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Abstract 

 
Empirically the covariance between stock returns varies with their volatility. We seek 

a robust theoretical explanation of this. With minimal assumptions, we model stochastic 

properties of equilibrium returns which result from interaction between intertemporal traders 

and noisy, price sensitive short term traders. The intertemporal traders can have arbitrary 

investment rules, preferences and information. In all cases we find a set of restrictions 

between second moments of equilibrium returns. With two assets there is also a bound on the 

correlation between asset returns. Estimation with second moments of global stock returns 

supports our theoretical framework. Higher volatility in at least one market can increase 

comovement among markets. With globalization, covariances between two stock markets can 

also affect covariances between two other stock markets. We also find that changes in trader 

behavior between normal and crisis periods leads to changes in the moment restrictions 

between asset returns. 

JEL classification: D52; D82; G12 
Keywords: short term traders, asset returns, equilibrium moment restrictions, correlation 
bound 
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1. Introduction 

A key question in finance is what determines the random properties of asset returns. 

Many of the advances in understanding have come from noticing empirical anomalies that 

cannot be explained by existing theories. So there have been developments in rational and 

behavioral financial models such as habit effects (Campbell and Cochrane, 1999), individual 

heterogeneity (Brav et al., 2002; Chiarella et al., 2011) and incompleteness of markets 

(Heaton and Lucas, 1996). Using these to explain anomalies requires extraneous additional 

assumptions on functional form which may however be mis-specified e.g. non-separability 

over time or skewness of the stochastic discount factor and time varying properties of the risk 

premium (Brennan et al., 2004). Indeed, the aim is to identify key model components which 

have predictive and explanatory power, generate precise predictions but at the same time are 

as general as possible. These are of necessity hard to find.  

The empirical facts we focus on are the relations between volatilities and correlations 

of stock returns and how these relations evolve over time. In recent years, empirical 

connections between the covariances and volatilities of many asset prices are found. As can 
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be seen during the 1997 Asian financial crisis, the 2008 oil crisis and the 2008 global 

financial crisis, instability in one market spread to others (Diebold and Yilmaz, 2009; Beirne 

et al., 2009). Liu and Pan (1997) explain their empirical findings on volatility spillover effects 

from the U.S. and Japan to four other Asian stock markets after the 1987 stock market crash 

by cross-country equity investing and market contagion. You and Daigler (2010) also find 

correlations between financial markets and amongst futures contracts. These studies consider 

pairs of markets but empirically there are multimarket interactions of volatility. Volatility in 

one market can impact on the correlation between two other markets. 
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Figure 1: Monthly Variances and Covariances Composite Index Returns 

 
As can be seen from Figure 1, the US Dowjones Industrial Average (DJIA) index 

return and the UK FTSE100 index return are very volatile during the Asian financial crisis 

(1997-1999), July 2002- March 2003 (an intensive period of wars due to the 9/11 event), and 
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the global financial crisis from 2008. In the same periods, not only are the covariances 

between these two index returns high, but the covariances between these two index returns 

and the Shanghai Stock Exchange (SSE) index
1
 are also high especially during both financial 

crises. Conversely, the covariances are lower in periods of low volatility of the DJIA index 

return and/or the FTSE100 index return. 

There are various factors at work. Kolanovic (2011) argues that some of the recent 

increase in correlation of returns is due to increasing integration between asset markets and 

also to the impact of trading rules and risk management strategies. Indeed Kalotychou et al. 

(2009) and Cappiello et al. (2006) use dynamic conditional correlation (DCC) models, a 

multivariate GARCH model, to capture the dynamics of asset correlations and their links to 

volatility. Kalotychou et al. (2009) show that trading strategies which recognize the 

correlation-volatility link are empirically more profitable than others. This approach relies on 

an underlying statistical model of the asset returns which does not derive from an explicit 

economic or market structure. Factor models which distinguish systemic and idiosyncratic 

risk are similar in that the basic random asset process is the exogenous starting point, which 

then leads directly to the correlation and volatility structure of returns. Empirical 

identification of factors can then be based purely on statistical methods like principal 

components (giving potential difficulties in interpretation of factors) or by empirical 

correlation of asset returns with systemic effects like macroeconomic variables (e.g. inflation 

and exchange rates) and with idiosyncratic asset specific factors like the book value of assets 

of a firm. Bekaert et al. (2005) identify the factors with the relevant market portfolios of 

global markets in a setting with partial world financial integration. An approach with a much 

                                                 
1
 The SSE index is a market capitalisation-weighted stock index of Shanghai Stock Exchange of China with the 

base date on December 19, 1990. The index was launched on July 15, 1991. Stocks in this market are divided 

into two classifications: A shares and B shares. Trading in A shares was initially restricted to domestic investor 

only while B shares are available to both domestic and foreign investors. After reforms in 2002, foreign investors 

can trade A shares under Qualified Foreign Institutional Investor (QFII) program. A shares are quoted in RMB 

while B shares are quoted in USD. It's currently composed of 894 constituents. 
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more market based structure is in Diebold and Strasser (2008) who analyze the effects of 

micromarket structure noise on pricing and asset returns. In particular strategic behavior of 

economic agents determines the cross-correlation structure between a latent asset price (its 

"true value") and the noise in several different micromarket structure frameworks in a variety 

of leading environments, including those of Roll (1984), Glosten and Milgrom (1985), Kyle 

(1985), Easley and O'Hara (1992), and Hasbrouck (2002). In these papers, the latent price 

process is set by an exogenous statistical model. As another approach, Diasakos (2010) finds 

that wealth effects on the price of risks via the marginal utility of consumption can increase 

the correlation. 

Another empirical aspect is that the correlation pattern between asset returns typically 

undergoes some structural break in crisis or contagion periods in the market. There is no clear 

definition of a crisis or contagion period, but generally it involves periods in which asset 

returns show increases in correlation and volatility, and a departure of the links between these 

and fundamentals. Bekaert et al. (2005) use asymmetric GARCH modeling of volatility in 

assets combined with a two-factor CAPM type approach to explore how asset return 

correlations shift with periods of contagion in an approach which allows for different degrees 

of market integration. They find that the Mexican crisis generally did not lead to a significant 

increase in asset correlations but the Asian crisis did and also that contagion effects are more 

important between European than other markets. 

Our main contribution is to develop a framework explaining contemporaneous 

relationships between variance and covariance of asset returns in an equilibrium financial 

market setting. In particular our framework explains how the comovement of two asset 

returns can affect the comovement of other asset returns in the same period. We also explain 

how this link is affected by short-term trading. Hence we can derive the restrictions on the 

second moments of asset returns from equilibrium in a multi market model. 

Our framework has minimal assumptions on markets and investor motivations yet still 
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generates the relations between second moments from a micro-based market model. We find 

restrictions in the covariance matrix of asset returns whatever the investor motivations are. 

The only things that are necessary are that there exist some investors who alter their portfolio 

demands in line with the current pattern of asset prices and expected asset returns as well as 

some random noise traders. We also find that the absolute value of the correlation between the 

asset returns has a lower bound which depends on trading of short-term traders. Empirically 

we find that our framework can explain the contemporaneous relationship between elements 

of the variance-covariance matrix with higher explanatory power than the alternative in which 

the covariance of asset returns is only explained by the volatilities of asset returns. 

The plan of the paper is to give the basic assumptions and derive the equilibrium asset 

prices and returns in section 2 for a multi-market case. In section 3, we compute the first and 

second moments and derive the moment restrictions. In section 4, with two asset markets we 

find a lower bound of correlation between two asset returns. Section 5 provides empirical 

evidence on moment restrictions using the stationary time-varying second moments of six 

stock market returns. Finally, we conclude in section 6. Algebraic derivations are in the 

appendix. 

2. Traders and Market Equilibrium 

We take m asset markets, the thi asset has price 1+itP at time t+1 and an expected return 

at t+1 of )/ln(~/))( 121121 ++++++ −= itititititit PEPPPEPEr . At each date there are three categories 

of traders in each market. 

Firstly, there are intertemporal traders who generally are holding long positions but 

who adjust their portfolios/roll over positions. At time t+1 these traders generate aggregate 

net supplies of each asset, 1+itX , which depend on previous prices and are nonrandom in 
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volume at time t+1
2
 e.g. current positions come from closing out past positions j

itx  of trader 

j for price/return independent reasons. The aggregate of the trades of this trading group is 

j

itjit xX ∑=+1   for i = 1,…,m. 

Secondly, there are investors who are sensitive to expected asset returns and who have 

a one period time horizon. Trader h of this price sensitive group has their view of expected 

asset returns at time t+1 (i.e. iht rE 1+ )/ln(~ 121 +++ ititht PPE in each market i) and so has a demand 

for the thi asset at time t+1 given by ).1,...,1( 111 mhtht

h

i rErEf ++ ++   

Thirdly, in each market i, there are some pure noise traders and new issues at time t+1. 

Their trades in the thi asset sum to it+1 which has constant mean iµ and taken across the m 

markets, the variance-covariance matrix of the trades of this third group is  



















=′−−=Γ

mmm

m

ttE

γγ

γ
γγγ

µεµε

LL

MOM

MO

L

1

12

11211

))((  

At time t+1 asset prices and so returns adjust to clear the market. Thus, 

),..( 1111 +++ = mttt PPP solves a system of m equations: 

.,...,1)1,...,1( .11111 mirErEfX itmhtht

h

ihit =+++Σ= ++++ ε  (1) 

Our main point is that in equilibrium, since 1+tP  is in part determined by it+1 where i = 

1,…,m, the asset returns at time t+1 are random and will inherit cross market noise trading 

effects. These cross market effects on equilibrium asset prices, coming through the return 

sensitivity of flow traders’ market activity, lead to restrictions between the volatility and 

covariance structure of asset returns. 

To simplify the solution, the price sensitive flow trader's net demand is assumed to be 

                                                 
2
 X it+1 can also be seen as the net supply by momentum traders in Kelsey et al (2010). These momentum 

traders base their trade at time t+1 on the previous price change from 1−tP to .tP  Thus, 1+itX is nonrandom at 

time t+1.  
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linear and common across traders )1()1,...,1( 1111 khtikkmhtht

h

i rEcrErEf +++ +Σ=++ for h =1,…,H. 

This is a "reduced form" asset demand by traders which is consistent with alternative decision 

frameworks. The linearity could arise from common quadratic transaction and management 

costs of traders. Alternatively the flow traders may be mean-variance investors with the 

motivation of maximizing utility of wealth at time t+2, h

ititi

h

t xrw 112 )1( +++ +Σ= where h

itx 1+  is 

investment by trader h in the thi asset at time t+1
3
.  Hence, equilibrium at t+1 requires  

mirEHcrEcX itktikktkhtikkhit ...1   )1()1( 11111 =++Σ=++ΣΣ= +++++ εε  

where HrErE khthkt /11 ++ Σ=  is the average expected return in the market for asset k. 

Stacking the equations for different markets in vectors, the average market return at 

time t+1 must adjust (through adjustment of the current prices) to satisfy  

( ) 111 +++ ++= ttt rEAX ει      (2) 

with ))1(),...,1(( 1111 mttt rErErE +++ ++=+ι and ],[][ ikik HcaA == an m×m matrix. 
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21

11211

LL
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   (3) 

where 11A  is (m-1)×(m-1), mA1  and 1mA  are (m-1)×1, and amm is scalar. A is assumed to be a 

nonsingular matrix
4
 and can be either symmetric (with mean-variance preferences) or 

asymmetric. In general, A has nonnegative diagonal elements (i.e. generally price sensitive 

traders react negatively to current price in a market, particularly so with mean-variance 

preferences; a decrease in the price of asset i will increase the expected return of asset i and 

                                                 
3
With mean-variance preferences 

uw t+2
h  = Σi1 + Eht+1rix it+1

h − τΣiΣjbijx it+1
h x jt+1

h

 

bij is the covariance between returns on asset i and asset j and τ is the common preference trade off between 

mean and variance of return sensitive traders. Then the h
th
 trader’s demands are ( )rEBx ht

h

t 1

11

1 +
−−

+ += ιτ  

where rEht 1++ι is the m×1 vector of h’s expected returns.ι is the m×1 unit vector. B is the covariance matrix of 

returns at time t+1 as believed by each trader. 
4
Without loss of generality, if A were singular we have redundant assets and can consider a smaller set of 

markets. 
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thus increase the demand for asset i) but off diagonal elements may have an arbitrary sign.  

Solving (2) for the equilibrium asset prices and returns at t+1 

1

1

1

1

1 +
−

+
−

+ −=+ ttt AXArE ει     (4) 

1

1

1

1

12 ))ln()(ln( +
−

+
−

++ −=−+ tttt AXAPEP ει     (5) 

(5) shows explicitly how the equilibrium prices P it+1 and asset returns are affected by noise 

trading in all markets, not only in the particular market i. From this market equilibrium 

process and the cross market effects of noise trading, we can derive the links between the first 

and second moments of asset prices in different markets in the next section. 

Each equilibrium asset price (or return) has an explicit expression in terms of all the 

shocks t+1 (here assumed linear for simplicity only). The asset prices or returns in (5) 

depend on trader expectations and generate traders expected equilibrium asset prices and 

returns. To convert these relations to observed realized returns we have to allow for 

expectation errors. More specifically, let ),...,,( 112111 ++++ = mttt

T

t rrrr  be the column vector of 

realized returns and ηt+1  be the column vector of unexpected returns of m asset markets at 

time t+1, =+
T

t 1η ),,...,,( 11211 +++ mttt ηηη where the unexpected returns ( 1+tη ) = realized returns 

(rt+1 ) - expected returns ( rEt 1+ ). Unexpected returns are unknown at time t+1 and assumed to 

be independent across assets and iid over time (i.e. 0)( =jtitE ηη and 0)( =+kititE ηη ). They 

have mean values of zero and constant variances i.e. the variance of unexpected returns for 

asset i is )var( iη . Assuming that return shocks are uncorrelated with noise trading, 

0)()( == +kitititit EE εηεη for all k. Thus, (4) is rewritten as 

)( 11

1

1

1

1

11

1

1

1

1

++
−

+
−

+

++
−

+
−

+

−−−=

+−−=

tttt

tttt

AAXAr

AXAr

ηει

ηει
    (6) 

The actual asset returns at time t+1, rt+1 are random. 

To derive a direct relation between the observed asset returns, we can use the first m-1 

of the relations in (6) to find m-1 of the noise shocks εt+1. Then, replacing these m-1 noise 
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shocks in the equation for the remaining asset return gives us a linear relation between the m 

asset returns, one of the noise shocks and the net effects of expectation errors, ηt+1 .   

Using the partitioning of markets suggested by (3) in which the first m-1 and the final 

thm market are distinguished, appendix 1 shows that  

[ ] [ ]( ) 1
1

11
111

1 1 +
+

−+−+−
+

+ +−−−



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a

X
r η

ε
ηι   (7) 

Where [ ] ,1 mt −+η [ ]
mtr −+1 and m−ι denote the column vectors of unexpected returns and realized 

returns of the first m-1 asset markets and the (m-1)×1 unit vector, respectively. Recall 

that 1+mtX  is nonrandom at time t+1. The second term is also constant through time. This 

equation must hold with probability one. (7) gives us a link between observed asset returns 

and a single random variable which is a combination of expectation error effects and the noise 

shock in one market. It can explain comovements among several asset returns such as 

comovements between stock returns and comovements between changes in commodity prices 

through multi-asset portfolio investment management. It is a robust relation requiring only 

micro-market noise shocks and some traders who are sensitive to current asset prices in their 

current trading (both very weak assumptions). More detailed structure could of course be 

added e.g. there could be a process for underlying fundamentals which generates more 

detailed properties of 1+mtX
5
, but we can still derive a linear relation between asset returns and 

the subsequent restrictions on moments of returns following the steps below. 

It is important that the price sensitive traders are trading across markets and have asset 

demands which react to expected returns in more than a single market. If these traders are 

specialists in just one market and have net demand in one market independent of the return in 

other markets, A is a diagonal matrix. In this case, ,01 =
T

mA (7) reduces to 

                                                 
5
 In addition, the expectation errors or the noise trading shocks could take a more complicated form e.g. the 

expectation errors or the noise trading shocks may be autocorrelated. 
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11

11

1 −+−= +
++

+ mt

mm
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mm
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mt
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X
r η

ε
    (8) 

and there is no systematic relation between asset returns in different markets. 

3. Equilibrium Moment Restrictions 

3.1 First Moments 

Taking expectations over 1+tε and 1+tη in (7), the first moment is 

[ ]
mm
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ι   (9) 

Note that this is more general than the equivalent restriction coming from a single factor 

model e.g. CAPM or from a multi-factor model with less than m factors e.g. a three-factor 

model of Fama and French (1993) or a recently developed factor model of Bekaert et al. 

(2005). More precisely, in CAPM the excess return on each asset is a linear function of the 

market excess return so that whilst certainly there is then a linear relation between expected 

excess returns on individual assets, (9) could hold even if there are m-1 factors. In the 

international CAPM the expected return of the thi market depends on the US asset returns only, 

but here the expected return of the thi market can be affected by the expected return of other 

markets. This supports the finding of Mukherjee and Misha (2010) that daily Indian stock 

returns are affected by contemporaneous daily returns of some Asian stock markets. 

3.2 Second Moments 

From (6) the covariance matrix of asset returns at equilibrium is  Λ    

1−− Σ=Λ AA T  

where the covariance matrix of random shocks to returns is  
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Partition the markets into the first m-1 and the last so the covariance matrix of random shocks 

is 
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
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Here 11Σ is (m-1)×(m-1), m1Σ is the (m-1)×1 column vector of covariance between random 

shock in the thm asset market and that in other asset markets, and mmΣ is scalar equal to  

)var(2

1
iim

i

m

mm a ηγ
=
∑+ .  

Likewise, partition the covariance matrix of returns into the first m-1 and the last so 

Λ =
Λ11 Λ1m

Λ1m
T Λmm

 

11Λ is (m-1)×(m-1) and m1Λ is the column vector (m-1)×1 of the covariance between the return 

of the thm asset and other asset returns. mmΛ is the variance of the thm asset return, so it is scalar. 

Let the inverse of the matrix A be  
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Thus, the covariance matrix of asset returns (see appendix 2) satisfies 
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  (10) 

As the Γ  matrix and )var( iη are not time-varying, the last term is a constant 

intercept. (10) is a key theoretical result of this paper. It shows that there are m-1 linear 

restrictions between elements of the covariance matrix of asset returns that subsequently we 

can specialize to suit a variety of contexts depending on the parameters in the matrix A, which 

are set behaviorally by the context in which the flow traders operate. The moment restriction 

(10) shows that the covariance between asset returns in two markets is not only affected by 

their own variances, but also by variances and covariances of asset returns in the other 

markets, reflected in 11Λ the covariance matrix of the first m-1 assets. Note that some elements 
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of the matrix )/( 1

1

1111111 m

T

mmm

TT

mmI ααααααα −− +−  can be zero. 

In the case that the trading shocks in the last market ( 1+mtε ) are uncorrelated with those 

of other markets ( 1+itε for )mi ≠  i.e. ,0=imγ and flow traders in all markets are specialists (i.e. 

m1α and  1mα are null vectors and 11A and 11α are diagonal matrices), both m1Σ and m1Λ become null 

vectors. Note that the intercept in (10) being zero does not always imply that 01 =Σ m . Or, if all 

flow traders are specialists but the trading shocks in the last market are correlated with those 

of other markets, then m1Σ is not a null vector and  
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Summarising 

Proposition 1 There are m-1 linear restrictions between the variances and covariances of 

equilibrium risky asset returns. The intercept involves the covariance between markets of the 

fundamental shocks and sensitivity of flow traders' demands to all asset returns. Whether the 

comovement between two asset returns will be affected by the volatility and co-movement of 

other asset markets depends on whether flow traders' demand for those particular two assets 

is sensitive to asset returns in the other markets. 

Here, we have not explicitly identified a safe asset, but if one of the m assets has a safe 

return rf, the same framework leads to a similar relationship between the returns of m-1 risky 

assets and a risk-free rate. Thus, (7) still holds. That is, if the risk-free asset is the 1
st
 asset, 

r1t+1 in (6) becomes rf . Since the risk-free rate is non-random, η1t+1 = 0which yields  
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where
Am−11

T = am2 . . . am ,m−1 , rt+1 −m−1
= r2t+1 . . . rm−1t+1 and ηt+1 −m−1

= η2t+1 . . . ηm−1t+1 . Then, there will be m-2 linear restrictions between the variances and 

covariances of risky asset returns. 
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If flow traders respond to the excess returns e

ir of m risky assets instead of their 

expected return, then e

t rE 1+ 11 ++ −−= tft rr η . Consequently, the relationship between m risky 

asset returns is  
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where rf −m is the (m-1)×1 column vector of constants equal to the risk free rate. If rf is 

non-random, then the first two terms of (13) are nonrandom and there is a set of m-1 moment 

restrictions which is still (7) with variances and covariances of asset returns. 

4. A Comparison with Alternative Models 

Alternative models to explain the asset returns and their inter-relations typically use 

more structure than we do. Some models start with an exogenous process for an underlying 

set of equilibrium prices which are sometimes driven by processes on fundamentals, we do 

not have to impose these assumptions. 

Although CAPM is still a widely used framework in which the expected excess return 

on each individual asset depends on a single common factor (the expected excess return on 

the market), it offers little to explain more complicated links between the covariances of 

different pairs of assets. Compared to CAPM which requires a safe rate and assumes that 

traders have mean-variance expected utility and only differ in risk aversion and not in their 

views of mean, variances and covariance of returns, our framework does not require these 

assumptions. In terms of results, CAPM is a one factor model which relates the individual 

asset expected excess returns to the expected excess return on the market portfolio, while our 

approach allows empirical investigation of the individual effects of asset returns. 

In particular, CAPM does not develop links between second moments of more than 

two individual assets. In CAPM, )( fmiifi rERrEr −+=− βα so for any pair of individual 

returns of assets i and j  
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)( jfj

j

i

ifi rErrEr α
β
β

α −−+=−     (14) 

By treating the α and β as constants, CAPM implies a linear relation between mean excess 

returns on two different assets but not on their second moments. As  

βi =
covri − rf,rm − rf

varrm − rf
=

covri,rm 
varrm 

,

 
(14) can also be viewed as a relation between mean excess returns and the ratio of covariances 

of two asset returns with the market. We could also rewrite CAPM as 

ifmiifi rRrr ηβα +−+=− )( where iη is the unexpected return of asset i and 

obtain ),cov()var(),cov( jimjifjfi Rrrrr ηηββ +=−− . Then, the covariances of returns 

between any pair of individual assets will be proportional to the variance of the return on the 

market if the idiosyncratic shocks on assets are independent (which is commonly assumed). 

Thus, CAPM implies (9) but is not implied by it. 

A more general alternative than CAPM is the multi-factor model. Suppose for an 

example we take a two-factor model in which the return on any asset can be written as 

11221111 ++++ +++= ittitiiit FFr εααβ     (15) 

where jF are factors and iε are random with zero mean. Taking any two assets (say the first 

two assets) we can solve for the factors in terms of the returns on the first two assets 
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and then replacing this in (15) gives
6
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This gives us a relation between the returns on any three assets but since there are only two 
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factors involved, the restrictions which can be derived on second moments of asset returns are 

more limited. 

A sophisticated example of this two-factor approach is in Bekaert et al. (2005) who 

identify the two factors with respectively the return on the US market and the return on a 

regional market to which the thi  asset belongs e.g. an Asian market index for an asset traded 

in Singapore. In their approach, the covariance between asset returns in the thi  market and the 

US market is only explained by the volatility of US asset returns, and the covariances between 

asset returns in the thi  market and the thj  market (or the regional market) are only determined 

by the volatilities of US and regional stock index returns. However, they do not capture more 

detailed links between the covariances of individual asset returns trading either in the same or 

different regions. With our approach, relationships of second moments can be derived 

between various individual asset returns, between market returns in different countries and 

regions, and between individual asset returns and market returns of their own country (region), 

as well as market returns of other countries and regions.  

Moreover, our framework can also explain how asset correlations react to the 

contagious effects of crises. Within a normal time period, the short-term traders’ sensitivity to 

asset returns is unchanged. However, in a crisis period, traders may become more sensitive to 

some markets but choose not to invest in other markets. Karolyi (2002) finds that before the 

1997 Asian financial crisis foreign investors were net buyers of Japanese equity, but they 

became net sellers during the Asian crisis in 1997 and 1998. 

Bekaert and Harvey (2003) find that during the Asian financial crisis not only did 

Asian countries experience lowest returns, but Turkey and some Latin American countries e.g. 

Brazil, Chile, Venezuela, Columbia also faced the lowest returns in that specific time. 

Coincidence of extreme equity movements may be evidence of contagion. In the David Finch 

lecture at the IMF in 1998, Fischer pointed out that a cause of the turbulence in international 

capital markets during a crisis is the dependence between markets that allows market shocks 
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in an individual market to spillover onto other markets. Some researchers explain that 

comovements in financial asset prices result from real and financial linkages among market 

economies while contagion involving financial crises may not necessarily be linked to 

macroeconomic or other fundamental factors but to the behavior of investors often referred as 

`irrational contagion'. Karolyi (2003) suggests that international financial contagion can be 

associated with financial panic, herd behavior, loss of confidence, increases in risk aversion, 

imperfect information and differences in investor expectations. For example, if the crisis 

reflects weak fundamentals of one country, investors may rationally conclude that similar 

countries have similar problems, and thus crisis in one country may lead to an attack on the 

assets of another country. The contagious effect of crisis may be due to changes in 

expectations that are self-fulfilling in markets with multiple equilibria. Less well-informed 

investors could adjust their portfolios following investors who have acted earlier. Some 

investors may suddenly withdraw investments from the crisis market if they fear that they will 

be too late to have a claim on a limited asset pool if they do not. This indicates that investors’ 

sensitivity to asset returns in the normal and crisis periods can be different; therefore, the 

elements of matrix A can change in a particular period like a crisis. For example, A in the 

mean-variance framework is .11 −− BHτ  While the volatility of returns are stable during the 

normal period, a shift in the perceived variances or covariances of returns (elements in the B 

matrix) or changes in investors' preference τ during the crisis can result in changes in 

investors sensitivity to asset returns i.e. the elements of A. 

5. A special case with two assets 

To see the detail of these restrictions in terms of the impact of flow traders on markets, 

we take an example with only two risky assets. If the intercept is zero, a lower bound on price 

correlation can be derived. With only specialists trading in the market, there are no moment 

restrictions between asset returns, but the determinants of variances and covariance are still 

found. 
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5.1 Moment Restrictions  

There are two assets (m=2) and the long-term investors can either long or short the 

assets at time t+1. The h
th
 flow trader net demand in market i is responsive to expected returns 

in both markets: )1()1,1( 1
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which can be written as  
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Recall that the ijα  are elements of the inverse of A: 
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so (17) becomes  
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For the special case in which 0)var()var( 222211121112 =++ ηηγ aaaa , the restriction 

becomes 
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Recall that 0>jja  but jka is of ambiguous sign. The denominator is positive if jka and 
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jka have the same sign. If 0>jka  which could occur with strong complementarities for flow 

traders, then the covariance could be negative. However, in the more likely case 0<jka  and 

;012 >λ also, an increase in the volatility of the asset markets can increase the covariance. 

Another special case arises when the flow traders are specialists responding to the 

expected return in only one market ( 0=jka ) in which case 
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and there is then no second moment restriction. The magnitude of liquidity shocks and 

unexpected returns totally determines the volatility of asset returns. 

5.2 Lower Bound of Correlation 

There is also an implicit lower bound on the absolute value of the correlation || ρ  

between the asset returns when )var()var( 222211121112 ηηγ aaaa −−= and flow traders are 

generalists. From (18) 
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The absolute value of the correlation depends on relative variances and flow traders' 

sensitivities to both asset returns. But since the first two terms are positive,   
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The squared correlation between asset returns is bounded below by the right hand side; 

equivalently, 

( )21122211

211222112

aaaa

aaaa

+
>ρ  



 

 19 

That is, the absolute value of the correlation between the asset returns has a lower bound 

depending on flow traders' sensitivities to both asset returns only. 

Summarising 

Proposition 2 An implicit lower bound on the absolute value of the correlation || ρ  between 

the asset returns is found when )var()var( 222211121112 ηηγ aaaa −−= and flow traders are 

generalists. The lower bound of correlation depends on flow traders' sensitivities to both asset 

returns, and is independent of variances of asset returns. 

6. Some Empirical Evidence 

The theory above predicts that there should be a linear restriction between asset 

returns at any time:  
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Given data on the second moments of market returns ijΛ  we want to test if these 

restrictions hold. If the restrictions are valid, there should be a stable time series regression 

between the monthly second moment series. We would not expect this relation to be exact 

partly because of many omitted effects e.g. measurement errors arising in computing the 

sample of second moments, timing differences between markets, and lack of synchronization 

of trade in markets for different assets. So adding disturbances to each equation at each 

sample point gives a seemingly unrelated regression system. If there is a stable linear 

relationship over time and mean values of disturbances are very close to zero, there is strong 

evidence in favor of the restrictions we highlight and the existence of a nondiagonal A matrix. 
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Here, we take monthly data on stock returns in three developed market (UK FTSE100 

index (F), Japanese Nikkei225 index (N), and US DJIA index (D)) and stock returns in three 

emerging markets (China's SSE index (C), India's Bombay Stock Exchange (BSE) 100 index 

(I)
7
, and Russia's AKM Composite index (R)

8
). The data covers the period from October 1993 

to May 2012; this period includes the 1997-1998 Asian financial crisis period which is 

between July 1997-July 1999 and the 2008-2012 global financial crisis period which is from 

September 2008 onwards. This allows us to test whether the elements of the matrix A change 

in some periods, especially periods of crisis. For each market we compute the monthly 

variance and covariances of returns
9
. This gives us a monthly sample of elements ofΛwhich 

then vary month by month, but are stationary (see Table 3 in Appendix). For each monthly 

second moment we have 224 observations. 

We take the DJIA as the m
th 
asset in our theoretical framework, allowing our 

framework to be compared with others using the US market as a proxy of the world market. 

(10) can be thought of as a system of equations in which each element of 16Λ  (the 

covariances of the DJIA index return with the other stock index returns) is expressed in terms 

of 66Λ  (the variance of the DJIA index return: σ
D

2
 ) and all the elements of 11Λ  (the 

variances and covariances of the other stock index returns) together with a constant term 

which reflects the impact of .16Σ  To form the dependent variables, we stack the observations 

on the elements of 16Λ  in the column Y (so the first 224 elements of Y correspond to the 

sample observations on the first covariance in  16Λ , the next 224 to the second covariance 

and so on). 

                                                 
7
 The Bombay Stock Exchange (BSE) 100 index is a broad based stock index. It has 1984 as the base year and 

was launched in 1989. It's composed of top 100 constituents listed in the Bombay Stock exchanges in Mumbai, 

regarded as the oldest stock market in Asia. 
8
 The AKM composite index is a market value-weighted index of capitalisation of all stocks listed in the 

Russian stock market with the base date on September 1, 1993. 
9 The monthly variance of returns is its variance across weeks in the month. Thus, our sample variances and 

covariances are calculated without nonoverlapping data periods. 
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Let X be the 224×17 regressor matrix with each column containing the sample 

observations on one of 15 elements in ,11Λ  the observations on 66Λ  and a constant term. 

Thus, the elements of matrix X are σij denoting the covariance between asset returns in market 

i and j, σi
2
 denoting the variance of asset return in market i and the constant term. According 

to (10), the coefficients in the equations of the variables in 11Λ  and 66Λ  are combinations 

of elements of the inverse of A. So 
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There are 5 equations in the second moment restriction regression system with the six 

stock returns. The regression system is  
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where .,0 iiii EE Ω== ′εεε  Here iφ  is a column of the 15 regression coefficients of the 

elements of 11Λ  in the i
th
 equation, iδ  is the coefficient of σ

D

2
 and iθ  is the estimated 

constant term in each equation. iΩ  is the contemporaneous covariance matrix of the 

disturbances on the i
th
 equation, assumed to be constant through time. Even if there is 

correlation between the disturbances of different equations, the coefficients obtained from 

OLS estimation applied to each equation of the system in turn still yields an efficient 

estimator since the regressors in each equation are identical and stationary (see the unit root 

test results shown in Table 3 in Appendix). Written equation by equation, the dependent 

variables are σiD and the i
th
 equation is 
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iiiD X εβσ +=      (22) 

The results of this exercise are shown in Table 1, which uses White's 

Heteroskedasticity-consistent standard errors and covariances. The columns give the summary 

results for each of the five equations. First we estimate each equation of the system above and 

find that Ramsey's regression specification error test (RESET) result indicates 

mis-specification in all equations (see Table 4 in Appendix). Then, we investigate the data 

and find that the root of the problem is structural breaks during the 1997 Asian financial crisis 

and the recent financial crisis. Therefore, we add two dummy variables and their interaction 

with the variances and covariances into the system. The first dummy variable is AFC with the 

value 1 for the observations during the period July 1997 - July 1999 and 0 otherwise. The 

second dummy variable is GFC with the value 0 for the observations before September 2008 

and 1 for the observations after September 2008. Panel A in Table 1 gives estimators of  

ii γβ ,  and iθ . Panel B provides the coefficients of AFC and its interaction terms and Panel C 

contains coefficients of GFC and its interaction terms. 

Significance of some or all coefficients of covariance terms in the model implies that 

our framework is valid - that is, covariances of asset returns can be explained not only by 

variance terms but also by other covariances. A change in the A matrix can also explain 

changes in intercepts and slope coefficients in crisis periods. Significance of coefficients in 

Panel B and C indicates that trader's sensitivity to asset returns changes during crises. The 

sum of coefficients of each regressor in Panel A and its interaction terms in Panel B (Panel C) 

is the effect of each regressor on the covariance of market i with DJIA during the Asian 

financial crisis (Global financial crisis) 

The result supports our theoretical finding that the covariance between any two index 

returns depends not only on the volatilities of the returns, but also volatilities in other markets 

and covariances among markets. Regarding Panel A, except for the covariance between DJIA 

and SSE, all covariances between DJIA and other index returns depend on not only the 
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volatility of DJIA as suggested by the framework of Bekaert et al. (2005), but also variances 

and covariances of the four asset returns: FTSE, Nikkei225, BSE100 and AKM. More 

specifically, covariances of FTSE100 and AKM with DJIA (σFD, σRD) depend on not only the 

volatility of DJIA, but also their own volatilities. In addition, σRD is also affected by the 

covariance between FTSE100 and AKM (σFR). For the Nikkei225 and BSE100, their 

covariances with DJIA depend on the volatilities of FTSE and DJIA, but do not depend on 

their own volatility. The covariance of Nikkei225 with DJIA (σND) also depends on the 

covariance between FTSE100 and Nikkei225 (σFN) and the volatility of BSE100 (σI

2
) while the 

covariance of BSE100 with DJIA (σID) depends on covariances between BSE100 and three 

other markets: FTSE, Nikkei225 and AKM. Unlike other covariances, in normal periods the 

covariance between SSE and DJIA (σCD) does not depend on the volatilities of returns in 

developed markets. It may reflect the low degree of integration of China with other markets 

due to restrictions on foreign trading in Chinese stock markets and thus indicate unexploited 

portfolio diversification benefits. This finding supports the view that emerging stock markets 

have low correlations with the global market e.g. Bekaert et al. (1997), Bekaert and Harvey 

(2003) and Li and Majerowska (2008). We find that the coefficient of σ
D

2
 is positive, 

supporting the theoretical finding that the coefficient of mmΛ  should be positive if the assets 

are substitutes. The significant constant terms in the regressions of σFD and σRD also reflect the 

existence of correlations among UK, US and Russian fundamental shocks. The insignificant 

constant terms of σND , σCD and σID are consistent with the observation of low correlation 

between the Asian and US fundamental shocks. 

According to Panel B, the Asian financial crisis lowers the mean value of σCD, but 

does not significantly affect the mean value of other covariances. This evidence also suggests 

that the correlation between Chinese and US fundamental shocks fell or traders' sensitivity to 

asset returns changed during the Asian financial crisis. Unlike normal periods, σFD becomes 
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more related to the volatilities of Asian stock markets and their comovement with FTSE 

during the Asian financial crisis. Moreover, σND falls with covariances of FTSE with Asian 

stock markets (Nikkei225, SSE and BSE100), but rises with the volatility of AKM (σ
R

2
) and 

the covariance between Nikkei225 and BSE100 (σNI). With regard to SSE, its covariance 

depends more on the volatility of developed markets and its own volatility during the Asian 

financial crisis. In addition, it rises with covariances of other crisis markets (Nikkei225 and 

AKM) with BSE100, but falls with covariances of these crisis markets with SSE and σFN . 

Unlike σID in normal periods, in the crisis period it is affected by their own volatilities and the 

σ
R

2
 and falls with covariances among Nikkei225, AKM and BSE100. While σRD links to 

developed markets only in the normal period, it becomes more related to three Asian stock 

markets in our sample during the Asian financial crisis. This finding supports the results of 

Pinto and Ulatov (2010) that there was spillover of the East Asian crisis to Russia in 

November 1997, therefore Russia faced an economic crisis in August 1998 after almost 

complete privatization of its manufacturing and natural resource sectors and the surge in 

capital inflows in 1997. 

Regarding the effect of the recent global financial crisis shown in Panel C, the crisis 

lowers only the mean value of σID . This finding may stem from the lower correlation between 

Indian and US fundamental shocks or changes in traders' sensitivity to a set of asset returns 

during the global financial crisis. The result in Panel C shows that σ
D

2
 raises covariances of 

FTSE, SSE and AKM with DJIA while an increase in σ
F

2
 raises covariances of FTSE and 

BSE100 with DJIA. Considering σFD, it rises with covariances between developed and 

emerging markets i.e. σFI and σNC but falls with the covariance between emerging markets i.e. 

σCI . While σND does not depend on its own volatility in the normal period or the Asian 

financial crisis period, it does in the recent global financial crisis. Unlike σFD, σND rises with 

covariances between markets with the same development level i.e. σFN and σCR, but falls with 
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covariances between developed and emerging markets i.e. σFC and σNR. While σCD is not 

related to σ
N

2 
 in the normal period, it rises with σ

N

2 
 in both Asian and global financial crises. 

During the global financial crisis σCD increases with the covariance between markets in 

different regions i.e. σFC ; whereas, it decreases with covariances between markets in the same 

region i.e. σFR and σNC . Regarding σID, while it is insignificantly affected by σ
I

2
 in normal 

periods, it significantly rises with σ
I

2
 during both Asian and global financial crises. Unlike 

normal periods and the Asian financial crisis period, during the recent financial crisis σID also 

changes significantly with the covariance between FTSE and the other three markets: 

Nikkei225, SSE and AKM. As in the Asian financial crisis period, during the global financial 

crisis σRD is significantly related to the covariances among Asian stock markets (Nikkei225, 

SSE, BSE100). 

The sample includes periods of high global instability in different parts of the world as 

well as those of more "normal times". Despite this heterogeneity we have stable regressions 

across countries and time. The fit is generally very good. The adjusted R² of the model in 

Table 1 is much higher than that of models with only variance terms as explanatory variables 

(See Table 4-6 in Appendix 4). A likelihood ratio test rejects excluding the covariance terms. 

The Breusch-Godfrey serial correlation test and the Ramsey's RESET statistics in Table 1 also 

indicate that there is no evidence of autocorrelation or mis-specification problems while these 

problems exist in the models with only variance terms as explanatory variables (See Table 4-6 

in Appendix 4). All variables in the system are stationary and so are residuals (See Table 2). 

That is, there are stable linear relationships between the second moment series. The 

Theil-inequality indexes are also close to zero and much lower than the indices of the model 

without dummy variables and those of models in which the asset covariance relates to 

variances only (See Appendix 4).  
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Table 1: OLS regressions of equation (22)      

  Dependent Variables  

 Independent Variables σFD σND σCD σID σRD 

Panel A           
σF

2     0.312 ** -0.253 ** 0.063  -0.169 ** -0.135   

σN

2    -0.010  0.020  -0.035  0.013  0.011   

σC

2    -0.001  -0.001  -0.013  0.002  0.001   

σI

2     -0.012  0.025 ** -0.001  -0.001  0.027   

σR

2   -0.003  -0.004  0.008  -0.005  0.039 ** 
σ

FN
 0.049  0.735 ** 0.042  -0.044  0.292   

σ
FC

 0.003  -0.013  0.357 ** 0.003  0.044   
σ

FI
 0.005  0.037  -0.100  0.365 ** -0.091   

σ
FR

 0.029  -0.004  0.047  -0.055  0.564 ** 
σ

NC
 0.016  0.012  0.091  0.044  -0.043   

σ
NI

 0.007  -0.063  0.080  0.144 ** -0.076   
σ

NR
 0.002  0.054  0.015  0.022  0.043   

σ
CI

 0.009  0.027  -0.004  0.004  -0.039   
σ

CR
 0.006  -0.006  0.064  -0.002  0.023   

σ
IR

 -0.008  0.014  -0.049  0.094 ** -0.068   

σD

2   0.293 ** 0.214 ** -0.056  0.157 ** 0.149 * 

C -0.331 ** 0.122  0.174  0.321  -1.045 * 

Panel B           

σF

2    × AFC -0.059  0.266 * 0.300 ** 0.285 ** 0.465   

σN

2   × AFC -0.044  0.009  0.189 ** -0.108  -0.124   

σC

2   × AFC 0.022 ** -0.001  -0.058 ** 0.019  0.076   

σI

2    × AFC 0.073 ** 0.037  -0.019  0.153 ** 0.179   

σR

2   × AFC 0.001  0.008 * 0.004  0.010 ** -0.038 ** 
σ

FN
  × AFC -0.102  -0.472 * -0.981 ** 0.194  -0.025   

σ
FC
  × AFC -0.247 ** -0.134 * 0.050  -0.115  -1.427 ** 

σ
FI
   × AFC 0.093 * -0.231 ** 0.147  0.033  0.033   

σ
FR
  × AFC -0.038  0.041  -0.052  0.013  -0.358 ** 

σ
NC
  × AFC -0.010  -0.064  -0.151 * -0.002  0.432 ** 

σ
NI
   × AFC -0.015  0.361 ** 0.333 ** -0.323 ** -0.334   

σ
NR
  × AFC -0.006  -0.033  0.046  -0.094 ** 0.091   

σ
CI
   × AFC 0.035  0.057  0.305 ** -0.147 ** -0.159   

σ
CR
  × AFC 0.049 ** 0.000  -0.145 * 0.044  0.557 ** 

σ
IR
   × AFC -0.005  -0.059  -0.004  -0.144 ** 0.314 ** 

σD

2   × AFC 0.061  -0.202 * -0.141 ** 0.046  -0.058   

AFC -0.551  -0.834  -2.948 ** -2.153  -1.374   

Panel C           

σF

2    × GFC -0.089 * -0.028  -0.128  0.333 ** -0.141   

σN

2   × GFC -0.015  -0.128 ** 0.092 * 0.008  -0.027   

σC

2   × GFC -0.001  -0.025 * 0.002  0.014  0.002   

σI

2     × GFC -0.009  -0.041  0.060  0.125 ** -0.086 ** 

σR

2   × GFC 0.004  -0.002  0.003  0.006  -0.025   
σ

FN
  × GFC 0.086  0.766 ** -0.195  0.463 * -0.207   

σ
FC
  × GFC 0.039  -0.239 * 0.692 ** -0.305 ** -0.260   

σ
FI
   × GFC 0.138 ** 0.130  -0.037  0.032  0.271   

σ
FR
  × GFC -0.043  0.039  -0.163 * 0.200 ** 0.181   

σ
NC
  × GFC 0.059 * -0.080  -0.265 * -0.094  0.416 ** 

σ
NI
   × GFC -0.058  0.050  0.032  -0.181  -0.279 ** 

σ
NR
  × GFC -0.008  -0.185 ** -0.047  -0.395 ** -0.093   

σ
CI
   × GFC -0.089 ** -0.020  -0.043  0.124  -0.088   

σ
CR
  × GFC 0.012  0.160 ** -0.015  0.029  0.082   

σ
IR
   × GFC 0.020  -0.002  0.008  0.015  0.265 ** 

σD

2  × GFC 0.116 ** -0.007  0.361 ** -0.053  0.267 ** 

GFC 0.019   -0.146   -0.950   -2.058 ** 0.415   

Adjusted R-squared 0.97  0.89  0.76  0.88  0.96   

LR stat (P-Value)  153.62 (0.00) 288.44 (0.00) 358.00 (0.00) 283.92 (0.00) 533.47 (0.00) 

Theil Inequality Coef. 0.07 0.14 0.23 0.15 0.08 

AR (P-Value) 0.86 (0.66) 1.39 (0.12) 0.95 (0.54) 0.75 (0.79) 1.28 (0.18) 

Ramsey  (P-Value) 0.60 (0.44) 0.32 (0.57) 1.78 (0.18) 0.26 (0.61) 2.83 (0.09) 

Note: ** for 0.05 significance level and * for 0.1 significance level; For Likelihood Ratio (LR) test, H0: σiD
 = f(σF

2 , σN

2 , σC

2 , σI

2 , σR

2 , σD

2 )   
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Table 2: Descriptive statistics of estimated residuals 

 Dependent Variables 

  σ
FD

 σ
ND

 σ
CD

 σ
ID

 σ
RD

 

Mean 1.34×10
-11

 -1.34×10
-11

 -8.93×10
-12

 8.70×10
-17

 8.93×10
-12

 

Standard Deviation 1.059 1.817 2.403 2.190 2.891 

ADF-stat -15.074 -13.437 -12.718 -14.632 -16.916 

ADF P(Value) 0.000 0.000 0.000 0.000 0.000 

ADF critical values  1% level: -2.575   5% level: -1.942   10% level: -1.616 

 
To sum up, we find the covariances between two market returns can be affected by not 

only their own volatility but also volatilities and covariances of the other markets. The 

significance of coefficients in Panel B and C indicates that how they are related in normal and 

crisis periods are different. While the comovement between the UK market and the US 

market is only affected by their own volatilities during the normal periods, it is also affected 

by volatilities and comovement of emerging markets during the crisis periods. For the 

emerging markets, during normal periods the covariance between an emerging market and the 

US market depends on not only the volatility of the US market but also the volatility of the 

UK market or the covariance between its own market and the UK market, but during the 

financial crises it relates more to covariances of its own market and the Japanese market with 

other emerging markets. These results imply changes in investors’ sensitivity to asset returns 

and how random shocks are correlated during crises. Compared to other frameworks in which 

covariances are explained by variances of market returns only, our framework has higher 

explanatory power and does not have mis-specification problems. These results imply the 

validity of our moment restrictions.  

7. Conclusions 

Existing asset pricing theories focus on representative investor behavior to derive the 

first moments or bounds of asset prices by appealing to no arbitrage and efficient pricing 

considerations. At the same time these restrictions are often empirically rejected. This has led 

to the development of quite highly structured theories to explain anomalies. Here, we have 
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taken a theory-free framework with the only assumption that equilibrium asset returns reflect 

the interaction between intertemporal traders and short term flow and noise traders. 

Our main result is that so long as the short term traders react to asset returns in more 

than one market, there is a set of linear restrictions on the covariance matrix of the 

equilibrium asset returns. These restrictions are testable just from asset returns data. The 

restrictions are robust in that they are independent of the investment decision rules used by 

the intertemporal traders. We also find a lower bound of correlation between two asset 

returns. 

We have taken a two period horizon and a single round of maturity trading. One 

interesting extension would be to embed this in an overlapping generations model where each 

generation lives two periods. Then our intertemporal traders correspond to the old and the 

flow traders to the young - that is, their net supplies depend on not only previous prices but 

also current prices. The flow trader demands at t+1 would still depend on expected asset 

returns (and hence on asset prices at t+1) and their expectations of the maturity prices that 

they will face at t+2 ( )21 ++ tt pE  and on the covariance matrix of asset returns. The approach 

to deriving second moment restrictions at any particular period would then still hold. 

We have applied the results to aggregate stock returns for quite different markets for a 

sample that includes various abnormal periods. With stationary monthly variances and 

covariances of stock returns, overall we find that it has quite strong empirical validation. In 

general there are links between the second moments between asset returns that appear to be 

quite robust over time and space. In other words, changes in volatility and covariances of 

asset returns in some other markets can affect the covariance between asset returns in two 

particular markets. This helps to explain the evidence of increasing comovement between 

stock returns in different countries and continents both in normal periods and during the 1997 

Asian financial crisis and the 2008 global financial crisis in which there have been high 

volatilities in stock markets of the crisis countries. In general, the empirical evidence shows 
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that the linkages between emerging and developed markets are greater during crisis periods 

than in normal periods. During normal periods the comovement between two markets is 

mainly affected by their own volatilities and co-movements between those two markets with 

the other markets, but during the crises it is also affected by volatilities and comovements of 

the other markets. 

The setting can also be applied to any asset markets such as derivative markets, 

especially futures markets in which intertemporal traders are closing out positions close to 

maturity. It can also be applied to commodity markets in which we have recently found 

co-movement among prices of oil, bio-fuel commodity, and precious metals. There is also 

recent evidence that increasing integration of asset markets influences the covariance and 

variance structure between markets. For example, until recently commodities and other 

financial assets had low correlations and a small volume of cross market trading (Erb and 

Harvey, 2006) but there was a strong rise in comovement across different commodity prices 

in 2007-2008. This may have been driven by a large influx of speculative investment funds 

from institutional investors following the innovation of commodity index futures (Balkombe, 

2010; Hernandez and Torero, 2010; Tang and Xiong, 2010). In particular, Gilbert (2010) 

empirically finds that commodity prices have not always reflected market fundamentals, but 

there may be effects of speculation. In terms of our theory this would be modeled as the 

introduction of a new wave of flow traders into commodities. 
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A1. The relationship between asset returns 
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unit vector. Note that (23) holds with probability one in t+1 : this generates the restrictions 

we find. From the first m-1 equations of (23), 

[ ] [ ] [ ] 11111111111111 +−++−+−−−+ ++−−−−= mtmmtmtmmtmmmmt AArArAAAX ηηιε   (24) 
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A2. The second moments of returns 

The variance-covariance matrix of returns is 
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From (26), the variance-covariance matrix of m asset returns: 
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Substitute this in the second equation of (27) and recall that mmΣ  is a scalar 
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A3. Stationarity Test on Variables 

ADF t-statistics of the second moments are shown in Table 2. For example, the ADF 

t-statistic of Var(F) is -11.589 and the ADF t-statistic of Cov(F,N) is -12.074. The result 

shows that the null hypothesis of unit root can be rejected for all second moments i.e. all 

dependent and independent variables in regressions are stationary. 

Table 3: Augmented Dickey-Fuller (ADF)Test on Variances and Covariances of Index Returns 

Stock Markets F N C I R D  

F -11.589        

N -12.074 -12.266       

C -17.607 -13.559 -5.061      

I -13.868 -14.641 -14.549 -14.647     

R -12.865 -11.537 -18.203 -14.223 -4.405    

D -11.456 -12.869 -17.429 -4.678 -13.4 -10.851  

critical values 1% level: -4.000;  5% level: -3.430;  10% level:-3.139  

 

A4. Estimations of equation (22) without dummy variables and alternative models  

Table 4: OLS regression of the moment restriction implied by CAPM 

 
 

 Dependent Variables 

Independent Variable σ
FD
 σ

ND
 σ

CD
 σ

ID
 σ

RD
 

σD

2
 0.61 ** 0.36 ** 0.09  0.43 ** 0.97 * 

C -0.21   0.57   -0.04   0.32   -1.53   

Adjusted R-squared 0.88  0.36  0.02  0.41  0.36  
Mean of Residuals -4.66×10

-17
 1.83×10

-15
 2.78×10

-16
 -2.10×10

-15
 1.83×10

-15
 

Theil Inequality Coef. 0.15  0.43  0.83  0.41  0.47  

AR (F-stat) 1.10 (0.33) 8.39 (0.00) 2.88 (0.06) 8.99 (0.00) 0.25 (0.77) 

Ramsey (F-stat) 4.50 (0.03) 0.82 (0.37) 31.46 (0.00) 3.21 (0.07) 20.44 (0.00) 

Note: ** for 0.05 significance level and * for 0.1 significance level  

 
 
 
Table 5: OLS regression with variances of the i

th
 market and US markets 

 

 Dependent Variables 

Independent Variable σ
FD

 σ
ND

 σ
CD

 σ
ID

 σ
RD

 

σi

2
   0.32 ** 0.20 ** -0.02 * 0.12 ** 0.69 ** 

σD

2
   0.35 ** 0.22 ** 0.08  0.36 ** 0.05 ** 

C -0.73 ** -0.72 * 0.39   -1.26   -2.10   

Adjusted R-squared 0.95  0.67  0.05  0.57  0.59  

Mean of Residuals 1.93×10
-15

 4.93×10
-16

 4.51×10
-16

 2.60×10
-15

 1.36×10
-15

 

Theil Inequality Coef. 0.10  0.28  0.77  0.33  0.34  

AR (F-stat) 5.77 (0.00) 1.89 (0.15) 2.96 (0.05) 5.41 (0.00) 0.38 (0.69) 

Ramsey (F-stat) 2.75 (0.10) 2.38 (0.12) 8.91 (0.00) 28.73 (0.00) 11.35 (0.00) 

Note: ** for 0.05 significance level and * for 0.1 significance level  
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Table 6: OLS regressions without covariance terms 

  Dependent Variables  

Independent Variables σ
FD

 σ
ND

 σ
CD

 σ
ID

 σ
RD

 

σF

2
     0.321 ** 0.081  -0.030  0.212 ** 0.432 * 

σN

2
    0.014  0.184 ** -0.009  0.078 ** 0.154   

σC

2
    0.001  0.001  -0.017 ** 0.001  0.013   

σI

2
     -0.001  0.001  0.001  0.005 ** 0.043 ** 

σR

2
   -0.005  0.022  -0.024  0.084 ** 0.082   

σD

2
   0.351 ** 0.147  0.128  0.121  0.201   

C -0.755 ** -1.094 ** 0.833   -1.757 ** -5.214   

Adjusted R-squared 0.95  0.68  0.05  0.65  0.68   

Mean of Residuals -1.79×10
-11

 4.91×10
-11

 -2.68×10
-11

 -1.79×10
-11

 8.04×10
-11

 

Theil Inequality Coef. 0.10  0.27  0.74  0.29  0.29   

AR (P-Value) 1.82 (0.01) 1.19 (0.25) 1.22 (0.23) 1.59 (0.05) 0.98 (0.50) 

Ramsey (P-Value) 2.88 (0.09) 4.65 (0.03) 2.12 (0.15) 30.95 (0.00) 94.89 (0.00) 

Note: ** for 0.05 significance level and * for 0.1 significance level 

 
 
Table 7: OLS regression of equation (22) without dummy variables 

  Dependent Variables 

Independent Variables σ
FD

 σ
ND

 σ
CD

 σ
ID

 σ
RD

 

σF

2
     0.230 ** -0.212 ** -0.031  -0.116  -0.258 ** 

σN

2
    -0.004  -0.006  0.012  0.023  -0.015   

σC

2
    -0.001  -0.002  -0.013  0.000  0.002   

σI

2
     -0.014 ** 0.013  0.010  0.041 * -0.004   

σR

2
   -0.004 ** -0.003 ** 0.004 ** -0.001  0.008   

σ
FN

 0.060  0.807 ** 0.018  0.061  0.473 ** 

σ
FC

 0.006  -0.003  0.531 ** -0.009  -0.019   

σ
FI

 0.043  -0.040  -0.009  0.379 ** -0.204 * 

σ
FR

 0.049 ** 0.074 ** 0.098 ** 0.103 * 0.694 ** 

σ
NC

 0.027  0.030  0.067  0.057  0.021   

σ
NI

 0.013  0.036  -0.045  0.051  0.015   

σ
NR

 -0.030 ** -0.032  -0.048 * -0.036  -0.170 * 

σ
CI

 0.004  0.016  0.046  -0.013  -0.124 ** 

σ
CR

 0.012 * 0.009  0.072  0.007  0.086   

σ
IR

 0.013  -0.005  -0.083 ** 0.014  0.203 ** 

σD

2
   0.380 ** 0.199 ** 0.087  0.197 ** 0.319 ** 

C -0.446 ** 0.167   -0.224   -0.512   -0.825 * 

Adjusted R-squared 0.96  0.87  0.65  0.81  0.92   
LR stat (P-Value)  69.69 (0.00) 207.72 (0.00) 235.74 

(0.00) 
144.54 (0.00) 333.62 

(0.00) Mean of Residuals 4.46×10
-12

 -4.46×10
-12

 -8.93×10
-12

 -6.25×10
-11

 -2.68×10
-11

 

Theil Inequality Coef. 0.08  0.16  0.31  0.20  0.13   

AR (P-Value) 1.31 (0.16) 1.51 (0.07) 0.49 (0.98) 0.95 (0.53) 1.10 (0.35) 

Ramsey (P-Value) 5.07 (0.03) 0.05 (0.82) 8.23 (0.00) 1.44 (0.23) 43.83 
(0.00) 

Note: ** for 0.05 significance level and * for 0.1 significance level; For Likelihood Ratio (LR) test, H0: σiD
 = f(σF

2 , σN

2 , 

σC

2 , σI

2 , σR

2 , σD

2 )   
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