Yersinia adhesins: an arsenal for infection

Nandini Chauhan¹, Agnieszka Wrobel¹, Mikael Skurnik²,³ and Jack C. Leo¹*¹

¹Evolution and Genetics, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
²Department of Bacteriology and Immunology, Medicum, Research Programs Unit, Immunobiology, University of Helsinki, 00014 HY, Finland
³Helsinki University Central Hospital Laboratory Diagnostics, Helsinki, Finland.

*Corresponding author: Department of Biosciences, University of Oslo, PO Box 1066 (Blindernveien 31), 0316 Oslo, Norway. Tel: +47 22859027, Fax: +47 22854726, e-mail: j.c.leo@ibv.uio.no

Abbreviations used: Ail, attachment and invasion locus; AT, autotransporter; C3, complement component 3; C4bp, complement component 4-binding protein; Caf, cluster fraction 1 antigen; C-U, chaperone-usher; ECM, extracellular matrix; FasL, Fas ligand; FH, complement factor H; Flp, fimbrial low-molecular-weight protein; H-NS, histone-like nucleoid structuring protein; Ifp, intimin family protein; Ilp, intimin/invasin-like protein; InvA, invasin; LPS, lipopolysaccharide; M cell, microfold cell; MAM7, multivalent adhesion molecule 7; Myf, mucoid factor; NET, neutrophil extracellular trap; PGA, poly-β-1,6-N-acetyl-D-glucosamine; Pla, plasminogen activator; Psa, pH 6 antigen; TAA, trimeric autotransporter adhesin; Yap, Yersinia autotransporter protein; Yad, Yersinia adhesin; Yop, Yersinia outer protein

Keywords: Bacterial adhesion/biofilm/pathogenesis/virulence factor/Yersinia

Total number of words: 10991
Abstract

The *Yersinia* are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbours three recognised human pathogens: *Y. enterocolitica* and *Y. pseudotuberculosis*, which both cause gastrointestinal disease, and *Y. pestis*, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic *Yersinia* is heavily dependent on a number of adhesin molecules. Some of these, such as the *Yersinia* adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of *Y. pestis*, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the *Yersinia*, their functions and putative roles in the infection process.
The *Yersiniae* are a large group of Gram-negative bacteria comprising 18 recognised species [1,2]. Among these, two species, *Y. enterocolitica* and *Y. pseudotuberculosis*, are causes of gastrointestinal disease in humans. A third species of medical relevance is *Y. pestis*, the causative agent of plague, which has been a scourge of humanity for at least 5000 years [3]. The virulence of all three species is reliant on adhesive properties of the bacteria, and the adhesin molecules mediating adherence to host tissues have been a focus of research for several decades. Important adhesins of *Yersiniae* were identified in the 1980s, with the *Yersinia* adhesin A (YadA) and Invasin (InvA) being the first ones [4-6], followed by others soon after. More recently, the availability of whole bacterial genome sequences have uncovered a number of potential adhesin-encoding genes. In addition, the production of adhesin fragments by recombinant methods combined with structural biology have been utilised to gain significant insights into the molecular mechanisms of bacterial adhesion. Adhesins fall into several different classes based on their structures, assembly pathways and surface export mechanisms, and most of these classes are represented in *Yersiniae*. Below, we review the current state of knowledge on the different types of adhesin molecules present in the human pathogenic *Yersiniae*, their functions and putative roles in the infection process.
2. Autotransporter adhesins

Autotransporters (ATs), or type V secretion systems, constitute the largest group of secreted proteins in Gram-negative bacteria. There are five recognised classes of ATs, type Va through Ve [7]. The pathogenic Yersiniae contain adhesins belonging to types Va, Vc and Ve (Table 1). Type Va-secreted proteins are classical ATs consisting of an N-terminal signal peptide, an extracellular passenger and C-terminal membrane anchor domain. The signal peptide mediates transport of the protein to the periplasm, where chaperones such as Skp, SurA and DegP protect the protein against proteases and keep them in an unfolded state until they are inserted into the outer membrane by the β-barrel assembly machinery [7]. The C-terminal β-barrel transmembrane domain forms the transport channel through which the passenger is secreted across the outer membrane. Type Vc systems or trimeric autotransporter adhesins (TAAs) are similar in architecture to classical autotransporters, but are obligate homotrimers [8]. The passengers of TAAs typically consist of a globular head domain followed by a coiled coil stalk (Figure 1). Type Ve ATs or “inverse autotransporters” have a similar overall architecture to classical ATs, but their domain order is reversed, i.e. the β-barrel translocator domain is N-terminal to the passenger [9].

2.1 Type Va adhesins in Yersinia

A number of classical ATs have been discovered in Y. pestis and Y. pseudotuberculosis, collectively known as Yersinia AT proteins or Yaps (Table 1). In Y. pestis, 13 loci code for presumably functional ATs. Among these genes, yapK, yapJ and yapV are close paralogues; the latter gene is present in Y. pestis KIM but lacking in CO92 [10]. In addition, Y. pseudotuberculosis encodes an AT paralogous to yapKJV designated yapX, but this is a pseudogene in all Y. pestis strains [11]. yapB is another probable pseudogene in Y. pestis due to truncation of the translocator domain; however, Y. pseudotuberculosis has two intact, chromosomally adjacent yapB paralogues [12]. yapA might be nonfuctional in Y. pestis biovar Orientalis strains due to a point mutation in the signal...
sequence [12], but it is expressed in KIM strains [13]. yapE is the only yap also found in Y. enterocolitica [12].

The transcription profile of the yaps shows that they are expressed at low levels during in vitro growth conditions but are upregulated in a mammalian infection model [12]. A part of the passengers of YapA, YapE and YapG is cleaved by plasminogen activator (Pla; see section 3.2) and released into the culture medium; the rest of the Yaps remain intact and associated with the outer membrane [12,14]. The other Yaps are surface-localized in Y. pestis as shown by protease accessibility and immunofluorescence microscopy [13].

YapC plays a role in mediating autoaggregation, binding to macrophages, binding to human-derived epithelial cell lines, and biofilm formation [15]. YapG does not play a role in virulence in bubonic or pneumonic plague, and its function remains to be deciphered [16]. YapJ and YapK are upregulated during bubonic and pneumonic infections [12], though their exact functions are not yet clear [17]. YapV, a parologue of YapJ and YapK, is similar to the Shigella autotransporter IcsA and, like IcsA, YapV is able to interact with N-WASP, which is involved in actin polymerization [10]. YapV, YapJ and YapK bind to a variety of extracellular matrix (ECM) molecules, and in addition YapV and, to a lesser extent, YapK interact with alveolar epithelial cells [11]. Deletion of yapE from Y. pestis effects the colonization of tissues during bubonic plague and plays a role in binding of bacteria to host cells and autoaggregation [18]. However, Y. enterocolitica YapE lacks the autoaggregation activity and is not proteolytically processed [14].

2.2 Type Vc adhesins in Yersinia

2.2.1 YadA

YadA is the prototypical TAA, present in all the three human pathogenic species of Yersinia. However, in Y. pestis, yadA is a pseudogene due to a single base pair deletion causing a frame shift [19,20]. YadA is an essential virulence factor of Y. enterocolitica and its absence renders the bacteria avirulent in a mouse model [21]. yadA mutants are able to penetrate the mouse intestinal mucosa but are not
able to persist for more than two days [22]. In contrast, YadA is not essential for virulence in *Y. pseudotuberculosis*. Introduction of a functional copy of yadA into *Y. pestis* causes a modest reduction in virulence [19]. This is particularly interesting because the same protein can cause different effects in different species of *Yersinia*.

YadA is encoded on the 70-kb virulence plasmid, pYV, and is induced upon a shift of temperature to 37 °C [23]. The expression of yadA is regulated by the temperature-sensitive *lcrF* gene [24]. *lcrF* is transcribed at comparable levels at both 26 °C and 37 °C in *Y. pestis* and *E.coli*, but translation is efficient only at 37 °C and not at 26 °C [25]. The activator of the plasmid-encoded virulence genes, including yadA, in *Y. enterocolitica* is known as VirF, which is a homologue of LcrF [26]. VirF is synthesized at high temperatures but its artificial expression at 30 °C does not lead to expression of virulence factors [27], which indicates that factors other than VirF are also required. YmoA is a chromosomally encoded histone-like protein which thermoregulates the induction of virulence genes in *Y. enterocolitica*. The deletion of this gene allows expression of the virulence factors below 30 °C [28]. Intergenic RNA thermosensors are also involved in regulating *lcrF/virF* translation. Combined action of both YmoA and RNA thermosensors seems to effectively regulate the infection efficiency of *Yersinia* [29]. A recent study showed that yadA expression is also modulated by the transcriptional regulator OmpR, which represses YadA by directly binding to the yadA promoter. OmpR-mediated control of yadA expression is independent from the thermoregulatory mechanism mentioned above [30].

YadA varies in size from strain to strain and ranges from 422 to 455 residues. It has a lollipop-like appearance and covers the entire surface of the bacteria [31] (Figure 1). A trimeric β-barrel domain anchors the protein to the outer membrane [32]. The passenger consists of three chains, which pass through the pore of the barrel and form an α-helical coiled-coil stalk followed by a sticky globular head at the N-terminus (Figure 1). YadA is a multifunctional protein that binds to host ECM components like fibrillar collagens such as types I, II, III, the network-forming collagen type IV, fibronectin and laminin [33-35]. The triple-helical conformation of collagen is required for YadA
binding, though a specific sequence is not necessary for its recognition [36]. Nonetheless, YadA binds more tightly to regions of collagen rich in 4-hydroxyproline with a low net charge [37]. *Y. enterocolitica* YadA shows higher affinity towards collagen and laminin compared to *Y. pseudotuberculosis* YadA, which in turn binds very efficiently to fibronectin [38]. YadA of *Y. pseudotuberculosis* mediates more efficient entry of bacteria into epithelial cells. This difference in function has been attributed to the additional 31 residues present at the N-termini of the head domain of *Y. pseudotuberculosis* YadA [38].

YadA mediates adherence to various cell types, including epithelial cells, neutrophils and macrophages [39]. *Yersinia* infection involves tight contact of the bacteria with the host cells, which is mediated by InvA (see section 2.3.1) and YadA by binding to β₁ integrins. In the case of YadA, this is assumed to occur through a bridging ECM molecule [40]. Type III effector proteins (*Yersinia* outer proteins or Yops) are then injected into the host cells to disrupt the cytoskeleton and prevent phagocytosis [41,42]. YadA has co-evolved to match the length of the injectisome needle of the type III secretion system, and altering the length of either without simultaneously changing the other prevents Yop injection into host cells [43].

Further activities of YadA include autoaggregation of bacterial cells [44]. Electron micrographs show the formation of a zipper-like structure between YadA-expressing cells [31]. YadA promotes serum resistance by eluding the complement system of the host, which is the first line of defense against micro-organisms. The complement system is activated by three different pathways: the classical, lectin and alternative pathways [45]. All the three pathways lead to formation of opsonin C3b which deposits on the bacterial surface and is recognized by phagocytes. YadA plays a major role in promoting serum resistance [46]. YadA binds to Factor H (FH), a negative regulator of the alternative complement pathway [47]. YadA also plays a role in the interaction of *Yersinia* with complement component 4-binding protein (C4bp), which is a negative regulator of both the classical and lectin pathways [48]. A recent study showed that YadA recruits C3b and iC3b (the cleavage product of C3b) to the bacterial surface, which causes further recruitment of FH. FH acts as a cofactor in mediating
the cleavage of C3b to iC3b, which prevents the formation of the membrane attack complex that
leads to bacterial lysis [49]. Conversely, YadA makes *Yersinia* more susceptible to killing by neutrophil
extracellular traps (NETs). NETs are extracellular fibres formed by protein (including collagen)
granules and chromatin released from neutrophils. YadA mediates binding of *Yersinia* to NETs and
thereby exposes the bacteria to antimicrobial peptides present in the traps [50].

2.2.2 YadB and YadC
YadB and YadC are TAAs present in *Y. pestis* and *Y. pseudotuberculosis* [51]. These proteins have an
architecture similar to that of YadA. YadB (35 kDa per monomer) has a small head region (only 62
residues long), whereas YadC is larger (61.6 KDa) and its head region does not show any sequence
similarity to YadA [51].
Neither protein is very strongly expressed in *Y. pestis* [51]. Unlike YadA, they do not seem to play a
role in adherence to epithelial cells. Deletion of *yadBC* led to a slight reduction (60% compared to the
wild-type) in invasion of epithelial cells [51]. Additionally, YadBC increase the uptake of bacteria by
phagocytes by 60%, confirming their role in invasion [52].
YadBC appear not to be involved in eliciting pneumonic plague, and their role in bubonic plague is
very subtle [51]. However, *yadBC* are highly expressed in fleas [53] but do not seem to play a role in
flea colonization [52]. Nonetheless, absence of these genes leads to two- to four-fold less recovery of
Y. pestis from infected skin, indicating a role in promoting bacterial survival during the initial stages
of infection [52]. Furthermore, these proteins reduce the levels of the chemoattractant CXCL-1,
which is produced by macrophages, neutrophils and epithelial cells and attracts polymorphonuclear
cells [52]. Thus, YadBC might help the bacteria survive during the transition from a flea to a human
host.
2.3 Type Ve adhesins in Yersinia

2.3.1 Invasin

InvA, in addition to YadA, is the major adhesin required for establishing the initial bacterial infection. InvA is important in the first phase of infection, allowing bacterial cells to adhere and invade microfold (M) cells. The invA gene encoding the surface-exposed outer membrane protein, homologous to intimin found in enterohemorrhagic Escherichia coli, is located on the chromosome [54,54].

Adhesion to and internalization of enteropathogenic Yersinia into Peyer’s patches is mediated by InvA, which binds to β1 integrins, specifically α3β1, α4β1, α5β1, and α6β1 integrins, found on the apical surface of M cells [55]. This process leads to cytoskeletal rearrangements, where focal adhesion complexes are formed. This is followed by internalization of the bacterium by a zipper mechanism, which triggers the production various pro-inflammatory cytokines such as interleukin-8, monocyte chemotactic protein-1, tumor necrosis factor-α, granulocyte-macrophage colony stimulating factor, and others [56]. Though InvA plays a major role in binding and invasion of M cells [57], YadA can substitute for these functions, though the process is slow [58]. A recent study showed that InvA, in addition to YadA, induces production of NETs in a β1 integrin-dependent manner [59].

invA encodes a 92-kDa (835-residue) and 103-kDa (986-residue) protein in Y. enterocolitica and Y. pseudotuberculosis, respectively. InvA is anchored in the outer membrane with its transmembrane β-barrel domain [60]. The extracellular C-terminal region consists of up to five domains (Figure 1). Domains D1-D4 resemble immunoglobulin superfamily domains, whereas the C-terminal D5 domain has a C-type lectin-like fold [61]. InvA from Y. pseudotuberculosis is composed of five extracellular domains, while Y. enterocolitica InvA lacks the D2 domain [62]. This domain promotes self-association, resulting in InvA multimerization and a higher avidity for host cells. Lack of the D2 domain decreases the efficiency of bacterial uptake [63]. The D4-D5 domains play a critical role in integrin binding. Interestingly, InvA binds to integrins with an affinity 100-fold times higher than the
natural ligand, fibronectin [64]. Surprisingly, the production of InvA by Y. pestis is abrogated due to the insertion of an IS200 element in the invA gene [65].

Regulation of InvA expression depends on various factors, among which temperature and the transcriptional regulator, RovA, play a major role [66]. invA is maximally expressed at environmental temperature (25 °C), whereas only low amounts of InvA are detectable at 37 °C [4]. Recently, invA expression was shown to be up-regulated during persistent infection [67]. However, invA expression also depends on the strain in question. In particular, InvA production is inhibited at 37 °C in Y. enterocolitica serotype O:8 due to rapid degradation of the temperature-sensitive RovA and silencing of invA transcription by H-NS (the histone-like nucleoid structuring protein) [68,69]. H-NS binds to regions within the rovA promoter and forms a regulatory complex with YmoA, which prevents RNA polymerase from binding to the invA promoter [70]. Likewise, the amount of InvA synthesis is reduced at 37 °C in Y. enterocolitica serotype O:9 [71]. In contrast, InvA is efficiently produced by Y. enterocolitica O:3 even at 37 °C. In this serotype, RovA is only weakly temperature-dependent due to a single proline to serine (P98S) substitution [72]. In addition, insertion of an IS1667 element at the invA promoter in Y. enterocolitica O:3 leads to constitutive production of InvA [72].

2.3.2 Other inverse autotransporter adhesins in Yersiniae

Recent genome analyses show that there are several others invasin-like autotransporters among the Yersiniae that mediate adhesion to host cells and promote colonization of different host tissues. Y. pseudotuberculosis encodes three additional inverse ATs: Ifp (InvB), InvC and InvD [73]. The Y. pestis orthologue of InvC is referred to as Ilp (intimin/invasin-like protein) [74]. These proteins have a similar structural organization to InvA. The protein called Ifp (intimin family protein) is present in all Y. pseudotuberculosis strains [75]. Interestingly, in Y. pestis, the predicted Ifp sequence is disrupted by an IS285 insertion element, with the exception of strain 91001, where it is altered by a point mutation. ifp is maximally expressed at 37 °C in the late exponential phase or early stationary phase [75]. Invasion and adhesion assays confirmed that Ifp and InvC are able to bind and mediate invasion of human, murine and porcine epithelial cells. In addition, the loss of Ifp and InvC leads to the
recruitment of a higher number of immune cells to Peyer’s patches [73,75]. In Y. pestis, ilp-deficient mutants showed reduced adhesion to and internalization by HEp-2 cells. Furthermore, mice challenged with ilp mutants demonstrated a significant delay in time to death and reduced bacterial dissemination to the liver, kidney and lungs [74].

Environmental representatives of the Yersiniae, such as Y. frederiksenii, Y. intermedia, Y. kristensenii, and Y. ruckeri also possess one or more inverse AT genes in their genome [76,77]. However, these proteins and their roles in infection processes (e.g. of fish in the case of Y. ruckeri) have not been investigated.

3. Small β-barrel proteins

3.1 Ail

The Ail (Attachment and Invasion locus) adhesin belongs to a family of outer membrane proteins distributed in organisms such as the pathogenic Yersiniae, Salmonella enterica (PagC and Rck) or Escherichia coli (OmpX) [78]. This small, chromosomally encoded protein is an important Yersinia virulence factor. The crystal structure of Y. pestis Ail revealed an eight-stranded transmembrane β-barrel with four extracellular loops [79] (Figure 1). Many of its functions, including serum resistance, cell adhesion, cell invasion, and promotion of Yop delivery into host cells have been well characterized [80-84,84].

Ail plays a role in serum resistance in all three human pathogens, especially in Y. pestis, where deletion of ail leads to almost complete serum sensitivity [85,86]. Ail can recruit the complement-regulatory proteins FH and C4bp, which confers significant protection against killing by complement [46,48]. However, the activity of Ail, due to its small size, is usually masked by the lipopolysaccharide (LPS) outer core oligosaccharide and O-antigen in Y. enterocolitica O:3 [47] or O-antigen in Y. pseudotuberculosis YPIII [87]. Thus, Ail only displays full biological activity in strains with rough LPS, such as Y. pestis; however, as the expression of O-antigen and outer core in Yersinia is temperature-
regulated, it is plausible that in vivo the O-antigen and/or outer core expression is repressed, thus unmasking Ail.

In *Y. enterocolitica* and *Y. pestis*, Ail mediates binding to various epithelial cell lines and ECM proteins, including laminin, fibronectin, vitronectin and heparan sulfate proteoglycans [4,79,81,86,88,89]. Binding to laminin and fibronectin facilitates close contact with host cells and thus promotes injection of Yops [79]. The binding site for Ail in fibronectin has been mapped to the ninth FNIII repeat [90]. In contrast to *Y. pestis* and *Y. enterocolitica*, Ail from *Y. pseudotuberculosis* has been reported to lack adhesion and invasion capacity [87,91]. Interestingly, the sequence of Ail from *Y. pestis* is almost identical to that of *Y. pseudotuberculosis*, differing at only two positions located in extracellular loops, suggesting these residues might play a significant role in binding to cell components such as fibronectin [87]. Furthermore, Ail mediates autoaggregation of *Y. pestis* [86].

*a*il* is highly expressed at 37°C under reduced oxygen levels in *Y. enterocolitica*, but not at lower temperatures [84,92]. In contrast, *ail* is also expressed at 26 °C in *Y. pestis*, albeit at lower levels than at 37 °C, probably as an adaptation to the different infection route of this organism [85,86]. In addition, the expression levels of *ail* are much higher in *Y. pestis* than in *Y. pseudotuberculosis*; in the former, 20-30 % of the outer membrane proteome consists of Ail at 37 °C [85,93]. *Y. pestis* and *Y. pseudotuberculosis* contain three additional *ail* paralogues, *y1682* (OmpX), *y2304* and *y2446*, but these do not contribute to serum resistance [85].

3.2 Plasminogen activator

Pla has proteolytic and adhesive activity critical for the progression of bubonic and pneumonic plague [94]. It is a member of the omptin family of β-barrel proteins [95]. Pla is encoded by the *pla* gene located on the small plasmid pPCP1 (also called pPla or pPst) exclusive to *Y. pestis* [96]. *pla* was detected in ancient DNA samples from the Bronze Age, showing that pPCP1 was an early acquisition in *Y. pestis* [3]. Pla consists of 10 antiparallel transmembrane β-strands with five extracellular loops; the catalytic residues are located at the top of the β-barrel [97,98] (Figure 1).
The main pathogenic function of Pla is cleavage of plasminogen into its active form, plasmin [99,100]. Plasmin is a serine protease that degrades fibrin clots. The degradation of these clots enhances the dissemination of Y. pestis into host tissue as well as an inhibition of immune cell recruitment [100]. In addition, plasmin cleaves ECM components such as laminin and fibronectin and activates pro-matrix metalloproteinase, which also enhances faster bacterial dissemination [100]. Pla was shown to facilitate bacterial dissemination from the primary site of infection to the lymph nodes in bubonic plague; during pneumonic plague, it is required for bacterial outgrowth in airways [100,101]. Pla mediates adhesion to and invasion of macrophages via the DEC-205 receptor, which leads to dissemination of Y. pestis in a murine infection model [102]. However, in contrast to these reports, a recent study showed that Pla neither promotes dissemination to the lymph nodes nor causes organ destruction, but it does promote bacterial multiplication and helps to protect Y. pestis cells against host defence [103].

Recent studies have shown the protective role of Fas ligand (FasL), degraded by Pla, in the induction of host immunity during Y. pestis lung infections [104]. FasL is a membrane protein required for host cell death and it acts as a protective molecule during bacterial pneumonia. Mice challenged with wild-type Y. pestis showed a decreased level of FasL, in contrast to pla mutants, demonstrating that the degradation of FasL changes host inflammatory responses and facilitates Y. pestis outgrowth in the lungs [104]. The activity of Pla may also play a role in complement evasion by inactivating the complement factor C3, which results in inhibition of opsonophagocytosis [100].

Pla is also an adhesin that contributes to Yop delivery and cell invasion, with the strongest effect demonstrated at 28 °C and 37 °C at neutral pH [105,106]. Pla is present at both temperatures, but is twice as abundant at 37 °C, and Pla is also more active at this temperature [93,107,108]. Pla mediates attachment to (and even lead to invasion of) eukaryotic cells and binds ECM components such as collagen type IV, laminin and heparan sulfate proteoglycan [109-111]. Moreover, the presence of rough LPS is critical for the proteolytic and adhesive activity of plasminogen [107,112].
4. Fimbrial adhesins

4.1 Chaperone-usher fimbriae

Fimbriae and pili are long, linear appendages protruding from the cell surface formed of multiple subunits. These structures may be involved in several cellular processes, including adhesion and biofilm formation, DNA uptake by naturally competent bacteria, some forms of motility, and conjugation. Many fimbrial structures, particularly those involved in adhesion, are assembled by the chaperone-usher (C-U) pathway [113]. *Y. pestis* produces two well-characterised C-U-assembled adhesin structures, the pH 6 antigen (Psa) and the cluster fraction 1 antigen (F1 antigen or Caf) [114,115]. In contrast to type I and P pili, Psa and Caf do not form distinct fimbriae but rather thin filaments or a capsule-like mesh on the cell surface, respectively. Furthermore, Psa does not have a single adhesive subunit at its tip, but rather all pilin subunits have adhesive activity, thus making the Psa filaments polyvalent adhesins [116].

Caf is encoded by a plasmid specific to *Y. pestis*, pFra. Though not an adhesin as such, Caf is an important virulence factor that aids in resisting phagocytosis and evading the innate immune system by binding to the proinflammatory cytokine interleukin-1β during early stages of infection [117,118]. Caf is expressed at mammalian body temperature; however, Caf may also play a role in transmission through flea bites to the mammalian host [119].

In contrast to Caf, Psa is chromosomally encoded, and orthologous loci are found in both *Y. pseudotuberculosis* and *Y. enterocolitica* [91,120]. In the latter, Psa is referred to as mucoid factor (Myf). In *Y. pestis*, Psa is an important adhesin mediating attachment to host cells via β1-linked galactosyl residues in glycosphingolipids [121] and can promote Yop delivery [105,122]. Phosphatidylcholine was identified as another receptor for Psa on alveolar epithelial cells [123], and Psa binds to low-density lipoprotein by interacting with the lipid component [124]. The *Y. pestis* PsaA pilin contains distinct but adjacent binding sites for both galactose and choline [125] (Figure 1). The choline-binding motif in Myf is disrupted, which could explain why it does not agglutinate erythrocytes; Psa-mediated hemagglutination is dependent on phosphocholine binding in *Y. pestis*.
Psa also aids in immune evasion by binding to the Fc portion of IgG, possibly through interactions with the carbohydrate moiety of Fc [126,127]. Furthermore, Psa promotes biofilm formation [128]. As its common name suggests, *psa* is expressed at low pH (<6) and high temperature (37 °C) [129], though more recent data point to *psa* also being expressed at 28°C in minimal medium [128]. Interestingly, *psa* is expressed and Psa is present at higher levels in *Y. pestis* than in *Y. pseudotuberculosis* [130]. *Y. pestis* coexpresses *psa* and *caf*, with the adhesive properties of the former dominating the phenotype [131]. Interestingly, both Psa and Caf appear to inhibit invasion of epithelial cells by *Y. pestis* [131].

Genome sequencing has uncovered eight additional chromosomal loci encoding putative C-U fimbrial systems. However, two of these have disrupted usher genes, and so are unlikely to be functional [132]. The six intact loci (Table 1) all produced pilus-like structures when heterologously expressed in *E. coli*, though only one, encoded by the y0561-0563 locus, promoted adhesion to epithelial cells and significantly promoted biofilm formation at 28 °C [128]. However, deletion of this locus had no appreciable effect on the adhesion of *Y. pestis*. Deletion of another fimbrial locus, *y1858-1862*, displayed a modest reduction in *Y. pestis* virulence in mice when introduced intravenously and resulted in somewhat reduced adhesion to a macrophage cell line, suggesting this fimbria might have a role in immune evasion [128]. A later study found that also *y0348-0352* and *y1869-1873* had similar effects in an intranasal infection model [132].

A C-U fimbria widespread among *Y. enterocolitica* strains is the mannose-resistant haemagglutinin (MRHA). MRHA fimbriae are channelled structures approximately 8 nm in diameter that mediate agglutination of erythrocytes from several animal species at environmental temperatures [133,134]. The major pilin subunit, MrpA, is homologous to the pilin of the mannose-resistant fimbriae of *Proteus mirabilis* [135]. Recently, a MRHA orthologue in *Y. intermedia* was found to be downregulated under anaerobiosis [136].
4.2. Type IV pili

Another class of fimbrial adhesins are type IV pili, which are retractable surface appendages that confer twitching motility on a number of bacterial species [137]. In contrast to C-U systems, type IV pili are assembled by a protein complex spanning both the inner and the outer membrane, related to type II secretion systems [138]. Many strains of *Y. pseudotuberculosis* harbour a genetic locus (*pil*) encoding a type IV pilus system that forms polar bundles when heterologously expressed in *E. coli* [139]. This is located on a pathogenicity island, YAPI, present in *Y. enterocolitica* and *Y. pseudotuberculosis*, but missing in *Y. pestis* [140]. *pil* expression is upregulated under high temperature and osmolarity conditions, and deletion of the *pil* locus results in reduced virulence in a mouse model [139].

A second type IV pilus locus is *tad* (for Tight Adhesion), encoding the fimbrial low-molecular-weight protein (Flp) pilus [141]. The *tad* locus is widespread in Gram-negative bacteria, and the locus is present in all pathogenic *Yersinia* [142]. However, in *Y. pestis*, it is most likely inactive due to a deletion of the major pilin gene *flp* and a frameshift mutation in another gene encoding a putative secretin [143]. In *Y. enterocolitica*, Flp pili are detectable only in a subset of the population, but they appear to be involved in microcolony formation at 26 °C [142]. The *tadD* gene of the fish pathogen *Y. ruckeri* is expressed in the host during infection; Flp may thus play a role in the virulence of this organism [144].

5. Other adhesins

A constitutively expressed outer membrane protein of *Vibrio parahaemolyticus*, multivalent adhesin molecule 7 (MAM7), was identified as mediating initial attachment to host cells [145]. This protein consists of seven repeated mammalian cell entry domains, and is widespread in Gram-negative bacteria; an orthologous gene is present in all three pathogenic *Yersinia* species (Table 1). *V. parahaemolyticus* MAM7 binds to fibronectin and phosphatidic acid, with significantly higher affinity for the latter [145,146]. MAM7-negative *Y. pseudotuberculosis* adhered significantly less to
fibroblasts and was less cytotoxic than the wild-type and complemented mutant strain [146]. Furthermore, *E. coli* expressing MAM7 from *Y. pseudotuberculosis* was able to adhere to HeLa cells and could compete with *Y. pseudotuberculosis* for binding. These results suggest MAM7 plays a role in *Y. pseudotuberculosis* virulence.

An important stage in the life cycle of *Y. pestis* is infection of the flea proventriculus and formation of an occluding biofilm [147]. This is dependent on the hemin storage locus, the operon *hmsHFRS*, which is active at 26 °C but not at 37 °C [148]. This operon produces and exports an extracellular polysaccharide, poly-β-1,6-N-acetyl-D-glucosamine (PGA), which forms the matrix of the biofilm [149]. Biofilm production is enhanced in *Y. pestis* due to a frameshift arising from an internal duplication in the *rscA* gene, a negative regulator of biofilm production in *Y. pseudotuberculosis* [150]. In addition, LPS itself can act as an adhesin. The core oligosaccharide of *Y. pestis* LPS can interact with a lectin expressed by antigen-presenting cells called DC-SIGN (dendritic cell-specific intercellular adhesion molecule-grabbing non-integrin) [151]. This interaction may allow *Y. pestis* to invade antigen-presenting cells such as dendritic cells and macrophages, which *Y. pestis* could use as a pathway to disseminate to lymph nodes from the primary site of infection.

6. Conclusions and future perspectives

The *Yersiniae* comprise a medically important, environmentally ubiquitous and biologically fascinating genus of bacteria. They have been used extensively as model organisms for extracellular infection, type III secretion system effector delivery, immune evasion, and adhesion. For a long time, the major adhesion phenotype of the enteropathogenic *Yersiniae* was believed to be solely due to YadA, InvA and, to a lesser extent, Ail. Though these are still unquestionably the major adhesins in these organisms, recent studies have highlighted the role played by other autotransporters, fimbriae and other types of adhesins in the virulence of these organisms. *Y. pestis*, which produces neither YadA nor InvA, has been long known to contain alternative adhesins such as Psa, but even in this
bacterium, numerous adhesins and potential adhesins have recently been uncovered by genome sequencing.

A remarkable feature of the virulence phenotype in *Y. enterocolitica* is the dominance of YadA. In most other bacterial pathogens, including *Y. pseudotuberculosis* and *Y. pestis*, no single adhesin has such a profound effect on not only the adhesive properties of the bacteria, but also on serum and phagocytosis resistance. In many cases, the effects of a single adhesin are difficult to establish due to functional redundancy among adhesion molecules, as exemplified by *Salmonella*, where a multitude of adhesins have been described, but none of such central importance for virulence have been identified [152]. YadA in *Y. enterocolitica* is thus quite exceptional.

A major regulator of *Yersinia* virulence traits is temperature. It is now clear that, at different temperatures, *Yersiniae* elaborate very different surfaces (Figure 2). This applies not only to the assortment of adhesins expressed, but also to other surface molecules such as the Ysa and Ysc type III secretion systems, flagella and LPS [27,153-156]. Though some proteins appear to dominate the adhesive phenotype at certain temperatures (specifically InvA at environmental temperatures and YadA at mammalian body temperature in the enteropathogenic *Yersiniae*), several adhesins are expressed concomitantly at any given temperature, and there even seems to be some overlap among differentially expressed adhesins. However, only a few studies have addressed the interplay of adhesins in adherence functions or immune evasion [e.g.47,131,157-161]. Though more challenging, these kinds of studies are needed to fully delineate the in vivo roles of the adhesins, which – despite a great deal of experimental data on individual adhesins – remain elusive.

Additionally, different adhesins may have differing roles in different host organisms, as exemplified by the importance of InvA in swine, a notable reservoir for *Y. enterocolitica* O:3 [162]. Thus, to gain a full understanding of the functions of individual adhesins or adhesins acting in concert, it is not sufficient to study just one host organism. *Y. enterocolitica* and *Y. pseudotuberculosis* are both capable of infecting not only various mammals, but also insects and nematodes, and can additionally be found free-living in the environment [153,163-166]. For *Y. pestis*, colonising the flea is a major
stage in the infectious cycle, and studying this interaction has provided much data on the factors required for survival in the flea, biofilm formation and transmission to mammalian hosts [167].

To further complicate matters, it has become clear that even closely related adhesins from different strains can have significantly different functions [38,62,87]. Thus, not all results from a single adhesin orthologue may be applicable to the same adhesin from other strains, not to mention other species. Therefore, we urge future studies to include a comparative element to assess the generality of novel findings. It might be particularly fruitful to compare species that are not pathogenic to humans or mammals, such as Y. ruckeri (a fish pathogen) and Y. entomophaga (an insect pathogen), with the classical human pathogenic Yersiniae. This could potentially shed light on the pathogenesis of both groups of organisms, and provide insight into the mechanisms of virulence in different hosts.
Acknowledgements

We wish to thank Prof. Dirk Linke (University of Oslo) for support and helpful comments on the manuscript. This work was funded by a grant from VISTA, a basic research program funded by Statoil in collaboration with the Norwegian Academy of Science and Letters, to J.C.L.

References

[16] Lane, M.C., Lenz, J.D., Miller, V.L., Proteolytic processing of the *Yersinia pestis* YapG autotransporter by the omptin protease Pla and the contribution of YapG to murine plague pathogenesis. *J Med Microbiol* 2013, 62, 1124–34.

[53] Vadyvaloo, V., Jarrett, C., Sturdevant, D.E., Sebbane, F., Hinnebusch, B.J., Transit through the flea
vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis. PLoS
Pathog 2010, 6, e1000783.

[55] Isberg, R.R., Leong, J.M., Multiple β1 chain integrins are receptors for invasin, a protein that

[56] Palumbo, R.N., Wang, C., Bacterial invasin: structure, function, and implication for targeted oral

[57] Clark, M.A., Hirst, B.H., Jepson, M.A., M-cell surface β1 integrin expression and invasin-mediated
targeting of Yersinia pseudotuberculosis to mouse Peyer's patch M cells. Infect Immun 1998, 66,
1237–43.

[58] Yang, Y., Isberg, R.R., Cellular internalization in the absence of invasin expression is promoted by

[60] Fairman, J.W., Dautin, N., Wojtowicz, D., Liu, W., et al., Crystal structures of the outer membrane
domain of intimin and invasin from enterohemorrhagic E. coli and enteropathogenic Y.

pseudotuberculosis invasin protein is required for stimulation of bacterial uptake via integrin

[87] Tsang, T.M., Wiese, J.S., Felek, S., Kronshage, M., Krukonis, E.S., Ail proteins of *Yersinia pestis* and *Y. pseudotuberculosis* have different cell binding and invasion activities. *PLoS ONE* 2013, 8, e83621.

[88] Tsang, T.M., Felek, S., Krukonis, E.S., Ail binding to fibronectin facilitates *Yersinia pestis* binding to host cells and Yop delivery. *Infect Immun* 2010, 78, 3358–68.

Yersinia enterocolitica exploits different pathways to accomplish adhesion and toxin injection into host cells. *Cell Microbiol* 2015, 17, 1179–1204.

Table 1. Adhesins of human pathogenic *Yersinia*

<table>
<thead>
<tr>
<th>Adhesin Class</th>
<th>Adhesin</th>
<th>Function(s)</th>
<th>Presence in species^a^</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autotransporter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adhesins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type Va</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YapA</td>
<td>Not known</td>
<td></td>
<td>-</td>
<td>+ (Q9F292)</td>
</tr>
<tr>
<td>YapB1</td>
<td>Not known</td>
<td></td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>YapB2</td>
<td>Not known</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>YapC</td>
<td>Autoagglutination, binding to epithelial cells and macrophages, biofilm formation.</td>
<td>-</td>
<td>+ (Q66D15)</td>
<td>x (Q667Z1)</td>
</tr>
<tr>
<td>YapE</td>
<td>Binding to eukaryotic cells, autoaggregation</td>
<td>x (A1JSQ7)</td>
<td>x (Q664E)</td>
<td>y (Q667Z2)</td>
</tr>
<tr>
<td>YapF</td>
<td>Not known</td>
<td></td>
<td>-</td>
<td>+ (Q9F287)</td>
</tr>
<tr>
<td>YapG</td>
<td>Not known</td>
<td></td>
<td>-</td>
<td>+ (Q9F286)</td>
</tr>
<tr>
<td>YapH</td>
<td>Not known</td>
<td></td>
<td>-</td>
<td>+ (Q9F285)</td>
</tr>
<tr>
<td>YapJ</td>
<td>Not known</td>
<td></td>
<td>-</td>
<td>+ (Q0WGA9)</td>
</tr>
<tr>
<td>YapK</td>
<td>Not known</td>
<td></td>
<td>-</td>
<td>+ (Q0WJZ8)</td>
</tr>
<tr>
<td>YapL</td>
<td>Not known</td>
<td></td>
<td>-</td>
<td>+ (Q7CJH7)</td>
</tr>
<tr>
<td>YapM</td>
<td>Not known</td>
<td></td>
<td>-</td>
<td>+ (Q0WIL1)</td>
</tr>
<tr>
<td>YapN</td>
<td>Not known</td>
<td></td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Type</td>
<td>Gene</td>
<td>Function</td>
<td>Accession</td>
<td>Accession</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>YapV</td>
<td>Interacts with actin-polymerizing factor N-WASP</td>
<td>(A0A0U1QUE7)</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>YapX</td>
<td>Not known</td>
<td>(A0A0T7Q3)</td>
<td>x</td>
</tr>
<tr>
<td>Type Vc</td>
<td>YadA</td>
<td>Binding to ECM components, epithelial cells, macrophages and neutrophils, mediates serum resistance and autoagglutination</td>
<td>+ (P31489)</td>
<td>+ (K7ZVF1)</td>
</tr>
<tr>
<td></td>
<td>YadB</td>
<td>Promotes survival in skin after flea bite</td>
<td>-</td>
<td>+ (Q66C1)</td>
</tr>
<tr>
<td></td>
<td>YadC</td>
<td>Promotes survival in skin after flea bite</td>
<td>-</td>
<td>+ (Q7CH5)</td>
</tr>
<tr>
<td>Type Ve</td>
<td>InvA</td>
<td>Adhesion to and invasion of epithelial cells via β1 integrins</td>
<td>+ (A1JT35)</td>
<td>+ (P11222)</td>
</tr>
<tr>
<td></td>
<td>Ifp/InvB</td>
<td>Adhesion to and invasion of epithelial cells</td>
<td>x</td>
<td>(Q66C3B)</td>
</tr>
<tr>
<td></td>
<td>InvC/Ilp</td>
<td>Adhesion to and invasion of host cells</td>
<td>-</td>
<td>+ (A0A0H3AYF9)</td>
</tr>
<tr>
<td></td>
<td>InvD</td>
<td>Not known</td>
<td>-</td>
<td>x (A0A0H3B1G5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fimbrial adhesins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-U fimbriae</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psa/Myf</td>
<td>Binding to galactose and phosphocholine, biofilm formation</td>
<td>+ (P33408)</td>
<td>+ (Q56983)</td>
</tr>
<tr>
<td></td>
<td>Caf</td>
<td>Protection from phagocytosis, binding to interleukin-1β</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>y0348-0352</td>
<td>Adhesion to macrophages</td>
<td>-</td>
<td>x (Q66G26)</td>
</tr>
<tr>
<td></td>
<td>y0561-0563</td>
<td>Biofilm formation (?)</td>
<td>-</td>
<td>x (Q66FH7)</td>
</tr>
<tr>
<td>y1858-1862</td>
<td>Adhesion to macrophages</td>
<td>x</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td>y1869-1873</td>
<td>Adhesion to macrophages</td>
<td>-</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td>y2388-2392</td>
<td>Not known</td>
<td>x</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td>y3478-3480</td>
<td>Not known</td>
<td>-</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td>MRHA</td>
<td>Mannose-resistant hemagglutination</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Type IV pili</td>
<td>Pil</td>
<td>Not known</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flp</td>
<td>Microcolony formation</td>
<td>+</td>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>Small β-barrels</td>
<td>OmpX family</td>
<td>Ail</td>
<td>Adhesion to and invasion of epithelial cells, promotes serum resistance</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>OmpX</td>
<td>Not known</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>y2304</td>
<td>Not known</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>y2446</td>
<td>Not known</td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Omptin family</td>
<td>Pla</td>
<td>Plasminogen activation, complement inactivation, adhesion to and invasion of epithelial cells</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Other adhesins</td>
<td>MAM7</td>
<td>Binding to fibronectin and phosphatidic acid</td>
<td>x</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>PGA</td>
<td>Biofilm formation; produced by the hmsHRSF locus</td>
<td>x</td>
<td>+</td>
</tr>
</tbody>
</table>
LPS core oligosaccharide | Binding to DC-SIGN on antigen-presenting cells
---|---
| + | + | + | [151]

+ = gene present and expressed; x = gene present (expression status unknown); o = pseudogene; - = not present. Where information on the presence of a particular adhesin gene is not available in the literature, we used bioinformatics tools (e.g. BLAST [170] and GCview [171]) to determine whether a gene is present in one or more genomes from the species in question. For intact genes, we have included a UniProt accession code for a representative sequence (in parentheses). In the case of fimbrial adhesins, the accession code is for the usher protein. For type IV pili, the accession code is for the major pilin subunit. For PGA, the accession code is for the HmsH protein, and for LPS we have not included an accession code.
Figure 1. Experimental structures of Yersinia adhesins. The structures depicted for YadA (from Y. enterocolitica) are the collagen-binding head domain (PDB ID 1P9H), a segment of the stalk (3H7X), and the C-terminal membrane anchor (2LME). In these structures, the three chains are coloured differently. For InvA from Y. pseudotuberculosis, the structures of the N-terminal membrane anchor domain (4E1T) and the passenger (1CWV) are shown; the domains D1-D5 of the passenger are indicated. The structures of the small β-barrel proteins Ail (3QRA) and Pla (4DCB) are both from Y. pestis. Pla (in blue) is shown in complex with the activation loop peptide of human plasminogen (in yellow). The pilin subunit PsaA (4F8N, in green) of pH 6 antigen from Y. pestis is shown in complex
with galactose (blue) and phosphocholine (yellow). A minifibre of two Caf1 subunits (1P5U) from *Y. pestis* is shown with one subunit in dark blue and one in light blue, with a the light blue subunit complemented with the donor strand from the dark blue subunit. The structures are shown to approximate scale.
Figure 2. Effect of temperature shifts between 26 °C and 37 °C on the adhesins displayed on the surface of *Yersinia*. The major adhesins present at these temperatures are displayed. In *Y. pseudotuberculosis* and most *Y. enterocolitica* strains, the major adhesin at 26 °C is InvA, but this is repressed at 37 °C. In contrast, in *Y. enterocolitica* serotype O:3, InvA is also expressed efficiently at 37 °C [72]. YadA is expressed by both species at 37 °C. *Y. pestis* lacks both InvA and YadA, but expresses several other adhesins in a temperature-dependent manner, including Ail, Caf and Psa at 37 °C. The biofilm-promoting exopolysaccharide PGA is expressed at 26 °C. Pla is present at both temperatures, but more abundant at 37 °C.