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Abstract 26 

The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The 27 

genus harbours three recognised human pathogens: Y. enterocolitica and Y. pseudotuberculosis, 28 

which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three 29 

organisms have served as models for a number of aspects of infection biology, including adhesion, 30 

immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The 31 

virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some 32 

of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 33 

antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a 34 

host of other adhesins present in these organisms, the functions of which are only starting to be 35 

investigated. Here, we review the current state of knowledge on the adhesin molecules present in 36 

the Yersiniae, their functions and putative roles in the infection process.  37 

  38 
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1. Introduction 39 

The Yersiniae are a large group of Gram-negative bacteria comprising 18 recognised species [1,2]. 40 

Among these, two species, Y. enterocolitica and Y. pseudotuberculosis, are causes of gastrointestinal 41 

disease in humans. A third species of medical relevance is Y. pestis, the causative agent of plague, 42 

which has been a scourge of humanity for at least 5000 years [3]. The virulence of all three species is 43 

reliant on adhesive properties of the bacteria, and the adhesin molecules mediating adherence to 44 

host tissues have been a focus of research for several decades. Important adhesins of Yersiniae were 45 

identified in the 1980s, with the Yersinia adhesin A (YadA) and Invasin (InvA) being the first ones [4-6], 46 

followed by others soon after. More recently, the availability of whole bacterial genome sequences 47 

have uncovered a number of potential adhesin-encoding genes. In addition, the production of 48 

adhesin fragments by recombinant methods combined with structural biology have been utilised to 49 

gain significant insights into the molecular mechanisms of bacterial adhesion. Adhesins fall into 50 

several different classes based on their structures, assembly pathways and surface export 51 

mechanisms, and most of these classes are represented in Yersiniae. Below, we review the current 52 

state of knowledge on the different types of adhesin molecules present in the human pathogenic 53 

Yersiniae, their functions and putative roles in the infection process.   54 
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2. Autotransporter adhesins 55 

Autotransporters (ATs), or type V secretion systems, constitute the largest group of secreted proteins 56 

in Gram-negative bacteria. There are five recognised classes of ATs, type Va through Ve [7]. The 57 

pathogenic Yersiniae contain adhesins belonging to types Va, Vc and Ve (Table 1). Type Va-secreted 58 

proteins are classical ATs consisting of an N-terminal signal peptide, an extracellular passenger and C-59 

terminal membrane anchor domain. The signal peptide mediates transport of the protein to the 60 

periplasm, where chaperones such as Skp, SurA and DegP protect the protein against proteases and 61 

keep them in an unfolded state until they are inserted into the outer membrane by the β-barrel 62 

assembly machinery [7]. The C-terminal β-barrel transmembrane domain forms the transport 63 

channel through which the passenger is secreted across the outer membrane. Type Vc systems or 64 

trimeric autotransporter adhesins (TAAs) are similar in architecture to classical autotransporters, but 65 

are obligate homotrimers [8]. The passengers of TAAs typically consist of a globular head domain 66 

followed by a coiled coil stalk (Figure 1). Type Ve ATs or “inverse autotransporters” have a similar 67 

overall architecture to classical ATs, but their domain order is reversed, i.e. the β-barrel translocator 68 

domain is N-terminal to the passenger [9].  69 

 70 

2.1 Type Va adhesins in Yersinia 71 

A number of classical ATs have been discovered in Y. pestis and Y. pseudotuberculosis, collectively 72 

known as Yersinia AT proteins or Yaps (Table 1). In Y. pestis, 13 loci code for presumably functional 73 

ATs. Among these genes, yapK, yapJ and yapV are close paralogues; the latter gene is present in Y. 74 

pestis KIM but lacking in CO92 [10]. In addition, Y. pseudotuberculosis encodes an AT paralogous to 75 

yapKJV designated yapX, but this is a pseudogene in all Y. pestis strains [11]. 76 

yapB is another probable pseudogene in Y. pestis due to truncation of the translocator domain; 77 

however, Y. pseudotuberculosis has two intact, chromosomally adjacent yapB paralogues [12]. yapA 78 

might be nonfuctional in Y. pestis biovar Orientalis strains due to a point mutation in the signal 79 
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sequence [12], but it is expressed in KIM strains [13]. yapE is the only yap also found in Y. 80 

enterocolitica [12]. 81 

The transcription profile of the yaps shows that they are expressed at low levels during in vitro 82 

growth conditions but are upregulated in a mammalian infection model [12]. A part of the 83 

passengers of YapA, YapE and YapG is cleaved by plasminogen activator (Pla; see section 3.2) and 84 

released into the culture medium; the rest of the Yaps remain intact and associated with the outer 85 

membrane [12,14]. The other Yaps are surface-localized in Y. pestis as shown by protease 86 

accessibility and immunofluorescence microscopy [13].  87 

YapC plays a role in mediating autoaggregation, binding to macrophages, binding to human-derived 88 

epithelial cell lines, and biofilm formation [15]. YapG does not play a role in virulence in bubonic or 89 

pneumonic plague, and its function remains to be deciphered [16]. YapJ and YapK are upregulated 90 

during bubonic and pneumonic infections [12], though their exact functions are not yet clear [17]. 91 

YapV, a paralogue of YapJ and YapK, is similar to the Shigella autotransporter IcsA and, like IcsA, YapV 92 

is able to interact with N-WASP, which is involved in actin polymerization [10]. YapV, YapJ and YapK 93 

bind to a variety of extracellular matrix (ECM) molecules, and in addition YapV and, to a lesser extent, 94 

YapK interact with alveolar epithelial cells [11]. Deletion of yapE from Y. pestis effects the 95 

colonization of tissues during bubonic plague and plays a role in binding of bacteria to host cells and 96 

autoaggregation [18]. However, Y. enterocolitica YapE lacks the autoaggregation activity and is not 97 

proteolytically processed [14]. 98 

 99 

2.2 Type Vc adhesins in Yersinia 100 

2.2.1 YadA 101 

YadA is the prototypical TAA, present in all the three human pathogenic species of Yersinia. However, 102 

in Y. pestis, yadA is a pseudogene due to a single base pair deletion causing a frame shift [19,20]. 103 

YadA is an essential virulence factor of Y. enterocolitica and its absence renders the bacteria avirulent 104 

in a mouse model [21]. yadA mutants are able to penetrate the mouse intestinal mucosa but are not 105 
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able to persist for more than two days [22]. In contrast, YadA is not essential for virulence in Y. 106 

pseudotuberculosis. Introduction of a functional copy of yadA into Y. pestis causes a modest 107 

reduction in virulence [19]. This is particularly interesting because the same protein can cause 108 

different effects in different species of Yersinia. 109 

YadA is encoded on the 70-kb virulence plasmid, pYV, and is induced upon a shift of temperature to 110 

37 °C [23]. The expression of yadA is regulated by the temperature-sensitive lcrF gene [24]. lcrF is 111 

transcribed at comparable levels at both 26 °C and 37 °C in Y. pestis and E.coli, but translation is 112 

efficient only at 37 °C and not at 26 °C [25]. The activator of the plasmid-encoded virulence genes, 113 

including yadA, in Y. enterocolitica is known as VirF, which is a homologue of LcrF [26]. VirF is 114 

synthesized at high temperatures but its artificial expression at 30 °C does not lead to expression of 115 

virulence factors [27], which indicates that factors other than VirF are also required. YmoA is a 116 

chromosomally encoded histone-like protein which thermoregulates the induction of virulence genes 117 

in Y. enterocolitica. The deletion of this gene allows expression of the virulence factors below 30 °C 118 

[28]. Intergenic RNA thermosensors are also involved in regulating lcrF/virF translation. Combined 119 

action of both YmoA and RNA thermosensors seems to effectively regulate the infection efficiency of 120 

Yersinia [29]. A recent study showed that yadA expression is also modulated by the transcriptional 121 

regulator OmpR, which represses YadA by directly binding to the yadA promoter. OmpR-mediated 122 

control of yadA expression is independent from the thermoregulatory mechanism mentioned above 123 

[30]. 124 

YadA varies in size from strain to stain and ranges from 422 to 455 residues. It has a lollipop-like 125 

appearance and covers the entire surface of the bacteria [31] (Figure 1). A trimeric β-barrel domain 126 

anchors the protein to the outer membrane [32]. The passenger consists of three chains, which pass 127 

through the pore of the barrel and form an α-helical coiled-coil stalk followed by a sticky globular 128 

head at the N-terminus (Figure 1). YadA is a multifunctional protein that binds to host ECM 129 

components like fibrillar collagens such as types I, II, III, the network-forming collagen type IV, 130 

fibronectin and laminin [33-35]. The triple-helical conformation of collagen is required for YadA 131 
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binding, though a specific sequence is not necessary for its recognition [36]. Nonetheless, YadA binds 132 

more tightly to regions of collagen rich in 4-hydroxyproline with a low net charge [37]. Y. 133 

enterocolitica YadA shows higher affinity towards collagen and laminin compared to Y. 134 

pseudotuberculosis YadA, which in turn binds very efficiently to fibronectin [38]. YadA of Y. 135 

pseudotuberculosis mediates more efficient entry of bacteria into epithelial cells. This difference in 136 

function has been attributed to the additional 31 residues present at the N-temini of the head 137 

domain of Y. pseudotuberculosis YadA [38].   138 

YadA mediates adherence to various cell types, including epithelial cells, neutrophils and 139 

macrophages [39]. Yersinia infection involves tight contact of the bacteria with the host cells, which 140 

is mediated by InvA (see section 2.3.1) and YadA by binding to β1 integrins. In the case of YadA, this is 141 

assumed to occur through a bridging ECM molecule [40]. Type III effector proteins (Yersinia outer 142 

proteins or Yops) are then injected into the host cells to disrupt the cytoskeleton and prevent 143 

phagocytosis [41,42]. YadA has co-evolved to match the length of the injectisome needle of the type 144 

III secretion system, and altering the length of either without simultaneously changing the other 145 

prevents Yop injection into host cells [43]. 146 

Further activities of YadA include autoaggregation of bacterial cells [44]. Electron micrographs show 147 

the formation of a zipper-like structure between YadA-expressing cells [31]. YadA promotes serum 148 

resistance by eluding the complement system of the host, which is the first line of defense against 149 

micro-organisms. The complement system is activated by three different pathways: the classical, 150 

lectin and alternative pathways [45]. All the three pathways lead to formation of opsonin C3b which 151 

deposits on the bacterial surface and is recognized by phagocytes. YadA plays a major role in 152 

promoting serum resistance [46]. YadA binds to Factor H (FH), a negative regulator of the alternative 153 

complement pathway [47]. YadA also plays a role in the interaction of Yersinia with complement 154 

component 4-binding protein (C4bp), which is a negative regulator of both the classical and lectin 155 

pathways [48]. A recent study showed that YadA recruits C3b and iC3b (the cleavage product of C3b) 156 

to the bacterial surface, which causes further recruitment of FH. FH acts as a cofactor in mediating 157 
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the cleavage of C3b to iC3b, which prevents the formation of the membrane attack complex that 158 

leads to bacterial lysis [49]. Conversely, YadA makes Yersinia more susceptible to killing by neutrophil 159 

extracellular traps (NETs). NETs are extracellular fibres formed by protein (including collagen) 160 

granules and chromatin released from neutrophils. YadA mediates binding of Yersinia to NETs and 161 

thereby exposes the bacteria to antimicrobial peptides present in the traps [50].  162 

2.2.2 YabB and YadC 163 

YadB and YadC are TAAs present in Y. pestis and Y. pseudotuberculosis [51].These proteins have an 164 

architecture similar to that of YadA. YadB (35 kDa per monomer) has a small head region (only 62 165 

residues long), whereas YadC is larger (61.6 KDa) and its head region does not show any sequence 166 

similarity to YadA [51].  167 

Neither protein is very strongly expressed in Y. pestis [51]. Unlike YadA, they do not seem to play a 168 

role in adherence to epithelial cells. Deletion of yadBC led to a slight reduction (60% compared to the 169 

wild-type) in invasion of epithelial cells [51]. Additionally, YadBC increase the uptake of bacteria by 170 

phagocytes by 60%, confirming their role in invasion [52]. 171 

YadBC appear not to be involved in eliciting pneumonic plague, and their role in bubonic plague is 172 

very subtle [51]. However, yadBC are highly expressed in fleas [53] but do not seem to play a role in 173 

flea colonization [52]. Nonetheless, absence of these genes leads to two- to four-fold less recovery of 174 

Y. pestis from infected skin, indicating a role in promoting bacterial survival during the initial stages 175 

of infection [52]. Furthermore, these proteins reduce the levels of the chemoattractant CXCL-1, 176 

which is produced by macrophages, neutrophils and epithelial cells and attracts polymorphonuclear 177 

cells [52]. Thus, YadBC might help the bacteria survive during the transition from a flea to a human 178 

host. 179 

  180 
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 181 

2.3 Type Ve adhesins in Yersiniae 182 

2.3.1 Invasin 183 

InvA, in addition to YadA, is the major adhesin required for establishing the initial bacterial infection. 184 

InvA is important in the first phase of infection, allowing bacterial cells to adhere and invade 185 

microfold (M) cells. The invA gene encoding the surface-exposed outer membrane protein, 186 

homologous to intimin found in enterohemorrhagic Escherichia coli, is located on the chromosome 187 

[54,54].  188 

Adhesion to and internalization of enteropathogenic Yersiniae into Peyer’s patches is mediated by 189 

InvA, which binds to β1 integrins, specifically α3β1, α4β1, α5β1, α6β1 and αVβ1 integrins, found on the 190 

apical surface of M cells [55]. This process leads to cytoskeletal rearrangements, where focal 191 

adhesion complexes are formed. This is followed by internalization of the bacterium by a zipper 192 

mechanism, which triggers the production various pro-inflammatory cytokines such as interleukin-8, 193 

monocyte chemotactic protein-1, tumor necrosis factor-α, granulocyte-macrophage colony 194 

stimulating factor, and others [56]. Though InvA plays a major role in binding and invasion of M cells 195 

[57], YadA can substitute for these functions, though the process is slow [58]. A recent study showed 196 

that InvA, in addition to YadA, induces production of NETs in a β1 integrin-dependent manner [59].  197 

invA encodes a 92-kDa (835-residue) and 103-kDa (986-residue) protein in Y. enterocolitica and Y. 198 

pseudotuberculosis, respectively. InvA is anchored in the outer membrane with its transmembrane -199 

barrel domain [60]. The extracellular C-terminal region consists of up to five domains (Figure 1). 200 

Domains D1-D4 resemble immunoglobulin superfamily domains, whereas the C-terminal D5 domain 201 

has a C-type lectin-like fold [61]. InvA from Y. pseudotuberculosis is composed of five extracellular 202 

domains, while Y. enterocolitica InvA lacks the D2 domain [62]. This domain promotes self-203 

association, resulting in InvA multimerization and a higher avidity for host cells. Lack of the D2 204 

domain decreases the efficiency of bacterial uptake [63]. The D4-D5 domains play a critical role in 205 

integrin binding. Interestingly, InvA binds to integrins with an affinity 100-fold times higher than the 206 
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natural ligand, fibronectin [64]. Surprisingly, the production of InvA by Y. pestis is abrogated due to 207 

the insertion of an IS200 element in the invA gene [65].  208 

Regulation of InvA expression depends on various factors, among which temperature and the 209 

transcriptional regulator, RovA, play a major role [66]. invA is maximally expressed at environmental 210 

temperature (25 °C), whereas only low amounts of InvA are detectable at 37 °C [4]. Recently, invA 211 

expression was shown to be up-regulated during persistent infection [67]. However, invA expression 212 

also depends on the strain in question. In particular, InvA production is inhibited at 37 ˚C in Y. 213 

enterocolitica serotype O:8 due to rapid degradation of the temperature-sensitive RovA and silencing 214 

of invA transcription by H-NS (the histone-like nucleoid structuring protein) [68,69]. H-NS binds to 215 

regions within the rovA promoter and forms a regulatory complex with YmoA, which prevents RNA 216 

polymerase from binding to the invA promoter [70]. Likewise, the amount of InvA synthesis is 217 

reduced at 37 ˚C in Y. enterocolitica serotype O:9 [71]. In contrast, InvA is efficiently produced by Y. 218 

enterocolitica O:3 even at 37 °C. In this serotype, RovA is only weakly temperature-dependent due to 219 

a single proline to serine (P98S) substitution [72]. In addition, insertion of an IS1667 element at the 220 

invA promoter in Y. enterocolitica O:3 leads to constitutive production of InvA [72].   221 

2.3.2 Other inverse autotransporter adhesins in Yersiniae 222 

Recent genome analyses show that there are several others invasin-like autotransporters among the 223 

Yersiniae that mediate adhesion to host cells and promote colonization of different host tissues. Y. 224 

pseudotuberculosis encodes three additional inverse ATs: Ifp (InvB), InvC and InvD [73]. The Y. pestis 225 

orthologue of InvC is referred to as Ilp (intimin/invasin-like protein) [74]. These proteins have a 226 

similar structural organization to InvA. The protein called Ifp (intimin family protein) is present in all Y. 227 

pseudotuberculosis strains [75]. Interestingly, in Y. pestis, the predicted Ifp sequence is disrupted by 228 

an IS285 insertion element, with the exception of strain 91001, where it is altered by a point 229 

mutation. ifp is maximally expressed at 37 °C in the late exponential phase or early stationary phase 230 

[75]. Invasion and adhesion assays confirmed that Ifp and InvC are able to bind and mediate invasion 231 

of human, murine and porcine epithelial cells. In addition, the loss of Ifp and InvC leads to the 232 
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recruitment of a higher number of immune cells to Peyer’s patches [73,75]. In Y. pestis, Ilp-deficient 233 

mutants showed reduced adhesion to and internalization by HEp-2 cells. Furthermore, mice 234 

challenged with ilp mutants demonstrated a significant delay in time to death and reduced bacterial 235 

dissemination to the liver, kidney and lungs [74]. 236 

Environmental representatives of the Yersiniae, such as Y. frederiksenii, Y. intermedia, Y. kristensenii, 237 

and Y. ruckeri also possess one or more inverse AT genes in their genome [76,77]. However, these 238 

proteins and their roles in infection processes (e.g. of fish in the case of Y. ruckeri) have not been 239 

investigated. 240 

 241 

3.  Small β-barrel proteins 242 

3.1 Ail 243 

The Ail (Attachment and Invasion locus) adhesin belongs to a family of outer membrane proteins 244 

distributed in organisms such as the pathogenic Yersiniae, Salmonella enterica (PagC and Rck) or 245 

Escherichia coli (OmpX) [78]. This small, chromosomally encoded protein is an important Yersinia 246 

virulence factor. The crystal structure of Y. pestis Ail revealed an eight-stranded transmembrane β-247 

barrel with four extracellular loops [79] (Figure 1). Many of its functions, including serum resistance, 248 

cell adhesion, cell invasion, and promotion of Yop delivery into host cells have been well 249 

characterized [80-84,84].  250 

Ail plays a role in serum resistance in all three human pathogens, especially in Y. pestis, where 251 

deletion of ail leads to almost complete serum sensitivity [85,86]. Ail can recruit the complement-252 

regulatory proteins FH and C4bp, which confers significant protection against killing by complement 253 

[46,48]. However, the activity of Ail, due to its small size, is usually masked by the lipopolysaccharide 254 

(LPS) outer core oligosaccharide and O-antigen in Y. enterocolitica O:3 [47] or O-antigen in Y. 255 

pseudotuberculosis YPIII [87]. Thus, Ail only displays full biological activity in strains with rough LPS, 256 

such as Y. pestis; however, as the expression of O-antigen and outer core in Yersinia is temperature-257 
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regulated, it is plausible that in vivo the O-antigen and/or outer core expression is repressed, thus 258 

unmasking Ail. 259 

In Y. enterocolitica and Y. pestis, Ail mediates binding to various epithelial cell lines and ECM proteins, 260 

including laminin, fibronectin, vitronectin and heparan sulfate proteoglycans [4,79,81,86,88,89]. 261 

Binding to laminin and fibronectin facilitates close contact with host cells and thus promotes 262 

injection of Yops [79]. The binding site for Ail in fibronectin has been mapped to the ninth FNIII 263 

repeat [90]. In contrast to Y. pestis and Y. enterocolitica, Ail from Y. pseudotuberculosis has been 264 

reported to lack adhesion and invasion capacity [87,91]. Interestingly, the sequence of Ail from Y. 265 

pestis is almost identical to that of Y. pseudotuberculosis, differing at only two positions located in 266 

extracellular loops, suggesting these residues might play a significant role in binding to cell 267 

components such as fibronectin [87]. Furthermore, Ail mediates autoaggregation of Y. pestis [86]. 268 

ail is highly expressed at 37°C under reduced oxygen levels in Y. enterocolitica, but not at lower 269 

temperatures [84,92]. In contrast, ail is also expressed at 26 °C in Y. pestis, albeit at lower levels than 270 

at 37 °C, probably as an adaptation to the different infection route of this organism [85,86]. In 271 

addition, the expression levels of ail are much higher in Y. pestis than in Y. pseudotuberculosis; in the 272 

former, 20-30 % of the outer membrane proteome consists of Ail at 37 °C [85,93]. Y. pestis and Y. 273 

pseudotuberculosis contain three additional ail paralogues, y1682 (OmpX), y2304 and y2446, but 274 

these do not contribute to serum resistance [85].  275 

 276 

3.2 Plasminogen activator 277 

Pla has proteolytic and adhesive activity critical for the progression of bubonic and pneumonic 278 

plague [94]. It is a member of the omptin family of β-barrel proteins [95]. Pla is encoded by the pla 279 

gene located on the small plasmid pPCP1 (also called pPla or pPst) exclusive to Y. pestis [96]. pla was 280 

detected in ancient DNA samples from the Bronze Age, showing that pPCP1 was an early acquisition 281 

in Y. pestis [3]. Pla consists of 10 antiparallel transmembrane β-strands with five extracellular loops; 282 

the catalytic residues are located at the top of the β- barrel [97,98] (Figure 1).  283 
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The main pathogenic function of Pla is cleavage of plasminogen into its active form, plasmin [99,100]. 284 

Plasmin is a serine protease that degrades fibrin clots. The degradation of these clots enhances the 285 

dissemination of Y. pestis into host tissue as well as an inhibition of immune cell recruitment [100]. In 286 

addition, plasmin cleaves ECM components such as laminin and fibronectin and activates pro-matrix 287 

metalloproteinase, which also enhances faster bacterial dissemination [100]. Pla was shown to 288 

facilitate bacterial dissemination from the primary site of infection to the lymph nodes in bubonic 289 

plague; during pneumonic plague, it is required for bacterial outgrowth in airways [100,101]. Pla 290 

mediates adhesion to and invasion of macrophages via the DEC-205 receptor, which leads to 291 

dissemination of Y. pestis in a murine infection model [102]. However, in contrast to these reports, a 292 

recent study showed that Pla neither promotes dissemination to the lymph nodes nor causes organ 293 

destruction, but it does promote bacterial multiplication and helps to protect Y. pestis cells against 294 

host defence [103].  295 

Recent studies have shown the protective role of Fas ligand (FasL), degraded by Pla, in the induction 296 

of host immunity during Y. pestis lung infections [104]. FasL is a membrane protein required for host 297 

cell death and it acts as a protective molecule during bacterial pneumonia. Mice challenged with 298 

wild-type Y. pestis showed a decreased level of FasL, in contrast to pla mutants, demonstrating that 299 

the degradation of FasL changes host inflammatory responses and facilitates Y. pestis outgrowth in 300 

the lungs [104]. The activity of Pla may also play a role in complement evasion by inactivating the 301 

complement factor C3, which results in inhibition of opsonophagocytosis [100].  302 

Pla is also an adhesin that contributes to Yop delivery and cell invasion, with the strongest effect 303 

demonstrated at 28 ˚C and 37 ˚C at neutral pH [105,106]. Pla is present at both temperatures, but is 304 

twice as abundant at 37 °C, and Pla is also more active at this temperature [93,107,108]. Pla 305 

mediates attachment to (and even lead to invasion of) eukaryotic cells and binds ECM components 306 

such as collagen type IV, laminin and heparan sulfate proteoglycan [109-111]. Moreover, the 307 

presence of rough LPS is critical for the proteolytic and adhesive activity of plasminogen [107,112].  308 

 309 
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4. Fimbrial adhesins 310 

4.1 Chaperone-usher fimbriae 311 

Fimbriae and pili are long, linear appendages protruding from the cell surface formed of multiple 312 

subunits. These structures may be involved in several cellular processes, including adhesion and 313 

biofilm formation, DNA uptake by naturally competent bacteria, some forms of motility, and 314 

conjugation. Many fimbrial structures, particularly those involved in adhesion, are assembled by the 315 

chaperone-usher (C-U) pathway [113]. Y. pestis produces two well-characterised C-U -assembled 316 

adhesin structures, the pH 6 antigen (Psa) and the cluster fraction 1 antigen (F1 antigen or Caf) 317 

[114,115]. In contrast to type I and P pili, Psa and Caf do not form distinct fimbriae but rather thin 318 

filaments or a capsule-like mesh on the cell surface, respectively. Furthermore, Psa does not have a 319 

single adhesive subunit at its tip, but rather all pilin subunits have adhesive activity, thus making the 320 

Psa filaments polyvalent adhesins [116].  321 

Caf is encoded by a plasmid specific to Y. pestis, pFra. Though not an adhesin as such, Caf is an 322 

important virulence factor that aids in resisting phagocytosis and evading the innate immune system 323 

by binding to the proinflammatory cytokine interleukin-1β during early stages of infection [117,118]. 324 

Caf is expressed at mammalian body temperature; however, Caf may also play a role in transmission 325 

through flea bites to the mammalian host [119].  326 

In contrast to Caf, Psa is chromosomally encoded, and orthologous loci are found in both Y. 327 

pseudotuberculosis and Y. enterocolitica [91,120]. In the latter, Psa is referred to as mucoid factor 328 

(Myf). In Y. pestis, Psa is an important adhesin mediating attachment to host cells via β1-linked 329 

galactosyl residues in glycosphingolipids [121] and can promote Yop delivery [105,122]. Phosphatidyl 330 

choline was identified as another receptor for Psa on alveolar epithelial cells [123] , and Psa binds to 331 

low-density lipoprotein by interacting with the lipid component [124]. The Y. pestis PsaA pilin 332 

contains distinct but adjacent binding sites for both galactose and choline [125] (Figure 1). The 333 

choline-binding motif in Myf is disrupted, which could explain why it does not agglutinate 334 

erythrocytes; Psa-mediated hemagglutination is dependent on phosphocholine binding in Y. pestis 335 
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[125]. Psa also aids in immune evasion by binding to the Fc portion of IgG, possibly through 336 

interactions with the carbohydrate moiety of Fc [126,127]. Furthermore, Psa promotes biofilm 337 

formation [128]. As its common name suggests, psa is expressed at low pH (<6) and high 338 

temperature (37 °C) [129], though more recent data point to psa also being expressed at 28°C in 339 

minimal medium [128]. Interestingly, psa is expressed and Psa is present at higher levels in Y. pestis 340 

than in Y. pseudotuberculosis [130]. Y. pestis coexpresses psa and caf, with the adhesive properties of 341 

the former dominating the phenotype [131]. Interestingly, both Psa and Caf appear to inhibit 342 

invasion of epithelial cells by Y. pestis [131].  343 

Genome sequencing has uncovered eight additional chromosomal loci encoding putative C-U fimbrial 344 

systems. However, two of these have disrupted usher genes, and so are unlikely to be functional 345 

[132]. The six intact loci (Table 1) all produced pilus-like structures when heterologously expressed in 346 

E. coli, though only one, encoded by the y0561-0563 locus, promoted adhesion to epithelial cells and 347 

significantly promoted biofilm formation at 28 °C [128]. However, deletion of this locus had no 348 

appreciable effect on the adhesion of Y. pestis. Deletion of another fimbrial locus, y1858-1862, 349 

displayed a modest reduction in Y. pestis virulence in mice when introduced intravenously and 350 

resulted in somewhat reduced adhesion to a macrophage cell line, suggesting this fimbria might have 351 

a role in immune evasion [128]. A later study found that also y0348-0352 and y1869-1873 had similar 352 

effects in an intranasal infection model [132]. 353 

A C-U fimbria widespread among Y. enterocolitica strains is the mannose-resistant haemagglutinin 354 

(MRHA). MRHA fimbriae are channelled structures approximately 8 nm in diameter that mediate 355 

agglutination of erythrocytes from several animal species at environmental temperatures [133,134]. 356 

The major pilin subunit, MrpA, is homologous to the pilin of the mannose-resistant fimbriae of 357 

Proteus mirabilis [135]. Recently, a MRHA orthologue in Y. intermedia was found to be 358 

downregulated under anaerobiosis [136]. 359 

  360 
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4.2. Type IV pili 361 

Another class of fimbrial adhesins are type IV pili, which are retractable surface appendages that 362 

confer twitching motility on a number of bacterial species [137]. In contrast to C-U systems, type IV 363 

pili are assembled by a protein complex spanning both the inner and the outer membrane, related to 364 

type II secretion systems [138]. Many strains of Y. pseudotuberculosis harbour a genetic locus (pil) 365 

encoding a type IV pilus system that forms polar bundles when heterologously expressed in E. coli 366 

[139]. This is located on a pathogenicity island, YAPI, present in Y. enterocolitica and Y. 367 

pseudotuberculosis, but missing in Y. pestis [140]. pil expression is upregulated under high 368 

temperature and osmolarity conditions, and deletion of the pil locus results in reduced virulence in a 369 

mouse model [139].  370 

A second type IV pilus locus is tad (for Tight Adhesion), encoding the fimbiral low-molecular-weight 371 

protein (Flp) pilus [141]. The tad locus is widespread in Gram-negative bacteria, and the locus is 372 

present in all pathogenic Yersiniae [142]. However, in Y. pestis, it is most likely inactive due to a 373 

deletion of the major pilin gene flp and a frameshift mutation in another gene encoding a putative 374 

secretin [143]. In Y. enterocolitica, Flp pili are detectable only in a subset of the population, but they 375 

appear to be involved in microcolony formation at 26 °C [142]. The tadD gene of the fish pathogen Y. 376 

ruckeri is expressed in the host during infection; Flp may thus play a role in the virulence of this 377 

organism [144]. 378 

 379 

5. Other adhesins 380 

A constitutively expressed outer membrane protein of Vibrio parahaemolyticus, multivalent adhesion 381 

molecule 7 (MAM7), was identified as mediating initial attachment to host cells [145]. This protein 382 

consists of seven repeated mammalian cell entry domains, and is widespread in Gram-negative 383 

bacteria; an orthologous gene is present in all three pathogenic Yersinia species (Table 1). V. 384 

parahaemolyticus MAM7 binds to fibronectin and phosphatidic acid, with significantly higher affinity 385 

for the latter [145,146]. MAM7-negative Y. pseudotuberculosis adhered significantly less to 386 
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fibroblasts and was less cytotoxic than the wild-type and complemented mutant strain [146] 387 

Furthermore, E. coli expressing MAM7 from Y. pseudotuberculosis was able to adhere to HeLa cells 388 

and could compete with Y. pseudotuberculosis for binding. These results suggest MAM7 plays a role 389 

in Y. pseudotuberculosis virulence.   390 

An important stage in the life cycle of Y. pestis is infection of the flea proventriculus and formation of 391 

an occluding biofilm [147]. This is dependent on the hemin storage locus, the operon hmsHFRS, 392 

which is active at 26 °C but not at 37 °C [148]. This operon produces and exports an extracellular 393 

polysaccharide, poly-β-1,6-N-acetyl-D-glucosamine (PGA), which forms the matrix of the biofilm 394 

[149]. Biofilm production is enhanced in Y. pestis due to a frameshift arising from an internal 395 

duplication in the rscA gene, a negative regulator of biofilm production in Y. pseudotuberculosis [150]. 396 

In addition, LPS itself can act as an adhesin. The core oligosaccharide of Y. pestis LPS can interact with 397 

a lectin expressed by antigen-presenting cells called DC-SIGN (dendritic cell-specific intercellular 398 

adhesion molecule-grabbing non-integrin) [151]. This interaction may allow Y. pestis to invade 399 

antigen-presenting cells such as dendritic cells and macrophages, which Y. pestis could use as a 400 

pathway to disseminate to lymph nodes from the primary site of infection.  401 

 402 

6. Conclusions and future perspectives 403 

The Yersiniae comprise a medically important, environmentally ubiquitous and biologically 404 

fascinating genus of bacteria. They have been used extensively as model organisms for extracellular 405 

infection, type III secretion system effector delivery, immune evasion, and adhesion. For a long time, 406 

the major adhesion phenotype of the enteropathogenic Yersiniae was believed to be solely due to 407 

YadA, InvA and, to a lesser extent, Ail. Though these are still unquestionably the major adhesins in 408 

these organisms, recent studies have highlighted the role played by other autotransporters, fimbriae 409 

and other types of adhesins in the virulence of these organisms. Y. pestis, which produces neither 410 

YadA nor InvA, has been long known to contain alternative adhesins such as Psa, but even in this 411 
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bacterium, numerous adhesins and potential adhesins have recently been uncovered by genome 412 

sequencing.  413 

A remarkable feature of the virulence phenotype in Y. enterocolitica is the dominance of YadA. In 414 

most other bacterial pathogens, including Y. pseudotuberculosis and Y. pestis, no single adhesin has 415 

such a profound effect on not only the adhesive properties of the bacteria, but also on serum and 416 

phagocytosis resistance. In many cases, the effects of a single adhesin are difficult to establish due to 417 

functional redundancy among adhesion molecules, as exemplified by Salmonella, where a multitude 418 

of adhesins have been described, but none of such central importance for virulence have been 419 

identified [152]. YadA in Y. enterocolitica is thus quite exceptional.  420 

A major regulator of Yersinia virulence traits is temperature. It is now clear that, at different 421 

temperatures, Yersiniae elaborate very different surfaces (Figure 2). This applies not only to the 422 

assortment of adhesins expressed, but also to other surface molecules such as the Ysa and Ysc type 423 

III secretion systems, flagella and LPS [27,153-156]. Though some proteins appear to dominate the 424 

adhesive phenotype at certain temperatures (specifically InvA at environmental temperatures and 425 

YadA at mammalian body temperature in the enteropathogenic Yersiniae), several adhesins are 426 

expressed concomitantly at any given temperature, and there even seems to be some overlap among 427 

differentially expressed adhesins. However, only a few studies have addressed the interplay of 428 

adhesins in adherence functions or immune evasion [e.g.47,131,157-161]. Though more challenging, 429 

these kinds of studies are needed to fully delineate the in vivo roles of the adhesins, which – despite 430 

a great deal of experimental data on individual adhesins – remain elusive. 431 

Additionally, different adhesins may have differing roles in different host organisms, as exemplified 432 

by the importance of InvA in swine, a notable reservoir for Y. enterocolitica O:3 [162]. Thus, to gain a 433 

full understanding of the functions of individual adhesins or adhesins acting in concert, it is not 434 

sufficient to study just one host organism. Y. enterocolitica and Y. pseudotuberculosis are both 435 

capable of infecting not only various mammals, but also insects and nematodes, and can additionally 436 

be found free-living in the environment [153,163-166]. For Y. pestis, colonising the flea is a major 437 
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stage in the infectious cycle, and studying this interaction has provided much data on the factors 438 

required for survival in the flea, biofilm formation and transmission to mammalian hosts [167].  439 

To further complicate matters, it has become clear that even closely related adhesins from different 440 

strains can have significantly different functions [38,62,87]. Thus, not all results from a single adhesin 441 

orthologue may be applicable to the same adhesin from other strains, not to mention other species. 442 

Therefore, we urge future studies to include a comparative element to assess the generality of novel 443 

findings. It might be particularly fruitful to compare species that are not pathogenic to humans or 444 

mammals, such as Y. ruckeri (a fish pathogen) and Y. entomophaga (an insect pathogen), with the 445 

classical human pathogenic Yersiniae. This could potentially shed light on the pathogenesis of both 446 

groups of organisms, and provide insight into the mechanisms of virulence in different hosts. 447 

 448 

  449 
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Table 1. Adhesins of human pathogenic Yersiniae 867 

Adhesin Class Adhesin Function(s) Presence in speciesa Ref. 

   Y. 
enterocolitica 

Y. pseudo-
tuberculosis 

Y. pestis  

Autotransporter 
adhesins 

      

Type Va YapA Not known - x  
(Q667Z2) 

+ 
(Q9F292) 

[12] 

YapB1 Not known - x 
(Q667Z0) 

o 
 

[12] 

YabB2 Not known - x 
(Q667Z1) 

- [12] 

YapC Autoagglutination, binding to epithelial cells and macrophages, 
biofilm formation. 

- x 
(Q66DI5) 

+ 
(Q9F290) 

[15] 

YapE Binding to eukaryotic cells, autoaggregation x 
(A1JSQ7) 

x 
(Q664E) 

+ 
(Q9F288) 

[18] 

YapF Not known - x 
(Q665R2) 

+ 
(Q9F287) 

[12] 

YapG Not known - x 
(Q665P5) 

+ 
(Q9F286) 

[16] 

YapH Not known - x 
(Q666F5) 

+ 
(Q9F285) 

[12] 

YapJ Not known - - + 
(Q0WGA9) 

[12] 

YapK Not known - x 
(Q66FH2) 

+ 
(Q0WJZ8) 

[12] 

YapL Not known - x 
(Q668J2) 

+ 
(Q7CJH7) 

[12] 

YapM Not known - x 
(Q667C1) 

+ 
(Q0WIL1) 

[12] 

YapN Not known - x + [12] 
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(A0A0U1QUE
7) 

(Q0WID7) 

YapV Interacts with actin-polymerizing factor N-WASP  - x 
(Q666H3) 

+ 
(Q8CZT5) 

[10] 

YapX Not known - x 
(Q666H2) 

o 
 
 

[11] 

Type Vc YadA Binding to ECM components, epithelial cells, macrophages and 
neutrophils, mediates serum resistance and autoagglutination 

+ 
(P31489) 

+ 
(K7ZVF1) 

o [168] 

YadB Promotes survival in skin after flea bite - + 
(Q66CJ1) 

+ 
(Q7CHJ4) 

[52] 

YadC Promotes survival in skin after flea bite - + 
(Q7CHJ5) 

+ 
(Q7CHJ5) 

[52] 

Type Ve InvA Adhesion to and invasion of epithelial cells via β1 integrins + 
(A1JT35) 

+ 
(P11922) 

o [56] 

Ifp/InvB Adhesion to and invasion of epithelial cells x 
(A0A0H3NUI2) 

+ 
(Q66C38) 

o [75] 

InvC/Ilp Adhesion to and invasion of host cells - + 
(A0A0H3AYF

9) 

+ 
(Q7CFY4) 

[73] 

InvD Not known - x 
(A0A0H3B1G

5) 

- [73] 

Fimbrial adhesins       

C-U fimbriae 
 

Psa/Myf Binding to galactose and phosphocholine, biofilm formation + 
(P33408) 

 

+ 
(Q56983) 

+ 
(P31527) 

[115] 

Caf Protection from phagocytosis, binding to interleukin-1β - - + 
(P26949) 

[114] 

y0348-0352 Ahdesion to macrophages - x 
(Q66G26) 

+ 
(Q7CKZ7) 

[132] 

y0561-0563 Biofilm formation (?) - x 
(Q66FH7) 

+ 
(Q7CKQ0) 

[128] 
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y1858-1862 Adhesion to macrophages x 
(A1JM00) 

x 
(Q669U8) 

+ 
(Q7CIW9) 

[128] 

y1869-1873 Adhesion to macrophages - x 
(Q669W0) 

+ 
(Q7CIW3) 

[132] 

y2388-2392 Not known x 
(A1JTK2) 

x 
(Q66B61) 

+ 
(Q9ZC30) 

[128] 

y3478-3480 Not known - x 
(Q665Z6) 

 
 

+ 
(Q7CGJ4) 

[128] 

MRHA Mannose-resistant hemagglutination + 
(A1JJU6) 

- - [134] 

Type IV pili Pil Not known + 
 

+ - [139] 

Flp Microcolony formation + 
(A1JQP1) 

x 
(Q665Z1) 

o [142] 

Small β-barrels       

OmpX family Ail Adhesion to and invasion of epithelial cells, promotes serum 
resistance 

+ 
(P16454) 

+ 
(Q56957) 

+ 
(Q0WCZ9) 

[78] 

OmpX Not known x 
(A1JU26) 

x 
(Q669E5) 

+ 
(Q8D0S1) 

[85] 

y2304 Not known - x 
(Q66AY4) 

x 
(Q7CI97) 

[85] 

y2446 Not known - x 
(Q66BP0) 

x 
(Q7CI12) 

[85] 

Omptin family Pla Plasminogen activation, complement inactivation, adhesion to 
and invasion of epithelial cells 

- - + 
(E5GAD2) 

[169] 

Other adhesins       

 MAM7 Binding to fibronectin and phosphatidic acid x 
(A1JM37) 

+ 
(A0A0H3B2K

4) 

x 
(Q8D0N9) 

[146] 

 PGA Biofilm formation; produced by the hmsHRSF locus x 
(A1JSA3) 

+ 
(Q66B31) 

+ 
(Q56939) 

[149] 
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 LPS core 
oligosaccharide 

Binding to DC-SIGN on antigen-presenting cells + + + [151] 

a + = gene present and expressed; x = gene present (expression status unknown); o = pseudogene; - = not present. Where information on the presence of a 868 

particular adhesin gene is not available in the literature, we used bioinformatics tools (e.g. BLAST [170] and GCview [171]) to determine whether a gene is 869 

present in one or more genomes from the species in question. For intact genes, we have included a UniProt accession code for a representative sequence 870 

(in parentheses). In the case of fimbrial adhesins, the accession code is for the usher protein. For type IV pili, the accession code is for the major pilin subunit. 871 

For PGA, the accession code is for the HmsH protein, and for LPS we have not included an accession code. 872 

 873 

 874 
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 875 

Figure 1. Experimental structures of Yersinia adhesins. The structures depicted for YadA (from Y. 876 

enterocolitica) are the collagen-binding head domain (PDB ID 1P9H), a segment of the stalk (3H7X), 877 

and the C-terminal membrane anchor (2LME). In these structures, the three chains are coloured 878 

differently. For InvA from Y. pseudotuberculosis, the structures of the N-terminal membrane anchor 879 

domain (4E1T) and the passenger (1CWV) are shown; the domains D1-D5 of the passenger are 880 

indicated. The structures of the small β-barrel proteins Ail (3QRA) and Pla (4DCB) are both from Y. 881 

pestis. Pla (in blue) is shown in complex with the activation loop peptide of human plasminogen (in 882 

yellow). The pilin subunit PsaA (4F8N, in green) of pH 6 antigen from Y. pestis is shown in complex 883 
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with galactose (blue) and phosphocholine (yellow). A minifibre of two Caf1 subunits (1P5U) from Y. 884 

pestis is shown with one subunit in dark blue and one in light blue, with a the light blue subunit 885 

complemented with the donor strand from the dark blue subunit. The structures are shown to 886 

approximate scale. 887 

  888 
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 889 

Figure 2. Effect of temperature shifts between 26 °C and 37 °C on the adhesins displayed on the 890 

surface of Yersiniae. The major adhesins present at these temperatures are displayed. In Y. 891 

pseudotuberculosis and most Y. enterocolitica strains, the major adhesin at 26 °C is InvA, but this is 892 

repressed at 37 °C. In contrast, in Y. enterocolitica serotype O:3, InvA is also expressed efficiently at 893 

37 °C [72]. YadA is expressed by both species at 37 °C. Y. pestis lacks both InvA and YadA, but 894 

expresses several other adhesins in a temperature-dependent manner, including Ail, Caf and Psa at 895 

37 °C. The biofilm-promoting exopolysaccharide PGA is expressed at 26 °C. Pla is present at both 896 

temperatures, but more abundant at 37 °C. 897 

 898 


