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On radiating solitary waves in bi-layers with delamination and coupled
Ostrovsky equations
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We study the scattering of a long longitudinal radiating bulk strain solitary wave in the delaminated

area of a two-layered elastic structure with soft (“imperfect”) bonding between the layers within the

scope of the coupled Boussinesq equations. The direct numerical modelling of this and similar prob-

lems is challenging and has natural limitations. We develop a semi-analytical approach, based on the

use of several matched asymptotic multiple-scale expansions and averaging with respect to the fast

space variable, leading to the coupled Ostrovsky equations in bonded regions and uncoupled

Korteweg-de Vries equations in the delaminated region. We show that the semi-analytical approach

agrees well with direct numerical simulations and use it to study the nonlinear dynamics and scatter-

ing of the radiating solitary wave in a wide range of bi-layers with delamination. The results indicate

that radiating solitary waves could help us to control the integrity of layered structures with imperfect

interfaces. VC 2017 Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4973854]

Long longitudinal bulk strain solitary waves observed in

elastic waveguides, such as rods, bars, plates, and shells,

can be modelled with Boussinesq-type equations.

Radiating solitary waves, that is solitary waves radiating

a co-propagating one-sided oscillatory tail, emerge in lay-

ered elastic waveguides with soft (“imperfect”) bonding

between the layers. In this paper, we study the scattering

of a radiating solitary wave in delaminated areas of

imperfectly bonded bi-layers within the scope of the cou-

pled Boussinesq equations. We develop direct and semi-

analytical numerical approaches and demonstrate that

radiating solitary waves undergo changes which could be

used to control the quality of the interfaces.

I. INTRODUCTION

The discovery of solitons as extremely stable localised

coherent structures1 is intrinsically linked with the discovery

of the Inverse Scattering Transform (IST) for the Korteweg-

de Vries (KdV) equation—the method for the solution of a

large class of initial-value problems on the infinite line.2 The

latter has shown that solitons, when present, constitute the

main part of the long-time asymptotics of initial-value prob-

lems for localised initial data, and this is the reason why soli-

tons proved to be a very important part of the physical world

we live in, across all scales.3–6

Initially developed as a purely analytical technique,7,8 in

recent years the IST formed the basis for the development of

efficient numerical approaches to the analysis of nonlinear

problems, most notably within the framework of another

famous integrable model, the Nonlinear Schr€odinger (NLS)

equation.8–10 An efficient IST-based numerical approach to

solving the KdV equation was also developed.11

Recently, the method has found a new application in our

studies of the scattering of long longitudinal bulk strain soli-

tons in a symmetric perfectly bonded layered bar with

delamination.12,13 This condensed matter problem can be

viewed as an analogue to the fluid mechanics problem of

calculating the reflected and transmitted waves when a sur-

face or internal soliton passes through an area of rapid depth

variation.14–18 The theoretical predictions12 agreed well with

experimental studies19 and were also confirmed by numerical

simulations.13 Long longitudinal bulk strain solitary waves

were experimentally observed in various elastic waveguides,

including rods, bars, plates, and shells, and modelled using

Boussinesq-type equations.6,19–21 The exceptional stability

of bulk strain solitons20,22,23 makes them an attractive candi-

date for the introscopy of layered structures, in addition to

the existing methods.24,25

The dynamical behaviour of layered structures depends

not only on the properties of the bulk material but also on the

type of the bonding between the layers. In particular, if the

materials of the layers have similar properties and the bond-

ing between the layers is sufficiently soft (“imperfect

bonding”), then the bulk strain soliton is replaced with a

radiating solitary wave, a solitary wave with a co-

propagating oscillatory tail.26 The radiating strain solitary

wave has recently been observed in laboratory experi-

ments.24 More generally, experimental studies of the excita-

tion of the resonant radiation by localised waves have been

a prominent theme in nonlinear optics and a number of other

physical settings, see, for example, the reviews27,28 and the

references therein.

Indeed it was shown, within the framework of a com-

plex lattice model, that long nonlinear longitudinal bulk

strain waves in a bi-layer with a sufficiently soft bonding can
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be modelled with a system of coupled regularised

Boussinesq (cRB) equations26 (in non-dimensional and

scaled form)

ftt � fxx ¼
1

2
f 2
� �

xx þ fttxx � d f � gð Þ;

gtt � c2gxx ¼
1

2
a g2
� �

xx þ bgttxx þ c f � gð Þ: (1)

Here, f and g denote the longitudinal strains in the layers,

while the coefficients c; a; b; d; c are defined by the physical

and geometrical parameters of the problem26 (see Section II

for details).

In the symmetric case (c ¼ a ¼ b ¼ 1), system (1)

admits the reduction g¼ f, where f satisfies the equation

ftt � fxx ¼
1

2
f 2
� �

xx þ fttxx : (2)

The Boussinesq equation (2) has particular solitary wave sol-

utions: f ¼ 3ðv2 � 1Þ sech2 x�vt
K

� �
; K ¼ 2vffiffiffiffiffiffiffiffi

v2�1
p ; where v is

the speed of the wave. However, in the system of cRB

Equations (1), when the characteristic speeds of the linear

waves in the layers are close (i.e., c is close to 1), these pure

solitary wave solutions are replaced with radiating solitary

waves,26,29 that is solitary waves radiating a co-propagating

one-sided oscillatory tail.30–32 Figure 1 illustrates the pure

solitary wave solutions of system (1) with d ¼ c ¼ 0 (for a

fixed value of v), and subsequent evolution of this initial con-

dition into a radiating solitary wave. Radiating solitary

waves have been extensively studied in the context of per-

turbed KdV equations, coupled KdV systems, perturbed

NLS equations, and coupled NLS systems.33–39 The radiat-

ing solitary waves emerge due to a resonance between a soli-

tary wave and some linear wave, which can be deduced from

the analysis of the relevant linear dispersion relation.

When considering the linear dispersion relation for the

system (1), it is assumed that the coefficients in (1) are per-

turbed compared to the symmetric case, but remain posi-

tive.26 The dispersion relation has the form

½k2ð1� p2Þ � k4p2 þ d�½k2ðc2 � p2Þ � bk4p2 þ c� ¼ cd; (3)

where k is the wavenumber and p is the phase speed. A typi-

cal plot of (3) is shown in Figure 2. A significant difference

with the linear dispersion curve of the reduction (2) is the

appearance of the second branch, remaining above the first

branch for all k, and going to infinity as k ! 0, while

approaching zero as k!1. The pure solitary waves of the

single Boussinesq equation (2) arise as a bifurcation from

wavenumber k¼ 0 of the linear wave spectrum, when there

is no possible resonance between the speed v of the solitary

wave and the phase speed p of some linear wave. Radiating

solitary waves arise in the case when there is a possible reso-

nance for some finite non-zero value of k. For example, a

possible resonance is shown in Figure 2 for v ¼ p ¼ 1:3.

The aim of this paper is to study the scattering of this

type of solitary wave in delaminated areas of imperfectly

bonded layered structures (see Figure 3). We develop a

semi-analytical approach which leads to coupled Ostrovsky

equations in bonded regions of a bi-layer, and to uncoupled

Korteweg-de Vries equations in the delaminated area. The

Ostrovsky equation was originally derived to describe long

surface and internal waves in a rotating ocean,40,41 but

recently it transpired that the equation, as well as the coupled

FIG. 1. Typical generation of radiating solitary waves in system (1), from

pure solitary wave initial conditions, for f (solid line) and g (dashed line).

Here, c¼ 1.05, a ¼ b ¼ 1:05. (a) Initial condition at t¼ 0: pure solitary

wave solution with d ¼ c ¼ 0 and v¼ 1.3. (b) Radiating solitary wave solu-

tion with d ¼ c ¼ 0:01 at t¼ 400.

FIG. 2. Two branches of the linear dispersion curve of system (1) for

c¼ 1.05, a ¼ b ¼ 1:05; d ¼ c ¼ 0:01 and a resonance for p¼ 1.3 (horizon-

tal line).
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Ostrovsky equations, can also describe nonlinear strain

waves in layered elastic waveguides with soft interfaces.29

We also develop a direct numerical approach and verify that

the semi-analytical method produces the correct results in

the cases where we can use both methods. However, the

direct numerical simulations are expensive; therefore, we

then use our semi-analytical method to study the scattering

of radiating solitary waves in a wide range of complex

imperfectly bonded bi-layers with delamination, giving an

elaborate description of the possible dynamical effects.

The paper is organised as follows. In Section II, we

state the problem formulation for the generation and the scat-

tering of a radiating solitary wave in an imperfectly bonded

bi-layer with delamination. In Section III, we develop a

weakly nonlinear solution of this scattering problem and dis-

cuss the related semi-analytical approach. In Section IV, in a

case study, we compare the results obtained using the semi-

analytical approach with the results of direct numerical simu-

lations and show that the results are in good agreement. We

then continue to use the semi-analytical approach to study

the scattering of radiating solitary waves for a wide range of

configurations of the complex structure. We summarise our

findings and discuss the results in Section V.

II. PROBLEM FORMULATION

We consider the generation and the scattering of a long

radiating solitary wave in a two-layered imperfectly bonded

bi-layer with delamination, shown in Figure 3. The model is

inspired by the experimental setup.24 Two identical homoge-

neous layers (the section on the left) are “glued” to a two-

layered structure with soft bonding between its layers (in the

middle), followed with a delaminated section (on the right).

The materials in the bi-layer are assumed to have close prop-

erties, leading to the generation of a radiating solitary wave

in the bonded section.26 We study the scattering of this wave

by the subsequent delaminated region.

The mathematical problem formulation consists of the

following sets of scaled regularised non-dimensional equa-

tions in the respective sections of the complex

waveguide:12,13,26

u
ð1Þ
tt � uð1Þxx ¼ �½�12uð1Þx uð1Þxx þ 2u

ð1Þ
ttxx�;

w
ð1Þ
tt � wð1Þxx ¼ �½�12wð1Þx wð1Þxx þ 2w

ð1Þ
ttxx� (4)

for x < xa;

u
ð2Þ
tt � uð2Þxx ¼ �½�12uð2Þx uð2Þxx þ 2u

ð2Þ
ttxx � dðuð2Þ � wð2ÞÞ�;

w
ð2Þ
tt � c2wð2Þxx ¼ �½�12awð2Þx wð2Þxx þ 2bw

ð2Þ
ttxx þ cðuð2Þ � wð2ÞÞ�

(5)

for xa < x < xb; and

u
ð3Þ
tt � uð3Þxx ¼ �½�12uð3Þx uð3Þxx þ 2u

ð3Þ
ttxx�;

w
ð3Þ
tt � c2wð3Þxx ¼ �½�12awð3Þx wð3Þxx þ 2bw

ð3Þ
ttxx�; (6)

for x > xb. Here, the functions uðiÞðx; tÞ and wðiÞðx; tÞ describe

longitudinal displacements in the “top” and “bottom” layers

of the three sections of the waveguide, respectively. The val-

ues of the constants a, b, and c depend on the physical and

geometrical properties of the waveguide, while the constants

d and c depend on the properties of the soft bonding layer,

and � is a small amplitude parameter.26

These equations are complemented with continuity con-

ditions at the interfaces between the sections: continuity of

longitudinal displacement

uð1Þjx¼xa
¼ uð2Þjx¼xa

; wð1Þjx¼xa
¼ wð2Þjx¼xa

; (7)

uð2Þjx¼xb
¼ uð3Þjx¼xb

; wð2Þjx¼xb
¼ wð3Þjx¼xb

; (8)

and continuity of normal stress

uð1Þx þ �½�6ðuð1Þx Þ
2 þ 2u

ð1Þ
ttx �jx¼xa

¼ uð2Þx þ �½�6ðuð2Þx Þ
2 þ 2u

ð2Þ
ttx �jx¼xa

;

wð1Þx þ �½�6ðwð1Þx Þ
2 þ 2w

ð1Þ
ttx �jx¼xa

¼ c2wð2Þx þ �½�6aðwð2Þx Þ
2 þ 2bw

ð2Þ
ttx �jx¼xa

; (9)

and

uð2Þx þ �½�6ðuð2Þx Þ
2 þ 2u

ð2Þ
ttx �jx¼xb

¼ uð3Þx þ �½�6ðuð3Þx Þ
2 þ 2u

ð3Þ
ttx �jx¼xb

;

c2wð2Þx þ �½�6aðwð2Þx Þ
2 þ 2bw

ð2Þ
ttx �jx¼xb

¼ c2wð3Þx þ �½�6aðwð3Þx Þ
2 þ 2bw

ð3Þ
ttx �jx¼xb

; (10)

as well as some natural initial and boundary conditions,

which will be imposed later.

III. WEAKLY NONLINEAR SOLUTION

Differentiating the governing equations with respect to x
and denoting f ðiÞ ¼ uðiÞx and gðiÞ ¼ wðiÞx , we obtain the equa-

tions “in strains”

f
ð1Þ
tt � f ð1Þxx ¼ �½�6ðf ð1ÞÞ2 þ 2f

ð1Þ
tt �xx;

g
ð1Þ
tt � gð1Þxx ¼ �½�6ðgð1ÞÞ2 þ 2g

ð1Þ
tt �xx (11)

for x < xa;

f
ð2Þ
tt � f ð2Þxx ¼ �½�6ðf ð2ÞÞ2 þ 2f

ð2Þ
tt �xx � �dðf ð2Þ � gð2ÞÞ;

g
ð2Þ
tt � c2gð2Þxx ¼ �½�6aðgð2ÞÞ2 þ 2bg

ð2Þ
tt �xx þ �cðf ð2Þ � gð2ÞÞ

(12)

FIG. 3. Bi-layer with two homogeneous layers for x < xa, a bonded two-

layered section for xa < x < xb and a delaminated section for x > xb.
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for xa < x < xb; and

f
ð3Þ
tt � f ð3Þxx ¼ �½�6ðf ð3ÞÞ2 þ 2f

ð3Þ
tt �xx;

g
ð3Þ
tt � c2gð3Þxx ¼ �½�6aðgð3ÞÞ2 þ 2bg

ð3Þ
tt �xx (13)

for x > xb.

To find the weakly nonlinear solution of the complicated

scattering problem we consider Equations (11)–(13). We use

several asymptotic multiple-scale expansions and develop a

space-averaging method instead of the time-averaging

method used for the homogeneous initial-value problem.29

All functions present in our expansions and their derivatives

are assumed to be bounded and sufficiently rapidly decaying

at infinity (these assumptions agree with our numerical

simulations).

In the regions where the behaviour is governed by

uncoupled regularised Boussinesq equations, the previous

work shows that to leading order the weakly nonlinear solu-

tion is described by the appropriate KdV equations.12,13

Therefore, we will omit the majority of the derivation in

these regions and instead focus on the coupled regularised

Boussinesq equations in (12). Finally, we will use the conti-

nuity conditions (7)–(10) to obtain “initial conditions” for

the derived leading order equations.

A. First Region: Two homogeneous layers

In the first region, the equation is identical in both

homogeneous layers and therefore we assume the same inci-

dent wave in both and consider asymptotic multiple-scale

expansions of the type

f ð1Þ ¼ Iðn;XÞ þ Rð1Þðg;XÞ þ �Pð1Þðn; g;XÞ þ Oð�2Þ;
gð1Þ ¼ Iðn;XÞ þ Gð1Þðg;XÞ þ �Qð1Þðn; g;XÞ þ Oð�2Þ;

where the characteristic variables are given by n ¼ x� t;
g ¼ xþ t, and the slow variable X ¼ �x. Here, the functions

I and Rð1Þ; Gð1Þ represent the leading order incident and

reflected waves, respectively, and Pð1Þ;Qð1Þ are the higher

order corrections. Substituting the asymptotic expansion into

the first equation in (11), the system is satisfied at leading

order, while at Oð�Þ we have

�2P
ð1Þ
ng ¼ ðIX � 6IIn þ InnnÞn þ ðR

ð1Þ
X � 6Rð1ÞRð1Þg

þRð1ÞgggÞg � 6ð2InRð1Þg þ Rð1Þgg I þ InnRð1ÞÞ; (14)

and a similar equation can be obtained for the second layer.

We average Equation (14) with respect to the fast space vari-

able x using limv!�1
1

xa�v

Ð xa

v … dx; in the reference frame

moving with the linear speed of right- and left-propagating

waves (at constant n or g). Assuming that all functions and

their derivatives remain bounded (in order to avoid secular

terms in asymptotic expansions) and decay sufficiently rap-

idly at infinity we have, for example, at constant n

lim
v!�1

1

xa�v

ðxa

v
P 1ð Þ

ng dx¼ lim
v!�1

1

2 xa�vð Þ

ð2xa�n

2v�n
P 1ð Þ

ng dg

¼ lim
v!�1

1

2 xa�vð Þ
P 1ð Þ

n

h i2xa�n

2v�n
¼0: (15)

The same result can be obtained for Pð1Þ at constant g.

Therefore, we can average (14) at constant n to obtain

ðIX � 6IIn þ InnnÞn ¼ 0: (16)

Similarly, averaging (14) with respect to x at constant g
gives

ðRð1ÞX � 6Rð1ÞRð1Þg þ Rð1ÞgggÞg ¼ 0: (17)

In each case, we can integrate with respect to the relevant

characteristic variable and, recalling that there are no waves

at infinity, we obtain

IX � 6IIn þ Innn ¼ 0; (18)

R
ð1Þ
X � 6Rð1ÞRð1Þg þ Rð1Þggg ¼ 0: (19)

Substituting (18) and (19) into (14) and integrating with

respect to the characteristic variables, we obtain an expres-

sion for Pð1Þ of the form

Pð1Þ ¼ 3 2IRð1Þ þ Rð1Þg

ð
I dnþ In

ð
Rð1Þ dg

� �

þ/ð1Þ1 ðn;XÞ þ wð1Þ1 ðg;XÞ; (20)

where /ð1Þ1 ; wð1Þ1 are arbitrary functions.

Similarly, we obtain the equations

G
ð1Þ
X � 6Gð1ÞGð1Þg þ Gð1Þggg ¼ 0; (21)

Qð1Þ ¼ 3 2IGð1Þ þ Gð1Þg

ð
I dnþ In

ð
Gð1Þ dg

� �

þ/ð1Þ2 ðn;XÞ þ wð1Þ2 ðg;XÞ; (22)

for the waves in the second layer, in addition to (18).

The first radiation condition requires that the solution

to the problem should not change the incident wave.12,13

For the case of an incident solitary wave, this implies that

/ð1Þ1 ¼ 0 and /ð1Þ2 ¼ 0.

B. Second region: Bi-layer with soft bonding

We assume that the layers have close properties, so that

c� 1 ¼ Oð�Þ. In this case, the cRB equations admit solu-

tions in the form of radiating solitary waves.26,29 Thus,

we assume that c� 1 ¼ O �ð Þ ) c2�1
� ¼ O 1ð Þ; and

therefore we can make the rearrangement

g 2ð Þ
tt � g 2ð Þ

xx ¼ � �6a g 2ð Þ
� �2

þ 2bg 2ð Þ
tt þ

c2 � 1

�
g 2ð Þ

	 

xx

þ �c f 2ð Þ � g 2ð Þ
� �

: (23)

This allows us to use one set of characteristic variables for

f ð2Þ and gð2Þ. Let us assume that there is a weakly nonlinear

solution to (12) of the form

f ð2Þ ¼ Tð2Þðn;XÞ þ Rð2Þðg;XÞ þ �Pð2Þðn; g;XÞ þ Oð�2Þ;
gð2Þ ¼ Sð2Þðn;XÞ þ Gð2Þðg;XÞ þ �Qð2Þðn; g;XÞ þ Oð�2Þ:

013112-4 K. R. Khusnutdinova and M. R. Tranter Chaos 27, 013112 (2017)



The characteristic variables n, g, and X are the same as

before; Tð2Þ and Sð2Þ represent the transmitted waves in the

second section of the bar, where T is for the top layer and S
is for the bottom layer. Similarly, Rð2Þ and Gð2Þ are the

reflected waves, and the higher order corrections in this sec-

tion are given by Pð2Þ and Qð2Þ, for the top and bottom layers,

respectively.

The solution is considered over the period of time until

the waves reflected from the boundary x¼ xb, between the

second and the third region, reach the boundary x¼ xa,

between the first and the second region. Moreover, the

boundary x¼ xb is assumed to be sufficiently far away from

the boundary x¼ xa, allowing us to use the averaging

limxb!1
1

xb�xa

Ð xb

xa
… dx: Substituting the asymptotic expan-

sion into the equation for f ð2Þ in (12) the equation is satisfied

at leading order, while at Oð�Þ we have

�2P 2ð Þ
ng ¼ T 2ð Þ

X � 6T 2ð ÞT 2ð Þ
n þ T 2ð Þ

nnn

� �
n
þ R 2ð Þ

X � 6R 2ð ÞR 2ð Þ
g

�
þR 2ð Þ

ggg

�
g
� 6 2T 2ð Þ

n R 2ð Þ
g þ T 2ð ÞR 2ð Þ

gg þ T 2ð Þ
nn R 2ð Þ

� �

� d
2

T 2ð Þ � S 2ð Þ þ R 2ð Þ � G 2ð Þ
� �

: (24)

For the equation governing gð2Þ, we have

�2Q 2ð Þ
ng ¼ S 2ð Þ

X þ
c2 � 1

2�
S 2ð Þ

n � 6aS 2ð ÞS 2ð Þ
n þ bS 2ð Þ

nnn

� �
n

þ G 2ð Þ
X þ

c2 � 1

2�
G 2ð Þ

g � 6aG 2ð ÞG 2ð Þ
g þ bG 2ð Þ

ggg

� �
g

� 6a 2S 2ð Þ
n G 2ð Þ

g þ S 2ð ÞG 2ð Þ
gg þ S 2ð Þ

nn G 2ð Þ
� �

þ c
2

T 2ð Þ � S 2ð Þ þ R 2ð Þ � G 2ð Þ
� �

: (25)

We average Equations (24) and (25) with respect to the fast

space variable x as defined earlier. In each case, we average

at constant n or g and note that Pð2Þ and Qð2Þ are both zero

when averaged at either constant n or constant g. Averaging

(24) and (25) at constant n gives

T 2ð Þ
X � 6T 2ð ÞT 2ð Þ

n þ T 2ð Þ
nnn

� �
n
¼ d

2
T 2ð Þ � S 2ð Þ
� �

; (26)

S 2ð Þ
X þ

c2 � 1

2�
S 2ð Þ

n � 6aS 2ð ÞS 2ð Þ
n þ bS 2ð Þ

nnn

� �
n
¼ c

2
S 2ð Þ � T 2ð Þ
� �

;

(27)

and therefore (26) and (27) form a system of coupled

Ostrovsky equations.29 We note that the Ostrovsky equation

was initially derived to describe long surface and internal

waves in a rotating ocean.40,41 Coupled Ostrovsky equations

appear naturally in the description of nonlinear waves in lay-

ered waveguides, both solid and fluid.29,42

Similarly, averaging (24) and (25) at constant g gives

R 2ð Þ
X � 6R 2ð ÞR 2ð Þ

g þ R 2ð Þ
ggg

� �
g
¼ d

2
R 2ð Þ � G 2ð Þ
� �

; (28)

G 2ð Þ
X þ

c2�1

2�
G 2ð Þ

g �6aG 2ð ÞG 2ð Þ
g þbG 2ð Þ

ggg

� �
g
¼ c

2
G 2ð Þ �R 2ð Þ
� �

;

(29)

respectively. Therefore, to leading order, the transmitted and

reflected waves are described by two systems of coupled

Ostrovsky equations. This result is consistent with the time-

averaged derivation.29

Substituting (26) and (28) into (24) and integrating with

respect to the characteristic variables, we obtain

Pð2Þ ¼ 3 2Tð2ÞRð2Þ þ Rð2Þg

ð
Tð2Þ dnþ T

ð2Þ
n

ð
Rð2Þ dg

� �

þ /ð2Þ1 ðn;XÞ þ wð2Þ1 ðg;XÞ; (30)

where /ð2Þ1 ; wð2Þ1 are arbitrary functions.

Similarly, substituting (27) and (29) into (25) and inte-

grating with respect to the characteristic variables, we obtain

Qð2Þ ¼ 3a 2Sð2ÞGð2Þ þ Gð2Þg

ð
Sð2Þ dnþ S

ð2Þ
n

ð
Gð2Þ dg

� �

þ /ð2Þ2 ðn;XÞ þ wð2Þ2 ðg;XÞ; (31)

where /ð2Þ2 ; wð2Þ2 are arbitrary functions.

C. Third region: Delamination

We now consider the third region, where the same bi-

layered waveguide does not have a bonding layer, modelling

delamination. The motion in this region is governed by two

uncoupled regularised Boussinesq equations, but with differ-

ing coefficients in each layer. We look for a weakly nonlin-

ear solution to (13) of the form

f ð3Þ ¼ Tð3Þðn;XÞ þ �Pð3Þðn; g;XÞ þ Oð�2Þ;
gð3Þ ¼ Sð3Þð�;XÞ þ �Qð3Þð�; f;XÞ þ Oð�2Þ;

where we now use two sets of characteristic variables

n ¼ x� t; g ¼ xþ t, and � ¼ x� ct; f ¼ xþ ct, while

X ¼ �x. Substituting this into system (13) the equation is sat-

isfied at leading order, while at Oð�Þ we have

�2P
ð3Þ
ng ¼ ðT

ð3Þ
X � 6Tð3ÞT

ð3Þ
n þ T

ð3Þ
nnnÞn; (32)

�2Q 3ð Þ
�f ¼ S 3ð Þ

X � 6
a
c2

S 3ð ÞS 3ð Þ
� þ bS 3ð Þ

���

� �
�

: (33)

We define the averaging in this region as limv!1
1

v�xbÐ v
xb

… dx. Averaging at constant n and � and integrating with

respect to the appropriate characteristic variable, we obtain

two KdV equations of the form

T
ð3Þ
X � 6Tð3ÞT

ð3Þ
n þ T

ð3Þ
nnn ¼ 0; (34)

S 3ð Þ
X � 6

a
c2

S 3ð ÞS 3ð Þ
� þ bS 3ð Þ

��� ¼ 0: (35)

Substituting the results for (34) into (32) and integrating

with respect to the characteristic variables, we obtain

Pð3Þ ¼ /ð3Þ1 ðn;XÞ þ wð3Þ1 ðg;XÞ; (36)

where /ð3Þ1 ; wð3Þ1 are arbitrary functions. The second radiation

condition states that if the incident wave is right-
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propagating, then there should be no left-propagating waves

in the transmitted wave field.12,13 Thus, wð3Þ1 ¼ 0.

Similarly, substituting (35) into (33) and integrating

with respect to the characteristic variables, we obtain

Qð3Þ ¼ /ð3Þ2 ð�;XÞ þ wð3Þ2 ðf;XÞ; (37)

where /ð3Þ2 ; wð3Þ2 are arbitrary functions. By the same argu-

ment as above wð3Þ2 ¼ 0.

D. Matching at boundaries: Continuity conditions

In order to find “initial conditions” for the equations

derived by the averaging, we collect the expressions for the

weakly nonlinear solutions and substitute them into the con-

tinuity conditions (7)–(10).

We first consider the continuity conditions for displace-

ments for the time interval when the waves have not yet

reached the third region. The displacement at negative infin-

ity is assumed to be constant. Differentiating the continuity

conditions (7) with respect to time at x¼ xa, and recalling

that f ðiÞ ¼ uðiÞx ; gðiÞ ¼ wðiÞx , we obtain the following condi-

tions in terms of the strain rates:ðxa

�1
f
ð1Þ
t dx ¼ �

ðxb

xa

f
ð2Þ
t dx; (38)

ðxa

�1
g
ð1Þ
t dx ¼ �

ðxb

xa

g
ð2Þ
t dx: (39)

Substituting the weakly nonlinear solutions obtained in

Section III into (38) and noting that the reflected waves Rð2Þ

and Gð2Þ in the second section are not yet present, we obtain

at leading orderðxa

�1
ðIn � Rð1Þg Þ dx ¼ �

ðxb

xa

T
ð2Þ
n dx: (40)

We can integrate to obtain an expression at x¼ xa by noting

that integration with respect to x can be reduced to integra-

tion with respect to the characteristic variable, as x appears

linearly in the expressions for the characteristic variables. By

the assumption that the strain waves are localised in the first

two regions, when evaluated at either x¼�1 or x¼ xb the

expression will be zero. Therefore, from (40) we obtain

Ijx¼xa
� Rð1Þjx¼xa

¼ Tð2Þjx¼xa
: (41)

Similarly, from (39) we obtain

Ijx¼xa
� Gð1Þjx¼xa

¼ cSð2Þjx¼xa
: (42)

Next, we consider the continuity conditions for displace-

ments for the time interval when the localised strain waves

are present in all three regions, but the waves reflected from

the boundary x¼ xb between the second and the third region

have not yet reached the boundary x¼ xa between the first

and the second region. The displacement at positive infinity

is assumed to be equal to zero (the waves propagate into the

unperturbed media). Differentiating the continuity conditions

(8) with respect to time at x¼ xb, and recalling that

f ðiÞ ¼ uðiÞx ; gðiÞ ¼ wðiÞx , we obtain the following conditions in

terms of the strain rates:ðxb

xa

f
ð2Þ
t dx ¼ �

ð1
xb

f
ð3Þ
t dx; (43)

ðxb

xa

g
ð2Þ
t dx ¼ �

ð1
xb

g
ð3Þ
t dx: (44)

Then, similarly to the previous considerations, we obtain

Tð2Þjx¼xb
� Rð2Þjx¼xb

¼ Tð3Þjx¼xb
; (45)

cSð2Þjx¼xb
� cGð2Þjx¼xb

¼ cSð3Þjx¼xb
: (46)

We now make use of the continuity conditions for normal

stress and, substituting the relevant weakly nonlinear solu-

tion into (9) (noting that uðiÞx ¼ f ðiÞ and wðiÞx ¼ gðiÞ) we obtain

to leading order

Ijx¼xa
þ Rð1Þjx¼xa

¼ Tð2Þjx¼xa
; (47)

Ijx¼xa
þ Gð1Þjx¼xa

¼ c2Sð2Þjx¼xa
: (48)

Similarly, substituting the relevant weakly nonlinear solu-

tions into (10) we have, to leading order

Tð2Þjx¼xb
þ Rð2Þjx¼xb

¼ Tð3Þjx¼xb
; (49)

c2Sð2Þjx¼xb
þ c2Gð2Þjx¼xb

¼ c2Sð3Þjx¼xb
: (50)

We can now find “initial conditions” for the systems describ-

ing transmitted and reflected waves in each section of the

bar, expressed in terms of the given incident wave. For the

top layer, we have

Rð1Þjx¼xa
¼ C

ð1Þ
R Ijx¼xa

; Tð2Þjx¼xa
¼ C

ð1Þ
T Ijx¼xa

;

Rð2Þjx¼xb
¼ C

ð2Þ
R Tð2Þjx¼xb

; Tð3Þjx¼xb
¼ C

ð2Þ
T Tð2Þjx¼xb

;

where C
ðiÞ
R ¼ 0 and C

ðiÞ
T ¼ 1 for all i.

Similarly for the bottom layer, we have

Gð1Þjx¼xa
¼ D

ð1Þ
R Ijx¼xa

; Sð2Þjx¼xa
¼ D

ð1Þ
T Ijx¼xa

;

Gð2Þjx¼xb
¼ D

ð2Þ
R Sð2Þjx¼xb

; Sð3Þjx¼xb
¼ D

ð2Þ
T Sð2Þjx¼xb

;

where D
ð1Þ
R ¼ c�1

cþ1
;D
ð1Þ
T ¼ 2

c 1þcð Þ ;D
ð2Þ
R ¼ 0;D

ð2Þ
T ¼ 1: These

coefficients agree with previous work for a perfectly bonded

waveguide12,13 and are intuitive, as we would expect a wave

to be, to leading order, wholly transmitted when travelling

along a layer of the same material. If the value of c varies

between sections of the bar, i.e., the material in a single layer

varies across the bar, then the coefficients should be calcu-

lated using the respective values of c.

We note that the functions which remained undefined in

the higher order corrections can be found by considering

higher order terms in the equations of motion and the conti-

nuity conditions, similarly to the solution of the initial-value

problems.29,43 However, this is beyond the scope of our pre-

sent paper.
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IV. NUMERICAL MODELLING

In a case study, we compare the results of the semi-

analytical numerical modelling, based on the leading order

terms of the weakly nonlinear solution of Section III with the

results of direct numerical simulations for the problem

(4)–(10). We also compare numerical results with theoretical

predictions for the amplitude of the lead soliton in the

delaminated region, made using the IST. We solve the origi-

nal Boussinesq equations using the finite-difference method

described in supplementary material, Appendix A, and the

weakly nonlinear solution derived in Section III using the

pseudospectral method described in supplementary material,

Appendix B. For the finite-difference method, in all cases,

we use step sizes of Dx ¼ Dt ¼ 0:01 and, for the pseudo-

spectral method, we use Dn ¼ 0:3 (the same step size is used

for all characteristic variables) and DX ¼ 0:001. In all cases,

we assume a ¼ 1:05; b ¼ 1:05; c ¼ 1þ �=2, and � ¼ 0:05.

We note that, similarly to the single Ostrovsky equation,

the coupled Ostrovsky equations (26)–(27) and (28)–(29)

imply zero mass constraints

ð1
�1
ðTð2Þ � Sð2ÞÞdn ¼ 0 and

ð1
�1
ðRð2Þ � Gð2ÞÞdg ¼ 0:

Therefore, we first use initial conditions for the incident

strain solitary wave which include a pedestal term,43 to guar-

antee zero mass, and then show that for this class of prob-

lems, one can also work with initial conditions in the form of

pure strain solitary waves, without the pedestal terms.

Indeed, in the latter case the zero mass constraints are still

approximately satisfied, by the nature of the solutions of the

problem, which we established in the direct numerical simu-

lations using the finite-difference method.

Thus, we use the following initial conditions for the dis-

placements in (4) (corresponding localised initial conditions

for the strains in (11) are given by the derivatives of these

functions)

u x;0ð Þ ¼ A tanh
x

K

� �
� 1

	 


�C tanh
xþ x0

KS

� �
þ tanh

x� x0

KS

� �
� 2

" #
;

u x;jð Þ ¼ A tanh
x�jv

K

� �
� 1

	 


�C tanh
xþ x0�jv

KS

� �
þ tanh

x� x0�jv

KS

� �
� 2

" #
;

(51)

where we have A ¼ � v
ffiffiffiffiffiffiffiffi
v2�1
p ffiffiffiffi

2�
p ; K ¼ 2

ffiffiffiffi
2�
p

vffiffiffiffiffiffiffiffi
v2�1
p and

C ¼
rA tanh

L

K

� �

tanh
Lþ x0

KS

� �
þ tanh

L� x0

KS

� � ;

r can be zero or one, 2 L is the length of the domain used in

the weakly nonlinear modelling, x0 is an arbitrary phase

shift, j ¼ Dt, and the corresponding strain has zero mass (for

r¼ 1). The constant of integration is chosen so that the

waves propagate into an unperturbed medium. The ampli-

tude of the pedestal for the corresponding strains can be

reduced by increasing the value of S. In all cases discussed

here, S¼ 10 and we set x0 ¼ 0. For wðx; 0Þ and wðx; jÞ, we

use the same expressions. If the initial condition was not

given by an explicit analytic function, then we could deduce

the second initial condition for the scheme by taking the for-

ward difference approximation (simulations have shown that

either case is sufficiently accurate).

For the weakly nonlinear solutions, we take the exact

solitary wave solution of Equation (18) governing the inci-

dent wave, with the same pedestal term (differentiated with

respect to x) as used in (51)

I n; 0ð Þ ¼ ~A sech2 n
~K

� �

�
~C
S

sech2 nþ x0

~KS

� �
þ sech2 n� x0

~KS

� �	 

; (52)

where ~A ¼ � v1

2
; ~K ¼ 2ffiffiffi

v1
p and

~C ¼
r ~A tanh

L
~K

� �

tanh
Lþ x0

~KS

� �
þ tanh

L� x0

~KS

� � ;

where v1 is related to v by the approximate relation

v ¼ 1þ �v1 þOð�2Þ. For the initial conditions in other sec-

tions of the bi-layer, we make use of the relations in Section

III D to obtain the initial conditions in terms of (52).

A. Solitons in the delaminated section

To obtain quantitative predictions for parameters of soli-

tons in the delaminated section, we use the IST applied to

the KdV equations (34) and (35) derived in Section III C.

First, we recall that the solution of an initial-value problem

for the KdV equation

Us � 6UUv þ Uvvv ¼ 0; Ujs¼0 ¼ U0ðvÞ; (53)

on the infinite line, for a sufficiently rapidly decaying initial

condition U0ðvÞ, is related to the spectral problem for the

Schr€odinger equation

Wvv þ ½k� U0ðvÞ�W ¼ 0; (54)

where k is the spectral parameter.2 In particular, parameters

of solitons are defined by the discrete spectrum of Equation

(54). In our previous studies of the scattering of an incident

solitary wave in the delaminated area of the perfectly bonded

waveguide, the discrete spectrum could be found analyti-

cally.12,13 However, in the present study, we are dealing with

the scattering of radiating solitary waves, generated in the

two-layered bar with soft bonding, and scattered in the

delaminated region of the bar. Therefore, we have to find

the spectrum of the Schr€odinger equation numerically.
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To achieve this, we implement a shooting method.44 We

consider the potential U0ðvÞ for the Schr€odinger equation,

which is the initial condition in the KdV problem (53). It is

well known that the discrete spectrum is bounded by the

minimum of the initial condition (negative value) and zero.45

Since the potential U0ðvÞ is localised, the eigenfunctions

have the asymptotic behaviour

WðvÞ ¼ erv; v! �1;
e�rv; v!1;

�
(55)

where k ¼ �r2. We rewrite the Schr€odinger equation (54)

in the form Wv ¼ U; Uv ¼ ½U0ðvÞ � k�W, and solve this sys-

tem from the boundary v ¼ a to v ¼ b. We normalise the

solution by setting WðaÞ ¼ 1 and UðaÞ ¼ r. The system is

then solved using the standard Runge-Kutta 4th order

method. The ratio of the values of these two functions is

tested at the right boundary against the relation UðbÞ=WðbÞ
¼ �r to determine if r is an eigenvalue. We start with the

least possible value for an eigenvalue (the minimum of the

initial condition) and iterate to zero in sufficiently small

steps in order to determine the eigenvalues to the desired

accuracy. In our present study, we consider the cases when

in each layer there is only one soliton in the delaminated

region. We use the method described here to determine the

parameters of this soliton (in each layer) and compare with

the solitons emerging in our modelling. In other settings,

multiple solitons can be generated by a single incident

soliton.12,13

B. Delamination of semi-infinite length

We first consider the bi-layer shown in Figure 3 and

use the initial conditions (51) and (52) with zero mass,

i.e., with r¼ 1. The comparison between the two numerical

approaches in this case can be seen in Figure 4. A radiating

solitary wave is formed in the bonded section of the bar,

shown at t¼ 600. When this radiating solitary wave enters

the delaminated section of the bar, the soliton separates from

the tail and becomes a classical soliton with dispersive radia-

tion following behind. The agreement between the weakly

nonlinear solution and the direct finite-difference technique

is good for the solitons and reasonable for the tail, with a

small phase shift introduced. The agreement is improved by

reducing �, and this has been tested for a number of values.

If we take the same initial conditions with non-zero

mass, i.e., r¼ 0, we obtain a similar result to the previously

discussed case, as can be seen in Figure 5. The radiating soli-

tary waves generated in the two layers are close to each

other, and therefore the zero mass constraints for the differ-

ence of the two solutions are approximately satisfied (see

supplementary material, Appendix B).

We now apply the IST framework to the waves enter-

ing the delaminated section of the bar, as the behaviour of

FIG. 4. The waves f (top row) and g (bottom row) in the various sections of the bi-layer, for a ¼ b ¼ 1:05, c¼ 1.025, d ¼ c ¼ 1, v¼ 1.025, r¼ 1, and

� ¼ 0:05: direct numerical simulations (solid line) and weakly nonlinear solution (dashed line). For the finite-difference method, the full computational domain

is ½�1000; 1000�. In the pseudospectral method, N ¼ 16 384:
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the transmitted waves in the two layers in this section is gov-

erned by two separate KdV equations. We numerically solve

the scattering problem for the related Schr€odinger equation,

as discussed in Section IV A, to obtain the eigenvalues.

Since there is only one discrete eigenvalue for each layer of

the waveguide, the long time asymptotic behaviour of the

solution of the appropriate KdV equation consists of one sol-

iton and dispersive radiation, which in the canonical form

(53) is given by

U � �2r2 sech2½rðv� 4r2t� v0Þ� þ radiation;

where r is defined by the eigenvalue k ¼ �r2, and v0 is the

phase shift.

We use the theoretical predictions to justify the numeri-

cal schemes in supplementary material, Appendices A and

B. In each layer, the height of the soliton found using these

schemes has been compared with the theoretical prediction

using the IST, to confirm that the numerical schemes resolve

the behaviour of the system correctly. The theoretical (IST)

predictions and the numerical results for the height of the

soliton are compared in Table I.

In the case with zero mass initial condition, the predic-

tion of the heights using the IST underestimates the numeri-

cal solution, as the solitons have not yet fully separated from

the negative pedestal. In the case with initial condition hav-

ing non-zero mass, the agreement between the theoretical

predictions and the numerical results is excellent.

C. Delamination of finite length

Let us now pose a question. Is it possible to determine if

there is a delamination in some part of the bar, between two

bonded regions? A graphical representation of this structure

is shown in Figure 6, and all considerations of Section III are

extended to this situation. We know that transmitted waves

will propagate in the delaminated area with speeds close to

the characteristic speeds of the linear waves, and therefore

the time it will take for the wave to travel through a delami-

nated region, of length l, can be estimated as Ti � l=ci,

where i represents the layers in the bar. Indeed, when the

radiating solitary waves enter the delaminated region, as

seen in Figure 7, the solitons propagate with speeds close to

their respective characteristic speeds. When these solitons

enter the second bonded region they again generate radiating

solitary waves. If the separation between the two solitons is

FIG. 5. The waves f (top row) and g (bottom row) in the various sections of the bi-layer, for a ¼ b ¼ 1:05, c¼ 1.025, d ¼ c ¼ 1, v¼ 1.025, r¼ 0, and

� ¼ 0:05: direct numerical simulations (solid line) and weakly nonlinear solution (dashed line). For the finite-difference method, the full computational domain

is ½�1000; 1000�. In the pseudospectral method, N ¼ 16 384:

TABLE I. Comparison of amplitudes for solitons in the delaminated area for

both layers with the predicted value using the IST, for zero mass (r¼ 1) and

non-zero mass (r¼ 0) initial conditions.

Regime Layer Numerical Theoretical

r¼ 1 1 �0.2545 �0.2473

r¼ 1 2 �0.2301 �0.2192

r¼ 0 1 �0.2979 �0.2979

r¼ 0 2 �0.2680 �0.2680
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sufficiently large when they enter the second bonded region,

we see a distinctive double-humped wave of significantly

reduced amplitude — a clear sign of delamination.

However, if the delamination area is shorter, then the

solitons in the delaminated section will not be fully sepa-

rated. In this case, the radiating waves in the second bonded

region overlap and generate a new single-humped radiating

solitary wave. Irrespective of the separation, this process of

creating a new radiating solitary wave is accompanied by

some additional radiation, and therefore the amplitude of the

new radiating solitary wave is reduced in both layers when

compared with the radiating solitary wave propagating in a

fully bonded waveguide, with no delamination. Furthermore,

as the radiating solitary wave is not supported by the KdV

equation, in the delaminated region the radiation separates

from the soliton and the periodicity observed in the tail

disappears as the tail transforms into a wave packet. This

feature gives another indication that delamination is present.

In order to investigate this behaviour more fully, we

consider several cases with different delamination lengths, as

measured in wavelengths of the solitary wave. The wave-

length is measured using the common measure Full Width at

Half Magnitude (FWHM). In this case, the FWHM of the

incident soliton measures approximately 5 units. We present

results for delamination of length 10, 20, 40, and 60 FWHM,

and the case where there is no delamination. Note that

Figure 7 is for a delamination length of approximately 60

FWHM.

We note that the results presented in Figure 8 are

obtained using the semi-analytical method. The finite-

difference method solves for two sections of the bar at a time

and therefore we must wait until the wave and its tail are

fully contained in the region before moving the calculation

domain. However, for a shorter delamination, i.e., 20

FWHM or less, the leading wave front will reach the bound-

ary of the calculation domain before the tail has fully entered

this region. Therefore, the wave will either reflect and inter-

fere with our solution or we will lose part of the tail when

we move the calculation domain. This is a natural limitation

for the use of the finite-difference method in its present

form. This could be remedied by solving for all sections of

FIG. 7. The waves f (top row) and g (bottom row) in the various sections of the bi-layer, for a ¼ b ¼ 1:05, c¼ 1.025, d ¼ c ¼ 1, v¼ 1.025, r¼ 0, and

� ¼ 0:05: direct numerical simulations (solid line) and weakly nonlinear solution (dashed line). Two homogeneous layers, of the same material as the upper

layer, are on the left, and the waves propagate to the right. For the finite-difference method, the full computational domain is ½�600; 1000�. In the pseudospec-

tral method, N ¼ 8192:

FIG. 6. Bi-layer with two homogeneous layers for x < xa, a bonded two-

layered section for xa < x < 0, a delaminated section for 0 < x < xb and

another bonded two-layered section for x > xb.
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the bar simultaneously; however, this will be much more

expensive.

We see from Figure 8 that there are some key differ-

ences between the model without delamination and the

model with delamination. We only show the waves in the

“top” layer as the waves in the “bottom” layer are similar.

First, as the length of delamination increases, the ampli-

tude of the radiating solitary wave created in the second

bonded region is reduced. This can be explained by the fact

that the waves in the delaminated section of the bar travel at

different speeds in each layer and will be incident on the sec-

ond bonded region at different times, so the energy exchange

between layers results in the generation of a radiating soli-

tary wave of reduced amplitude. A graph of the amplitudes

against the delamination length, in FWHM, is presented in

Figure 9. We can clearly see that after an initial growth

period (up to 20 FWHM), the dependence is close to linear.

The presence of the double-humped solution, as seen in the

image for 60 FWHM, clearly identifies a delamination.

Further numerical experiments have shown that this double-

humped structure is emerging at around 45–50 FWHM.

Furthermore, the small hump behind the lead soliton in the

40 FWHM image is the start of a double-humped solution,

but the second “hump” has a similar amplitude to the radia-

tion and therefore is not distinct.

The speed of the waves in the delaminated region is

different to the bonded region, and therefore when the new

radiating solitary wave is formed in the second bonded

region, it will have a phase shift. Measuring from the minima

of the waves, we calculate a phase shift of 0.2, 0.8, 2.7, and

3.6 for 10, 20, 40, and 60 FWHM, respectively, growing

with the delamination length as expected.

The radiating solitary wave is not a solution of the KdV

equation and therefore, in the delaminated region, the radiat-

ing tail forms a wave packet, breaking the regularity of the

tail region. This feature is again more pronounced for a

larger delamination area; however, it can already be clearly

identified for a short delamination, such as in the case of 10

FWHM as seen in Figure 8. Further experiments have identi-

fied this behaviour for 5 FWHM; however, the amplitude is

FIG. 8. A comparison between the

case without delamination (solid lines)

and with delamination (dashed lines)

of differing lengths, measured in

FWHM of the incident soliton. The

model is the same as that used in

Figure 7 with the same parameters, and

all images are for t¼ 1200. (a) 10

FWHM, (b) 20 FWHM, (c) 40

FWHM, and (d) 60 FWHM.

FIG. 9. The percentage decrease in amplitude for a given delamination mea-

sured in FWHM.
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similar to the rest of the tail and therefore this is difficult to

identify visually.

We summarise these observations as follows. For very

short delamination areas, i.e., 5 FWHM, these differences

are negligible and suggest that the soliton does not take care

of delaminations shorter than a threshold value. For delami-

nation areas that are greater than 5 FWHM, we can use our

observations above for the amplitude reduction and phase

shift to identify the presence of delamination. Modifying the

FWHM value of the incident soliton can help identify shorter

delaminations.

D. Further experiments

From a physical standpoint, we would like to test a

given structure in as many ways as possible to obtain all pos-

sible information. Let us assume that we have a structure

such as that in Figure 6 but with the two homogeneous layers

removed. Given this structure, there are four natural tests

that we can conduct: with two homogeneous layers of either

the same material as the top or bottom layers, and attaching

the homogeneous layers to either the left-hand side or right-

hand side of the structure, with the waves propagating to the

right or to the left, respectively. Examples using the same

material as the top layer are shown in Figures 7 and 10 for

the homogeneous layers being attached on the left-hand side

and right-hand side, respectively. We discuss all results here

but omit the other cases for brevity.

First, we note that the double-humped structure is pre-

sent in the second bonded region in all cases, confirming that

each test identifies the presence of a sufficiently long delami-

nation area, from our observations from Section IV C. There

is a small phase shift between the results for the different

materials in the homogeneous layers, arising from the higher

characteristic speed of the material of the bottom layer.

We also note that, for the homogeneous layers being

present on the right, the first bonded region is longer and this

leads to a longer radiating tail. This tail becomes a wave

packet in the delaminated region and we observe that the

larger amplitude wave packet is closer to the double-humped

structure for the case where the tail is longer, i.e., when the

homogeneous section is on the right-hand side. Indeed, the

length of the bonded region after the delamination is shorter

in this case and therefore we would expect the wave packet

to be closer to the leading wave. This gives us an indication

of where the delamination is present in the bi-layer, i.e., if

the radiation wave packet is closer to the leading wave when

sending the waves from the right, then the delamination is

closer to the left-hand side of the structure, and vice versa.

Another useful feature is that the generated wave is of a

larger amplitude in the case when the homogeneous layers

are of the same material as the bottom layer (with a larger

characteristic speed), and therefore the FWHM measure is

FIG. 10. The waves f (top row) and g (bottom row) in the various sections of the bi-layer, for a ¼ b ¼ 1:05, c¼ 1.025, d ¼ c ¼ 1, v¼ 1.025, r¼ 0 and

� ¼ 0:05: direct numerical simulations (solid line) and weakly nonlinear solution (dashed line). Two homogeneous layers, of the same material as the upper

layer, are on the right, and the waves propagate to the left. For the finite-difference method, the full computational domain is ½�400; 1200�. In the pseudospec-

tral method, N ¼ 8192:
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smaller. In addition, the amplitude difference to the case

with no delamination is even clearer.

V. CONCLUSIONS

In this paper, we studied the scattering of a long radiat-

ing bulk strain solitary wave in a delaminated bi-layer with a

soft bonding between the layers. The modelling was per-

formed within the framework of the system of coupled regu-

larized Boussinesq equations (1), which were derived to

describe long nonlinear longitudinal waves in a two-layered

waveguide with a soft bonding layer (“imperfect interface”)

from a layered lattice model with all essential degrees of

freedom of a layered elastic waveguide.26 For a single layer,

the model leads to a “doubly dispersive equation”

(DDE),20,21 earlier derived for the long longitudinal waves in

a bar of rectangular cross-section using the nonlinear elastic-

ity approach.12 In dimensional variables, the DDE for a bar

of rectangular cross-section r ¼ 2a� 2b has the form

ftt � c2fxx ¼
b
2q

f 2
� �

xx þ
J�2

r
ftt � c2

1fxx

� �
xx; (56)

where c ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
; c1 ¼ c=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ �Þ

p
; b ¼ 3E þ2lð1� 2�Þ3

þ4mð1þ �Þ2ð1� 2�Þ þ 6n�2; J ¼ 4abða2 þ b2Þ=3, q is the

density, E is the Young’s modulus, � is the Poisson’s ratio,

while l, m, and n are the Murnaghan’s moduli. Non-

dimensionalisation, regularisation of the dispersive terms

and scaling bring the equation to the form (2).

The direct numerical modelling of this type of problem

is difficult and expensive because one needs to solve several

boundary value problems linked to each other via matching

conditions at the boundaries. Therefore, we developed an

alternative semi-analytical approach based upon the use of

several matched asymptotic multiple-scale expansions and

averaging with respect to the fast space variable. The devel-

oped approach is an extension of our earlier work,13 where

we considered a simple bi-layer with perfect bonding. Unlike

our earlier work, the bi-layer with the soft (“imperfect”)

bonding does not support the usual solitary waves. They are

replaced by radiating solitary waves, with a one-sided oscilla-

tory tail, as discussed in the Introduction. We modelled the

generation and subsequent scattering of these radiating soli-

tary waves in a number of complex waveguides with and

without a delamination area, as well as predicting the parame-

ters of the lead solitons generated in the delaminated area

using the IST framework for the relevant KdV equations.

The developed direct finite-difference scheme and the

scheme for the weakly nonlinear solution show good agree-

ment in all regions of the bi-layer, with a small difference in

the amplitude and minor phase shift between the results.

This could be remedied by the inclusion of higher-order

corrections in the weakly nonlinear scheme, similarly to

initial-value problems.29,43 We also note that the direct

finite-difference scheme is expensive in comparison to the

weakly nonlinear scheme.

Our study has revealed key features of the behaviour of

radiating solitary waves in such delaminated bi-layers, for

different lengths of the delaminated area compared to the

wavelength (FWHM) of the incident soliton. If the delami-

nated area is sufficiently long (� 25 FWHM), then there is a

significant reduction in the amplitude of the transmitted radi-

ating solitary wave (� 10%). In fact, the incident radiating

solitary wave undergoes a complicated process of shedding a

tail and propagating with slightly different speeds along the

two layers in the delaminated region, followed by generation

of a new radiating wave in the second bonded region. For

shorter delamination regions (<25 FWHM), the key dynami-

cal effect manifesting the presence of a delaminated region

in the structure is the appearance of a wavepacket in the reg-

ular tail of the radiating solitary wave. The waves are not

sensitive to very short delamination regions, comparable to

the wavelength of the incident soliton. In practice, using an

admissible incident soliton with smaller wavelength (and

higher amplitude), would increase the sensitivity to shorter

delamination regions. If the delaminated region is longer

(� 45 FWHM), the separation of solitons, propagating in

two layers in the delaminated region, leads to the emergence

of a double-humped radiating wave in the second bonded

region. We did not show the cases with delamination areas

greater than 60 FWHM. The dynamical behaviour in these

cases is simpler, leading to the emergence of two distinct

radiating solitary waves in each layer of the second bonded

region — a very clear sign of delamination. However, such

cases are likely to be uncommon in real-world applications

because of the dissipation processes which have not been

accounted for in our modelling. Typical values of elastic

moduli for the PMMA (polymethylmethacrylate) and PS

(polystyrene) and experimental data for solitons in layered

PMMA/PS bars of 10� 10 mm cross-section have been

reported previously.24,46 The typical amplitude of the strain

for the observed compression solitary waves is Oð10�4Þ, and

the soliton velocity is about 5%� 7% greater than the linear

longitudinal wave speed.23 It has been reported that, in

PMMA and PS, solitons can propagate to distances tens of

times greater than their width without significant decay.22,23

The generation of a radiating bulk strain solitary wave

and subsequent disappearance of the “ripples” in the delami-

nated area of a two-layered PMMA bar with the PCP (poly-

chloroprene-rubber-based) adhesive has been observed in

experiments.24 Our numerical modelling motivates further

laboratory experimentation with a wide range of materials

used in practical applications. It also paves the way for simi-

lar studies in other physical settings supporting radiating sol-

itary waves and radiating dispersive shock waves, for

example, in nonlinear optics.27,28

SUPPLEMENTARY MATERIAL

See supplementary material for Appendixes A and B,

containing details of the numerical techniques used in this

paper, and related techniques.47–50
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