the Hopf bifurcation set.

Equations such as (1.9) can be deployed to model large scale cortical activity

[18, 70, 71] by employing structural connectivity matrices derived via imaging tech-

nologies to construct network models, typically referred to as neural mass models, in

order to simulate neural activity. For example, a network of coupled Wilson-Cowan

nodes can be constructed as follows:

dui
dt

= −ui + S(c1u− c2v + P + ε
∑
j

wi,juj),

dvi
dt

= −vi + S(c3u− c4v +Q), i = 1, . . . n.

(1.10)

Here ε denotes the strength of the coupling between the masses and wi,j the con-

nectivity between the masses. Despite its relative simplicity, the network model in

(1.10) has recently been used to measure the extent to which structural connec-

tivity constrains functional connectivity using both network and multiplex network

techniques [72, 73].

The Jansen-Ritt model

Another popular neural mass model that has been successfully used to model large-

scale neural activity, in both healthy and diseased brains, is that of Jansen and Ritt

[74, 75]. It models each mass using three interconnected neural populations: one for
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pyramidal cells, and one each for excitatory and inhibitory interneurons. Activity

in a Jansen-Ritt node is described by the following set of six equations:

dy0

dt
= y3,

dy1

dt
= y4,

dy2

dt
= y5,

dy3

dt
= Aaf(y1 − y2)− 2ay3 − a2y0,

dy4

dt
= AaP + AaC2f(C1y0)− 2ay4 − a2y1,

dy5

dt
= BbC4f(C3y0)− 2by5 − b2y2,

(1.11)

where

f(x) =
νmax

1 + exp (r(x0 − x))
.

Here, y0, y1 and y2 denote respectively the average activity of the pyramidal neurons,

and the excitatory and inhibitory interneurons. Note that as with the Wilson-Cowan

model in the previous section one can add a coupling term and consider networks

of Jansen-Rit nodes (the interested reader should see [76] and references therein).
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1.1.3 Neural field models

In this thesis we are less interested in the discrete way of modelling neural activity,

such as that described previously in this chapter, rather our concern is with the

continuous approach that results from considering the limiting case (i.e. as the

number of masses tends to infinity) of the neural mass models discussed above.

This limiting case is known as a neural field model (NFM) and is the focus of the

current study. Neural field models date back to the 1950’s with Beurle [16] who

first considered the activity of a mass of cells. By treating the activity statistically

he formulated the following continuum description for the proportion of cells being

active in a cortical region at time t:∫ ∞
−∞

F (X, t)ξ(x−X)dX. (1.12)

This convolution gives the mean rate of impulses arriving at cells from all other

cells. Here, F denotes the activity which, in this case, is only considered to change

in the x-direction, and ξ denotes the distance between cells.

Following this approach, there were many studies on neural networks that re-

placed these descrete network architectures by a suitable continuous approximation;

see, for example, Griffith [77, 78] in the 1960’s and Amari [79], Wilson and Cowan

[19] in the 1970’s. However, it is the work by Wilson and Cowan along with that of

Amari [3] and Nunez [80] that provides the starting point for the formulation of the

neural field models that are currently in common use, that is the familiar partial

integro-differential equation models of the form

∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

w(x,x′)S(u(x′))dΩ(x′). (1.13)

Here u denotes neural activity, Ω the domain under consideration, the kernel w is

the connectivity between neural units and S is the firing rate function that typically

takes the form of a sigmoid. Such models are usually solved on either the real line,

Ω = R, or in the plane, Ω = R2, [81, 82] using standard techniques that either

transform the NFM into an ‘equivalent’ PDE [83, 84], or solve directly using Fourier

transforms and the convolution theorem [81, 85]. Here, however, we consider the

extension of such models to non-flat domains, the motivation of which is to be able

to solve these non-local equations directly on curved cortical-like geometries.
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1.2 Thesis overview

In this thesis we employ a novel approach to solve neural field models (NFMs) on

curved cortical-like geometries. We propose the use of collocation techniques to solve

NFMs on general triangulated surfaces such as those obtained from neuroimaging

data. In order to test our methods, we compare solutions found when implementing

linear collocation to those found by more standard methods, on both the planar

periodic square and curved surface of a torus. We find that collocation techniques

are capable of replicating solutions found by more standard methods regardless of

the underlying mesh. Building on these results we move on to consider NFMs on

the cortical geometry of the rat brain and investigate the effect that geometry has

on solutions. In particular, we find evidence to suggest that the curvature of the

rat cortex has a considerable effect on the propagation speed and path of solutions

exhibited by the NFM, thus suggesting that current methods that do not take into

account the folded structure of the cortical surface potentially miss vital details.

We start in Chapter 2 by providing an overview of some of the fundamental

properties of NFMs, the techniques employed to solve them and the types of solu-

tions they are capable of producing. This includes the background essential to the

derivation of NFMs as well as a brief discussion of their existence and uniqueness

properties. Both numerical and analytical methods for solving NFMs are discussed,

with specific focus on those techniques used to compare against the solutions ob-

tained using linear collocation in this thesis. Following this introduction to NFMs,

in Chapter 3 we provide relevant background details of the methods implemented

throughout the thesis. We provide an overview of the collocation method and how

it is implemented on triangulated domains for solving NFMs. In this thesis we con-

sider a variety of triangulated domains including a flat periodic square, the curved

surface of the torus and the folded geometry of the rat cortex, and so in this section

we provide some details of the mesh generation/refinement procedures used. We

consider two different numerical methods for computing geodesic distances and test

their performance on the sphere since geodesics can be computed analytically in

that case. To conclude the chapter, we present a brief introduction to numerical

bifurcation theory, focussing on the pseudo-arclength method of continuation which

is deployed in this thesis.

In Chapter 4 we implement the techniques described in the aforementioned chap-

ters and consider the first of two NFMs, the Amari equation. The Amari equation

is perhaps the simplest NFM of the form given by (1.13) and as such is an ideal

test case for the methods forwarded in this thesis; in particular, we shall consider
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stationary bump solutions of the Amari equation on both a flat periodic domain

and the curved surface of the torus. We present numerical results, including an

error analysis of the integral term in the NFM, which is the main source of error

in the model, as we vary both mesh coarseness and regularity. To further illustrate

our approach we solve the Amari equation using the trapezoidal method and linear

collocation on both domains of interest as well as FFTs in the case of a periodic

square; moreover, we performed a numerical bifurcation analysis in order to deter-

mine (a) how system parameters affect the observed solutions; and (b) the extent to

which curvature changed these relations, when moving from the planar domain to

the torus. In particular, we found that whilst solutions remained qualitatively simi-

lar for the different curvatures we considered, the overall strength of neural activity

varied considerably.

In Chapter 5 we consider the second NFM studied in this thesis, which is an

example of a so-called adaptive neural field model. This model is an extension of

the Amari equation that includes an additional recovery variable and is therefore

capable of producing travelling solutions as well as stationary solutions. To begin, we

consider solutions of the extended model on a periodic, square domain and perform

both an error and bifurcation analysis of travelling bump solutions. We then consider

travelling bump solutions on two different curved geometries: the torus and the

cortical surface of the rat brain. In the non-planar case we can no longer perform

a bifurcation analysis since travelling bump solutions propagate at non-constant

speeds due to curvature effects. Instead we investigate the relationship between

propagation speed and curvature of localised bump solutions in order to highlight

the extent to which the folded structure of the cortex influences mechanisms of

spreading activity.

We conclude in Chapter 6 with a summary of the work presented in this thesis

as well as discussing possible directions for future work.

1.3 Publications and presentations

The material presented in Chapter 4 and Chapter 5 has been written as an article:

1. A numerical simulation of neural fields on curved geometries., R Martin, D

J Chappell, N Chuzhanova and J J Crofts, Journal of computational neuro-

science, 45(2), 133–145.

Some of the material presented in Chapter 4 and Chapter 5 has been written as two

separate conference proceedings
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2. Collocation methods for solving two-dimensional neural field models on com-

plex triangulated domains, R Martin, D J Chappell, N Chuzhanova and J J

Crofts, in Proceedings of the International conference on Integral Methods in

Science and Engineering, Volume 2, 2017, 169–178.

3. Can linear collocation ever beat quadratic? R Martin, D J Chappell, N

Chuzhanova and J J Crofts, in Proceedings of the 11th UK Conference on

Boundary Integral Methods (UKBIM 11), 2017, 117–124.

In addition, the material in Chapter 5 was first given as a presentation entitled

‘Collocation methods for solving two-dimensional neural field models on complex

triangulated domains’ at Nottingham Trent University, School of Science and Tech-

nology, 10th Annual Research Conference in May 2016. The talk was then extended

and presented as both a poster and contributed talk at the European Conference on

Mathematical and Theoretical Biology (ECMTB), Nottingham, July 2016 and as

a contributed talk at the International Conference on Integral Methods in Science

and Engineering (IMSE), Padova, Italy, July 2016.

The material presented in Chapter 4 was given as a presentation entitled ‘Col-

location methods for solving neural field models on complex triangulated domains’

at 11th UK conference on Boundary Integral Methods (UKBIM), Nottingham, UK,

July 2017.



Chapter II

Neural field models

The main focus of this thesis is the mathematical modelling of large populations of

neurons. Modelling at this larger scale has become increasingly popular as it reduces

the high complexity of neuronal interactions to simpler population properties that

are easier to analyse [86]. One approach of modelling at the macro-scale, is neural

field theory. Neural field theory employs a continuum approach to model the activity

of large populations of neurons in the cortex, the foundations of which were laid in

the 1970s by Wilson and Cowan [18] and Amari [3]. These techniques are becoming

an increasingly popular and effective in neuroscience, and have been applied to

research the structure, function and dynamics of the brain [82, 87].

In this chapter we discuss neural field models (NFM) in more detail. We start

by providing a heuristic derivation of the standard partial integro-differential form

of a NFM, which is given by

∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

w(x,x′)S(u(x′), t)dΩ(x′), x ∈ Ω ⊂ Rn, t > 0, (2.1)

for n = 1, 2, ... and with initial condition

u(x, 0) = u0(x), x ∈ Ω.

This equation, which is commonly referred to as the Amari equation, can be derived

by considering the N → ∞ limit of a certain firing rate network model, much like

the ones discussed in the previous chapter. In the following we present a derivation

of (2.1) (in the 1D case) adapted from the paper by Bressloff [86]. We then briefly

consider the necessary mathematical assumptions for a NFM such as (2.1) to be

well-posed, before considering the current state-of-the-art methodology for solving

NFMs.
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Figure 2.1: A pair of synaptically coupled neurons

2.1 Firing rate models

While analysing large networks of interconnected spiking neurons is possible [88,

89, 90, 91, 92], there is a much simpler approach for analysing large ensembles of

neurons that replaces individual spike dynamics by so-called firing rates. Firing

rate models study the population dynamics and firing rates of large populations of

neurons [93]. Following [86, 94, 95], in this section we show how a spiking network

model can be reduced to a firing rate network model.

Suppose that we have a pair of neurons connected by a synapse as shown in

Figure 2.1. Then the net synaptic current received by neuron i at time t, due to the

spike train emitted by neuron j, is given by∑
m

Φij(t− Tmj ).

Here, Tmj , denote the firing times of neuron j and Φij(t) represents the temporal

filtering effects due to dendritic and synaptic processing [86, 96, 97]. Considering a

network of such neurons synaptically coupled as described above, and such that the

synaptic inputs sum linearly, we can write down the following equation for the total

synaptic input, ui(t), to the ith neuron:

ui(t) =
N∑
j=1

∑
m

Φij(t− Tmj ) =
N∑
j=1

∫ ∞
−∞

Φij(τ)aj(t− τ)dτ, (2.2)

where

aj(t) =
∑
m

δ(t− Tmj )

is the neural response function [2].

To determine a closed set of equations, the firing times, Tmj , must be determined.
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With this in mind, we introduce the following threshold condition

Tmj = inf{t, t > Tm−1
j |Vj(t) = κ, V̇j(t) > 0}, (2.3)

where κ is the firing threshold and Vi(t) denotes the somatic membrane potential,

which evolves according to the conductance-based model

C
dVi
dt

= −Ic,i(Vi, . . .) + ui, (2.4)

where Ic,i denotes the membrane current. The potential Vi(t) also satisfies the usual

differential equations governing the ionic gating variables, see for example, the HH

equations in (1.1). Now, assuming that synapses in the network are sufficiently slow,

we can perform a temporal averaging of Equation (2.2) to obtain

〈ui(t)〉 =
1

r

∫ t

t−r

(
N∑
j=1

∫ ∞
−∞

Φij(τ)aj(t
′ − τ)dτ

)
dt′

=
N∑
j=1

∫ ∞
−∞

Φij(τ)

(
1

r

∫ t

t−r
aj(t

′ − τ)dt′
)

dτ

=
N∑
j=1

∫ ∞
−∞

Φij(τ)rj(t− τ)dτ.

Here, we have introduced the firing rate function rj(t) = 1
r

∫ t
t−r aj(t

′)dt′, of the

jth neuron. For a slowly varying total synaptic current, ui(t) (compared to the

membrane potential dynamics given by (2.4)), we have that 〈ui(t)〉 ≈ ui(t). To

obtain a closed system for ui(t) it is typically assumed that the firing rate function

can be written as a function of the total synaptic current, that is rj(t) = S(uj(t)),

giving

ui(t) =
N∑
j=1

∫ ∞
−∞

Φij(τ)S(uj(t− τ))dτ. (2.5)

In practice, the function S usually takes the form of a sigmoid function [18, 98], i.e.

S(t) =
1

1 + e−β(t−h)
. (2.6)

Here, β is termed the steepness parameter and h the firing rate threshold [81].

To solve Equation (2.5) for the total synaptic current, ui(t), one typically makes a

number of simplifying assumptions concerning the time dependence of Φij(t), which
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then enables us to reduce (2.5) to a system of differential equations. For example, if

we assume that the postsynaptic potential always has the same shape, then we can

write

Φij(t) = wijφi(t). (2.7)

Here, wij is the synaptic strength of the connection between neuron i and neuron

j and φi(t) is the time course of the input, which depends on the properties of the

postsynaptic neuron i. The shape of this time course usually takes the form of an

exponential decay

φi(t) = H(t)e−t/τi ,

where H is the Heaviside function with time constant τ . Equivalently φi satisfies

the ODE

τi
dφi(t)

dt
+ φi(t) = δ(t), (2.8)

with initial condition φi(0) = 0.

In order to obtain a system of differential equations for the total current, ui(t),

we assume the above form for the postsynaptic potential, and differentiate (2.5) to

obtain

dui
dt

=
N∑
j=1

∫ ∞
−∞

wij
dφi(t− τ)

dt
S(uj(τ))dτ,

=
1

τi

N∑
j=1

∫ ∞
−∞

wij [δ(t− τ)− φi(t− τ)]S(uj(τ))dτ,

=
1

τi

(
N∑
j=1

∫ ∞
−∞

wijS(uj(τ))δ(t− τ)dτ −
N∑
j=1

∫ ∞
−∞

wijφi(t− τ)S(uj(τ))dτ

)
,

=
1

τi

(
N∑
j=1

wijS(uj(t))− ui(t)

)
.

Note that in the above we have used the properties of convolution to move the delay,

τ , into the connectivity function, w. Rearranging the above gives

τi
dui
dt

+ ui =
N∑
j=1

wijS(uj(t)), (2.9)

which is a firing rate model that can be solved to find ui(t), the population activity

at each node. Importantly, in the continuum limit the above firing rate model

approaches a neural field model as described in the next section.
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2.1.1 Deriving the neural field model

Neural field models are built from network models [99], such as the model in Equa-

tion (2.9). Instead of considering a discrete number of neural entities, we replace the

discrete topology with a continuous one, for example the real line R or the plane R2.

The sum is replaced by an integral and each point x ∈ R is assigned a population

consisting of infinitely many neurons [93]. The connections wij are replaced by the

continuous connectivity function w(x, x′), which describes how neurons positioned

at x′ interact with neighbouring neurons at position x [81]. Individual firing rates

are replaced by the firing rate function S, which converts population activity to

firing frequency. Denoting average population activity by u(x, t) in (2.9) and re-

placing the sum by the appropriate integral results in the one dimensional neural

field model,

τ
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞
−∞

w(x, x′)S(u(x′, t))dx′. (2.10)

This is a heuristic approach [86] that provides a way to incorporate biophysical

mechanisms into the model, such as synaptic and membrane time constants [100,

101, 102], spike frequency adaptation [103, 104, 105, 106] and axonal delays [93,

107, 108, 109]. There has been further progress in the area of deriving neural field

models, see for example [110, 111, 112, 113, 114, 115, 116]. Indeed, in [99] Laing was

able to obtain an exact derivation of a neural field model from an idealised network

of theta neurons, providing that the network is infinite.

2.2 The well-posedness of the neural field model

This section is adapted from the paper by Potthast and Beim Graben [117]. We

shall start by stating the assumptions imposed on the initial condition, u(x, 0), the

connectivity function, w, and the firing rate function, S, necessary for the NFM

in (2.10) to have a unique, global solution. We then proceed to outline the core

elements of the proof. Note that, without loss of generality, we set the domain of

interest to be Ω = Rn with n = 1, 2, ... for the remainder of this section. All spaces

and norms used in this section are defined in Appendix A.
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2.2.1 Assumptions

Initial condition

The initial condition u(x, 0) lies in the Banach space of bounded continuous func-

tions, that is

u(x, 0) = u0(x) ∈ BC(Rn).

The connectivity kernel

The synaptic integral kernel w should satisfy the following criteria:

(i) The connectivity kernel is absolutely integrable:

w(x, ·) ∈ L1 (Rn) ∀x ∈ Rn.

(ii) The connectivity kernel satisfies a Lipschitz condition with Lipschitz constant

cw:

||w(x, ·)− w(x̃, ·)||L1(Rn) ≤ cw|x− x̃|, x, x̃ ∈ Rn.

(iii) The connectivity kernel is suitably bounded:

|w(x,x′)| ≤ C∞ x,x′ ∈ Rn and sup
x∈Rn

||w(x, ·)||L1(Rn) ≤ Cw,

where C∞ and Cw are positive constants.

The firing rate function

Although the results below can be extended to non-smooth firing rate functions, we

only consider smooth, bounded firing rate functions S : R → R. In addition, we

require that

S(R) ⊂ [0, 1] .

The sigmoid function (2.6) is an example of a function that satisfies the above

criteria.

2.2.2 Volterra formulation

In addition to the above criteria, let us define the operators

(Fu)(x, t) :=
1

τ

(
−u(x, t) +

∫
Rn

w(x,y)S(u(y, t))dy

)
, x ∈ Rn, t > 0, (2.11)
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and

(Au)(x, t) :=

∫ t

0

(Fu)(x, s)ds, x ∈ Rn, t > 0. (2.12)

Clearly, we can use the above to reformulate the NFM (2.10) as

∂u

∂t
= Fu. (2.13)

After integration, the above can be rewritten as a Volterra integral equation [118]:

u(x, t) = u(x, 0) +

∫ t

0

(Fu)(x, s)ds (2.14)

= u(x, 0) + (Au)(x, t). (2.15)

The usefulness of the above is immediate given the following result from [117].

Lemma 2.1. The Volterra integral equation (2.14) or (2.15), respectively, is solvable

on Rn × (0, ρ) for some ρ > 0 if and only if the NFM (2.10) or (2.13), respectively,

is solvable for x ∈ Rn and t ∈ (0, ρ).

See ([117], Lemma 2.4 ) for a proof of the above lemma.

The next step towards a local existence and uniqueness result it to note that

the operator A defined in (2.12) is a contraction mapping, that is, for u1, u2 ∈
BC(Rn × [0, ρ]), we have that

||Au1 − Au2||ρ < α||u1 − u2||ρ,

for α ∈ (0, 1). Then we have the following result.

Theorem 2.1 (Local existence of solutions for a NFM). Assume that the synaptic

weight kernel w and the activation function S satisfy the conditions stated above,

and let ρ > 0 be chosen such that

ρ

τ
(1 + LCw) < 1,

where L is a Lipschitz constant for S. Then we obtain existence and uniqueness of

solutions to the NFM (2.10) on [0, ρ].

The proof of the above theorem employs the Banach fixed point theorem [119] to

determine the unique solution, u∗, of the equation

u = Ãu,
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where Ãu := u0 + Au (see [117] for further details), thus proving the unique solv-

ability of (2.15), and hence by the equivalence lemma stated above, also proving the

unique solvability of (2.10).

In the last part of this section, we state without proof a global existence result

for solutions of (2.10).

Theorem 2.2 (Global existence of solutions for a NFM). Under the conditions

stated above, we obtain existence of global bounded solutions to (2.10).

The interested reader should consult [117] for proofs and extensions of the above

results. Note that in addition to the well-posedness of the problem, the authors in

[117] also consider a thorough stability analysis, as well as considering non-smooth

firing rate functions.

2.3 Techniques for solving neural field models

In this section we discuss the state-of-the-art in solving NFMs and discuss the types

of solutions such models admit. The methods presented can be implemented for

NFMs in 1D and 2D; however, for simplicity we focus on 1D NFMs here, giving

only a brief treatment of 2D NFMs towards the end of the section.

2.3.1 PDE methods

PDE methods for solving neural field equations, or rather techniques that enable

one to transform to an equivalent partial (or ordinary) differential equation (which

typically still requires one to resort to numerical procedures to solve), have been

employed on NFMs, but under quite severe restrictions [104, 120, 121, 122]. For

example, connectivity kernels are typically restricted to be either homogeneous

w(x, x′) = w(x− x′),

or isotropic

w(x, x′) = w(|x− x′|).

In these cases, one can deploy special techniques that transform the NFM into

an equivalent partial or ordinary differential equation. For example, consider the

following one-dimensional NFM:

∂u

∂t
= −u(x, t) +

∫ ∞
−∞

w(x− x′)S(u(x′, t))dx′.
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By taking Fourier transforms of both sides of this equation (and using the convolu-

tion theorem) one can obtain the following equation

F [ut + u] = F [w] · F [S(u)],

in which F [·] denotes the Fourier transform.

Now, following [84], suppose that in the above we choose our connectivity kernel

as

w(x) = e−b|x|(b sin(|x|) + cos(x)).

In this case we can evaluate

F [w(x)](k) =
4b(b2 + 1)

k4 + 2k2(b2 − 1) + (b2 + 1)2
,

where k is the transform variable. It follows that

F [ut + u](k) =
4b(b2 + 1)

k4 + 2k2(b2 − 1) + (b2 + 1)2
F [S(u)](k).

Multiplying this equation by k4 + 2k2(b2 − 1) + (b2 + 1)2 and taking inverse Fourier

transforms then results in the following, equivalent PDE:

(u+ ut)xxxx − 2(b2 − 1)(u+ ut)xx + (b2 + 1)2(u+ ut) = 4b(b2 + 1)S(u).

The resulting PDE can be solved using standard numerical methods in order to

determine solutions of the NFM. Note that the above idea can also be employed to

study steady state solutions of the NFM, i.e. solutions of the equation

u(x) =

∫ ∞
−∞

w(x− x′)S(u(x′))dx′. (2.16)

In this case one can deploy Fourier transforms to obtain the ODE

d4u

dx4
− 2(b2 − 1)

d2u

dx2
+ (b2 + 1)2u = 4b(b2 + 1)S(u),

which should be solved alongside the boundary conditions

lim
x→±∞

(u, u′, u′′, u′′′) = (0, 0, 0, 0).

The above boundary conditions lead to localised solutions of the NFM – for further
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details see [84].

2.3.2 Direct numerical methods

In the case when the neural field model cannot be reduced to an equivalent ODE

or PDE, numerical methods can be applied directly to the NFM. In this section

we review popular numerical methods for both solving and analysing solutions of

NFMs, such as (2.1).

Numerical solutions of a 1D NFM

Here, we follow [81] and study the 1D NFM

∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

w(x− x′)S(u(x′, t))dΩ(x′), (2.17)

on both a periodic domain (i.e. Ω = [−π, π]) and the whole of the real line (i.e.

Ω = R). More specifically, we investigate, respectively, steady state and travelling

front solutions of these two different scenarios, as well as conducting a bifurcation

analysis to study these solutions as important system parameters are varied (e.g.

the firing threshold h) .

Suppose that Equation (2.17) is defined on a periodic domain (i.e. x ∈ [−π, π]),

with S taking the usual sigmoidal form, such as that in Equation (2.6), and let the

connectivity kernel be the Mexican-hat function

w(x) = 10e−4x2 − 6e−x
2

. (2.18)

Then we consider stationary patterns of (2.17) by setting the left-hand side (LHS)

equal to zero, that is we solve the following equation:

−u+

∫ π

−π
w(x− x′)S(u)dx′ = 0. (2.19)

The solutions of both Equation (2.17) and Equation (2.19) are invariant under trans-

lations along the x axis, (i.e. if u(x) is a solution of either equation, then so is

u(a + x), a ∈ R) resulting in an infinite family of solutions. A standard way to

remove this degree of freedom is to restrict the search to even solutions, that is
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solutions where u(x) = u(−x). Thus, representing u(x) as a Fourier series gives

u(x) =
u0

2
+
∞∑
i=1

ui(t) cos(ix). (2.20)

Recall, that since u is an even function, its Fourier series consists of cosines only;

additionally, since w(x) is an even function we may expand it as a Fourier cosine

series

w(x) =
w0

2
+
∞∑
i=1

wi cos(ix), (2.21)

where the coefficients wi are given by the formula

wi =
1

π

∫ π

−π
w(x) cos(ix)dx. (2.22)

Now, substituting (2.20) and (2.21) into Equation (2.17), we obtain

∞∑
i=0

dui
dt

cos(ix) =
∞∑
i=0

wi

∫ π

−π
cos(i(x− x′))S

(
u0

2
+
∞∑
j=1

uj cos(jx′)

)
dx′ (2.23)

−
∞∑
i=0

ui cos(ix).

Using the identity cos(A− B) = cos(A) cos(B) + sin(A) sin(B), we can rewrite the

first term on the right-hand side (RHS) of Equation (2.23) as

∞∑
i=1

wi

∫ π

−π
cos(i(x− x′))S(α)dx′ =

∞∑
i=1

wi

∫ π

−π
cos(ix′)S(α)dx′ cos(ix)

+
∞∑
i=1

wi

∫ π

−π
sin(ix′)S(α)dx′ sin(ix),

=
∞∑
i=1

wi

∫ π

−π
cos(ix′)S(α)dx′ cos(ix).

Here α = u0
2

+
∑∞

j=1 uj cos(jx′) and the second line follows since we are integrating

an odd function over a symmetric interval (note, as u(x, t) is even as a function of

x it follows that S(u) is also even with respect to x).

Putting all this together results in an infinite set of ordinary differential equations
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Figure 2.2: Steady state solution of (2.17) for N = 15, h = 1/3, β = 20.

describing the neural field:

dui
dt

= −ui + wi

∫ π

−π
cos(ix′)S

(
u0

2
+
∞∑
j=1

uj cos(jx′)

)
dx′, for i = 0, 1, 2, ....

In practice, we can only solve finitely many equations and so we truncate to consider

only the first N modes, that is we solve

dui
dt

= −ui + wi

∫ π

−π
cos(ix′)S

(
u0

2
+

N−1∑
j=1

uj cos(jx′)

)
dx′, (2.24)

for ui with i = 0, 1, 2, ..., N − 1.

It follows that the steady states of (2.17) satisfy the equations

−ui + wi

∫ π

−π
cos(ix′)S

(
u0

2
+

N−1∑
j=1

uj cos(jx′)

)
dx′ = 0, for i = 0, 1, 2, ...N − 1.

(2.25)

This nonlinear system of N equations can be written as

F (v, h) = 0, (2.26)

with components given by

Fi = −ui + wi

∫ π

−π
cos(ix′)S

(
u0

2
+

N−1∑
j=1

uj cos(jx′)

)
dx′, (2.27)
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Figure 2.3: The norm of v versus the firing rate threshold, h.

for i = 0, 1, 2, ..., N − 1.

To solve Equation (2.26) we use Newton’s method [123]. Once we obtain a

solution, v0 say, we can use numerical continuation to trace out a solution branch

as we vary a parameter of interest [124]. In our example we vary the firing rate

threshold, h, which controls the amount of neuronal activity converted to firing

frequency. The level of activity of the neuronal population must be greater than

the threshold value in order to ’fire’. Figure 2.2 shows an even solution of Equation

(2.19) with firing threshold h = 1/3, and Figure 2.3 shows the result of repeating the

procedure described above, tracing out the solution branch as the firing threshold

h is varied – see Chapter 3 for a detailed discussion of the numerical continuation

procedure used. Figure 2.3 shows how the magnitude of v varies as a function of

the firing rate threshold h. The stable solutions are destroyed via a saddle-node

bifurcation as h increases. In the above experiments, the parameters were set to

N = 15 and β = 20, and all integrals were approximated using the trapezoidal rule

[125].

To study moving patterns we consider the following NFM [81]:

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞
−∞

w(x− x′)S(u(x′, t))dx′, (2.28)

which, unlike the previous example, is defined on the whole of the real-line. We

choose the connectivity function to take the form

w(x) =
1

2
e|x|.
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Figure 2.4: Solutions occur at the intersection of S(u) and u.

Note that ∫ ∞
−∞

w(x)dx =
1

2

∫ ∞
−∞

e−|x|dx

= 1,

and so any spatially homogeneous steady state solution of (2.17) will satisfy

u = S(u). (2.29)

As can be readily observed from Figure 2.4, varying h results in either one of three

solutions of (2.29). Choosing a value of h for which there exist three solutions,

u1 < u2 < u3, and setting the initial condition in part of the domain to be u = u1

with u = u3 elsewhere, one can observe a travelling front going between the two

steady states. Figure 2.5 shows the results of integrating such an initial condition

forward in time. Here, the trapezoidal method was used for all integration, while

the time-stepping was performed using Euler’s method with time step ∆t = 0.1. A

truncated spatial domain of [0, 50] was employed with N = 200 discretisation points.

The parameters were chosen as β = 20 and h = 0.47.

To study this front and its properties as h is varied in the system we move to

the travelling coordinate frame, ξ = x− ct, which allows us to write (2.28) as

∂u(ξ, t)

∂t
= c

∂u(ξ, t)

∂ξ
− u(ξ, t) +

∫ ∞
−∞

w(ξ − x′)S(u(x′, t))dx′.

Steady state solutions of this equation map onto travelling front solutions of (2.28),
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Figure 2.5: Upper : space-time plot of the solution of (2.17), where the domain has
been truncated to [0, 50]. Parameters: β = 20 and h = 0.47 Lower : the solution at
time t = 15.

and so we can solve the following system

c
du

dξ
− u+

∫ ∞
−∞

w(ξ − x′)S(u(x′))dx′ = 0. (2.30)

To solve (2.30), we again discretise the domain into N equally spaced grid points

and use the Newton-Armijo method to solve the resulting system in the form (2.26)

The derivative term was approximated using forward finite difference formulae.

In this case v is of length N + 1, since we have an extra unknown (the speed c)

together with the N equations for u. As stated previously, solutions of (2.28) are

invariant under translations in x and thus to remove this extra degree of freedom,

we introduce an extra equation (known as a pinning condition)∫ ∞
−∞

(u− û)ûξdξ = 0, (2.31)

where û(ξ) = 1
2
(1 + tanh(25 − ξ)). Note that the pinning condition allows us to

determine one of the infinite family of translation invariant solutions [81].

Equations (2.30) and (2.31) were then solved simultaneously using the Newton-

Armijo method in order to determine an initial solution v0 from which to start the

continuation procedure. Figure 2.6 shows a solution branch displaying the behaviour



2.3 Techniques for solving neural field models 30

0.2 0.3 0.4 0.5 0.6 0.7 0.8

h

-3

-2

-1

0

1

2

3

4

c

Figure 2.6: Branch of solutions with initial parameters c0 = 0.8 and h0 = 0.3.

of the front speed c as a function of the firing threshold h. Here the solid line shows

stable solutions and the dashed line unstable solutions. We can see that for a range of

values for h there exists a stable front with speeds varying from positive to negative.

As h varies further from h = 0.5 the stable front becomes unstable via a saddle node

bifurcation.

Fast Fourier transforms

When solving a NFM such as that in Equation (2.28), a popular alternative [81, 85]

to the above approach (for integral equations of convolution type), is to deploy the

fast Fourier transform (FFT) algorithm. Note that since the Fourier transform of

a convolution is the product of Fourier transforms, we can rewrite the convolution

integral in (2.28) as∫ ∞
−∞

w(x− x′)S(u(x′, t))dx′ = F−1 [F [w] · F [S]] .

Substituting this expression into the NFM (2.28) gives

∂u

∂t
= −u+ F−1 [F [w] · F [S]] ,

which can be solved efficiently using discrete Fourier transforms (via the FFT al-

gorithm) to compute the RHS. The FFT algorithm is extremely efficient since it

only requires O(N logN) operations [126], where here N is the size of the spatial

discretisation. We shall use FFTs for comparative purposes in our work where

possible.
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2.3.3 Numerical solution of a two dimensional NFM

The NFM described by Equation (2.17) can also be solved in two dimensions (as we

shall see later); however, at this point we introduce an extended NFM that includes

a so-called recovery variable and thus admits travelling bump solutions, which shall

be crucial in the work to come. Following [81] we introduce this two-dimensional

NFM on the periodic square Ω = [−L,L]2:

∂u(x, y, t)

∂t
= A

∫ L

−L

∫ L

−L
w(x− x′, y − y′)S(u(x′, y′, t))dx′dy′

− u(x, y, t)− a(x, y, t), (2.32)

τ
∂a(x, y, t)

∂t
= Bu(x, y, t)− a(x, y, t).

This NFM is known as an adaptive neural field model since it includes an ad-

ditional recovery variable a, which acts to repolarize u via negative feedback. Fur-

thermore the parameters B and τ are related to the sensitivities and time-scale of

the problem [81]. Later in the thesis we study (2.32) and so for comparative pur-

poses here we investigate travelling bump solutions using standard techniques, and

conduct a bifurcation analysis to study steady state solutions as system parameters

are varied, in this case the sensitivity, A.

The firing rate function S takes the form of the usual sigmoid function and the

connectivity kernel is given by a Mexican-hat function

w(x, y) = e−(x2+y2) − 0.17e−0.2(x2+y2). (2.33)

To find solutions for u and a, Equation (2.32) is integrated for t ∈ [0, 250] using

Euler’s method with time step ∆t = 0.2. As outlined above, Fast Fourier transforms

are used to evaluate the integral, resulting in the system

∂u(x, y, t)

∂t
= A(F−1 [F [w] · F [S]]− u(x, y, t)− a(x, y, t),

∂a(x, y, t)

∂t
=

1

τ
(Bu(x, y, t)− a(x, y, t)).

The domain is discretised into N = 256 × 256 grid points and the parameters are

set as follows: L = 7.5, A = 2, β = 5, h = 0.8, B = 0.4, τ = 3. Figure 2.7

shows the travelling bump solutions at t = 250.

A bifurcation analysis is conducted in order to study steady state solutions as
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Figure 2.7: Snap shot of the travelling bump solution at t = 250. Left column u, right
column a. Parameters: L = 7.5, A = 2, β = 5, h = 0.8, B = 0.4, τ = 3
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Figure 2.8: Speed of the bump c, as a function of the sensitivity A. Parameters:
N = 256, L = 7.5, β = 5, h = 0.8, B = 0.4, τ = 3
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the parameter A is varied in the system. Moving to the travelling coordinate frame

ξ = x− ct, means we can write the steady state equations as

0 = A

∫ L

−L

∫ L

−L
w(ξ − x′, y − y′)S(u(x′, y′))dx′dy′

− u(ξ, y)− a(ξ, y)− c∂u(ξ, y)

∂ξ
, (2.34)

0 = Bu(ξ, y)− a(ξ, y)− cτ ∂a(ξ, y)

∂ξ
.

To solve (2.34) we discretise the domain into N equally spaced grid points, which

results in a system of the form

F (v, A) = 0.

Here the vector v is of length 2N + 1, and contains the N unknowns corresponding

to the values of u at the grid points, the corresponding N unknowns for a and the

speed c. Any solution of (2.32) is invariant under translations in both the x and y

axis, therefore we must enforce two conditions to remove these degrees of freedom.

We introduce the pinning condition

u(0, 0)− 1

2L

∫ L

−L
u(ξ, 0)dξ = 0, (2.35)

and restrict the solutions to be symmetric about y = 0. These conditions are the

same as those in [81].

Equations (2.34) and (2.35) were solved simultaneously using a Newton-Krylov

solver, which is a Jacobian free Newton solver (see Chapter 3 for more detail). Figure

(2.8) shows a solution branch displaying the behaviour of the speed c as a function

of the sensitivity A. Again the dashed line denotes stable solutions and the solid

line stable. As A is varied the stable bump becomes unstable via a saddle-node

bifurcation.

2.4 Solutions to NFMs and pattern formation

Neural field models are of great interest, not only from a mathematical point of view,

but also from an experimental neuroscience point of view, since they can replicate

many of the dynamic patterns of brain activity that are observed using modern

neuroimaging methodologies [24]. They are used for interpreting (and unifying)

electroencephalogram (EEG) data, functional magnetic resonance (fMRI) data and
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(a) (b)

Figure 2.9: (a) Multiple bump solution. (b) Travelling wave solution.

magnetoencephalography (MEG) data [127, 128].

The principles behind pattern forming systems are well known, see for example,

[129, 130]. Neural field models are also capable of supporting a variety of pattern

formations in both one and two dimensional space. Examples in one dimensional

space include solitary waves (or travelling pulses), stationary pulses and spatially

periodic patterns [19, 131]. These patterns are also observed in two dimensions;

however, other interesting patterns can arise, such as spiral waves [132, 133, 134]

and target waves [135], as well as drifting spots [134] and breathers [136]. Figure

2.9 gives an example of multiple bump and travelling wave patterns that can be

observed in two dimensions.

Importantly, different pattern formations can be linked to different neurological

phenomena. For example, wave fronts and pulses have been observed in a number of

slice preparations [137, 138, 139, 140, 141, 142], solitary pulses (bumps) have been

observed in models of working memory [121, 143, 144] and spiral waves are believed

to be linked to the generation of visual hallucinations [145, 146, 147, 148]. Our

primary goal in this work is to construct more physiologically realistic models of

mesoscopic neurodynamic cognitive phenomena, including, for example, curvature

information and/or experimentally informed connectivity data, thus allowing us to

better understand the types of waves, as well as mechanisms of synchrony and propa-

gation through the brain, that are considered the signature of a range of neurological

disorders [149, 150, 151, 152]. Indeed, such levels of detail are likely mandatory if

we are to further improve our understanding of both healthy and diseased brains

[153, 154].
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2.5 Summary

In this chapter we have provided an overview of the current state-of-the-art in neural

field modelling. We began by providing a heuristic derivation of the Amari equation,

which is the most popular such model, before stating the assumptions under which

such equations are well-posed. We then discussed some current techniques available

for solving such equations on planar domains and considered a number of different

solution types, including localised bump and travelling wave solutions. Our focus

was on those methods that can be used to perform comparative analyses against our

methods later on in this thesis as these will be important for validating our methods

where possible.



Chapter III

Technical preliminaries

In this chapter we provide details of the most important numerical techniques de-

ployed in this thesis. We begin in §3.1 by providing a brief overview of projection

method focussing on Galerkin and collocation techniques . In §3.2 we discuss the

collocation method in more detail, since we use it to solve the neural field models

(NFMs) (see, for example, Equation (2.1)) introduced in the previous chapter. In

§3.3 we discuss the construction of triangulated domains on both flat and curved

geometries. Here, we also consider the differences that arise when moving from flat

to non-flat geometries and conduct an analysis comparing two different numerical

methods for computing geodesic distances. Finally, in §3.5 we provide a brief review

of numerical bifurcation theory, focussing on the so-called pseudo-arclength continu-

ation technique, which is used in later chapters to study the behaviour of both fixed

and travelling bump solutions as certain model parameters are varied.

3.1 Nonlinear integral equations

In this section we provide a brief overview of numerical methods for calculating fixed

points of a nonlinear integral operator of the form

x = K(x), x ∈ X (3.1)

where K is a nonlinear integral operator and X is an appropriately defined function

space [155]. In particular, we focus our attention on projection methods; the inter-

ested reader should consult the text by Atkinson [118] for details on related methods

(e.g. Nystöm methods). Such equations arise naturally in many areas of biology

as steady state equations for related integro-differential equation models [156, 157]
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and the discussed methods will allow us to compute both steady state and travelling

wave solutions of the NFMs considered in this work.

3.1.1 Projection methods

Projection methods are a family of techniques that can be applied to determine

numerical approximations of integral equations such as that in (3.1). The description

given below has been ammended from the survey by Atkinson [155].

Let X be a Banach space and let Xn, n = 1, 2, 3, . . ., be a sequence of finite

dimensional subspaces used to approximate x∗, the fixed point solution of (3.1) (i.e.

x∗ solves the equation x∗ = K(x∗)). Then a projection method amounts to solving

the equation

xn = PnK(xn), (3.2)

for some bounded projection operator Pn : X → Xn. It is typically assumed that

Pnx→ x as n→∞, x ∈ X .

Now, assuming that Pn can be written as

Pnx =
n∑
j=1

lj(x)φj, x ∈ X

with {φ1, . . . , φn} a basis of Xn and {l1, . . . , ln} a set of bounded linear functionals

that are independent over Xn. Then setting

xn =
n∑
j=1

αjφj,

we can reduce (3.2) to a finite nonlinear system of equations

n∑
j=1

αjφj = lj

(
K

(
n∑
j=1

αjφj

))
, i = 1, . . . , n. (3.3)

The choice of the basis functions {φ1, . . . , φn} and the linear functionals {l1, . . . , ln}
determine the type of method. Note that under rather general assumptions one can

obtain the following error result for the general projection method described above

c1||x∗ − Pnx∗|| ≤ ||x∗ − xn|| ≤ c2||x∗ − Pnx∗||, n ≥ N, (3.4)
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for suitable constants c1, c2. Proof of the above result as well as additional details

on convergence estimates for the different projection methods can be found in the

text by Atkinson [118].

There are two main types of projection method used in the literature.

Galerkin methods

The Galerkin technique solves a weak formulation of Equation (3.2). Assuming that

X is an inner product space, such as L2(Rn), then we can define the projection Pnx

to be the orthogonal projection of x onto Xn, based on the associated inner product.

Thus

(Pnx, y) = (x, y) , for all y ∈ Xn (3.5)

with (·, ·) the inner product. Typically, L2 and its associated inner product are used

in applications.

Letting

xn =
n∑
j=1

αjφj

with {φ1, . . . , φn} a basis of Xn. Then we solve for the {αi} using

n∑
j=1

αj (φi, φj) =

(
φi,K

(
n∑
j=1

αjφj

))
, i = 1, . . . , n. (3.6)

Importantly, solving in this way requires twice as many integrations due to the inner

products that need to be computed.

Collocation methods

When implementing the collocation method the projection operator Pnx is defined

as the element that interpolates x at nodes y1, y2, . . . , yn ∈ Xn. In order to determine

xn we solve the system

n∑
j=1

αjφj(ti) = K

(
n∑
j=1

αjφj

)
(ti), i = 1, . . . , n. (3.7)

Note that we implement the collocation technique in our work since, in general, it

is more computationally efficient, having approximately half as many integrals to

compute, and it is also more practical in the sense that it is easier to implement.

Below we give specific details in the case of applying collocation to solve a NFM.
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3.2 Solving integral equations on triangulated do-

mains using collocation methods

In this section we follow the text by Atkinson [118] and give an overview of the

methods we implement in order to solve neural field models on general triangulated

domains.

3.2.1 Interpolation over triangles

The neural field models we consider are examples of multivariable integral equations

and so we can implement the techniques outlined in [118] in order to solve them.

Generally, when considering multivariable interpolation the domain under consider-

ation is first broken up into smaller, simple regions. Here we consider triangulated

domains and a polynomial interpolation is carried out over each triangle.

This interpolation is performed as follows. Let 4k denote a triangle from our

domain and let g(x, y) be a continuous function over 4k. In order to approximate

this continuous function, a polynomial interpolant p(x, y) is introduced for d ≥ 0,

where d is the degree of the interpolant. We denote the interpolant as follows,

p(x, y) =
∑
i,j≥0
i+j≤d

ci,jx
iyj.

This interpolant has fd degrees of freedom, where

fd ≡
(d+ 1)(d+ 2)

2
. (3.8)

In order to determine the coefficients ci,j we must impose fd interpolation conditions.

These conditions require,

p(xk, yk) = g(xk, yk), k = 1, ..., fd,

for a choice of fd interpolation nodes on 4k. To make the process more tractable

we perform the interpolation over the unit simplex which we denote by σ, that

is, a the triangle with vertices (0, 0), (1, 0), (0, 1). More specifically, we employ the

transformation Tk : σ →4k, given by

(x, y) = Tk(r, s) = (1− r − s)vk,1 + svk,2 + rvk,3, (3.9)
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which maps each 4k on to σ. Here (r, s) are the coordinates defined on the unit

simplex, σ, and the vk,j, j = 1, 2, 3 are the vertices of kth triangle, 4k. This allows

us to perform the interpolation over σ, and then using the mapping, Tk(r, s), to

define the corresponding interpolation over each 4k, thus greatly simplifying the

analysis.

Here, we consider the Lagrange formula for the polynomial interpolation on σ,

that is

Pd(r, s) =

fd∑
j=1

G(qj)lj(r, s), (3.10)

where G(q) = g(Tk(q)) is the function to be interpolated, the qj are the interpola-

tion points, and lj the corresponding Lagrange basis functions [118]. The relation

between the polynomial interpolant on the unit simplex and that on the kth triangle

in our domain is given by P (r, s) ≡ p(Tk(r, s)). Considering now the original tri-

angle, 4k, and using the map Tk defined above, we can write down the polynomial

interpolant of the function g at the nodes vk,1, . . . ,vk,fd as follows:

pd(x, y) =

fd∑
j=1

g(Tk(qj))lj(r, s), (3.11)

where (x, y) = Tk(r, s). Since Tk(qj) = vk,j, we can simplify the above to:

pd(x, y) =

fd∑
j=1

g(vk,j)lj(r, s). (3.12)

Note that in this thesis, our main focus is on linear interpolation (i.e. d = 1);

however, we do extend to quadratic (d = 2) in Chapter 5 and so for completeness

define both linear and quadratic schemes below.

Linear interpolation

When considering linear interpolation, we choose the coordinates of the fd = 3

interpolation nodes on σ (Figure 3.1(a)) as follows

q1 = (0, 0), q2 = (0, 1), q3 = (1, 0).

The linear Lagrange basis functions are given by

l1(r, s) = 1− r − s, l2 = s and l3 = r.
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Figure 3.1: The unit simplex with (a) three and (b) six interpolation nodes, respec-
tively.

Thus using (3.10), the unique linear polynomial interpolating G(r, s) at the nodes

{q1,q2,q3} is

P1(r, s) =
3∑
j=1

G(qj)lj(r, s).

Quadratic interpolation

For the quadratic case fd = 6, and we choose interpolation points on σ (Figure

3.1(b)) as follows

q1 = (0, 0), q2 = (0, 1), q3 = (1, 0),

q4 = (0, 1
2
), q5 = (1

2
, 1

2
), q6 = (1

2
, 0).

The quadratic Lagrange basis function are

l1 = u(2u− 1), l2 = s(2r − 1), l3 = s(2s− 1),

l4 = 4ru, l5 = 4sr, l6 = 4su,

where u = 1−r−s. Once again, using (3.10) we can now define the unique quadratic

polynomial that interpolates G(r, s) at the nodes {q1, . . .q6} as

P2(r, s) =
6∑
j=1

G(qj)lj(r, s).
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3.2.2 Numerical integration

Solving a partial integro-differential equation using collocation techniques requires

the accurate computation of integrals over triangulated surfaces, and so we must

consider numerical integration over triangles. Here we outline the application of

quadrature on triangles, for a more detailed discussion see for example [158, 159].

As for interpolation techniques, integration formulae can first be developed on the

unit simplex, σ, before being adapted to general triangles, 4k, via the mapping

defined in Equation (3.9). Integration over 4k can be defined as∫
4k

g(x, y)dA = 2Area(4k)

∫
σ

g(T (r, s))dσ, (3.13)

where

Area(4k) =
1

2

∣∣∣∣∣ x2 − x1 x3 − x1

y2 − y1 y3 − y1

∣∣∣∣∣
and (xi, yi) = vk,i are the vertices of 4k. Thus in what follows we consider the

approximation of integrals of the form

I =

∫
σ

G(r, s)dσ, (3.14)

where G(r, s) is a continuous function on the unit simplex, σ.

Below, we outline the two most common ways for developing quadrature rules

for approximating (3.14).

1. Interpolation: In this case the function over σ, g(r, s) is replaced by a poly-

nomial P (r, s). This polynomial interpolates G(r, s) at the points {µ1, . . . , µf}
in σ. This can be written as∫

σ

G(r, s)dσ ≈
∫
σ

P (r, s)dσ =

f∑
j=1

wjG(µj),

where wj, j = 1, . . . , f , are obtained by integrating the Lagrange basis func-

tions.

2. Undetermined coefficients: A set of points {µ1, ..., µf} ∈ σ are chosen such

that ∫
σ

G(r, s)dσ ≈
f∑
j=1

wjG(µj).



3.2 Solving integral equations on triangulated domains using collocation methods 43

The weights wj are chosen so that the degree of precision is maximised, leading

to a linear system for wj, j = 1, ..., f .

Quadrature rules

In this thesis we consider integration formulae developed via interpolation. In gen-

eral these formulae are based on the numerical integration formula

∫
σ

G(r, s)dσ ≈
fd∑
j=1

wjG(qj), wj ≡
∫
σ

lj(r, s)dσ. (3.15)

This is generated by integrating the interpolation polynomial Pd(r, s) defined in

(3.10). When implementing linear collocation we use the three point quadrature

rule, ∫
σ

G(r, s)dσ ≈ 1

6
[G(0, 0) +G(0, 1) +G(1, 0)] . (3.16)

When extending to quadratic collocation we need to consider a formula that has a

higher degree of precision. In this case we implement the seven point quadrature

rule, derived in [159] and given by

∫
σ

G(r, s)dσ ≈ 9

80
G

(
1

3
,
1

3

)
+B [G(α, α) +G(α, γ) +G(β, α)]

+ C [G(γ, γ) +G(γ, δ) +G(δ, γ)] , (3.17)

where,

α = 6−
√

15
21

, β = 9+2
√

15
21

,

γ = 6+
√

15
21

, δ = 9−2
√

15
21

,

B = 155−
√

15
2400

, C = 155+
√

15
2400

.

In contrast to the three point rule, which has degree of precision 1, this formula has

degree of precision 5.

3.2.3 Implementing the collocation method

The collocation method is an example of a projection method that approximates an

infinite dimensional problem, such as a neural field model, by a finite dimensional

one, via a suitably defined projection operator Pn. In this section we provide an

outline of the method as applied to the NFMs described in Chapter 2.
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Consider the following triangulation Tn = {41, ...,4n} of the domain under

consideration. Suppose that on each triangle 4k we employ a piecewise polynomial

approximation of the unknown function u(x, t). In this case the projection operator

takes the form

Pnu(x, t) = un(x, t)

=

fd∑
j=1

u(vk,j, t)lj(x), (x, t) ∈ 4k, k = 1, 2, ..., n. (3.18)

Here, vk,j denotes the coordinates of the jth interpolation point of the kth triangle,

4k, whilst lj denotes the Lagrange basis functions [118]. This allows us to formulate

the following approximation to the Amari Equation (again, see Chapter 2, Equation

2.1):

∂un(x, t)

∂t
= APn

{∫
Ω

w(x,x′)S(un(x′, t))dΩ(x′)

}
− un(x, t). (3.19)

Now, assuming the above expression holds exactly at the node values v1,v2, . . . ,vnv ,

where nv refers collectively to a global numbering of the node points vk,j, we obtain

a collocation scheme. If we also consider, as discussed previously, solving over the

unit simplex, σ, and then transforming back to each 4k ∈ Tn, via the mapping in

(3.9), then we can write (3.19) as follows:

dun(vi, t)

dt
= 2A

n∑
k=1

Area(4k)

∫
σ

w(vi, Tk(r, s))S

(
fd∑
j=1

u(vk,j, t)lj(r, s)

)
drds,

(3.20)

for i = 1, ..., nv. The above results in a system of nv ordinary differential equations

that can be solved to determine approximate solutions of the Amari Equation. As

we shall see later on, this result is easily extended to the adaptive NFM introduced

in the previous Chapter (see Equation (2.32)).

It is straightforward to extend collocation techniques to solve NFMs on triangu-

lated surfaces, embedded in three dimensional space, such as those studied in this

thesis. There are two main differences: firstly, the mapping, Tk, now maps to points

in R3, i.e.

(x, y, z) = Tk(r, s),

but is otherwise defined analogously to the two-dimensional case, and secondly, the
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formula for the area of the triangles, 4k, is now given by

Area(4k) =
1

2

∣∣∣∣∣∣∣
 x2 − x1

y2 − y1

z2 − z1

 ×
 x3 − x1

y3 − y1

z3 − z1


∣∣∣∣∣∣∣ .

3.3 Domains

In this thesis we consider both flat and non-flat triangulated domains. In particular,

we consider the periodic square, Ω = [−L,L]2, the torus, Ω = T 2, and the surface of

the rat brain. In the first two cases, we consider triangulations obtained from both

regular Cartesian grids, as well as more general, unstructured triangulations, and so

in this section we provide details of the construction process. In the case of the rat

brain the triangulation is obtained via neuroimaging data and so we also provide

some additional details concerning this data.

3.3.1 Cartesian grid based triangulation

Firstly we consider a Cartesian grid based triangulation of the periodic square where

the triangle vertices are located at regularly spaced Cartesian grid points. Impor-

tantly, standard methods, such as the trapezoidal rule and fast Fourier transforms

(FFTs), can be deployed to solve NFMs on regular grids, thus allowing direct com-

parisons between collocation methods and the standard approaches considered in

the previous chapter. Such triangulations can be generated using MATLAB’s built-

in function delaunay(x,y), where x and y are the Cartesian coordinates. Figure

3.2(a) shows an illustrative example of such a triangulated domain.

The surface of the torus in the Euclidean space R3 can be described using the

following parametrisation:

(θ, φ) 7→

 (R + r cos(θ)) cos(φ)

(R + r cos(θ)) sin(φ)

r sin(θ)

 =

 x

y

z

 . (3.21)

Here, R denotes the major curvature radius and r the minor curvature radius, while

the angles φ, θ ∈ [0, 2π). To obtain a regular triangulation of the torus we perform

a regular discretisation of θ − φ space (such as that shown in Figure 3.2(a)) and

then map this via (3.21) on to the torus -see Figure 3.2(b). Importantly, FFTs can

not be deployed to solve a NFM on the torus since the above change of coordinates
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(a) (b)

Figure 3.2: (a) Illustration of a square domain that uses Cartesian grid points as
triangle vertices. (b) Illustration of a triangulated torus using regularly spaced grid
points in the toroidal coordinate system as triangle vertices.

result in equations that are no longer of convolution type. We can still deploy the

trapezoidal method but only in the case of a regular discretisation of the torus; as

we shall see, the collocation method works for both regular and irregular meshes.

3.3.2 General triangulations

Next we consider more general triangulations, that is, triangulations where the tri-

angle vertices do not lie on a Cartesian grid. We consider two different procedures

for constructing general triangulations: triangulations obtained using the MATLAB

DistMesh package [160] and ‘random’ triangulations that are obtained by randomly

perturbing vertices in the regular triangulations described previously.

DistMesh triangulation

The DistMesh MATLAB package constructs a triangulation such that each triangle

is approximately equilateral and of the same size using optimisation techniques.

Below we describe the particular DistMesh functions that we used in order to obtain

triangulations of both the square domain, Ω = [−L,L]2, (Figure 3.3(a)) and the

torus, Ω = T 2 (Figure 3.3(b)).

For the periodic square we use the command

% DistMesh function

[P,T]= distmesh2d(fd,fh,h0 ,bbox ,pfix ,varargin)

Here the outputs P and T are the lists of vertex coordinates and the vertex num-

bers forming each triangle of the resulting triangulation. The input arguments are
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(a) (b)

Figure 3.3: (a) Illustration of a DistMesh triangulation of the periodic square. (b)
Illustration of a DistMesh triangulation of the torus.

described as follows.

• fd is a distance function describing the geometry, in this case fd=@dpoly,

defines a polygon with vertices pv.

• fh is the desired edge length function, in this case we use fh=@huniform, which

selects a uniform distribution for the edge length.

• The parameter h0 is the initial value of the distance between points in the

node distribution. Throughout the optimisation, the distance between points

may stray slightly from this value.

• The parameter bbox is the bounding box of the square, which is given as

bbox=[-L/2, -L/2; L/2 L/2].

• Any fixed points can be specified using pfix, in this case we fix all of the

boundary points.

• Any additional parameters for the functions fd and fh are specified in varargin,

in this case we input pv, the points required to generate a square geometry

from fd=@dpoly.

In the case of the torus we use the following DistMesh function to triangulate the

surface:

% DistMesh function

[P,T]= distmeshsurface(fd ,fh,h0,bbox ,fparams)
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Here the outputs P and T are again the resulting list of vertices and triangles. The

input arguments are described as follows:

• The inputs fh, h0 and bbox are the same as stated for the periodic square,

however you can see that in this case we do fix any vertices in the mesh.

• Again fd is a distance function describing the geometry, but in this case

fd = @(p) (sum(p^2,2) + R^2-r^2)^2-4*r^2*(p(:,1)^2 +

p(:,2)^2)

Here R and r are the major and minor radii of the torus respectively.

Random triangulation

Triangulated cortical surfaces obtained from MRI data, may not be particularly

regular and hence we consider the performance of our methods on ‘random’ triangu-

lations. On the periodic square we constructed a random triangulation by perturbing

the interior points of the Cartesian grid. This perturbation was performed as follows:

P = P + dx*Alpha *(2* rand(length(P) ,2) -1).

Here P are the vertices we wish to perturb, dx is the distance between two points

in the uniform domain and Alpha is the amount by which we wish to perturb the

points. Figure 3.4(a) shows an example of a randomly perturbed triangulation of

the periodic square with Alpha= 0.1.

When considering the torus, a ‘random’ triangulation is obtained by transforming

the perturbed points of the square, given in (θ, φ) coordinates, via the mapping in

(3.21). This results in a list of (x, y, z) points for the triangulation along with

the original triangle list obtained on the Cartesian grid, see Figure 3.4(b) for an

illustration of a ‘random’ triangulation of the torus.

3.3.3 Rat brain

The cortical surface of the rat was obtained via the CARET software package, which

deploys bespoke algorithms that generate a representation of the cortical surface

given a high-quality MR image [161]. More specifically, we downloaded the surface

data for the left-hemisphere of the rat, which consists of two files:

• Coordinate file – containing the Cartesian coordinates of cortical surface

vertices;
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(a) (b)

Figure 3.4: (a) Illustration of a random triangulation of the periodic square. (b)
Illustration of a random triangulation of the torus.

Figure 3.5: Triangulated surface of the left hemisphere of a rat brain.
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• Topology file – defining the relationship between (connections) surface ver-

tices and the vertices that make up an element in the cortical surface repre-

sentation.

Using the nv = 9623 available data points (cortical vertices) we deployed the CARET

MATLAB toolbox to construct a triangulated mesh representation of the left hemi-

sphere of the rat cortex consisting of 19242 triangles. This results in a genus zero

cortical surface representation of the left hemisphere generated via the removal of

white matter. Note that whilst the resulting triangulated surface includes both the

pial surface as well as subcortical structures it is computationally convenient to

consider closed manifolds in our work.

3.4 Computing geodesics on triangulated surfaces

One major difference between solving on non-flat domains as opposed to flat domains

is computing the distance, d(x,x′), between neural units, which is necessary to

quantify neural interactions, as defined by the connectivity kernel w. In the case of

the flat domain, one simply computes the Euclidean distance between the two points;

however, for non-flat domains one needs to compute the geodesic distance between

points. Here, we briefly describe two different numerical schemes for computing the

geodesic distance between two points on a triangulated surface before performing a

comparative analysis on a sphere, in which case the exact geodesic distance can be

calculated analytically.

3.4.1 Fast marching algorithm

The fast marching algorithm in two dimensions is a numerical scheme for solving

the Eikonal equation

|∇T | = F (x, y), x, y ∈ Ω, (3.22)

which is found in problems for wave propagation [162, 163, 164]. Intuitively, one

can consider the solution T of the above equation to be the time taken for a wave

travelling at speed 1/F to propogate from the boundary ∂Ω to the point (x, y)

[165]. It was created by James Sethian [166], with its beginnings found in his PhD

thesis from 1982 [167]. Originally, the method solved (3.22) on a uniform Cartesian

mesh (see Figure 3.6(a)), but has more recently been extended to work on more

general triangulated surfaces, and as a result can be deployed to determine geodesic

distances on polygonal surfaces. Importantly, implementations of the algorithm
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exist in MATLAB [168] and so the method is straightforward to utilise. Here we

give a brief outline of the method. Note that for simplicity we introduce the fast

marching method on two-dimensional domains, the extension to the more general

case of a surface embedded in three-dimensions will be discussed later.

The fast marching algorithm solves the Eikonal equation (3.22) in O(N logN)

steps, where N is the number of mesh points. The main idea is to find the solution

T by advancing the wave front (gradient term) in an upwind manner over the mesh

[169]. The algorithm is accelerated by only considering a narrow band around the

wave front and marching it forwards, which fixes the values of existing points and

brings in new points to the narrow band. First, all the points in the initial condition

are labelled alive. All the mesh points that are one grid point away from these points

are labelled close, whereas all other points are labelled far.

• The point with the smallest T value in close is located and labelled trial.

• This trial point is then added to the set of alive points and removed from close

points.

• Update the set of close points such that it now includes all neighbours of the

trial point that were in far, removing them from far if they are now close.

• The values of T at all the close points are found by solving

[
max(D−xij T,−D+x

ij T, 0)2 + max(D−yij T,−D
+y
ij T, 0)2

] 1
2 = Fij, (3.23)

using only the values from points that are alive. Here Dij are first order finite

difference approximations at (xi, yj).

• Repeat.

When recomputing the values of T at the upwind close points in the procedure,

the value of T cannot be smaller than any value of T already accepted in the alive

points. Therefore when marching the solution outwards, no value of T in the set of

alive points needs updating/considering again.

When extending the method to triangulated meshes the update procedure for

solving (3.23) needs adapting. For an uniform Cartesian mesh, the update procedure

is as follows. Considering a Cartesian square grid such as that shown in Figure 3.6(a),

the value of T at the center point (i, j) needs updating. The neighbouring points
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(a) Uniform Cartesian mesh update
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(b) Triangular update

Figure 3.6: Illustration of the update upwind procedure for (a) uniform Cartesian
meshes and (b) simple triangulated meshes.

are labelled as TA = Ti−1,j, TB = Ti+1,j, TC = Ti,j−1, TD = Ti,j+1, when considering

(3.23) we now write[
max

(
T − TA
h

,
T − TB

h

)2

+ max

(
T − TC
h

,
T − TD

h

)2
]

= F 2
ij, (3.24)

where h is the uniform grid spacing. Considering, for example, the contributions

from A and C it is assumed that, without loss of generality, TA ≤ TC and (3.24)

becomes

(T − TA)2 + (T − TC)2 = h2F 2
i,j.

From [166] it is shown that there are two possibilities for the solution:

• There is a real solution T , with T > TA and T > TC , to the quadratic

(T − TA)2 + (T − TC)2 = h2F 2
i,j.

• There is a real solution T , with T > TA and T ≤ TC , to the one-dimensional

update

(T − TA)2 = h2F 2
i,j.

For each possible pair of vertices on the mesh, all possible solutions of T are obtained

and the updated point is the one that produces the smallest value.

To extend the fast marching method to triangulated surfaces the Cartesian grid

is adapted as shown in Figure 3.6(b). Now, for this simple case, the solution to the



3.4 Computing geodesics on triangulated surfaces 53

quadratic will change with the equation of the plane. For example, again considering

the contributions of A and C, the equation of the plane is(
T − TA
h

)
x+

(
T − TC
h

)
y + T = z.

Therefore (3.23) becomes(
T − TA
h

)2

+

(
T − TC
h

)2

= F 2
ij, (3.25)

where the plane is tilted at the point (i, j) by T so that there is a gradient magnitude

equal to F . Again the solution is found in an upwind manner as it is required that

T be smaller than any other contributors. The fast marching method can then be

implemented on this triangular mesh as it was on the Cartesian grid.

The algorithm can be used to compute distances on triangulated surfaces and

therefore to construct minimal geodesics. The Eikonal equation is solved on the

triangulated surface with speed F = 1 in order to compute the distance from a

source point. To find the geodesic path X(s), the following differential equation is

solved
dX(s)

ds
= −∇T, (3.26)

from which the distance is found by summing the distances between the nodes found

in the path. In order to apply the fast matching algorithm on a triangulated surface

we employ the following function

% Fast marching toolbox

[D]= perform -fast -marching -mesh(vertex , faces , start -

point)

from the fast marching MATLAB toolbox [168]. Here the output D is the distance

from a specified input start-point to all other points in the mesh. The mesh is

described by the inputs vertex, a list of vertex coordinates and faces, a list of node

values which make up the triangle list. For further details see [165, 166].

3.4.2 Exact geodesic algorithm

The exact geodesic toolbox [170] is a MATLAB implementation of the MMP (Mitchell,

Mount and Papadimitriou) algorithm [171]. Developed in 1987, the MMP algorithm

was employed to solve the Discrete Geodesic Problem, i.e. find the shortest path
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between two given points on the surface of a polyhedron, with the path also lying

on the surface of the polyhedron.

The algorithm finds the length of the shortest path in O(logM) where M is the

number of edges of the surface and can consider any general polyhedra, both of which

improve on the work posed in [172, 173, 174]. The MMP algorithm uses a technique

the authors call continuous Dijkstra, since it is reminscient of Dijkstra’s algorithm for

finding the shortest paths in a graph [175]. The edges of the polyhedron act as nodes

of a graph, where instead of a unique distance there is a function that labels the

node. The minimum of the discretised function is monitored by considering intervals

of optimality, that is, an interval that subdivides the edge under consideration into

regions, where the shortest path to other points in the region have the same discrete

description of the function.

We now give a brief description of the algorithm described in [171]. A signal

is propagated from a source point, s, to all other points on a polyhedral surface.

When another point, a, on the surface receives the signal it propagates it further.

The point a is labelled with a time d(a), the time it received the signal, which is also

the minimum distance from s. This re-propagation is only done for a finite number

of points, those listed in the candidate intervals, that is an interval of points that

lie on the edges opposite s.

• The algorithm is initialised. The source point, s, is labelled 0 and for every

edge opposite s, a candidate interval is created. All points in the candidate

intervals are labelled d(a) = +∞.

• For each point in the intervals compute and store the distance from s.

• Find the entry with the smallest value and permanently label the correspond-

ing point with this distance.

• Repeat the process until all distances from s to each point a on the surface

are computed.

In order to apply the exact geodesic algorithm on a triangulated surface we employ

the following function

% Exact geodesic toolbox

[D]= exact -geodesic(V, F, id)

from the exact geodesic MATLAB toolbox [170]. Here the output D is the distance

from a specified start point id to all other points in the mesh. The mesh is described
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by the inputs V, a list of vertex coordinates and F, a list of node values forming each

triangle. For further details of the algorithm see [171].

3.4.3 Comparing the fast marching and exact geodesic al-

gorithms

A comparative analysis was performed for the two aforementioned techniques for

computing geodesics by considering distances on a triangulated sphere, since an an-

alytical formula exists in this instance. Distance matrices were computed for the two

numerical schemes as well as an analytical distance matrix for a series of increas-

ingly fine triangulations of the unit sphere, and numerical errors computed for both

methods. Figure 3.7(a) shows the maximal absolute error for both the fast march-

ing and exact geodesic methods, whilst Figures 3.7(b) and (c) show the maximal

and average relative errors, respectively. In each case, the exact geodesic algorithm

(denoted GP in Figure 3.7) displays better convergence properties compared to the

fast marching algorithm (denoted FM in Figure 3.7). Note that this result, coupled

with numerical simulations of the NFMs studied in this work using both methods

(not shown), has led us to deploy the exact geodesic algorithm in the remainder of

this work when computing geodesics on general triangulated surfaces.

3.5 Numerical bifurcation analysis

To understand a cell’s neurocomputational properties, current research in neuo-

science involves studying the cells membrane voltage as well as second-messenger-

gated currents [176]. A cell’s second-messenger-gated current is an intracellular

signal (i.e. a signal from inside the cell) that is produced in response to a stimu-

lus [177]. Knowledge of these intracellular signals is thought to provide a complete

description of the cell’s behaviour. However, accepting this hypothesis contradicts

the known fact that cells displaying similar currents often exhibit different dynam-

ics [176]. This difference in dynamics, as shown by Rinzel and Ermentrout [178],

is caused by the different bifurcations that occur in excitatory neurons – note that

neurons are typically classified into two classes: excitatory and inhibitory. Thus it is

of considerable interest to study a cells behaviour, and more generally populations of

cells, as certain experimental parameters are varied [179, 180]. As well as bifurcation

analysis other popular methods for studying solutions of NFMs include Evans func-

tions [105, 181, 182, 183, 184] and Turing instability analysis [95, 147, 148, 185, 186],
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Figure 3.7: Comparing the fast marching algorithm (blue dashed) and exact geodesic
algorithm (red) to the analytic distance on the unit sphere; (a) maximal absolute
error, (b) maximal relative error, (c) average relative error.
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which we do not study in this thesis.

Bifurcations are qualitative changes in the behaviour of a system as certain

parameters vary, and determining points at which bifurcations occur can in general

only be done numerically. According to Seydel [124], the basic steps in any numerical

bifurcation analysis consist of

(a) performing numerical continuation;

(b) determining when bifurcations occur and switching between branches.

Here, we focus on the continuation process, restricting our description to the method

of pseudo arc-length, before briefly describing some of the practical aspects of numer-

ical bifurcation. The interested reader should consult the excellent text by Seydel

[124] for further details as well as a description of alternative approaches for numer-

ical continuation.

Suppose that (u0, λ0) is a steady state solution of our NFM, i.e. a solution of

the nonlinear algebraic equations

0 = f(u, λ), (3.27)

where f is the right hand side of the system of ODEs resulting from the discretisation

of our NFM. Then using arclength in order to parameterise the solution branch

emanating from the point (u0, λ0) (see Figure 3.8), we can determine a new point,

(u1, λ1) say, that also lies on the solution branch, by solving, in addition to Equation

(3.27), a so-called parameterising equation:

p(u, λ, s) = 0,

which, in the case of pseudo arclength continuation is given by

(u1 − u0)T u̇0 + (λ1 − λ0)T λ̇0 −∆s = 0. (3.28)

Here ∆s is the pseudo-arclength step size and (u̇, λ̇) is the tangent to the curve at

(u, λ). This constraint means that the new point must lie on the perpendicular to

the tangent vector, that is, (u1, λ1) must lie on the dashed line shown in Figure 3.8.

It follows that in order to determine solution branches of our NFMs we need to
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Figure 3.8: Geometric representation of the pseudo-arclength continuation scheme.

solve the extended system of nonlinear algebraic equations given by

F (u, λ) :=

(
f(u, λ)

p(u, λ, s)

)

=

(
f(u, λ)

(u1 − u0)T u̇0 + (λ1 − λ0)T λ̇0 −∆s

)
= 0. (3.29)

In order to solve the above equation we compute the following Newton iteration:(
ui+1

1

λi+1
1

)
=

(
ui1

λi1

)
− J−1

i

(
f(ui1, λ

i
1)

(ui1 − u0)T u̇0 + (λi1 − λ0)T λ̇0 −∆s

)
, (3.30)

until sufficient accuracy is attained. Here

Ji =

(
fu fλ

u̇0 λ̇0

)
. (3.31)

is the Jacobian matrix whose entries are the partial derivatives of F evaluated at

the point ui1, λ
i
1. When solving (3.30) we use a Jacobian free Newton-Krylov solver

taken from [123].

Newton-Krylov methods

Equation (3.30) can be rewritten as a linear system of equations as follows

J∆un = F (un, λn). (3.32)
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Here, for simplicity we have dropped the subscripts in Equation (3.30), and so, for

example, ∆un = un+1−un. To solve (3.32) we can use the Krylov method for solving

linear systems [123]. Such methods approximate the solution of the linear system

in (3.32) by a sum of the form

uk = u0 +
k∑
i=1

αiJ
i−1r0,

where

r0 = F (u0, λ0)− J∆u0,

is known as the residual, and ∆u0 = u1 − u0, with u0 an initial iterate.

This is more compactly expressed by saying that uk ∈ Kk, where the kth Krylov

subspace is

Kk = span(r0, Jr0, J
2r0, ..., J

k−1r0).

There are a number of different Krylov methods but we deploy the Generalised

Minimal Residuals (GMRES) method in our work, which attempts to minimise the

residual

||rk|| = ||F (uk, λk)− Juk||

over the kth Krylov subspace [123].

Such a method is essential for large systems of equations, such as those derived

from NFMs, as the Jacobians grow quickly thus potentially resulting in storage

problems and significant increases in computation time - note that we shall consider

some of these numerical issues in more detail in later chapters.

3.5.1 Bifurcation detection of equilibria for NFMs

After spatial discretisation the NFMs considered in this thesis result in systems of

ODEs of the form
du

dt
= f(u, λ),

and so we can use the theory of dynamical systems to study these equations as

system paramters are varied. For example, we can consider bifurctaion points, i.e.

values of the parameter of interest for which the solution changes its properties, such

as its stability. When considering 1-parameter bifurcations of equilibria, as in this

work, there are two generic bifurcations that can occur: (i) Hopf bifurcations and (ii)

saddle-node bifurcations [176]. In our studies only saddle-node bifurcations turn out
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to be important and so we give precise definitions of such bifurcation points below

as well as commenting on how to detect such points when constructing solution

branches.

Definition 3.1. (u∗, λ∗) is a turning point (or fold bifurcation point, or saddle-

node bifurcation) of a stationary solution if the following conditions hold:

(i) f(u∗, λ∗) = 0,

(ii) rank(fu(u∗, λ∗)) = n− 1,

(iii) fλ(u
∗, λ∗) /∈ range(fu(u∗, λ∗)) that is, rank(fu(u∗, λ∗)|fλ(u∗, λ∗)) = n,

(iv) there is a parameterisation u(σ), λ(σ) with u(σ∗) = u∗, λ(σ∗) = λ∗ and

d2λ(σ∗)

dσ2
6= 0.

To detect a bifurcation point during the continuation process we use the following

bifurcation test function:

τ := max{α1, . . . , αn},

that is we monitor the maximum of the real parts of the eigenvalues αi + iβi of the

Jacobian matrix J . Note that many other choices exist and a thorough discussion

of the topic is given in [124].

3.6 Summary

In this chapter we have given brief details of how to solve a NFM using the col-

location technique on a triangulated surface for both the case where linear and

quadratic basis functions are used. We then discussed the different triangulated

domains under consideration in this thesis and explained how to construct such do-

mains using MATLAB, except for the rat brain which is derived from neuroimaging

data. We considered two different numerical approaches for computing geodesics

and performed an error analysis of these techniques on the sphere since an analytic

formula for computing geodesics exists in this case. The outcome of these inves-

tigations was that the exact geodesic algorithm was the more accurate of the two

methods and so we shall use this in all of our experiments in the chapters 4 and

5. Finally, we introduced some of the basics techniques for performing a numerical

bifurcation analysis and, in particular, discussed the pseudo arclength method for
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numerical continuation. We implement this scheme when analysing steady state and

travelling wave solutions of the neural field models studied in this work, as various

model parameters are varied.



Chapter IV

The Amari equation

In this chapter we consider the following Amari equation:

∂u(x, t)

∂t
= −u(x, t) + A

∫
Ω

w(x,x′)S(u(x′, t))dΩ(x′). (4.1)

Here, u describes the average activity of the neuronal population at position x ∈ Ω

at time t ∈ [0, T ], and the parameters A, h are related to the sensitivities of the

problem [81]. The nonlinear function S represents the mean firing rate and is given

by

S(u) =
1

1 + e−β(u−h)
,

whilst the integral kernel, which describes how neurons positioned at x and x′ in-

teract, is given by

w(x,x′) = e−d(x,x′)2 − 0.17e−0.2d(x,x′)2 , (4.2)

which is a mexican-hat type function. Note that d is a suitably defined metric and

its choice reflects the geometry of the domain Ω.

More specifically, we present results of applying the numerical techniques in-

troduced in the previous chapter to solve the above NMF on both a flat, periodic

square domain and the closed surface of a torus. In both cases, we perform a com-

parative analysis against more standard techniques, deploying either Fourier based

techniques and/or the trapezoidal rule to compute the integral in (4.1), and inves-

tigate the dependence of our results on the underlying mesh. As well as this we

also consider a bifurcation analysis on the periodic square domain and the surface

of the torus when varying the parameters h and A in the system. In the case of the

torus we investigate the effect of curvature on the observed solutions by repeating
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Figure 4.1: Illustration of a domain that uses Cartesian grid points as triangle
vertices.

the analysis for several choices of major radius of curvature and fixed minor radius

of curvature.

4.1 Numerical Results

In this section we present the results of a number of numerical experiments that were

undertaken in order to check the validity of the techniques described in Chapter 3.

Of particular importance is our ability to reproduce solutions on generic, irregular

triangulations, such as those obtained from neuroimaging studies, and so we begin

by investigating the effects of mesh regularity on solutions of (4.1) on a flat, periodic

domain, before moving on to look at more general, curved domains.

4.1.1 Planar domain with periodic boundary conditions

When considering the numerical solution of Equation (4.1) the main source of error

is the approximation of the integral, which for Ω = [−L,L]2, becomes

I =

∫ L

−L

∫ L

−L
w((x, y), (x′, y′))S(u(x′, y′))dx′dy′. (4.3)

We note that since

d(x,x′) =
√

(x− x′)2 + (y − y′)2

then the integrals in (4.3) are of convolution type.

We compared the accuracy of computing the integral in (4.3) using linear colloca-

tion against fast Fourier transform (FFT) techniques together with the convolution

theorem, and the trapezoidal method, both of which require a regular spatial dis-
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Figure 4.2: The error |Im − Im+1| plotted against grid size Nm+1 reveals geometric
convergence rates for (a) FFTs, (b) trapezoidal rule and (c) linear collocation, when
computing the integral in (4.3).

cretisation on a Cartesian grid. In order to compare these methods directly to

piecewise linear collocation, we employ a triangulation whose vertices correspond

to the Cartesian grid points for the other two approaches, as shown in Figure 4.1.

In our experiments we fixed L = 7.5 and set u(x) = w(x, 0), i.e. the connectivity

kernel given in (4.2), since it is qualitatively similar to the bump solutions admitted

by (4.1). It is worth noting, however, that similar results are obtained for other

sufficiently smooth choices of u (results not shown). To investigate grid conver-

gence, we considered a sequence of refinements of an initial, regular grid consisting

of N0 = 81 nodes, such that at the mth stage of refinement, the number of nodes

is given by Nm = (2m · 8 + 1)2 for m = 1, 2, . . . , 7. If we then denote by Im the

numerical approximation of (4.3) on the grid of size Nm, we can approximate the

order of convergence of the respective discretisation schemes by considering a log-log

plot of the absolute error between consecutive grids, |Im+1 − Im|, versus grid size,

Nm+1. Here we consider point-wise convergence and so all results shown are for a

representative grid point. Note that we have repeated the analysis for other grid

points and observed almost identical behaviour (experiments not shown).

Our results are displayed in figures 4.2 and 4.3. In particular, we see that both
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Figure 4.3: Convergence of quadratic collocation when computing the integral (4.3)
with the error |Im − Im+1| plotted against grid size Nm+1.

trapezoidal rule and FFTs display geometric convergence, as expected (see the re-

view by Trefethen [125] for a discussion of the convergence properties of the trape-

zoidal rule on a periodic domain); however, we find, perhaps somewhat surprisingly,

that linear collocation also exhibits geometric convergence, whereas quadratic col-

location (see Figure 4.3) exhibits only quadratic convergence. To understand the

above result, we consider the collocation technique as applied to (4.3) in more detail

below.

Firstly, note that employing linear collocation alongside the three point quadra-

ture rule ∫
σ

G(r, s)drds =
1

6
[G(0, 0) +G(0, 1) +G(1, 0)],

with G(r, s) = g(Tk(r, s)), as defined in §3.2, enables us to construct the following

numerical approximation to (4.3):

I ≈
n∑
k=1

Area (4k)

3

[
w(v, Tk(0, 0))S

(
3∑
j=1

u(vk,j)lj(0, 0)

)

+ w(v, Tk(0, 1))S

(
3∑
j=1

u(vk,j)lj(0, 1)

)
(4.4)

+ w(v, Tk(1, 0))S

(
3∑
j=1

u(vk,j)lj(1, 0)

) ]
.
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We can further simplify the above by noting that since we are solving on a uniform

Cartesian domain, Area (4k) = ∆x2/2 for all triangles, where here, ∆x (= ∆y) is

the local mesh spacing. Substituting this into (4.4) and evaluating the Lagrange

basis functions at the node points gives

∆x2

6

n∑
k=1

[
w(v, Tk(0, 0))S(u(vk,1))+

w(v, Tk(0, 1))S(u(vk,2))+

w(v, Tk(1, 0))S(u(vk,3))

]
.

Recalling that Tk(0, 0) denotes the coordinates of the first vertex in 4k, Tk(0, 1) the

second and Tk(1, 0) the third, we can rewrite the above equation as follows

n∑
k=1

[
w(v,vk,1)S(u(vk,1)) + w(v,vk,2)S(u(vk,2)) (4.5)

+ w(v,vk,3)S(u(vk,3))

]
∆x2

6
.

However, since the triangle vertices are simply the Cartesian grid points, Equation

(4.5) is nothing other than the trapezoidal rule for solving (4.3) on a periodic two-

dimensional domain. The factor of 1/6 occurs due to the fact that each node appears

six times in the sum in (4.5). Thus, we have shown that for a regular grid with

periodic boundary conditions solving Equation (4.3) using linear collocation and

a quadrature rule based only on the triangle vertices is equivalent to using the

trapezoidal rule. This explains the spectral convergence observed in Figure 4.2.

Next, we considered the effects of mesh regularity on the accuracy of computing

the integral in (4.3). To do this we deployed the DistMesh MATLAB package

[160] to generate a general mesh, that is, one in which the triangle vertices do not

lie on a Cartesian grid, as in our previous investigations. It is important to note

that standard techniques such as those deployed above (i.e. trapezoidal and FFT

methods) cannot be applied in this more general setting. As before, numerical errors

were approximated by comparing the numerical solution of (4.3) at the same grid

point across a range of increasingly fine meshes. More precisely, we constructed an

initial, coarse triangulation of the square [−L,L]2 consisting of N0 = 79 nodes using

the DistMesh package, we then proceeded to refine this triangulation by subdividing
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Figure 4.4: Illustration of the refinement of each triangle, where A, B and C are
the original triangle vertices and a, b and c are the new vertices introduced by the
refinement.

Figure 4.5: An illustration of the refinement procedure for a Distmesh triangulation
[160].
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Figure 4.6: Convergence of linear and quadratic collocation when computing the
integral in (4.3) using a DistMesh triangulation (see Figure 4.5).

Figure 4.7: An illustration of the refinement procedure for a random triangulation.

each triangle into four smaller triangles, as illustrated in figures 4.4 and 4.5. Note

that boundary nodes were fixed in all of our experiments in order to implement the

periodicity of the problem more easily. Our results are displayed in Figure 4.6. In

particular, we see that in contrast to our earlier results, the geometric convergence

breaks down and we recover linear convergence for the linear collocation technique,

as expected; whilst in the case of quadratic collocation, we retain the quadratic

convergence observed when deploying a regular, Cartesian grid.

The last domain that we considered was a random one, which was constructed

by perturbing, at random, the interior points of a Cartesian mesh, such as the ones

described above (see Figure 4.1). Note that boundary nodes were fixed constant

in order to implement the boundary conditions more easily. More specifically, each

interior node was perturbed by 10% relative to the spatial discretisation distance,

∆x, in a random direction obtained by the rand function in MATLAB, that is
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Figure 4.8: Convergence of linear and quadratic collocation when computing the
integral in (4.3) using a random triangulation as illustrated in Figure 4.7.

Figure 4.9: Initial condition for u on the periodic square.

Alpha=0.1 in the following, P=P+dx*Alpha*(2*rand(length(P),1)-1). As before,

numerical errors were approximated by comparing the numerical solution of (4.3) at

the same grid point across a range of increasingly fine meshes (see Figure 4.7 for an

illustration of the refinement procedure), with the initial Cartesian grid consisting

of N0 = 81 nodes. Results for linear and quadratic collocation are shown in Fig-

ure 4.8, from which it is clear that the two methods produce linear and quadratic

convergence, respectively. Note that we have repeated this analysis for a number of

grid points and found near identical behaviour.

Next, we solved Equation (4.1) using the collocation techniques described in

Chapter 3 on both regular and irregular meshes. In the case of the Cartesian mesh

we also solved using trapezoidal and FFTs, for comparative purposes. In all cases,

the neural activation u was initially set equal to 2 in a rectangular area centred at

the origin – see Figure 4.9. After spatial discretisation, we integrated the resulting
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(i)

(ii) (iii)

Figure 4.10: (i) Solitary bump solutions obtained when implementing FFTs, trape-
zoidal and linear collocation on the Cartesian grid based triangulation. (ii) Soli-
tary bump solutions on the random triangulation perturbed by; (a)&(c) 10% and
(b)&(d) 20% when implementing linear collocation. (iii) Solitary bump solution on
the DistMesh general triangulation.
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system of ODEs for T = 250 using the built-in MATLAB routine ode45, with

absolute and relative tolerances set to 1e− 06. In the case of linear collocation the

ODEs are given by

dun(vi, t)

dt
= 2A

n∑
k=1

Area(4k)

∫
σ

w(vi, Tk(r, s))S

(
3∑
j=1

u(vk,j, t)lj(r, s)

)
drds.

(4.6)

The model parameters were set equal to A = 1.5, h = 0.8 and β = 5.0. The

corresponding systems of ODEs when using FFTs and the trapezoidal method are

given in Appendix B.

Figure 4.10(i) shows a solitary bump solution centred at x = y = 0, for the

trapezoidal, FFT and linear collocation methods, using a regular grid on nv = 4225

nodes resulting in a triangulation with n = 8192 elements. As expected from our

previous analysis, all three methods are in excellent agreement, converging to the

same solution up to machine precision. When moving to more general meshes, we

find that in order to accurately reproduce the solutions shown in Figure 4.10(i) re-

quires considerably more mesh points. For example, implementing linear collocation

(FFTs and trapezoidal can not be deployed on these more general meshes) using a

DistMesh grid requires some nv = 11094 nodes and n = 22188 triangles, an increase

of 162% (in terms of nodes) on that for a regular discretisation, in order to obtain

results within 1e− 08, as measured by the infinity norm. Such a solution is shown

in Figure 4.10(iii). Note that solutions obtained on the general meshes are inter-

polated, via the griddata function in MATLAB, onto the Cartesian grid in order

to perform the error analysis. To further interrogate our ability to replicate such

solutions we have solved Equation (4.1) on a random mesh produced by perturbing

the nodes of an initial Cartesian mesh, as described earlier. Figure 4.10(ii) shows

solutions obtained on two perturbed grids; in the first, nodes have been perturbed

by 10%, whereas in the second nodes have been perturbed by 20%. Note that the

triangulations that result are highly irregular and as a result require an increase

in the number of nodes to nv = 16641 in order to obtain results with accuracy of

1e− 08, as measured by the infinity norm, in both cases.

Next, we deployed the pseudo arclength technique in order to determine the

behaviour of the bump solutions as important model parameters are varied. In

particular, starting from the initial condition (u0, λ0), given by the stationary bump

solution derived above, we solved the nv nonlinear scalar equations

F (u, λ) = 0, (4.7)
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Figure 4.11: (i) Three different solutions as highlighted along the solution branch
in Figure 4.11(ii): (a) & (d) point P1 (stable), (b) & (e) point P2 (stable) and
(c) & (f) point P3 (unstable). (ii) Solution branches as the parameter h is varied
when implementing FFTs and linear collocation to solve Equation (4.7). (iii) The
eigenvalues of the Jacobian matrix evaluated at the bifurcation point h∗ ≈ 1.03.
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which result from the spatial discretisation of the right hand side of Equation (4.1),

alongside the pseudo arclength condition

(u1 − u0)T u̇0 + (λ1 − λ0)T λ̇0 −∆s,

in order to determine a nearby solution (u1, λ1). We use the nsoli algorithm from

the book by Kelley [123], which is a Newton-Krylov method. We set the maximum

number of Newton steps equal to 40, set the absolute and relative tolerances (i.e. the

termination criteria) equal to 1e− 10, and implement the GMRES Krylov method.

In all of our experiments the continuation step-size ∆s = 0.2. To initialise the search

we set

u
(0)
1 = u0 + u̇0∆s and λ

(0)
1 = λ0 + λ̇0∆s.

Note that in the first instance, the tangent vector (u̇0, λ̇0) is computed by solving

the following linear system of equations:

(
Fu Fλ

)(u̇0

λ̇0

)
= 0,

where here Fu is the nv × nv Jacobian matrix and Fλ is the nv × 1 column vector of

derivatives with respect to λ, both of which were computed using finite difference

approximations [81]. However, for large systems it is more efficient to approximate

the tangent vector using finite differences for additional points as follows

u̇i ≈
ui − ui−1

∆s
and λ̇i ≈

λi − λi−1

∆s
.

For further details on numerical continuation see, for example, the book by Seydel

[124].

The result of following solutions of (4.7) as h is varied is shown in Figure 4.11(ii).

More specifically, we performed continuation using both FFTs and linear colloca-

tion obtaining, as can be readily seen from the figure, identical results. The plot

shows that as h is increased a stable bump solution is destroyed in a saddle-node

bifurcation; Figure 4.11(iii) plots the eigenvalues of the Jacobian matrix evaluated

at the solution with h∗ ≈ 1.03, from which it is clear that a saddle-node bifurcation

occurs. Note that, as is conventional, stable branches are denoted by continuous

lines and unstable by dashed lines. In our experiments the continuation procedure

was typically halted after computation of a small section of the unstable branch.

Three different solutions, two stable and one unstable, and labelled P1, P2 and P3
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Figure 4.12: (i) The three solutions selected along the solution branch in Figure
4.12(ii): (a)&(d) point P1 (unstable), (b)&(e) point P2 (stable) and (c)&(f) point P3

(unstable). (ii) Solution branches as the parameter A is varied when implementing
FFTs and linear collocation to solve Equation (4.7). (iii) Eigenvalues of the Jacobian
matrix evaluated at the bifurcation point A∗ ≈ 1.2.
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in Figure 4.11(ii), respectively, are shown in Figure 4.11(i); in particular, we see

that as we approach the turning point along the stable branch, the bump solutions

reduce in size. As stated previously, h represents the firing rate threshold and as it

increases the amount of neuronal activity converted to firing frequency is reduced

since the contribution of the neuronal population activity must be much greater in

order to exceed the threshold and ‘fire’. Next, we varied the parameter A, which de-

scribes the sensitivity of nonlinear interactions in the model. The results are shown

in Figure 4.12(ii). We found a saddle-node bifurcation occurring at A∗ ≈ 1.2 and

A∗ ≈ 2.2, Figure 4.12(iii) plots the eigenvalues of the Jacobian matrix evaluated

at the bifurcation point A∗ ≈ 1.2. Note that we obtain a near identical figure at

the other bifurcation point. For unstable values of A we observe either the bump

solutions decreasing in size or splitting to form various different unstable patterns.

(see Figure 4.12(i) for an illustrative example).

Note that when solving (4.7) using linear collocation on more general triangula-

tions, such as the DistMesh and random ones discussed earlier, we find that in order

to obtain identical results to those in figures 4.11 and 4.12 we have to, in addition to

increasing the mesh size, increase the number of Newton steps taken in the continua-

tion algorithm by 150% (these results can be seen in Appendix C). Importantly, the

above results suggest that with enough grid points and/or computational power, we

can reproduce the same types of solutions as that obtained with FFT or trapezoidal

methods, regardless of the underlying mesh. Moreover, early experiments suggest

that deploying higher-order polynomial approximations (see the discussion in the

concluding chapter) in our collocation scheme enables us to calculate the integral in

(4.3) more accurately without such dramatic increases in mesh size, thus potentially

circumventing the need for significant increases in computational power.

4.1.2 Torus

In this section we deploy the MMP algorithm in order to solve the NFM in Equation

(4.1) on the curved surface of a torus, which unlike the previously studied case

of the sphere (see for example [187]) has non-constant curvature. Note that for

any given triangulation of the torus, the collocation techniques described in §3.2

can be deployed directly to solve Equation (4.1); however, implementation of the

trapezoidal rule requires a regular (in the appropriate polar coordinate system)

spatial discretisation of the torus, which is most easily obtained by considering the
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Figure 4.13: Parameterisation of a torus by coordinates (θ, φ).

following parameterisation of the toroidal surface:

(θ, φ) 7→

 (R + r cos θ) cosφ

(R + r cos θ) sinφ

r sin θ

 =

 x

y

z

 . (4.8)

The geometrical meaning of the major curvature radius R, the minor curvature

radius r, and the angles θ and φ are shown in Figure 4.13.

Importantly, the above parameterisation allows us to rewrite Equation (4.1) as

follows:

∂u(θ, φ)

∂t
= A

∫ 2π

0

∫ 2π

0

w((θ, φ), (θ′, φ′))S(u(θ′, φ′))r(R + r cos θ′)dθ′dφ′ (4.9)

− u(θ, φ),

which is in a form that enables us to apply the trapezoidal rule directly to solve the

integral part of the equation, i.e.

I(θ, φ) =

∫ 2π

0

∫ 2π

0

w((θ, φ), (θ′, φ′))S(u(θ′, φ′))r(R + r cos θ′)dθ′dφ′. (4.10)

Note that in the above, we have used the fact that the surface area element for the

torus is given by

dΩ(θ, φ) = r(R + r cos θ)dθdφ,

which can easily be derived from the first fundamental form. It is also worth pointing

out that the above integral is not a convolution integral and so we cannot use FFT

techniques to solve (4.1) on a torus, or indeed on more general surfaces.
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Figure 4.14: Convergence of the trapezoidal and linear collocation methods when
computing the integral (4.10) on the surface of a torus using a Cartesian grid based
triangulation as illustrated in Figure 4.13.

We compared the accuracy of both linear collocation and the trapezoidal rule

by considering the integral in (4.10) for the case when Ω = T 2, i.e. the closed

surface of a torus, with minor radius r = 2 and major radius R = 4.5. As with our

previous analysis, we set the unknown function u(θ, φ) = w((θ, φ), (0, 0)), that is the

connectivity kernel given in (4.2), with the distance function d calculated numerically

using the MMP algorithm. Starting from a regular, initial grid of N0 = 162 nodes,

obtained by applying the spatial discretisation

θi = θ0 + iδθ, i = 0, 1, . . . , 8,

φj = φ0 + jδφ, j = 0, 1, . . . , 17,
(4.11)

we solved the integral on a sequence of increasingly fine meshes, in an identical

manner to that described in Section 4.1.1. A regular triangulation was constructed

from the rectangular tesselation (see, for example, Figure 4.13) resulting from the

aforementioned grid by setting each grid point as a vertex, and subdividing each

rectangular element into two triangles. The results are displayed in Figure 4.14. In

particular, we see that the orders of convergence are linear for the piecewise linear

collocation method and quadratic for the trapezoidal rule.

Note that we repeated the above experiment for both a general triangulation of
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Figure 4.15: Plot (a) shows an illustration of the first three refinements of a DistMesh
triangulation. Plots (b) and (c) display convergence results for linear collocation
when computing the integral in (4.10) using DistMesh and random triangulations,
respectively.
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(a) Outside (b) Inside

Figure 4.16: Initial conditions u0 when solving Equation (4.1) starting; (a) on the
outside of the torus and (b) on the inside of the torus.

the torus, constructed using the DistMesh package, as well as a random triangulation

obtained by applying a random perturbation of 20% to each of the nodes in the

regular triangulation described above. Recall, that in this more general case we

can not use the trapezoidal method. We performed the usual error analysis by

considering a sequence of increasingly fine meshes, using the refinement procedure

described earlier and illustrated in Figure 4.15(a) for the DistMesh grid. That is,

we started with an initial, coarse triangulation consisting of N0 nodes, which was

equal to 164 and 162 for the DistMesh and Random triangulations, respectively; we

then plotted the errors |Im− Im+1| versus Nm+1 for the two different triangulations.

Our results are plotted in figures 4.15(b) and 4.15(c) for the DistMesh and random

triangulation, respectively; as can be readily observed from the plots, we obtain

linear convergence in both cases.

We tracked the evolution of the neural activation u from two different initial

conditions: (i) a rectangular area centred on θ = φ = 0, initially set equal to 2;

and (ii) a rectangular area centred on θ = φ = π, again, initially set equal to 2.

These two initial conditions are displayed in Figure 4.16 and consist of areas of

initial excitation on the outside (positive Gaussian curvature) and inside (negative

Gaussian curvature) of the toroidal surface. Equation (4.1) was first solved on a

regular triangulation as described above. The ODEs resulting from this spatial

discretisation (see Equation (4.6) in the case of linear collocation and Appendix B

in the case of the trapezoidal method) were then solved for T = 400 using the built-

in MATLAB routine ode45, with absolute and relative tolerances set to 1e−06. The

model parameters were set as follows: A = 1.5, h = 0.8 and β = 5. Figures 4.17(i)

and 4.17(ii) show stable bump solutions of Equation (4.1) centred at θ = φ = 0 and

θ = φ = π, respectively, for a torus with minor curvature radius r = 2 and major

curvature radius R = 4.5. In both cases, figures on the right hand side show results

of solving (4.1) using linear collocation on a regular grid of nv = 8256 nodes, whilst
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figures on the left hand side show results when employing the trapezoidal method to

compute the integral in (4.1) on the same grid. These two solutions are in excellent

agreement with maximal difference of the order 1e− 09.

In addition to the above experiments we also solved Equation (4.1) on both

a general mesh created using the DistMesh package, and a random triangulation

obtained by perturbing nodes of the uniform mesh deployed above. The grids in

these general meshes required nv = 11094 and nv = 14196 nodes respectively in order

to obtain results within 1e− 07, as measured by the infinity norm. Figure 4.17(iii)

shows bump solutions on both the inside and outside of the torus, when deploying

a DistMesh triangulation. Similar results found using the random triangulation can

be seen in Appendix C.

Next, we considered the effect of varying the parameters h, and A on solutions of

(4.1) on the torus. In addition to varying these two parameters, we also considered

three different choices of the major curvature radius, R, of the torus, in order to

better understand the influence of curvature on these solutions. To start, we con-

sidered a regular triangulation of the torus constructed from a Cartesian grid in θ-φ

space and performed a comparative analysis between the trapezoidal method and

linear collocation. In all of our experiments the pseudo arclength step-size was set

to ∆s = 0.2, and we completed 100 steps. For comparative purposes we also plot

the branch obtained on the periodic square (denoted by a black line in all figures).

The results of following solutions obtained for the initial state centred at θ = φ =

0 of Equation (4.7) as h is varied are shown in Figure 4.18(i). More specifically, we

performed the continuation using both trapezoidal and linear collocation for three

different values of the major curvature radius:

R1 = 4.5, R2 = 3R1/4 = 3.375 and R3 = R1/2 = 2.25.

Importantly, we found that both methods were in excellent agreement as can be

readily seen from the figure. In addition, we found that solutions behaved in a

qualitatively similar way, regardless of the value of R, to the solutions observed on

the flat, periodic domain, in that for increasing values of h the stable bump solution

was destroyed via a saddle-node bifurcation. This result is confirmed by considering

the plots in Figure 4.18(iii), which display the eigenvalues of the Jacobian matrix

evaluated at the bifurcation point (approximately h∗ ≈ 1.03 for all values of R

considered). Four different solutions, two stable and two unstable, and labelled P1,

P2, P3 and P4 in Figure 4.18(i), are shown in Figure 4.18(ii); in particular, we see

that as we approach the turning point along the stable branch, the bump solutions
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reduce in size before losing stability.

Next, we performed numerical continuation using the bump solution of (4.7)

obtained for the initial state centred at θ = φ = π as our initial condition, again

as the parameter h was varied. Unlike the solutions obtained on the outer equator

of the torus, the solutions on the inner equator vary depending on the value of the

major curvature radius, R. Figure 4.19(i) shows solution branches for R1 and R2,

as well as the flat, periodic square for both linear collocation and the trapezoidal

rule. Again, solutions using both methods are identical, and we find that the bump

solution is annihilated in a saddle-node bifurcation at h∗ ≈ 1.03. The eigenvalue

plots in Figure 4.19(iv) provide further evidence for the saddle-node bifurcation. The

solutions corresponding to the points P1, P2 displayed in figures 4.19(i) and 4.19(ii)

are shown in Figure 4.19(iii). For solutions on the interior of the torus, we find that

for decreasing R, the inner equator approaches a point whereby it is similar in size

to the spatial extent of the connectivity function, w, at which point the stable bump

solution transitions towards a stable ring solution. Note that we observe a similar

behaviour on flat domains if we consider rectangular strips of width comparable

to the spatial extent of the connectivity kernel and with sufficiently large aspect

ratios. The bifurcation diagram for the torus with major curvature radius equal to

R3 is shown in Figure 4.19(ii) from which we observe a loss in stability of the ring

solutions as we increase h; moreover, by considering the eigenvalues of the Jacobian

matrix at the bifurcation point h∗ ≈ 1.19 (see Figure 4.19(v)) we see that this loss

of stability is via a saddle-node bifurcation.

We then repeated the above continuation analysis for fixed h whilst varying A.

Figure 4.20(i) shows the bifurcation results for solutions on the outside of the torus

whilst figures 4.21(i) and 4.21(ii) show the bifurcation results for solutions on the

inside of the torus. When considering solutions on the outer equator, we find that

a decrease in A leads to a loss of stability for the bump solutions via the usual

saddle-node bifurcation route as shown in Figure 4.20(i), as can be readily seen

by the corresponding eigenvalue plot–see Figure 4.20(iii). Different outer equator

solutions highlighted P1–P4 on the R1 and R3 branches in Figure 4.20(i) are shown

in Figure 4.20(ii). The top row corresponds to the R1 branch whilst the bottom

row corresponds to the R3 branch; interestingly, solutions for the R3 branch appear

to display considerably stronger neural activity. As shown the neural activity for

the solutions on the R3 branch are spreading to fill the front of the surface (this

behaviour is also observed in solutions on the R2 branch), which suggests that the

curvature affects the solutions behaviour. The inner equator solutions labelled P1
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and P2 on the R1 branch in Figure 4.21(i) and P3 and P4 on the R3 branch in Figure

4.21(ii) are displayed in Figure 4.21(iii). The top row corresponds to the R1 branch

solutions and the bottom row to the R3 branch solutions. We again found that ring

solutions can form on the interior equator for curvature radius R3.

4.2 Summary

In this chapter we have employed collocation techniques to solve a neural field model

on both a periodic square and the curved, two-dimensional surface of a torus. Im-

portantly, in the case of the periodic square, we found that collocation techniques

are capable of replicating stationary bump solutions found using more standard

techniques, such as Fourier based methods or the trapezoidal rule, using general,

non-Cartesian meshes, more akin to the types of meshes derived from modern neu-

roimaging studies. This result, coupled with efficient numerical techniques for com-

puting geodesic distances on triangulated surfaces, allows us to extend these al-

gorithms with confidence to determine solutions of neural field models on curved

geometries, such as the torus considered herein. Note that this is the first time that

a NFM such as Equation (4.1) has been solved on a curved geometry for which no

analytic formulae for geodesic distance exists. Using numerical simulations, we have

explored the extent to which curvature influences the bump solutions admitted by

NFMs on the torus and found the effects to be minimal. We found solutions to

be qualitatively similar for all choices of major radius of curvature considered in

our experiments, although there was some evidence for increased neural activity on

domains with greater curvature. It is worth noting, however, that our analysis was

limited to just three different choices of major radius of curvature, whilst the minor

radius of curvature was held fixed, and so it would be premature to conclude that

curvature has no effect on stationary bump solutions at this time. Also, whilst the

results concerning curvature were rather limited, our analyses in this section pro-

vides us with considerable confidence in our numerical techniques moving forward

to the next chapter.
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Chapter V

An adaptive neural field model

In this chapter we consider the following extension of the Amari equation

∂u(x, t)

∂t
= A

∫
Ω

w(x,x′)S(u(x′, t))dΩ(x′)− u(x, t)− a(x, t),

τ
∂a(x, t)

∂t
= Bu(x, t)− a(x, t). (5.1)

The above is an example of an adaptive neural field model, in that it includes

an additional recovery variable that provides negative feedback to the system, and

importantly, unlike the Amari equation studied in Chapter 4, it supports both sta-

tionary and travelling bump solutions. This will allow us to investigate the extent

to which moving patterns of neural activity are influenced by the geometric features

of the underlying domain Ω.

The parameters B and τ represent the strength and time-scale of the adaptation

variable a. The connectivity kernel w and firing rate function S are kept the same

as in the previous chapter, that is

w(x,x′) = e−d(x,x′)2 − 0.17e−0.2d(x,x′)2 ,

with d a suitably defined metric, and

S(u) =
1

1 + e−β(u−h)
.

More specifically, we present the results of applying our numerical techniques to

solve a NFM on a flat, periodic square domain, the closed surface of a torus and

the cortical surface of a rat brain. In the first two cases, we perform a comparative
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analysis against more standard techniques, deploying either Fourier based methods

and/or the trapezoidal rule to compute the integral in (5.1), and investigate the

dependence of our results on the underlying mesh. We then consider solutions of

our NFM on the folded structure of the rat brain, which allows us to highlight the

extent to which cortical geometry influences travelling bump solutions of our NFM.

5.1 Numerical Results

In this section we present results of our numerical experiments for each of the three

different domains under consideration. We start by investigating our ability to

reproduce travelling bump solutions on a flat, periodic domain before moving to

more general surfaces. We note here that as with the Amari equation considered in

the previous chapter, the main source of error in our numerical calculations arises

from the integral term in Equation (5.1); however, the analysis performed in Chapter

4 remains valid for the adapted Amari equation, at least for the periodic square and

the torus. We do not conduct an error analysis on the cortical surface of the rat brain

since we are restricted to the available data points; however, our investigations on

both the periodic square and the torus provide us with confidence in our techniques.

5.1.1 Planar domain with periodic boundary conditions

We solved Equation (5.1) using the collocation techniques described in Chapter 3

on both regular and irregular meshes. In the case of the Cartesian mesh we also

solved using trapezoidal and FFT’s, for comparative purposes. In all cases the neural

activation, u, was initially set equal to 2 in a rectangular area centred at the origin

- see Figure 5.1(a). The initial condition for the recovery variable, a, dictates the

direction in which the bump solution travels and so for the initial condition shown

in Figure 5.1(b), which is set equal to 1.5 in a rectangular area shifted to the right of

the initial stimulus, we obtain a bump solution that travels from right to left along

the x-axis.

After spatial discretisation, we integrated the resulting system of ODEs for T =

250 using the built-in MATLAB routine ode45, with absolute and relative tolerances
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(a) (b)

Figure 5.1: Initial conditions for; (a) neural activity u and (b) the recovery variable
a, on the periodic square.

set to 1e− 06. In the case of linear collocation the ODEs are given by

dun(vi, t)

dt
= 2A

n∑
k=1

Area(4k)

∫
σ

w(vi, Tk(r, s))S

(
3∑
j=1

u(vk,j, t)lj(r, s)

)
drds

− un(vi, t)− an(vi, t), (5.2)

τ
dan(vi, t)

dt
= Bun(vi, t)− an(vi, t).

Equivalent systems of ODEs for FFTs and the trapezoidal method are given in

Appendix B. In all of our simulations, model parameters were set as in [81], i.e.

A = 2.0, h = 0.8, B = 0.4, τ = 3.0 and β = 5.0.

This enables us to validate our solutions, at least in the case of the periodic square.

Figure 5.1.1 shows a travelling bump solution for FFTs, the trapezoidal method

and linear collocation, using a regular grid on nv = 4225 nodes. All three methods

are in agreement, converging to the same solution up to 1e−14. Again we find, when

moving to more general meshes, that in order to accurately reproduce the solutions

shown in Figure 5.1.1(i) requires considerably more node points. For example, when

considering a DistMesh grid we require nv = 13089 nodes, an increase of 209% on

that for a regular discretisation, in order to obtain results within 1e−08, as measured

by the infinity norm. Note that the solutions on general triangulations are interpo-

lated onto the Cartesian grid in order to conduct the error analysis. Such a solution

is shown in Figure 5.1.1(iv). When considering a random mesh on nv = 16384

nodes, produced by perturbing an initial Cartesian mesh by 10%, we obtain results

within 1e − 08 as measured by the infinity norm, see Figure 5.1.1(iii). However, if

the perturbation is increased, say to 20%, then the accuracy of the solutions can

vary significantly, at least for the number mesh points we have considered. Figure



5.1 Numerical Results 91

(i
)

(i
i)

(i
ii

)
(i

v
)

F
ig

u
re

5.
2:

(i
)

T
ra

ve
ll
in

g
b
u
m

p
so

lu
ti

on
s

of
(5

.1
),

co
m

p
u
te

d
on

th
e

C
ar

te
si

an
gr

id
b
as

ed
tr

ia
n
gu

la
ti

on
of

th
e

p
er

io
d
ic

sq
u
ar

e
im

p
le

m
en

ti
n
g;

(a
)

&
(d

)
F

F
T

,
(b

)
&

(e
)

tr
ap

ez
oi

d
al

ru
le

an
d

(c
)

&
(f

)
li
n
ea

r
co

ll
o
ca

ti
on

.
(i

i)
T

ra
ve

ll
in

g
b
u
m

p
so

lu
ti

on
s

of
(5

.1
),

so
lv

ed
im

p
le

m
en

ti
n
g

li
n
ea

r
co

ll
o
ca

ti
on

on
a

ra
n
d
om

tr
ia

n
gu

la
ti

on
ge

n
er

at
ed

b
y

p
er

tu
rb

in
g

th
e

C
ar

te
si

an
gr

id
b
as

ed
tr

ia
n
gu

la
ti

on
b
y

20
%

;
(a

)
&

(c
)

b
es

t
ca

se
an

d
(b

)
&

(d
)

w
or

st
ca

se
.

(i
ii
)

T
ra

ve
ll
in

g
b
u
m

p
so

lu
ti

on
s

of
(5

.1
),

so
lv

ed
im

p
le

m
en

ti
n
g

li
n
ea

r
co

ll
o
ca

ti
on

on
a

ra
n
d
om

tr
ia

n
gu

la
ti

on
ge

n
er

at
ed

b
y

p
er

tu
rb

in
g

th
e

C
ar

te
si

an
gr

id
b
as

ed
tr

ia
n
gu

la
ti

on
b
y

10
%

.
(i

v
)

T
ra

ve
ll
in

g
b
u
m

p
so

lu
ti

on
s

of
(5

.1
),

co
m

p
u
te

d
im

p
le

m
en

ti
n
g

li
n
ea

r
co

ll
o
ca

ti
on

on
a

D
is

tM
es

h
tr

ia
n
gu

la
ti

on
of

th
e

p
er

io
d
ic

sq
u
ar

e.



5.1 Numerical Results 92

5.1.1(ii) shows the ‘best’ and ‘worst’ results when running simulations on 6 different

random meshes with nv = 16384 nodes. The ‘best’ case solution achieves accuracy

of 1e− 08 as measured by the infinity norm, whilst the ‘worst’ case scenario can be

seen to drift from the line y = 0.

Next we performed a numerical bifurcation analysis in order to better under-

stand the dependence of the observed travelling bump solution on certain model

parameters. Note that in order to deploy the continuation procedures introduced

in Chapter 3, we need to move to a travelling coordinate frame in which the bump

solution is stationary. Since the bump solution we consider is travelling from right

to left along the x-axis we set ξ = x+ ct, where here c is the speed of the travelling

bump. Substituting this into Equation (5.1) results in

∂u(ξ, y, t)

∂t
= A

∫ L

−L

∫ L

−L
w((ξ, y), (ξ′, y′))S(u(ξ′, y′, t))dξ′dy′ − u(ξ, y, t)

− a(ξ, y, t)− c∂u(ξ, y, t)

∂ξ
,

∂a(ξ, y, t)

∂t
= Bu(ξ, y, t)− a(ξ, y, t)− cτ ∂a(ξ, y, t)

∂ξ
.

(5.3)

Travelling bump solutions of (5.1) satisfy the right hand side of the above equation,

that is

0 = A

∫ L

−L

∫ L

−L
w((ξ, y), (ξ′, y′))S(u(ξ′, y′))dξ′dy′ − u(ξ, y)− a(ξ, y)

− c∂u(ξ, y)

∂ξ
,

0 = Bu(ξ, y)− a(ξ, y)− cτ ∂a(ξ, y)

∂ξ
,

(5.4)

and so solving Equation (5.4) for u, a and c results in such solutions. Note that the

above situation is further complicated by the fact that translations of solutions of

(5.4), in either the ξ or y direction, are also solutions. To remove these additional

degrees of freedom we impose the following two conditions:

1. Solutions are required to be symmetric about y = 0, i.e.

u(ξ, y) = u(ξ,−y) and a(ξ, y) = a(ξ,−y); (5.5)

2. We implement a scalar condition that removes translational invariance in the
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ξ direction as follows:

u(0, 0)− 1

L

∫ L

−L
u(ξ, 0)dξ = 0. (5.6)

This condition ensures that the value of u at the center of the domain equals

its average over ξ at y = 0.

Again, the motivation behind these choices are that they are the same as considered

by Laing in [81] and so will allow for easier comparison of our results.

After discretisation, equations (5.4) and (5.6) result in a system of 2nv + 1 equa-

tions in 2nv + 1 unknowns – recall that the bump speed c is now included as an

unknown in the problem. To perform the continuation we append the usual pseudo-

arclength condition, that is

(v − v∗)T v̇∗ + (λ− λ∗)T λ̇∗ −∆s = 0,

where (v∗, λ∗) is a solution of the discretisation of (5.4) and (v, λ) a nearby point

on the solution branch, in order to obtain a system of 2nv + 2 equations

G(V) = 0,

which can be solved to construct solution branches. Here we have formed the vector

V by concatenating v and λ.

Perhaps the main difference between solving the Amari equation in the previous

chapter and the adapted Amari equation given by (5.1) is the derivative term that

appears in the right hand side of Equation (5.4). On a Cartesian grid this term is

easily approximated at each point by using either finite differences or FFTs [188];

here we use the following central difference approximation:

∂u(ξ, y)

∂ξ
≈ u(ξ + ∆ξ, y)− u(ξ −∆ξ, y)

2∆ξ
,

which converges quadratically. Note, however, that when we consider more gen-

eral meshes we can no longer use finite difference (or FFT) approximations of the

derivative, since the classical finite difference formulae breakdown on such irregu-

lar meshes. One possible alternative is to compute the derivative directly via the

projection operator

un(Tk(r, s)) =

fd∑
j=1

u(Tk(qj))lj(r, s), (5.7)
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that is
∂un
∂ξ

=
∂un
∂r

∂r

∂ξ
+
∂un
∂s

∂s

∂ξ
. (5.8)

In the case were we use linear piecewise approximations of our unknown function,

such that fd = 3 in (5.7), then

∂un
∂r

= u(Tk(q3))− u(Tk(q1)),
∂un
∂s

= u(Tk(q2))− u(Tk(q1)),

and from the inverse mapping of Tk we obtain the following relationship between

r, s:

r(ξ3 − ξ1) + s(ξ2 − ξ1) = ξ − ξ1

r(y3 − y1) + s(y2 − y1) = y − y1,
(5.9)

which we can differentiate to obtain

∂r

∂ξ
= α(y2 − y1),

∂s

∂ξ
= α(y1 − y3),

where

α =
1

(ξ2 − ξ1)(y2 − y1) + (ξ2 − ξ1)(y3 − y1)
.

The above results in the following approximation of the derivative on a general mesh

when deploying linear collocation:

∂u

∂ξ
≈ α

[
(u(Tk(q3))−u(Tk(q1))(y2− y1) +u(Tk(q2))− (u(Tk(q1)))(y1− y3)

]
(5.10)

Unfortunately, the above approximation of the derivative converges linearly, as

opposed to the quadratic convergence observed when deploying second order fi-

nite difference approximations on a Cartesian grid, and so simulations using non-

Cartesian grids require a much larger number of elements in order to attain results

that are in good agreement with those found on Cartesian-based grids, when using

either FFTs, the trapezoidal method or linear collocation. One solution to the above

problem is to consider higher-order approximations, such as quadratic collocation,

and we have performed such an analysis (see Appendix D), obtaining identical re-

sults to those described below for the periodic square. However, such higher order

approaches are not readily extended to curved geometries since they typically re-
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quire collocation node points that are not contained on the low-order, triangulated

surface approximations we consider, thus requiring higher-order surface geometry

interpolation methods. Moreover, additional difficulties arise when performing a

numerical bifurcation analysis on more general grids, even in the case of the flat,

periodic square. For example, due to the lack of symmetry in a more general mesh,

the conditions (5.5)–(5.6), that remove redundancies due to the invariance of solu-

tions, are difficult to implement and so more general constraints are required. One

way to do this is to enforce a condition that minimises the L2 norm of u against

some suitablly chosen reference function û [189, 190, 191, 192], that is∫
Ω

(u− û)
∂û

∂ξ
dξ = 0.

Of course the choice of û is crucial to the success of the method and is typically

chosen so as to mimic the solutions sought [193]. For the reasons given above,

we restrict the bifurcation analysis of travelling bump solutions to flat domains

discretised using Cartesian-based grids.

To construct solution branches we used the Newton-Krylov algorithm, nsoli

from [123], with the maximum number of Newton steps equal to 40 and the abso-

lute and relative tolerances equal to 1e−10. The pseudo arclength step size is set to

∆s = 0.2 in all of our experiments. The result of following solutions of (5.4) as A is

varied is shown in Figure 5.3(ii), which shows A as a function of the bump speed c.

Continuation was performed using both FFTs and linear collocation obtaining iden-

tical results. The plot shows that as A is varied the stable solution is destroyed in a

saddle-node bifurcation; Figure 5.3(iii) plots the eigenvalues of the Jacobian matrix

evaluated at the bifurcation point occurring at A∗ ≈ 2.11. Three different solutions

labelled P1, P2 and P3 in Figure 5.3, respectively, are shown in Figure 5.3(i); in

particular, we see that as we move along the branch the bump spreads eventually

splitting into two separate bumps. The above analysis was then repeated for the pa-

rameter h resulting in the bifurcation plot shown in Figure 5.4(ii). Again, the stable

bump solution is annihilated at a saddle-node bifurcation, which is approximately

given by h∗ ≈ 0.97. A plot of the eigenvalues of the Jacobian (see Figure 5.4(iii))

evaluated at this point provide further evidence for the existence of a saddle-node

bifurcation. Three solutions along the branch are shown in Figure 5.4(i), as can be

readily seen the bump solutions are shrinking as the system becomes unstable.
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Figure 5.3: (i) Solutions from Figure (5.3)(ii); (a) & (d) point P1, (b) & (e) point P2

and (c) & (f) point P3. (ii) Solution branches as the parameter A is varied against
c. (iii) The eigenvalues plotted at the saddle-node bifurcation.
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Figure 5.4: (i) Solutions from Figure (5.4)(ii); (a) & (d) point P1, (b) & (e) point P2

and (c) & (f) point P3. (ii) Solution branches as the parameter h is varied against
c. (iii) The eigenvalues plotted at the saddle-node bifurcation.
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5.1.2 Torus

In this section we use the MMP algorithm in order to solve the NFM in Equation

(5.1) on the curved surface of a torus. The parameterisation (4.8), described in the

previous chapter, allows us to rewrite Equation (5.1) as follows

∂u(θ, φ)

∂t
= −u(θ, φ)− a(θ, φ)+

A

∫ 2π

0

∫ 2π

0

w((θ, φ), (θ′, φ′))S(u(θ′, φ′))r(R + r cos θ′)dθ′dφ′,

τ
∂a(θ, φ)

∂t
= Bu(θ, φ)− a(θ, φ),

(5.11)

which allows us to apply the trapezoidal rule directly in order to solve (5.1).

As before, we tracked the evolution of neural activation, u, from two different

initial conditions: (i) for u initially set equal to 2 in a rectangular area centred on

θ = φ = 0, and a initially set equal to 1.5 in a rectangular area shifted to the right

of u (ii) for u initially set equal to 2 in a rectangular area centred on θ = φ = π,

and a initially set equal to 1.5 in a rectangular area, shifted to the left of u. The

placement of a in both cases was chosen such that the bump travelled clockwise

around the torus. Equation (5.1) was first solved on a regular triangulation obtained

via a uniform discretisation of the θ-φ plane. The resulting ODEs from this spatial

discretisation (see Equation (5.2) in the case of linear collocation and Appendix B

for the trapezoidal rule) were solved for T = 400 using the built-in MATLAB routine

ode45, with absolute and relative tolerances set to 1e− 06. The model parameters

were set as follows

A = 2.0, h = 0.8, B = 0.4, τ = 3.0 and β = 5.0.

Figures 5.1.2(a) and 5.1.2(b) show travelling bump solutions of Equation (5.1),

for both initial conditions, implementing linear collocation on a mesh consisting

of nv = 8256 nodes. Comparing these solutions against those found when using

the trapezoidal method (shown in Appendix C) we find that they are in excellent

agreement with the maximal difference between solutions of the order 1e− 08

We also solved Equation (5.1) on both a general mesh generated using DistMesh,

and a random triangulation obtained by perturbing the nodes of the uniform mesh

by 20%. The number of nodes in each mesh increases to nv = 11094 and nv =

17766, respectively, in order to achieve results within 1e − 07. Note that when

comparing solutions on the general triangulations to those found when implementing
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the trapezoidal method we employ the MATLAB function griddata to interpolate

the function onto the regular Cartesian based mesh. Figures 5.1.2(c) and 5.1.2(d)

show travelling bump solutions on the DistMesh domain, similar results for the

random domain are shown in Appendix C.

Note that the travelling bump solutions considered thus far on the torus prop-

agate at constant speed along geodesic curves (either the inner or outer equator of

the torus), and perhaps more importantly, along trajectories of constant curvature,

at least along the direction of travel. However, we have also considered travelling

bump solutions that propagate along non-geodesic trajectories, by considering dif-

ferent initial choices of the recovery variable a. Figure 5.6(a) shows the path of such

a solution as it traverses the torus. In particular, we find that solutions following

non-geodesic paths travel with spatially variable speed, and moreover, that the inner

equator, which is the region of greatest negative curvature on the torus, acts as a

barrier, in the sense that solutions travelling along non-geodesic paths are unable

to pass through this region, and instead we observe oscillatory-like behaviour as

the bump solution repeatedly crosses the outer equator. This behaviour is further

evidenced in 5.6(b), in which we plot both the speed of the bump solution, as well

as the Gaussian curvature, along the trajectory plotted in Figure 5.6(a). In Figure

Figure 5.6(c) we plot the speed as a function of Gaussian curvature for each of the

three tori considered in this work (i.e. major radii of curvature of R, 3R/4 and

R/2) from which it is clear that a linear relationship between curvature and bump

speed exists on the torus, regardless of the radius of curvature. Note that we have

also considered solutions passing through so-called meridian geodesics, i.e. paths of

fixed azimuthal angle, and found that such bump solutions travel at constant speed

and pass through the inner equator unhindered, similar to the simulations on the

inner and outer equator studied earlier.

5.1.3 Cortical surface of the rat brain

In this section we apply our methods to the curved surface of the rat brain. The

spatial coordinates were obtained via the CARET software package [161] and pro-

cessed using the CARET MATLAB toolbox. Restricting to the left hemisphere, we

deploy the triangulation of the rat cortex provided by the CARET software with

nodes positioned on the nv = 9623 available data points. We tracked the evolution

of neural activity u, which was initially set equal to 2 in a small region (1% of the

total nodes in the mesh) surrounding a node selected at random, whilst the recov-

ery variable a was set equal to 1.5 in an equivalently sized, partially overlapping
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Figure 5.6: (a) The tracked path of a bump solution with non-constant speed plotted
on the torus shaded with Gaussian curvature. (b) The curvature and speed of
the bump plotted in time. (c) The speed plotted against curvature for the three
curvatures of the torus; R, R/2 and 3R/4, alongside a slope of gradient 1.
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region of nodes. Since the position of the recovery variable determines the direction

of propagation we have repeated this experiment a number of times, with different

initial conditions, to gain an insight into how both the geometry, as well as the site,

and form, of activity initiation, influences propagation travelling patterns of the lo-

calised bump solutions admitted by Equation (5.1). The ODEs in (5.2) were solved

for T = 400 using the built-in MATLAB routine ode45, with absolute and relative

tolerances equal to 1e − 06, and model parameters set equal to the same values as

before, i.e.

A = 2.0, h = 0.8, B = 0.4, τ = 3.0 and β = 5.0.

Figure 5.7 shows the progression of stable bump solutions of (5.1) at selected

points for three different initial conditions. Importantly, we find regardless of the

initial direction of propagation that solutions tend to one of two trapping states:

either they settle on the large folded region on the underside of the rat brain (see

the panel in the bottom right corner of figures 5.7(a) and 5.7(b)), or they get stuck

in the transition between the main body of the brain and the tail-like structure to

the rear – see Figure 5.7(c) for an example of such a solution.

We remark that unlike the solutions obtained on the torus, all solutions obtained

for the rat brain traverse regions of both positive and negative Gaussian curvature,

and as was hinted at in our experiments in the previous section, this variation in

curvature would appear to have a profound affect on both the speed and direction

of propagation. In Figure 5.8 we plot the path of a bump solution of (5.1) tracked at

the peak (red line) alongside the geodesic path between the start and end points of

the trajectory (in black) on the surface of the rat brain, which is coloured according

to Gaussian curvature. Note that the initial point is taken such that transients have

been removed. To compute the Gaussian curvature at each mesh point we used the

Matlab Curve Fitting Toolbox to fit a cubic surface to the set of points obtained

by considering the point of interest, vi say, plus all nodes on the mesh at most a

distance two (measured by counting the minimum number of edges required to step

between nodes on the nearest-neighbour mesh provided by the triangulation) from vi.

We then computed the Hessian matrix (after a suitable change of coordinates) and

determined the Gaussian curvature by considering its eigenvalues, which provide

the principal curvatures of the fitted surface and hence an approximation to the

principal curvatures of the triangulated domain at vi (See [194] for further details

on how to compute the curvature on triangulated meshes).

For illustrative purposes we have scaled the Gaussian curvature in Figure 5.8

to lie between minus one and one. The first point of note is that the behaviour
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Figure 5.8: The Gaussian curvature plotted on the surface of the rat brain along
with the tracked path of the solution in Figure 5.7 and the geodesic from the start
point to the end point.

displayed in Figure 5.8 is typical based on our experiments, in that bump solutions

do not follow geodesic paths, rather their trajectories appear to be more greatly

influenced by changes in curvature. To further highlight this relation, in Figure 5.9

we have plotted the speed of the bump solution as well as the Gaussian curvature

along the trajectory (the red line in Figure 5.8), from which we can see that there

is an obvious correlation between peaks in bump-speed and peaks in the curvature.

Our results suggest that these differences in bump-speed are due to the geometric

structure of the rat brain and the presence of curved and smooth regions in the

rat cortical surface. In particular, we find that areas of negative curvature cause

the bump solutions to slow and even act so as to divert (solutions not shown) the

path of propagation, which is reminiscent of the behaviour observed for non-geodesic

trajectories on the torus, in the previous section.

As mentioned in Chapter 3, our triangulation of the rat brain includes not only

the outer surface of the cortex but also the inner surface as well as subcortical regions,

and so our simulations include travelling bump solutions which traverse regions

outside of the cortical surface. Of course, these non-cortical regions of our surface

representation do not support travelling neural activity and so such solutions are

not physiologically realistic; however, from a mathematical/computational point of

view these regions are perhaps the most interesting as they are the most convoluted

regions of the mesh, thus they provide proof of principal of what we might expect to
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Figure 5.9: The speed of the bump solution in Figure 5.7 and the curvature along
the trajectory of this solution, which is displayed by red line in Figure 5.8.

find when we extend our methods to more convoluted geometries such as the human

brain.

We remark that a number of recent studies [195, 196] investigating wave prop-

agation on cortical structures (with specific applications to cortical spreading de-

pression) using reaction-diffusion models have forwarded Gaussian curvature as a

relevant factor in both wave nucleation and propagation. Indeed, the study by

Kroos et al. [195] found that some regions of the brain appeared to trap the propa-

gating depolarisation waves for longer times and thus are likely to play a cruical role

in CSD propagation. We note that this behaviour is reminiscent to that observed

on both the torus and the rat cortex in our studies as bump solutions approach re-

gions of negative curvature. Moreover, the study in [196] hypothesised that regions

of high negative Gaussian curvature were potentially good targets for modulating

pathways of localised spreading depression wave segments, and thus potentially pro-

viding stimulation protocols for clinical use. Again, early results in this direction,

as discussed in this chapter, would appear to be in good agreement with these pre-

dictions.

5.2 Summary

In this chapter we have deployed our new computational technique to simulate

travelling bump solutions of an adapted NFM on curved geometries and investigated

the influence of the underlying mesh on these solutions. A key feature of this work

is that we deploy neuroimaging data from the left hemisphere of the rat brain,

alongside efficient numerical procedures for computing geodesic distances, in order
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to study the behaviour of localised spot-like solutions of a non-local neural field

model. Importantly, preliminary results suggest that cortical geometry influences

profoundly both the propagation speed and path of such localised bump solutions,

thus leading us to conclude that studies that do not account for the folded structure

of the cortex risk simplifying neural activation dynamics in a potentially significant

way.



Chapter VI

Conclusions and future work

6.1 Conclusions

Techniques for solving neural field models (NFMs) typically involve either trans-

forming the problem to an equivalent differential equation [81, 83], which can be

investigated using a mixture of well established analytical and/or numerical meth-

ods, or, via direct numerical simulation of the integral form of the NFM using fast

Fourier transforms (FFTs) to efficiently solve the convolution integral [85]. These

approaches, however, rely either on special choices for the integral kernel (e.g. ker-

nels, w, whose Fourier transform is a rational function) or are restricted to uniform,

periodic domains. In this thesis, we have employed collocation techniques, along-

side efficient numerical procedures for computing geodesic distances on polygonal

surfaces, in order to solve NFMs on realistic cortical geometries. By extending these

methods to curved geometries for which no analytic formulae for geodesic distance

exists, we are able to investigate, for the first time, the effect of cortical geometry

on solutions of non-local field equations and thus potentially gain insight into how

the cortical structure of the brain effects spreading processes and pattern formation

in both healthy and diseased brains.

Despite the highly convoluted nature of the human brain, NFMs typically treat

the cortex as a planar two-dimensional sheet of neurons. Indeed, current methods

for directly solving NFMs usually consider a regular, Cartesian-based discretisa-

tion of a planar domain for which the analytic distance between any two points is

easily computed. Thus for comparative purposes, in Chapter 4 we begin by inves-

tigating stationary bump-like solutions of perhaps the simplest NFM, namely the

Amari equation, on a periodic square domain. More specifically, we investigate and
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compare convergence properties of such solutions using both linear and quadratic

collocation schemes on a variety of regular meshes as well as more general meshes

not fixed to the Cartesian grid points. For regular grids we performed a comparative

analysis against more standard techniques, in which the convolution integral is com-

puted either by using Fourier based methods or via the trapezoidal rule. Somewhat

surprisingly, we found that on regular, periodic meshes, linear collocation displays

better convergence properties than quadratic collocation, and is in fact comparable

with the spectral convergence displayed by both the Fourier based and trapezoidal

techniques. However, for more general meshes we obtain superior convergence using

higher order methods, as expected. Importantly, we found collocation techniques

are capable of replicating the steady state solutions observed using more standard

techniques for both regular and irregular triangulations, although additional compu-

tational costs are incurred in the latter case as a greater number of mesh points are

required to achieve an accurate solution. To further improve confidence in the ap-

proach we performed a numerical bifurcation analysis of the Amari equation posed

on a periodic square using both FFTs and linear collocation (the same results are

obtained using quadratic collocation) and obtained identical results up to machine

precision, when varying different parameters.

As a proof of principle, we then applied the new approach to solve the Amari

equation on a torus. The torus was chosen as unlike the sphere (which has been

studied by Coombes et al. [187]) no analytic formula for the distance between points

exists, and moreover its Gaussian curvature is non-constant. Note that we cannot use

FFTs on the torus but can deploy the trapezoidal method on a regular discretisation

of the torus by moving to polar coordinates, and so a comparative analysis can be

performed. As before, we considered a range of meshes (performing the comparative

analysis using a regular mesh) and undertook the appropriate error analysis, again

finding the different methods to be in good agreement. We considered two types

of solutions: (i) a bump solution on the outer equator (i.e. θ = φ = 0); and (ii) a

bump solution on the inner equator (i.e. θ = φ = π). By holding the minor radius

of curvature constant and varying the major radius of curvature we investigated

the extent to which curvature of the torus effects the stable bump solutions. In

particular, we found that the bump-solutions on the outer equator behaved in a

qualitatively similar way to those in the periodic square, whilst depending upon

the ratio between major and minor radii, we observed either bump solutions or

ring solutions on the inner equator. These differences where further highlighted by

performing a numerical bifurcation analysis; note that this is the first time that
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such an analysis has been performed on the torus. When varying h and A in the

system we observed an increase in neural activity in the bump solutions as the major

curvature radius decreased.

In Chapter 5 we considered a two-dimensional NFM that included an additional

(recovery) variable and as such admits both steady state and travelling bump so-

lutions. Here we wanted to consider the effect that curvature might have on both

the path and speed of propagation for solutions of the 2D NFM. In addition to

simulating this model on the periodic square and torus as before, we also deployed

neuroimaging data in order to solve the model on the curved geometry of the rat

cortical surface. An error analysis was again performed in the case of the periodic

square and torus, and the results from the different methods were in good agreement.

In the case of the periodic square we performed a numerical bifurcation analysis,

providing further evidence for the accuracy of the collocation technique; however,

this analysis is not currently available for travelling solutions on curved geometries

due largely to fact that the bump speed now varies spatially, but also due to nu-

merical errors that arise in this more complicated setting. Importantly, the results

concerning bump propagation on the rat cortex presented in Chapter 5 suggest that

cortical geometry influences profoundly both the propagation speed and path of

such localised bump solutions and moreover that these propagation properties are

related to changes in the Gaussian curvature of the cortical surface.

6.2 Plan of future work

Next we consider a number of possible directions for future work.

6.2.1 Computational optimisation

The use of linear collocation enables us to consider far more general geometries

than the standard methods of FFTs and the trapezoidal method; however, this

flexibility incurs considerable extra cost, especially in regards to FFTs. This cost

increases significantly as more irregular meshes are deployed, for example, using a

standard desktop computer, the computational time to solve the Amari equation on

the perodic square is approximately 30 minutes for a Cartesian based triangulation,

but this increases to approximately 5 hours when an irregular triangulation is used.

Similar increases in computation are observed for the other geometries considered

here as meshes become more irregular. There are of course a number of obvious

ways in which we could speed the code up, for example, implementing Matlab’s
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full parallisation capabilities to take advantage of multicore processors and clusters,

or even cloud based facilties such as the Amazon Web Services (AWS). To extend

the ideas introduced in this thesis to human cortical geometries with physiological

connectivity functions will require us to move away from Matlab and to use high

level programming languages such as C/C++ or even the CUDA framework [197]

which speeds numerical computations considerably by exploiting the parallelism of

a GPU chip.

Another way to improve computational efficiency is to preprocess the triangula-

tions so as to remove those triangles that are far from being equilateral; as well as

making the triangulation more regular, this has the added benefit of reducing the

number of mesh nodes. Of course there is a balance between the required accuracy

with which we represent the geometry of the problem and the coarseness of the un-

derlying mesh; however, more coarse representations are possible when the geometry

of the problem is approximated using higher order elements – see the next section for

additional details. Finally, the bifurcation analyis is particularly time consuming,

taking anywhere between 10–72 hours to compute a branch, depending upon the

regularity of the mesh. As well as the methods described above, which will help to

reduce the computational time for the bifurcation analysis, we can consider a num-

ber of numerical tricks that have been developed for such an analysis. For example,

when performing a numerical bifurcation analysis, the majority of the time is spent

computing Jacobian matrices, which are required (a) in the Newton stepper; and

(b) to determine the stability of the computed branch. In our work we have com-

puted Jacobian matrices numerically using finite differences; however, in practice it

is often sufficient to accurately compute the Jacobian matrix at only a few iterations

and to approximate it inbetween using efficient rank-one update methods, such as

Broyden’s method [124]; unlike standard numerical differentiation, which requires

n vector-valued function evaluations, these methods require only one vector-valued

function evaluation.

6.2.2 Higher order interpolation methods

Related to the above is the concept of higher order approximation of surfaces. In our

work we have considered piecewise flat approximations of our surfaces, and it is well-

kown that such low order approximation can introduce a variety of errors [198, 199].

The natural next-step is to consider curved triangular elements alongside quadratic

collocation, and a simple way to implement this is to use the same quadratic basis

functions for the surface geometry interpolation as for the collocation method (also
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known as an isoparametric mapping [200]). To obtain the curved triangle approxi-

mation to the domain we need to implement the quadratic mapping from the unit

simplex σ to each 4k using the Lagrange quadratic basis functions. In this way we

can implement quadratic collocation techniques to solve NFMs more accurately on

curved domains. Importantly, such methods can attain the same levels of accuracy

as the linear approximations considered in this thesis on much coarser meshes, thus

reducing the computational work required to solve the NFM of interest.

Further improvements in accuracy can be attained by considering an exact rep-

resentation of the surface geometry, as opposed to the typical inexact discretised

representation. For example, in [201] the authors investigate the impact of consid-

ering numerical integration techniques that result in exact, curved-element-based

representations of the geometry – a kind of limiting case of the quadratic-based

elements described above. Importantly, the authors found that this more accu-

rate representation required considerably fewer elements to reach the same level of

accuracy in their simulations.

6.2.3 Extending the method to more convoluted geometries

Whilst we have considered curved geometries for which no analytic formula for

the geodesic distance exists in this work, they are still some way off the highly

convoluted nature of the human brain and so an obvious direction to extend this

work is to apply it to such structures. As a first step in this direction, we have

solved the neural field model in (5.1) on a down sampled version of a human cortical

surface, which we obtained from the Human Connectome Project [21, 223]. Whilst

this cortical structure is a rather coarse representation of the human cortex, it is

significantly more convoluted than the structures considered thus far in this thesis

(see Figure E.1), and so likely provides some indication as to the different types

of behaviour we might expect to find when solving a NFM on such a complicated

geometry.

In our preliminary investigations thus far, we have observed two different types of

behaviour: the first of which is similar to that observed in the rat brain experiments,

in that the travelling bump solution gets trapped in a region of large negative curva-

ture (solutions not shown); the second behaviour that we observe happens after the

bump solution enters one of the sulci, and attempts to follow its winding path. Here,

we see that as the bump attempts to traverse a tight bend in the fissure, it splits into

two bumps that proceed to traverse the sulcus but in opposite directions. Figure

6.1 shows snapshots of the simulation described above (additional descriptions and
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figures can be found in Appendix E).

It is worth noting that we did not observe this type of solution in our previous

experiments on the torus or rat brain and so it would appear to be induced by

the highly convolved architecture of the human cortex. The precise nature of these

solutions and their relation to the cortical structure is an important area of future

research. In addition, it would be interesting to test the dependence of the solutions

observed on mesh-fineness, as well as test the effect of the connectivity function on

such solutions.

6.2.4 Making the model more physiologically realistic

The NFMs considered in this thesis are relatively simplistic and various features

of relevance to neural physiology have been omitted from our formulation. For

example, whilst our model incorporates short-range excitatory and longer-range in-

hibitory connections, unlike previous models on curved geometries that required

special choices of the connectivity kernels so as to reduce the NFM to a related

PDE [202], the introduction of long-range white matter connections is a crucial next

step. Indeed, a number of recent studies have highlighted the role of cortical geom-

etry in shaping both local grey matter connectivity (as considered here) [153, 203],

and long-range white matter connectivity architecture [154], and so including macro-

scale connectivity within the NFM, thus better reflecting neural mechanisms of rel-

evance to bumps, waves and more general patterns of neural activity in the brain,

is an important area of future research.

Another way to make the model more physiologically realsitic is to introduce

time delays [120, 204] that arise naturally due to the finite speed of signals propa-

gating along dendrites and axons. The models considered here assume that action

potentials arrive from the presynaptic neuron to the postsynaptic neuron instan-

taneously, which is clearly incorrect from a biological point-of-view. Although the

early formualtions of neural fields from Amari [3] and Wilson and Cowan [19] con-

sidered these delays, until more recently [108, 187, 205, 206, 207, 208] they have

been disregarded due to the lack of mathematical setting [187]. An example of such

a model is the time-delayed Amari equation which is given by

∂u(x, t)

∂t
= −u(x, t) +

∫
Ω

w(x,x′)S(u(x′, t− τ(x,x′))dΩ(x′), (6.1)

where x is a point on the surface Ω, t is the time and τ denotes the corresponding

delay between the fibre connecting the two points x and x′. Again, w and S represent
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the connectivity and firing rate functions, respectively.

The above equation reduces to a system of delay differential equations after

discretisation, which can be easily solve in Matlab - although it is worth noting

that this is a much more computationally challenging task than the ODE systems

considered in this thesis. Also, we need to compute the delays; however, this can

be done by combining distance data (geodesic in the case of a curved surface) and

experimental data on the timing of signal propagation along white matter pathways.

6.2.5 Potential clinical applications

Another direction for future work is to consider the applications of NFMs to clini-

cal experiments and neurological disorders/diseases. NFMs are capable of explain-

ing and predicting dynamic brain activity observed in perception, behaviour and

functional data [209]. For example there are emerging applications to neurological

disorders such as Parkinson’s disease and dementia [210]. NFMs are also able to

predict bifurcations which generate primary generalized seizures [211], which has

been supported by data testing [211].

Recently NFMs have been deployed to test the capabilities of both noninvasive

and invasive brain stimulation techniques to amplify and accelerate recovery from

stroke [217, 218]. In particular, the authors in [218] aimed to explore the alteration

in brain waves due to post-stroke cortical damage, and to show that brain stim-

ulation techniques were capable of reversing these deleterious effects. It would be

an important next step to include additional physiological details into such stud-

ies, such as cortical geometry, in order to ascertain their affect on recovery and

long term healthcare of stroke survivors, and also to confirm such affects by way of

clinical proof of concept studies using actual patient data.

We could deploy the techniques described in this thesis to replicate the brain

activity found from experimental techniques on cortical surfaces to observe any

differences the geometry may have on current findings. In [212] the authors em-

ploy a NFM in order to make experimental predictions on the relationship of the

excitatory-inhibitory connections which, at this larger scale, can be compared to

voltage senstitive dye imaging data [213, 214, 215]. When considering techniques

such as EEG and MEG, the authors in [202] provide a method for comparing the

data obtained by such experimental techniques and the NFM considered. They

perform their analysis on the surface of a sphere, which they then map onto the

cortical surface. By replicating their analysis directly on the cortical surface using

our approach, we will be able to investigate the effect geometry has on such results.
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Appendix I

Banach spaces

Here we present the definitions of the relevant spaces and their norms for the unique-

ness and existence theorems presented in Chapter 2.

Definition A.1. (Cauchy sequence) A sequence (un) is a Cauchy sequence provided

that for every ε > 0 there exists a natural number n0 so that for n,m > n0 we have

that |un − um| < ε [219].

Definition A.2. (Completeness) A vector space X is complete if every Cauchy

sequence in X converges (to a point in X) [220].

Definition A.3. (Norm) A normed vector space, X, has a norm defined on it,

which is defined as a real-valued function on the space,

‖x‖ , x ∈ X.

It has the following properties:

(i) ‖x‖ ≥ 0,

(ii) ‖x‖ = 0⇔ x = 0,

(iii) ‖αx‖ = |α| ‖x‖,

(iv) ‖x + y‖ ≤ ‖x‖+ ‖y‖,

where x and y are arbitrary vectors in X and α is any scalar.

Definition A.4. (Banach space) A Banach space is a complete normed vector space

[220].

N.B. The above are defined in terms of vector spaces however in the next section

we consider the particular case of function spaces where f ∈ X.
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A.1 Some important examples of Banach spaces

Example A.1. Lp(Rn) The function space with norm

‖f‖p =

(∫
Rn

|f(x)|pdx

) 1
p

.

Example A.2. BC(Rn) The Banach space of bounded continuous functions with

norm

‖f‖∞ = sup
x∈Rn

|f(x)|.

In the thesis we also make use of the space,

Example A.3. BC(Rn × [0, ρ]) with norm

‖f‖ρ := sup
x∈Rn,t∈[0,ρ]

|f(x, t)|.



Appendix II

Standard methods

Here we present the system of ODEs resulting when implementing FFTs or the

trapezoidal rule to the NFMs considered in this thesis: the Amari equation

∂u(x, t)

∂t
= −u(x, t) + A

∫
Ω

w(x′,x)S(u(x′, t))dΩ(x′) (B.1)

and the adaptive NFM

∂u(x, t)

∂t
= A

∫
Ω

w(x′,x)S(u(x′, t))dΩ(x′)− u(x, t)− a(x, t)

τ
∂a(x, t)

∂t
= Bu(x, t)− a(x, t). (B.2)

B.1 FFTs in 2D

Let f : R2 7→ C. The fourier transform in two-dimensions is defined to be

f̃(k) =

∫ ∞
−∞

∫ ∞
−∞

f(x)e−ik·xdxdy,

where here x = [x, y]T and k = [kx, ky]
T . If this intergal exists, then f̃ = F [f ]

is called the Fourier transform of f . In the case when F is bijective, the inverse

transformation F−1 : f̃ 7→ f is given by

f(x) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

f̃(k)eik·xdkxdky.
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For f, g ∈ L(R2) define their convolution as:

(f ∗ g)(x) =

∫
R2

f(x− x′)g(x′)dx′

where x′ = [x′, y′]T . Note that this allows us to immediately rewrite the Amari

equation in (B.1) as
∂u

∂t
= −u+ A(w ∗ (S ◦ u)).

Another important property of convolution integrals is their relation to the Fourier

transform.

Theorem B.1 (Convolution). Let f, g ∈ L(R2), then

F [f ∗ g] = F [f ] · F [g].

Note that this theorem can be directly generalised to f, g ∈ L(Rn), for any n.

To solve the NFMs in (B.1) and (B.2) we start by discretising the spatial domain

to obtain an ‘equivalent’ set of ODEs. The resulting two-dimensional grid consists

of N2 grid points and so the Fourier transform F is replaced by the discrete Fourier

transform (DFT):

f̃(kxi , kyj) = (FN [f ]) (kxi , kyj)

= ∆x∆y
N−1∑
i=0

N−1∑
j=0

e−i(kxixi+kyj yj)f(xi, yj).

Here grid points are given by (xi, yj) and ∆x,∆y denotes the grid spacing in the x

and y directions, respectively. The inverse DFT is obtained as follows

f(xi, yj) =
(
F−1
N [f̃ ]

)
(xi, yj)

=
1

4π2

N−1∑
i=0

N−1∑
j=0

ei(kxixi+kyj yj)f̃(kxi , kyj).

The above allows us to rewrite, and hence solve efficiently, equations (B.1) and

(B.2) as follows:
dun
dt

= −un + AF−1
N [FN [w] · FN [S]]n , (B.3)
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dun
dt

= AF−1
N [FN [w] · FN [S]]n − un − an,

τ
dan
dt

= Bun − an. (B.4)

The right hand side of both of the above equations can be efficiently computed using

the fast Fourier transform algorithm [221].

B.2 The trapezoidal method

We implement the trapezoidal method on regular Cartesian grids of the periodic

square and the surface of a torus. Considering the square domain (B.1) becomes,

du

dt
= −u+ A

∆x∆y

4

(
w(−L,−L)S(u(−L,−L, t)) + w(L,−L)S(u(L,−L, t))

+ w(−L,L)S(u(−L,L, t)) + w(L,−L)S(u(L,−L, t))

+ 2
m−1∑
i=1

w(xi,−L)S(u(xi,−L, t)) + 2
m−1∑
i=1

w(xi, L)S(u(xi, L, t))

+ 2
n−1∑
j=1

w(−L, yj)S(u(−L, yj, t)) + 2
n−1∑
j=1

w(L, yj)S(u(L, yj, t))

+ 4
n−1∑
j=1

(
m−1∑
i=1

w(xi, yj)S(xi, yj, t)

))
. (B.5)

Since we are on a periodic domain ∆x = ∆y, the function evaluated at the corner val-

ues is equivalent i.e. they are all equal to w(−L,L)S(u(−L,L, t)) and the function

evaluated along the edges are equivalent i.e. (x, L) = (x,−L) and (−L, y) = (L, y)

we can rewrite (B.5) as

du

dt
= −u+ A∆x2

(
w(−L,L)S(u(−L,L, t)) +

m−1∑
i=1

w(xi, L)S(u(xi, L, t))

+
n−1∑
j=1

w(L, yj)S(u(L, yj, t)) +
n−1∑
j=1

(
m−1∑
i=1

w(xi, yj)S(xi, yj, t)

))
. (B.6)

When considering the torus we rewrite the (x, y, z) coordinates as (φ, θ) coordi-

nates in order to implement the trapezoidal rule. In this case, following the above,
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(B.1) becomes

du

dt
= −u+ A∆θ∆φ

(
w(0, 2π)S(u(0, 2π, t))r(R + r cos(2π))

+
m−1∑
i=1

w(φi, 2π)S(u(φi, 2π, t))r(R + r cos(2π))

+
n−1∑
j=1

w(2π, θj)S(u(2π, θj, t))r(R + r cos θj)

+
n−1∑
j=1

(
m−1∑
i=1

w(φi, θ)S(φi, θj, t)r(R + r cos θj)

))
, (B.7)

and (B.2) becomes

dun
dt

= + A∆θ∆φ

(
w(0, 2π)S(u(0, 2π, t))r(R + r cos(2π))

+
m−1∑
i=1

w(φi, 2π)S(u(φi, 2π, t))r(R + r cos(2π))

+
n−1∑
j=1

w(2π, θj)S(u(2π, θj, t))r(R + r cos θj)

+
n−1∑
j=1

(
m−1∑
i=1

w(φi, θ)S(φi, θj, t)r(R + r cos θj)

))
− un − an, (B.8)

τ
dan
dt

=Bun − an.

where R and r are the major and minor curvatures of the torus respectively.
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Additional Results

In this appendix we present results referred to in the thesis but placed here to reduce

repetition.

C.1 Chapter 4

In this section we present results obtained when studying Equation (4.1) from Chap-

ter 4.

We start by presenting the bifurcation results found when implementing linear

collocation on a general DistMesh triangulation of the periodic square. The trian-

gulation consists of nv = 11094 nodes and n = 22188 triangles and we increase the

maximum number of Newton iterations to 100 in nsoli. We observe near identical

results to those found in Chapter 4. Figure C.1 shows the solution branches found

when varying h and A and figures C.2 and C.3 show the solutions at the points

labelled P1, P2 and P3 for each branch respectively.

Next we present results found when integrating (4.6) for T = 400 using the

built in MATLAB routine ode45 on a random triangulation of the torus. The

triangulation is generated by perturbing the nodes of the regular triangulation by

20%. Figure C.4 shows solitary bump solutions found from the initial states centred

at θ = φ = 0 and θ = φ = π. When comparing these solutions to those found when

implementing trapezoidal we find that the maximal difference is within 1e − 07

as measured by the infinity norm. Note that when comparing solutions found on

general triangulations we use the MATLAB function griddata to interpolate the

solutions onto the regular grid.

The results when considering the bifurcation analysis on a DistMesh triangula-

tion of the torus, consisting of nv = 11094 nodes is shown in figure C.5 and C.8
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Figure C.1: Solution branches as the parameters; (a) h and (b) A are varied when
implementing linear collocation on a general triangulation.

Figure C.2: The three solutions selected along the solution branch in Figure C.1(a);
(a) & (d) point P1, (b) & (e) point P2 and (c) & (f) point P3.
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Figure C.3: The three solutions selected along the solution branch in Figure C.1(b);
(a) & (d) point P1, (b) & (e) point P2 and (c) & (f) point P3.

Figure C.4: Solitary bump solutions found on the random triangulation (perturbed
by 20%) of the torus. Left, from the initial state centred at θ = φ = 0 and right
from the initial state centred at θ = φ = π
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Figure C.5: Solution branches obtained when implementing linear collocation on a
general triangulation of a torus when varying h. In all cases; blue - R1, green -
R2, red -R3 and black denotes the solution branch obtained on the periodic square.
(a) Branches found when considering solutions centred at θ = φ = 0 (b) branches
found when considering solutions centred at θ = φ = π (c) The branch obtained
considering the solution centred at θ = φ = 0 on the torus with curvature R3.
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Figure C.6: The four solutions labelled P1–P4 along the branch in Figure C.5(a);
(a)&(c) stable points along the R1 and R3 branches and (c)&(d) unstable points
along the R1 and R3 branches.
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Figure C.7: The four solutions labelled P1–P4 along the branch in figure C.5(b) and
C.5(c); (a)&(c) stable points along the R1 and R3 branches and (c)&(d) unstable
points along the R1 and R3 branches.
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Figure C.8: Solution branches obtained when implementing linear collocation on a
general triangulation of a torus when varying A. In all cases; blue - R1, green -
R2, red -R3 and black denotes the solution branch obtained on the periodic square.
(a) Branches found when considering solutions centred at θ = φ = 0 (b) branches
found when considering solutions centred at θ = φ = π (c) The branch obtained
considering the solution centred at θ = φ = 0 on the torus with curvature R3.
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Figure C.9: The four solutions labelled P1–P4 along the branch in Figure C.8(a);
(a)&(c) stable points along the R1 and R3 branches and (c)&(d) unstable points
along the R1 and R3 branches.
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Figure C.10: The four solutions labelled P1–P4 along the branch in figure C.8(b) and
C.8(c); (a)&(c) stable points along the R1 and R3 branches and (c)&(d) unstable
points along the R1 and R3 branches.
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Figure C.11: Solitary bump solutions found, from the initial state centred at θ =
φ = 0, on the torus with curvature R2, when implementing; (a)&(c) trapezoidal and
(b)&(d) linear collocation.

when varying h and A respectively. Note that in all figures solid lines represent sta-

ble solutions and dashed lines unstable solutions. Each figure shows results found

when considering solutions centred at θ = φ = 0 and θ = φ = π on the torus for cur-

vatures R1, denoted by the blue line, R2, denoted by the green line and R3 denoted

by the red line. Again the maximum number of Newton iterations is set equal to

100. Figures C.6 show the solutions at the points labelled P1, P2, P3 and P4 along

the branches in Figure C.5(a). Figure C.7 show the solutions at the points labelled

P1, P2, P3 and P4 on the branches in Figure C.5(b)&(c). Figures C.9 and C.10 show

the solutions at the points labelled P1, P2, P3 and P4 along the branches in figures

C.8(a) and C.8(b)&(c) respectively. As you can see we observe near identical results

to those presented in Chapter 4 on the regular domain.

When considering a bifurcation analysis of (4.1) we compare solutions found for

three different values of the major curvature radius:

R1 = 4.5, R2 = 3R1/4 = 3.375 and R3 = R1/2 = 2.25,
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Figure C.12: Solitary bump solutions found, from an initial state centred at θ =
φ = π, on the inside if the torus with curvature R2, when implementing; (a)&(c)
trapezoidal and (b)&(d) linear collocation.
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Figure C.13: The solitary bump solution found, from an initial state centred at
θ = φ = 0, on the torus with curvature R2, implementing linear collocation on a
DistMesh triangulation.

with minor curvature fixed at r = 2. Here we solve (4.1) on different triangulations

for curvatures R2 and R3. We track the evolution of the neural activation u from

two different initial conditions: (i) a rectangular area centred on θ = φ = 0, initially

set equal to 2; and (ii) a rectangular area centred on θ = φ = π, again, initially

set equal to 2. We compare results found when implementing trapezoidal and linear

collocation. The model parameters are set equal to A = 1.5, h = 0.8 and β = 5.0 and

we track the evolution of neural activation u as we integrate for T = 400 using the

built in MATLAB routine ode45 with absolute ad relative tolerances set to 1e− 06.

C.1.1 R2

In this section we show results found when considering triangulations of a torus with

major curvature R2. Figures C.11 and C.12 show solitary bump solutions centred

at θ = φ = 0 and θ = φ = π respectively. In both cases, figures on the right

hand side show results when implementing linear collocation on a regular grid of

nv = 8256 nodes, whilst figures on the left hand side show results when employing

trapezoidal on the same grid. The two solutions are in good agreement with the

maximal difference of the order 1e− 08.

Next we consider a DistMesh triangulation of the torus. Figures C.13 and C.14
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Figure C.14: The solitary bump solution found, from an initial state centred at
θ = φ = π, on the inside of the torus with curvature R2, implementing linear
collocation on a DistMesh triangulation.

Figure C.15: The solitary bump solution found, from an initial state centred at
θ = φ = 0, on the torus with curvature R2, implementing linear collocation on a
random triangulation.



C.1 Chapter 4 154

Figure C.16: The solitary bump solution found, from an initial state centred at
θ = φ = π, on the inside of the torus with curvature R2, implementing linear
collocation on a random triangulation.

show the solitary bump solutions centred at θ = φ = 0 and θ = φ = π respectively.

We increase the number of nodes to nv = 12496 in order to achieve an accuracy

within 1e− 07 for both solutions when comparing them to those found when imple-

menting the trapezoidal method. Note that when comparing solutions from general

meshes to those found by the trapezoidal method we use MATLAB’s griddata to

interpolate onto the regular grid. When considering a random triangulation we per-

turb the points of the regular Cartesian grid based triangulation by 20%. We show

solitary bumps centred at θ = φ = 0 and θ = φ = π in figures C.15 and C.16

respectively. We increase the number of nodes in the triangulation to nv = 17766

in order to achieve a maximal difference of 1e− 06 when comparing the solutions to

those found when implementing trapezoidal.

C.1.2 R3

In this section we show results found when considering triangulations of a torus with

major curvature R3. Figures C.17 and C.18 show the solutions centred at θ = φ = 0

and θ = φ = π respectively. Again, figures on the right hand side show results when

implementing linear collocation on a regular grid of nv = 8256 nodes, whilst figures

on the left hand side show results when employing trapezoidal on the same grid.
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Figure C.17: Solitary bump solutions found, from an initial state centred at θ = φ =
0, on the torus with curvature R3, implementing; (a)&(c) trapezoidal and (b)&(d)
linear collocation.
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Figure C.18: Solutions found, from an initial state centred at θ = φ = π, on
the torus with curvature R3, implementing; (a)&(c) trapezoidal and (b)&(d) linear
collocation.
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Figure C.19: The solitary bump solution found, from an initial state centred at
θ = φ = 0, on the torus with curvature R3, when implementing linear collocation
on a DistMesh triangulation.

Figure C.20: The solution found, from an initial state centred at θ = φ = π, on
the torus with curvature R3, when implementing linear collocation on a DistMesh
triangulation.
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Figure C.21: The solitary bump solution found, from an initial state centred at
θ = φ = 0, on the torus with curature R3, when implementing linear collocation on
a random triangulation.

Figure C.22: The solution found, from an initial state centred at θ = φ = π, on
the torus with curvature R3, when implementing linear collocation on a random
triangulation.
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Figure C.23: The travelling bump solution found, from an initial state centred at
θ = φ = 0, on the Cartesian grid based torus when implementing the trapezoidal
method.

Here we observe a difference in the type of solution admitted from each initial state.

For an initial state centred at θ = φ = π we no longer observe a bump solution but

a ring solution. When comparing solutions we find they are in good agreement with

the maximal difference of the order 1e− 07.

When considering a DistMesh triangulation of the torus we must increase the

number of nodes in the mesh to nv = 12496 in order to achieve sufficiently accurate

solutions. Figures C.19 and C.20 show solutions centred at θ = φ = 0 and θ = φ = π

respectively, again, from the initial state centred at θ = φ = π, we observe a ring

solution. When comparing results to those found when implementing trapezoidal

we find a maximal difference within 1e − 06 for both solutions. For a random

triangulation we perturb the points of the regular grid triangulation by 20%. Figures

C.21 and C.22 show the solutions centred at θ = φ = 0 and θ = φ = π respectively.

The number of nodes in the triangulation is increased to nv = 17766 in order to

achieve a maximal difference of 1e− 06 for both the bump and ring solution.
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Figure C.24: The travelling bump solution found, from an initial state centred at
θ = φ = π, on the Cartesian grid based torus when implementing the trapezoidal
method.

C.2 Chapter 5

In this section we present results obtained when solving (5.1) from Chapter 5.

We begin by presenting results found when tracking the evolution of the neural

activation u when integrating for T = 400 using MATLAB’s ode45. Figures C.23

and C.24 show the travelling bump solutions found when implementing trapezoidal,

from initial states centred at θ = φ = 0 and θ = φ = π respectively. Figures C.25 and

C.26 show the travelling bump solutions found when implementing linear collocation

on a random triangulation of the torus, from initial states centred at θ = φ = 0 and

θ = φ = π respectively. The random domain is generated by perturbing the nodes

of the regular domain by 20%. When comparing these solutions to those found

when implementing trapezoidal we find the maximal error to be with 1e− 07 for all

solutions.

When performing the bifurcation analysis in Chapter 5 we find that in order to

implement the derivatives over the triangles we must extend to consider quadratic

collocation. Figure C.27 shows the solution branches found when implementing

quadratic collocation on the regular triangulation when varying A and h. The

solutions at the points labelled P1, P2 and P3 are shown in figure C.28 and C.29
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Figure C.25: Travelling bump solution found, from an initial state centred at θ = φ =
0, on the random triangulation of the torus when implementing linear collocation.
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Figure C.26: Travelling bump solution found, from an initial state centred at θ = φ =
π on the random triangulation of the torus when implementing linear collocation.
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Figure C.27: Solution branches found as the parameters; (a) A and (b) h are varied
against c when implementing quadratic collocation.

for the A and h branch respectively. As you can see from these results we obtain

near identical results to those found when implementing FFT or linear collocation

alongside finite differences for approximating the derivatives.
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Figure C.28: The three solutions labelled along the branch in Figure C.27(a); (a) &
(d) point P1, (b) & (e) point P2 and (c) & (f) point P3.
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Figure C.29: The three solutions labelled along the branch in Figure C.27(b) ; (a)
& (d) point P1, (b) & (e) point P3 and (c) & (f) point P3.



Appendix IV

Quadratic collocation

Here we implement quadratic collocation to solve Equation (4.1) and Equation (5.1).

The error analysis for both equations when implementing quadratic collocation is

performed in Chapter 4, alongside linear collocation, FFTs and trapezoidal. We

found that when considering general triangulations, quadratic collocation outper-

forms linear collocation.

D.1 Amari equation

Here we show results when solving Equation (4.1) on both regular and irregular

triangulations of the periodic square. In all cases the neural activation u was initially

set equal to 2 in a rectangular area centred at the origin (see Figure D.1(a)). After

(a) (b)

Figure D.1: (a) Initial condition for u on the periodic square. (b) Initial condition
for a on the periodic square.
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Figure D.2: A solitary bump solution obtained when implementing quadratic collo-
cation on the Cartesian grid based triangulation of the periodic square.

spatial discretisation the resulting ODEs are given by

dun(vi, t)

dt
= 2A

n∑
k=1

Area(4k)

∫
σ

w(vi, Tk(r, s))S

(
6∑
j=1

u(vk,j, t)lj(r, s)

)
drds.

(D.1)

The system of ODEs given in (D.1) is integrated for T = 250 using the built-in

MATLAB routine ode45, with absolute and relative tolerances set to 1e− 06. The

model parameters are set to A = 1.5, h = 0.8 and β = 5.0 and we compare the

solutions obtained here to those found when implementing FFTs and trapezoidal.

Note that when considering the general triangulations we use MATLAB’s griddata

function to interpolate solutions onto the Cartesian grid.

Figure D.2 shows the solitary bump solution on a regular Cartesian grid based

triangulation consisting of nv = 16641 nodes and n = 8192 triangles. When compar-

ing this solution to those found when implementing FFTs and trapezoidal we find

they are in excellent agreement, within 1e − 12 as measured by the infinity norm.

Figure D.3 shows the solitary bump solution found when considering a DistMesh

triangulation consisting of nv = 16129 nodes and n = 7936 triangles and find that

the solution is within 1e−09 of solutions found by the more standard methods. For

the random triangulations we consider again a mesh consisting of nv = 16641 nodes

and n = 8192 triangles. Figure D.4 shows solitary bump solutions found on random

triangulations generated by perturbing the Cartesian triangulation by; left column

by 10% and right column by 30%. We find that when comparing the solutions to
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Figure D.3: A solitary bump solution obtained when implementing quadratic collo-
cation on the DistMesh general triangulation of the periodic square.

Figure D.4: Solitary bump solutions obtained when implementing quadratic colloca-
tion on the random triangulation of the periodic square with perturbation; (a)&(c)
10% and (b)&(d) 30%.
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Figure D.5: Travelling bump solution computed on the Cartesian grid based trian-
gulation of the periodic square implementing quadratic collocation.

those found by the more standard methods that they are both within 1e − 08, as

measured by the infinity norm.

D.2 Adaptive NFM

Here we show results when solving Equation (5.1) on both regular and irregular

triangulations of the periodic square. In all cases the neural activation u was initially

set equal to 2 in a rectangular area centred at the origin (see Figure D.1(a)) and the

recovery variable a was set equal to 1.5 in a rectangular area shifted to the right of

u (see Figure D.1(b)). After spatial discretisation the resulting ODEs are given by

dun(vi, t)

dt
= 2A

n∑
k=1

Area(4k)

∫
σ

w(vi, Tk(r, s))S

(
6∑
j=1

u(vk,j, t)lj(r, s)

)
drds

− un(vi, t)− an(vi, t), (D.2)

τ
dan(vi, t)

dt
= Bun(vi, t)− an(vi, t).

The model parameters were set equal to A = 2.0, h = 0.8, B = 0.4, τ = 3.0 and

β = 5.0. We integrated (D.2) for T = 250 using the built-in MATLAB routine

ode45 with absolute and relative tolerances set to 1e− 06.

Figure D.5 shows the travelling bump solution found on a regular Cartesian grid

based triangulation consisting of nv = 16641 nodes and n = 8192 triangles. We
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Figure D.6: Travelling bump solutions computed when implementing quadratic col-
location on the DistMesh triangulation of the periodic square.

Figure D.7: Travelling bump solutions found when implementing quadratic colloca-
tion on the random triangulation of the periodic square, perturbed by; (a)&(c) 10%
and (b)&(d) 30%.
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find that this solution is within 1e− 12 of the solutions found by the more standard

methods. Figure D.6 shows the travelling bump solution found when considering

a DistMesh triangulation consisting of nv = 16129 nodes and n = 7936 triangles.

We find that the solution is in good agreement, within 1e − 09 of solutions found

by the more standard methods. For the random triangulations we consider again

a mesh consisting of nv = 16641 nodes and n = 8192 triangles. Figure D.7 shows

travelling bump solutions found on random triangulations generated by perturbing

the Cartesian triangulation by; left column by 10% and right column by 30%. We

find that when comparing the solutions to those found by the more standard methods

that they are both within 1e− 07, as measured by the infinity norm.

D.3 Summary

Here we have employed quadratic collocation to solve the Amari equation and an

adaptive neural field model on different triangulations of a periodic square. We

found that quadratic collocation is capable of replicating travelling bump solutions

found by more standard methods. Importantly we found that for the DistMesh

domain we can consider a triangulation with fewer triangles than that considered

when implementing linear collocation and we can consider higher perturbations in

the random domain and still obtain results within 1e− 07 of the solutions found by

more standard methods. The advantage of implementing higher order methods is

two fold; firstly as we have found from our experiments in Chapter 5 the extension

to higher order methods is crucial for the accurate computation of solution branches

found when conducting a bifurcation analysis. Secondly, we can consider fewer

triangles and higher perturbations in the random domain and still achieve sufficient

accuracy, reducing the computational cost and whilst increasing the complexity of

the domain.



Appendix V

Human Brain

In the following we present preliminary results when considering the methods de-

scribed in this thesis for solving a neural field model on a representation of the

human cortical surface. In particular, we solve (5.1) on a triangulated mesh rep-

resentation of the left hemisphere of the human brain, which was obtained via the

Human Connectome Project (HCP) [21]. More specifically, the data deployed in this

section is taken from [223], which was downloaded from the HCP and preprocessed

using the Freesurfer software [224] (see [223] for further details).

The resulting cortical representation consists of some 148, 396 vertices and 296, 788

triangles and so requires us to downsample the mesh for computational purposes.

We used the iso2mesh MATLAB toolbox to process the mesh [225]. In particular,

we used the function

% meshresample function

[P,T]= meshresample(v,f,ratio)

where v and f are the vertices and triangles from the original mesh and ratio is

the fraction of the original mesh retained after sampling. For illustrative purposes

we set ratio = 0.04 in our work, which results in a mesh with 5121 vertices, P,

and 10238 triangles, T (Figure E.1 shows a surface plot of the down sampled brain).

Note that we are also currently performing simulations on larger meshes in order to

determine the effect of mesh size on the observed solutions.

We solved (5.1) on the cortical representation shown in Figure E.1, tracking the

evolution of neural activity u, which was initially set equal to 2 in a small region

surrounding a node selected at random, with the adaptation variable a set equal to



173

Figure E.1: Triangulation of the down sampled left hemisphere of the human cortical
surface.

1.5 in an equivalently sized, partially overlapping region of nodes. We have repeated

this experiment a number of times, varying both the initial position of u and a, in

order to study the influence of geometry on solutions obtained by Equation (5.1).

The ODEs in (5.2) were solved for T = 400 using MATLAB’s built in ode45 routine

with absolute and relative tolerances equal to 1e − 06, and model parameters set

equal to the same values as before, i.e.

A = 2.0, h = 0.8, B = 0.4, τ = 3.0 and β = 5.0.

The firing rate and connectivity functions were chosen the same as in Chapter 5 and

the distances computed numerically using the MMP algorithm, as before.

Figures E.2 and E.3 show the progression of a travelling bump solution of (5.1)

on our cortical representation. In the example shown, the bump solution travels into

and along the closest sulcus until it reaches a sharp fold, at which point it splits into

two travelling bumps moving in opposite directions but still remaining in the valley

of the sulcus. The inability of the bump solution to leave the sulcus is likely due

to the negative curvature found at these regions, reminiscent of our earlier findings.

Importantly, the splitting behaviour observed in this experiment is not seen on the
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(a) (b)

Figure E.3: (a) The bump solution shown in figures 6.1 and E.2 at time, t = 100.
(b) The bump solution shown in figures 6.1 and E.2 at time, t = 400.

curved geometries considered thus far and is likely a result of the highly convoluted

nature of the human cortex. However, the precise reasoning behind these findings

will require further research.

Note that in addition to the splitting solutions shown in figures E.2 and E.3 we

have also observed solutions (not shown) that do not split but rather get trapped

in regions of what would appear to be large negative Gaussian curvature, much like

those observed on the rat brain. Conditions under which solutions remain trapped

or display splitting behaviour is an area of imminent future research.


