
Graphical Abstract

Providing a general nonlinear model of piezoelectric microwires with the ability in 
adjusting stability conditions to improve the system characteristics. It was implemented by 
applying the piezo-voltage and/or actuating just a piece of the substrate electrostatically.
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Abstract The main objective of this research is to provide a general nonlinear model of 
adjustable piezoelectric microwires with the ability to tune the stability conditions. In order to 
increase the controllability and improve system characteristics, only a part of the substrate is 
electrostatically actuated and the piezoelectric voltage is also applied. The governing equation of 
equilibrium (EOE) is derived from the principle of minimum total potential energy. The influences 
of the surface layer, size dependency, piezoelectricity, and dispersion forces are also included 
simultaneously. To solve the nonlinear differential equation, a numerical method is implemented 
and the obtained results are validated with available experimental and numerical results. 
Afterward, a set of parametric studies is carried out to examine the coupled effects of piezo-
voltage, length/position of non-actuated pieces, nonlinear curvature, and molecular forces on the 
microresonators. It is found that the beam deflection and the pull-in voltage have sensitive-
dependence on the system behavior. Furthermore, the beam deflection can increase or decrease 
with consideration of different positions of non-actuated pieces. This research is expected to fill a 
gap in the state of the art of the piezoelectric microstructures and present relevant results that are 
instrumental in the investigation of advanced actuated microdevices.
Keywords Nonlinear Stability Analysis; Piezoelectric Excitation; Casimir Regime; Micro-Actuators 

1. Introduction

Along with the developments in the design and production of miniature systems, actuated ultra-
small devices are becoming affordable systems with many applications. Exemplary characteristics 
of micro and nanoelectromechanical systems (M/NEMS) are low weight, high precision, and low 
energy consumption. Such systems are being appeared in an extensive variety of applications, 
including sensors/actuators, capacitive switches, smart systems, tunable valves, ultra-sensitive 
detectors, and biodevices [1-7]. Analyzing the structural behavior and instability conditions of 
these systems are essential to improve their design and performance [8-15].

The emergence of several substantial influences such as molecular attractions, the surface 
layer (SL), and material length dependency within the dimension variation causes to various 
new behaviors that are emerging in ultra-small structures, which are not effective in other 
dimensions. For example, the intermolecular van der Waals (vdW) and Casimir force have 
remarkable impacts on the system stability [16, 17]. Such attractions have fundamental influences 
in the microscale, while they are not considerable in larger scales [18]. To illustrate that 
molecular forces can shift the stable center point, the bifurcation of circular nanoplates and 
functionally graded (FG) nanoactuators has recently been investigated by Yang et al. [19] and 
Esfahani et al. [20]. Another important influence that affects the system behavior and becomes 
dominant in microstructures is the SL. Recently, the pull-in instability and structural 
behaviors of microsystems have been 
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examined considering the SL effects [21-23]. Both surface residual stress and surface layer 
elasticity of electrothermally actuated miniature diaphragms have been evaluated by Yang et al. 
[19]. Furthermore, the surface layer effects of functionally graded (FG) nanoresonators have been 
studied to examine their hardening/softening treatment by considering the fraction index [20]. In 
addition to the intermolecular attractions and SL effects, the length-scale of bulk material in the 
miniature dimensions can be an elemental effect that must be taken into account. Experimental 
results disclose that the size effect may change the behavior and responses of microdevices 
completely [24, 25]. Moreover, the numerical results demonstrate the important effects of length-
scale in composite laminated microstructures [23] and FG nanobeams [20] using the differential 
quadrature method. To model the material length-scale effect in recent studies, non-classical 
theories were considered, for example, the couple stress (CST) [26], non-local [27] as well as strain 
gradient [24] theories. 

The deformable part of numerous microstructures undergoes relatively considerable deflection 
that is called the geometrically nonlinear curvature. In addition, different sources of nonlinearity, 
such as the electrical actuation and molecular attractions exist in miniature devices. For such 
MEMS with fundamentally nonlinear behavior, except a few approximate analytical solutions, no 
exact closed-form solutions have been proposed. Anderson et al. [28] experimentally have 
revealed that neglecting the geometrical nonlinearity affects the system behavior and responses 
significantly. Dai et al. [29] have analyzed forced vibrations of cantilever nanoswitches by 
considering nonlinearities in curvature and inertia. Moreover, the effect of an attached particle on 
the power enhancement of broadband smart energy harvesting has been studied with consideration 
of both nonlinear inertia and nonlinear curvature by Firoozy et al. [30]. Recently, Fang et al. [31] 
have focused on size-dependent rotating FG microbeams by considering the 
geometric nonlinearity. The analysis of nonlinear models [28-31] reveals the importance of 
accounting the geometric nonlinearity, which affects the stability considerably.

It must be noted that the system configuration is a substantial issue in the simulation of 
miniature instruments. Recently, vibrations of numerous types of tiny complex constructions and 
smart systems have been studied [32-35]. Pourkiaei et al. [32, 33] have modeled a double-sided 
clamped-clamped nanobeam under combined alternating as well as direct current loadings to 
evaluate parametric resonances using the perturbation method. Furthermore, a pedal from FG 
materials as a microactuator involving flexural and torsional modes has been modeled 
by Shoghmand and Ahmadian [35] to investigate softening/hardening treatments. In order to 
develop the microstructural architecture, various general models must be designed and analyzed 
in detail. In such devices, for example, the length and/or position of the electrically actuated 
fixed conductor can be adjustable. As a result, the entire length of the substrate conductor is not 
stimulated, which can be used as a control parameter in optimization and applied design. 

Nowadays, the piezoelectric materials have an important contribution in different 
intelligent structures as an excitation source with several advantages. Moreover, the ability of 
piezoelectric material in nonlinear vibration-based piezoelectric energy harvesters has been 
widely studied [8, 14, 15]. Recently, the static equilibrium, bifurcation points, and parametric 
resonances of double-clamped pure piezobeams have been examined numerically and semi-
analytically by Pourkiaee et al. [32, 33] without modeling the size effect. Moreover, the 
responses of clamped-clamped nanobeams [21, 23, 36] and microplates [37, 38] with attached 
piezo-layers have been examined. Numerous researchers have modeled fully clamped structures 
[21, 23, 32, 33, 36-38], however, despite different applications of cantilever wires, they have 
less been studied.
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The effects of molecular forces, surface layer energy, material length-scale, geometrical 
nonlinearity, system architecture, and piezoelectricity have been distinctly reviewed. To the best 
of authors’ knowledge, the coupled influences of all these parameters on the nonlinear stability of 
piezoelectric microstructures have not been examined yet. The motivation of this study is to 
develop a comprehensive model to investigate the effects of system configuration (position/length 
of the electrostatically actuated part) and piezoelectric excitation as two major control parameters 
on the behavior of smart structures. In this study, pull-in characteristics regarding the 
piezoelectric, electrostatic, and molecular effects are studied in detail. Moreover, the variation 
of geometrical nonlinearity, surface layer parameters, piezo-voltage, and the length/location 
of non-actuated pieces of the substrate on the structural behavior are discussed simultaneously 
for the first time. Owing to lack of similar formulation and results in the specialized literature, 
they are expected to contribute to a better understanding on the nonlinear stability of piecewise 
actuated piezoelectric microstructures and would be beneficial to the optimal design of smart 
systems.

2. Theoretical Model
In Fig. 1, schematic of a microsystem suspended over a fixed electrode is presented. The actuated 
microwire deflects down due to the electrostatic and dispersion regimes. In the present 
microstructure, the terms L and R denote the length and radius of the piezoelectric beam, 
respectively. Moreover, the term D denotes the primary distance between the electrostatically 
actuated conductors. 

2.1. Strain and potential energy
Based on the modified couple stress theory (MCST) [39], which has been able to find acceptable 
results in the microscale, the strain energy of an ultra-small system is related to the strain and 
rotation field [40]. Consequently, it is expressed in the microcantilevers as 

U  =m : κ  +σ : ε , (1) where, the rotation tensor ω and vector  can be mentioned as
   , , ,2 , 2 ,ij i j i i ji i ijk k ju u e u       (2)

where the term eijk denotes the permutation symbol. By neglecting the beam horizontal 
displacement u in Eq. (2), it is derived as

 , 2 . ij ijk k i ijk jke e    (3)

Considering the rotation gradient  and by replacing Eq. (3) into Eq. (1), one obtains
   , , ,k2 2 .  ij j i jkl kl i jkl l ie e u   (4)

 Actuated part.

Fig. 1. Schematic of the present piecewise actuated piezoelectric microwire 
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In addition, the nonlinear strain tensor ε can be introduced as
. , , ,2 2 ij i j k i k ju u u (5)

The strain energy u according to the elasticity theory is stated as [41]

   2 2 ,ij ij iju           (6)

where λ and μ introduce Lame’s constant and shear modulus, respectively, however, the terms  
and  ′ are impacts of non-classical theory. Furthermore, the deviatoric tensor m is expressed as 

d d 4( ),ij ij ij jim u       (7)

where  = l 2 and l denotes the size dependency. Finally, the terms ij and mij are rederived as 

 

2

2

2 2
2 2

2 2

d ; all other 0,
d

d d4 , 4 ; all other 0.
d d

xy ij

xy yx ij

w
x

w wm l m l m
x x

 

 

  

    
(8)

In general, the axial strain of a beam ε0 at the natural axis is written as 

.
2 2

0
d d1 1
d d
u w
x x

          
   

(9)

Furthermore, the nonlinear curvature  is expressed by the following equation [42]

.

2 32 22 2

2 2

d d d d d d1 1
d d d d d d
u w u w u w
x x x x x x


                          

(10)

Initially, there is no strain at the natural axis [42]; accordingly, considering Eq. (10) and ε0 = 0, 
one obtains the term  as

.
2 2

2 2

d d d d1
d d d d
u w u w
x x x x

     
 

(11)

By applying Taylor’s expansion, we have

.
2d 1 d

d 2 d
u w
x x

    
 

(12)

Accordingly, the term  is rewritten as

.
22 2

2 2

d 1 d d
d 2 d d

w w w
x x x

     
 

(13)

The axial stress and strain of such systems due to the geometrical nonlinearity is stated as 
,0 ; all other 0xx ijz      (14)

,31; all other 0xx xx z ijE E e     (15)

where E, Ez, and e31 are respectively Young’s modulus of the bulk material, electric vector of 
piezoelectricity, and transversal piezo-coefficient (= 6.4 C.m-2). 

Due to the electromechanical response of piezobeams, a voltage between two ends of the beam 
can be supposed, see Fig. 1. Hence, the strain energy of smart microbeam is expressed as [43]

.
2

31
0

d d
2 d

L

P z
A wU e E x

x
    
  (16)

Considering VP as the piezo-voltage, the piezoelectric field vector can be defined as
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. P 2zE V R (17)

The tension in the surface layer of the microcantilever is stated as 
,0

s s
xxE    (18)

where τ0 and Es are respectively the residual stress and the Young modulus of the SL. Accordingly, 
the moment of the movable electrode is derived as 

.   4 3
0d d 4s s s

xx xxA S
M z z E z z ER E R            (19)

It is worth noting that we suppose the structure to be homogeneous and linear elastic. Therefore, 
the strain energy can be obtained as 

.
24 2

2 3 2
2

0

1 d4 d
2 4 d

L
sER wU E R Al x

x
  

    
           

 (20)

Owing to the residual stress in the SL, there is another force acting along the deformable 
electrode as

.04q R  (21)

As a result, the produced energy can be written as

.00
2 d

L

qV R w x   (22)

2.2.  External work

The work of the mentioned forces includes the electrostatic force in addition to the Casimir or 
vdW attractions can be written by the following equation

.
0

d
L

ext extW F w x  (23)

The electric attraction with consideration of fringing effect is expressed as [44]

,
   

2
0
2arccos hels

VF
D w D w R

 


 
(24)

where V is the voltage applied between electrodes and ε0 = 8.8×10-12 F.m-1 is the space permittivity. 
In addition, the Casimir attraction between the microwire and substrate is given by [45]

,216 lncas
cLE

D D R


  (25)

where P = 1.055×10-34 Js is the reduced Planck constant and c = 2.99×108 m/s is the speed of light. 
By differentiating the energy, the effect of Casimir regime is derived as

.
   3 2

d 1 2ln
d 16 ln

cas
cas

E c D wF
D RD w D w R

     
  

(26)

On the other hand, the vdW attraction between the microwire and substrate is [46]

,
2

h
33vdw

c RE
D

  (27)

where the term ch denotes the Hamaker’s constant that is 4.0×10-19 J [47]. Therefore, the vdW 
force is written as 

.
2

h
4

d
d

vdw
vdw

E c RF
D D

  (28)
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Furthermore, since the electrostatically actuated length of the substrate plate may be shorter 
than the movable conductor, the microwire will be subjected to the pricewise electrostatic force as 
well as intermolecular forces. Thus, the external work relationship can be stated as

.
0 0

( ) d d
L w

vdw
ext els

cas

F
W F H x w x

F
  

      
  (29)

It should be mentioned that the electrically actuated area of the movable conductor can be 
revealed as

,( ) ( ) ( )b tH x H x l H x l L     (30)

where the terms lb and lt are respectively the lengths of the first (base) and the second (tip) pieces 
of the fixed conductor, as demonstrated in Fig. 1.

It is worth noting that by applying the electric potential to a microwire, it deflects down to the 
substrate plate and their distance is reduced to D-w. As a result, external forces can be given as

.
 

   

 
   

    

42
h2

0
2

3 2

( ) ( )
( ) cP 1 2ln

arccosh
16 ln

vdw b t
els

cas

c R D w
F V H x l H x l L

F H x D w R
F D w D w R

D w D w R

 



 
           

 

(31)

2.3.  Energy variation

Having the strain and potential energies of the microcantilever wire as well as external works, the 
minimum total potential energy principle is implemented as

. δ 0q extU V W   (32)

Substituting Eqs. (16), (20), (22), (29), and (31) into Eq. (32) leads to the governing equilibrium 
equation as

4 4 2 4
3 2

4 2 4

22 2

31 P 02 2

d d d d d d d4
4 d d d d d d d

d d d2 4 (x) ;
2 d d d

s

vdw
els

cas

ER w w w w wE R Al
x x x x x x x

FR w w we V R F H
Fx x x

  

 

     
       

      
              

(33)

By substituting l=0 in Eq. (33), the non-classical MCST can easily be changed to the classical 
one. On the other hand, the boundary conditions (BCs) of a cantilever wire are

.
2 3

2 3

d (0) d ( ) d ( )(0) 0, 0, 0, 0
d d d
w w L w Lw

x x x
    (34)

It is more convenient to express the relationships in nondimensional form by defining the 
subsequent parameters: 

22
0 0

2 2 3

24 2
13 Ph

2 3

42 4, , , , , , , ,

216, , , , , , ,
4 16

( ) ( ) ( 1).

s

b t
vdw cas

Lx w D w D D VL E
L D D R L R E ER E R

l l e V Lc RR l cI p q a a
ER L L EI EI ER
p q

     


  



         


      

          

(35)

By substituting the terms in Eq. (35) into Eq. (33), the dimensionless equation is obtained as 
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 

      
 

   
    

24 2 2 2 4

4 2 2 2 4

42
2

2

32 2

d d d d d d d d d d1 2 4
d d d d d d d d d d

1
.

1 2ln 11 arccos h 1

1 ln 1

vdw

cas

a

a

     


 

 

                                         

  

           
    

(36)

3. Solution Method

In general, analytical methods could not solve the nonlinear differential equation of electrically 
actuated piezoelectric microstructures. Therefore, the governing equation of equilibrium (EOE) 
should be linearized and solved numerically. Here, step-by-step linearization method (SSLM) [48] 
is used to calculate pull-in instability parameters. The solution for considering the bending 
behaviors of cantilever microbeams is prepared. The vertical deflection of a deformable electrode 

 is mentioned as 

,
T

1

N

i i
i

B


   B φ (37)

 where  i denotes the amplitude factor of the beam and
.      ( ) sin sinh cos cosh sin sinh cosh cosi i i i i i i i i                   (38)

In order to calculate the values of term  i, the relationship  should be solved.cos cosh 1i i   
Eventually, after some straightforward mathematical manipulations, we have

,        1 2 3 41 1n K K K K             B B (39)

where

,
1 2 2 T

1 2 2
0

d d d
d d

K  
 
φ φ

(40)

, 
1 2 T T 2 T

2 2 2
0

d d d d2 d
d d d d

K  
   
φ φ φ φB B B (41)

,
1 2 T

3 2
0

d d
d

K   

φφ (42)

, 
1 T 2 T

T
4 2

0

1 d d d d
2 d d d

K   
  
φ φ φB φ BB (43)

.   
    

 
   

    

42 T
21

TT 2 T
0

32 T 2 T

1
d

1 2ln 11 arccos h 1

1 ln 1

vdw

cas

a

n
a




 

 

 
 

               


φ B

B φ
φ Bφ B φ B

φ B φ B

(44)
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The stiffness terms of the micromanipulator K1, K1,  (K3+K4) and K2(1+) are the effects 
of layer elasticity, length-scale, residual stress and nonlinearity, respectively.

Considering Eq. (39), the system stiffness is stated as
,       1 2 3 41 3 1 3 d dK K K K K n               B B (45)

where

.

 

 
     

    

 
     

    

T

2T T

2
2T 2 T

1
T

0 52 T

T 2 T

42 T 3 T

2 1
1

1 1 arccosh 1

1 arccosh 1
d d4d

1

2 5ln 1 6ln 1
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(46)

Deformation of a microcantilever owing to the DC electric potential is determined by solving 
Eq. (47). Finally, the EOE is formulated as

.        1 2 3 41 3 1 3 vdw
els

cas

n
K K K K n

n
      


           


B (47)

It should be mentioned that the term  is the nondimensional deformation due to the applied i
electric potential  i. By enhancing the electric potential gradually  i+1  i +, the 
nondimensional wire displacement is obtained as

.1 δi i     (48)

4. Results and Discussion

To verify the developed model as well as the solution method, the simulation results are validated 
with available experiments [49]. Accordingly, the behavior of a fully actuated cantilever wire 
with a gap of D = 3 μm, length of L = 6.8 μm, radius of R = 23.5 nm, and Young’s modulus of E 
= 900 GPa is investigated (the relationships of external works, as well as relevant constants, have 
been presented in Section 2.2). Note that in the considered carbon-based electrode, the molecular 
parameters do not play significant roles on the pull-in instability. This fact has been demonstrated 
analytically [49] and numerically [50-53], so their effects can be ignored. The comparison 
between the instability characteristics achieved by our proposed model is made with measured 
results as illustrated in Fig. 2. In this figure, the vertical axis displays the distance between the 
beam tip and the substrate, see Fig. 1. Furthermore, the horizontal axis displays the DC applied 
voltage V that increases gradually. The present model and solution predict the pull-in voltage as 
48.51-Volt that is very close to the measured 48-Volt [49]. Moreover, the comparison of the 
instability voltages calculated by the present method with respect to other numerical methods as 
reported in Ref. [50-53] is listed in Table 1. The error of different numerical methods as 
compared to the experimental data is also compared in Table 1. An excellent agreement with a 
low error between the obtained values and those reported in the literature is found.
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Fig. 2. Comparison of experimental [49] and numerical results for the cantilever wire (D-w: distance 
between the beam tip and the substrate)

Table 1. Comparison of the instability voltage (volt) of the numerical results with respect to 
experimentally measured values

Experiment 
[49]

FDM 
[50]

MAD 
[50]

MIM 
[51]

MVIM 
[51]

ROM 
[52]

HPM 
[53]

DQM 
[53]

SSLM 
(present)

Voltage 48 47.1 47.08 51.15 47.74 47.4 48.33 49.57 48.51
Error % - 1.88 1.92 6.56 0.54 1.25 0.69 3.27 1.06
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without molecular forces
with Casimar force
with van der Waals force

Fig. 3. The effects of dispersion forces on the beam tip gap versus applied voltage (: nondimensional 
voltage parameter and : nondimensional distance between the beam tip and the substrate)

In the following, the impacts of molecular forces and nonlinear curvature on the 
structural response of cantilever nanowires are assessed. The Young’s modulus and wire 
diameter are chosen to be 1 TPa and 6 nm, respectively. The parameter  denotes the 
nondimensional voltage parameter, see Eq. (35), and  indicates the nondimensional distance 
between the beam tip and the substrate. Note that the following analyses will be carried out by 
considering N = 3. 

The coupled effects of molecular attractions on the structural response of a microcantilever with 
the nondimensional terms ,0= ,0= ,72= ,1= and 0= are examined in Fig. 3. It can be deduced 
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that ignoring the dispersion forces in the miniature devices may cause inaccurate 
responses. Accordingly, the predicted pull-in voltage without consideration of such forces will be 
more than that with consideration of them. In the ultra-small scale, both Casimir and vdW 
regimes possibly will be considerable; however, their effects are negligible in the macro-scale. In 
the present case, the Casimir effect on the system stability is more noteworthy due to the 
geometric conditions. Consequently, the vdW effect will be ignored in the investigation of this 
microsystem. Note that the vdW regime may be dominant in different circumstances, especially 
other gaps of conductors.

In Fig. 4, the relationship between beam deflections and the voltage parameter for 
different values of dimensionless nonlinear curvature parameter  (square of initial gap-length 
ratio) are investigated. The results illustrate that the geometrical nonlinearity affects the 
critical voltage parameter significant, which results in increasing the structural stiffness. 
Consequently, the critical voltage of the linear model (0=) is less than that with 
consideration of the nonlinearity. In addition, when the term  decreases, the responses 
approach to those of the linear model. On the other hand, the effect of the Casimir regime 
on the obtained results is more evident with considering and enhancing the geometrical 
nonlinearity. Hence, by considering the molecular force, the difference of threshold voltages 
increases by an increase in the nonlinear deformation. Moreover, by considering the 
geometrical nonlinearity, the deflection of the cantilever tip increases. This point is essential 
in devices with a considerable primary gap to length ratio. 

The relationship between the microbeam deflections and the electric potential for different 
cases of the nondimensional geometrical term  (initial gap-radius ratio) are examined in Fig. 
5. The acquired results reveal that an increase in this term results in the beam behaving 
stiffer and increases the threshold electric potential. In addition, the influence of geometrical 
nonlinearity on the structural behavior is more remarkable for large values of this parameter. It 
means that as the gap-radius ratio enhances, the difference between the threshold results 
increases by considering the nonlinearity. As a result, the responses of linear and nonlinear 
models will converge by considering an increase in the electrode diameter and decreasing the 
initial gap.

Fig. 6 displays the variation of the wire deflection versus the external voltage by considering 
the residual surface effect in addition to the Casimir regime. The dimensionless parameter of the 
residual tension of surface layer is denoted by  .Fig. 6 demonstrates that modeling the SL has a 
considerable impact on the system response and the difference between deflections with 
considering this parameter is remarkable. This point is explained by considering the 
stiffness relationship (K3+K4/2) caused by the surface tension, which influences the structural 
behavior, especially in systems with a relatively considerable initial gap-length ratio. For the 
residual stress with the positive sign, the threshold voltage is lower than the one calculated 
without consideration of it, and vice versa. As a result, by considering the positive/negative 
surface tension, the stiffness of the cantilever microswitch can be decreased/increased. These 
observed behaviors in such systems meet the reported experimental [54] and analytical 
results [55]. Moreover, if we had neglected the nonlinear effect, the pull-in instability voltage 
would have been slightly lower. 

The influence of the deflection curves on the voltage parameter, considering different surface 
elastic modulus are demonstrated in Fig. 7, where the dimensionless surface elastic parameter is 
denoted by . The influence of layer elasticity on structural stability is significant as the layer-
induces tension effect. It is revealed that accounting the SL effect increases the 
microstructure stiffness, and thus increases the threshold voltage, unlike the positive residual 
surface tension effect. This result can also be understood by using the relationship of beam 
stiffness K1(1+). Moreover, the critical voltage enhances with increasing the nonlinearity 
as well as the SL elasticity. This point is explained by considering the relationship of nonlinear 
stiffness 2K2(1+).
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Fig. 4. The coupled effects of nonlinear curvature and molecular force on the beam tip gap (: 
dimensionless nonlinear curvature parameter)
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Fig. 5. The coupled effects of nonlinear curvature and geometrical parameter on the beam gap (: 
nondimensional geometrical term)
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Fig. 6. The effects of positive and negative residual stress of SL on the beam tip gap (: dimensionless 
parameter of the residual tension of surface layer)
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Fig. 7. The effects of SL elasticity on the beam tip gap (: dimensionless surface elastic parameter)
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Fig. 8. The effects of non-actuated pieces of the substrate on the beam tip gap (p and q: first and second 
dimensionless actuated length of the substrate, respectively)

Fig. 8 displays the relationship between the beam tip and electrostatic actuation by 
considering different conditions for the non-actuated area of the substrate. In general, the 
threshold voltage of a system with the partly actuated fixed conductor is more significant than an 
ordinary plate, which makes instability with a delay. Accordingly, the critical voltage 
enhances with an increase of parameters p and q (first and second dimensionless actuated 
length of the substrate, respectively). Moreover, the effect of the non-actuated second (end) area 
is more considerable than the first area. In other words, an increase in the applied electric 
potential has a more considerable effect when the parameter q is increased. In addition, the 
effect of each non-actuated length on the critical voltage will be more noticeable when the 
other non-actuated piece is considered as well. This point agrees with the reported results for 
rectangular cantilever beams [56]. It is interesting to note that, the tip deflection of the 
microcantilever decreases with an increase in the dimension of the non-actuated base piece. This 
is a useful guideline, especially in the identification of system behavior and applied design of 
several sensors and switches.
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The effect of the electric potential of microcantilevers on electrodes gap with assumptions of q 
= 0 and p = 0 are demonstrated in Fig. 9 (a) and (b), respectively. It can be concluded that the 
impact of the Casimir regime on the instability characteristics will be stronger by restricting the 
electrically actuated pieces. Consequently, extending the tip part makes a crucial difference 
between the threshold voltage parameter by taking the molecular forces into account. In addition, 
this issue may not be seen clearly by changing the first piece dimension. It is worth noting that by 
setting, for example, q = 0.26 and without consideration of Casimir regime, the collapse will not 
be seen. Nevertheless, taking the Casimir force into account leads to much lower critical . 
Another significant point is that by developing the base piece, the deformation of the tip beam 
decreases, however, the result of expanding the tip non-actuated piece is completely opposite. 
Finally, the influences of both pieces on the threshold characteristics do not change linearly, which 
specifies the importance of numerical analysis in such systems.

(a)
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0

0.2

0.4

0.6

0.8

1





without Casimar
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(b)
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q=0.00 q=0.13 q=0.26

Fig. 9. The coupled effects of Casimir force and non-actuated piece of substrate on the beam tip gap; (a) 
q  , (b) p  

The effect of piezoelectric actuation VP on the structural stability of smart MEMS using linear 
and nonlinear models is investigated in Fig. 10. The results illustrate that piezoelectric excitation 
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affects the system responses significantly by shifting the equilibrium manifolds and 
instability conditions. It is possible to increase/decrease the threshold υ by considering 
positive/negative piezoelectric actuation. In this condition, the negative piezo-voltage produces an 
axial compression force, which results in a decrease in the stiffness of such piezobeams. This 
idea can be seen in both of the linear and nonlinear models by applying a relatively low piezo-
voltage. This is an important application of smart microsystems in various devices that must 
have low energy consumption.

Another noteworthy phenomenon that may be seen in small-scale devices is freestanding, 
which means that the deformable part faces an initial deflection, while there is no external 
electric potential. For an electrode with known geometrical properties, it should be considered a 
minimum primary distance to make certain that it does not stick on the ground conductor without 
applying the electrostatic load, especially by taking the molecular effects into account. 
Moreover, this phenomenon becomes more obvious by applying the negative piezoelectric 
actuation because it causes remarkable initial deflection at zero DC voltage. Consequently, we 
would be able to apply the piezoelectric excitation as a design factor in smart manipulators to 
avoid occurring instability.

Fig. 11 depicts the effects of piezoelectricity on the threshold characteristics of 
smart instruments with consideration of nonlinear curvature quantitatively and qualitatively. It 
can be concluded that by applying and increasing the positive piezo-voltage, the threshold 
voltage increases significantly in both linear and nonlinear models. Moreover, the difference 
between the critical electric potential at different signs and values of the piezo-voltage will be 
constant in the two mentioned models. On the other hand, the effect of piezo-voltage 
variations on the displacement of the beam end is completely different, where the 
parameter ϒ denotes the dimensionless vertical displacement of the beam tip. As illustrated 
in Fig. 11 b, the results of models converge gradually because the results of linear (nonlinear) 
model increase (decrease) with increasing the piezoelectric voltage. As a result, considering 
the linear or nonlinear model considerably affects the predicted values for the deflection of the 
movable beam with consideration of piezoelectric actuation, especially by applying a negative 
piezo-voltage. 
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Fig. 10. The coupled effects of piezoelectric and electrostatic actuations on the beam tip gap
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Fig. 11. The coupled effects of nonlinear curvature in addition to piezoelectric and electrostatic actuations 
on the (a) threshold voltage, (b) beam deflection (  ϒ: dimensionless vertical displacement of the beam tip)

The coupled influences of the electrically non-actuated pieces of the substrate plate in addition 
to the piezoelectric and electrostatic actuations on the behaviors of the smart system are 
investigated in Fig. 12. A review of the figure reveals that the effect of the non-actuated piece 
becomes more/less remarkable by applying the positive/negative piezo-voltage. Hence, the 
difference between the curves by considering the non-actuated piece increases by applying a 
positive voltage, especially by considering the second non-actuated piece, see Fig. 12 b. 
Moreover, expanding the non-actuated tip piece not only enhances the critical voltage 
extremely but also results in a considerable increase in the threshold deflection, especially with 
consideration of the positive piezoelectricity. Accordingly, considering the appropriate 
configuration seems essential in the design of piezoelectric micro and nanosystems to reach the 
expected goals.
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Fig. 12. The coupled effects of non-actuated pieces of substrate in addition to piezoelectric and 
electrostatic actuations on the beam tip gap; (a) q 0 =, (b) p 0 =

5. Conclusion
The main goal of this research was to present a versatile smart MEMS with the capability 
of adjusting stability conditions to improve the system characteristics. The proper adjustments 
were implemented by applying the piezo-voltage and/or actuating just a piece of the 
substrate electrostatically. The coupled influences of dispersion forces, material length-scale, 
surface layer, and geometrical nonlinearity were included in the present model. To improve the 
properties of the system such as controllability and tuning applications, only a part of the 
fixed plate was electrostatically actuated. The obtained results were validated with available 
experimental and numerical results. 

It was found that the Casimir regime affects the system response remarkably. Nevertheless, 
the pull-in phenomenon may not occur when ignoring it, so the critical voltage would be 
overestimated dramatically. Moreover, the deformable wire may experience an initial deflection 
at zero voltage that causes undesirable adhesion in the freestanding. The results showed that 
considering the nonlinear curvature increases the beam deflection and voltage. Furthermore, 
taking into account 
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the non-actuated tip piece increases the critical voltage and deformation, however, considering the 
non-actuated base piece results in decreasing the pull-in deflection. 

Performing real-time experiments to demonstrate the effectiveness of the proposed method 
could be considered in the future, which is beyond the scope of this research work. 
Several representative nanostructures such as controllable switches and sensors/
actuators were incorporated in the present model. 
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