Beyond the Woodward-Hoffman rules: what controls reactivity in eliminative aromatic ring-forming reactions?

A. D. Dinga Wonanke and Deborah L. Crittenden

Department of Chemistry, University of Canterbury, Christchurch, New Zealand

E-mail: deborah.crittenden@canterbury.ac.nz

Abstract

The Mallory (photocyclization) and Scholl (thermal cyclohydrogenation) reactions are widely used in the synthesis of extended conjugated π systems of high scientific interest and technological importance, including molecular wires, semiconducting polymers and nanographenes. While simple electrocyclization reactions obey the Woodward-Hoffman rules, no such simple, general and powerful model is available for eliminative cyclization reactions due to their increased mechanistic complexity. In this work, detailed mechanistic investigations of prototypical reactions reveal that there is no single rate-determining step for thermal oxidative dehydrogenation reactions, but they are very sensitive to the presence and distribution of heteroatoms around the photocyclizing ring system. Key aspects of reactivity are correlated to the constituent ring oxidation potentials. For photocyclization reactions, planarization occurs readily and/or spontaneously following photo-excitation, and is promoted by heteroatoms within 5-membered ring adjacent to the photocyclizing site. Oxidative photocyclization requires intersystem crossing to proceed to products, while reactants configured to undergo purely eliminative photocyclization...
could proceed to products entirely in the excited state. Overall, oxidative photocyclization seems to strike the optimal balance between synthetic convenience (ease of preparation of reactants, mild conditions, tolerant to chemical diversity in reactants) and favourable kinetic and thermodynamic properties.

Keywords: Mallory reaction, Scholl reaction, eliminative, oxidative, photocyclization, thermal processes, dehydrogenation, cyclization, ab initio, density functional theory, continuum solvation model, relaxed scan
Introduction

It has long been recognised that the most powerful insights into the nature of the physical world come when theory and experiment are unified:

“Experiment without theory is blind, but theory without experiment is mere intellectual play” – Immanuel Kant (1724-1804)

This special issue of *The Australian Journal of Chemistry* is dedicated to celebrating the career and 80th birthday of Emeritus Professor Graham Chandler, whose work has focussed on directly connecting theory and experiment,\(^1\)-\(^{15}\) and developing new ways of conceptualizing and rationalizing the behaviour of electrons within molecules and materials.\(^{16\text{-}24}\)

Following in these footsteps, we seek to elucidate and understand the factors that control reactivity in a synthetically important class of aromatic-ring forming reactions; those that involve both intramolecular cyclization and elimination processes.\(^{25}\)

Figure 1: Balanced equations for prototypical (a) thermal [Scholl] and (b) photochemical [Mallory] oxidative cyclodehydrogenation reactions

For example, the Scholl reaction\(^{26\text{-}29}\) (Figure 1(a)) is a thermal oxidative cyclodehydrogenation process that is used in the synthesis of atomically-precise nanomaterials with
useful electronic properties such as polythiophene semiconducting polymers, polypyrrole conducting polymers and very large polyaromatic hydrocarbons that are often referred to as nano-graphenes.

Mallory reactions, on the other hand, are photo-activated cyclization processes whose elimination step may be either oxidative (Figure 1(b)) or purely eliminative. They may be used to access a wider range of products from a wider range of readily accessible starting materials than the Scholl reaction. In particular, they do not need to be pre-aligned for ring formation, but can form the unconnected ring structure via trans-cis isomerization and/or bond rotation. The cyclizing centres may be heteroatoms and/or may have non-hydrogenic leaving groups attached. Mallory reactions are also more tolerant to functional group substitution than Scholl reactions. However, the photoexcitation process can be reversible, or lead to alternative photoproducts, which can result in lower yields.

The most likely proposed mechanisms for the Scholl and Mallory reactions are illustrated in Figures 2 and 3, and key similarities and differences between them are summarized in Table 1.

Table 1: Key steps in Mallory and Scholl cyclization processes, highlighting the similarities and differences between them.

<table>
<thead>
<tr>
<th>Mallory</th>
<th>Scholl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoexcite</td>
<td>Oxidize</td>
</tr>
<tr>
<td>Cyclize</td>
<td>Cyclize</td>
</tr>
<tr>
<td>Oxidise and dehydrogenate/ Eliminate</td>
<td>Dehydrogenate with further oxidation</td>
</tr>
</tbody>
</table>

For Scholl reactions and oxidative Mallory reactions, cyclization is initiated by moving electrons either electrochemically to another molecule, or photochemically to another electronic state, and the dehydrogenation step is electrochemically driven. However, redox coupling is not required for the Mallory process to proceed through the purely...
Figure 2: Thermal cyclization (Scholl reaction) proceeds via oxidative photocyclization and elimination (top), followed by a second oxidative elimination step (bottom).

Figure 3: Mallory reaction mechanism: trans-cis isomerization and cyclization occur in first step, followed by either oxidative dehydrogenation (if oxidant present) or elimination (if reactant contains appropriately positioned leaving group).
eliminative pathway.

Although the general mechanisms illustrated in Figures 2 and 3 are reasonably well-supported by experimental and computational evidence,25,42,44–48 they fall well short of providing the level of detail that is useful for synthetic chemists; given a reactant and set of reaction conditions, will a product form? Which set of reaction conditions should be tried first, if multiple reaction pathways are possible?

The Woodward-Hoffmann rules,49–51 provide a simple, general and powerful model to answer questions of this nature for electrocyclization reactions, which are a much simpler class of cyclization reaction that are atom-economical and involve only concerted electron-transfer processes. The Woodward-Hoffmann rules were later generalized by Baldwin to describe a wider range of electrocyclization reactions involving heteroatoms and unusual ring features,52,53 and map onto modern quantum chemical calculations through conceptual DFT.54 However, all of these approaches lack information about the dehydrogenation/elimination process, so cannot be applied to the mechanistically more complex Scholl and Mallory reactions.

To address this deficiency, Laarhoven developed reactivity predictors for all-hydrocarbon photocyclization reactions based upon bond order analysis within Hückel molecular orbital theory.55–58 The physical rationale behind this approach is that the number and/or strength of the existing π bonds at the cyclizing centres should decrease upon photoexcitation, facilitating the formation of a new intramolecular σ bond. Unfortunately, Laarhoven’s rules turn out to be neither robust, nor generalizable, nor powerful, nor simple. They cannot be easily applied to molecules containing heteroatoms, do not apply at all to Scholl reactions, contain no information about reaction conditions or geometrical structure, and can fail to predict reaction outcomes correctly even where applicable.

Our aim here is to perform detailed mechanistic studies of both Mallory and Scholl reactions, to determine the key steric and electronic factors that control reactivity, with a view to developing simple, powerful, general and unified reactivity predictors for these
synthetically important classes of aromatic ring-forming reactions. We will focus par-
ticularly on structural modifications whose impact on reactivity is poorly explained by
existing reactivity models; inclusion of heteroatoms and varying ring sizes within the pho-
tocyclizing ring system. Aromatic substituent effects on elimination reactions are already
well understood so will not be investigated in further detail here.

Methods

All reactants have the same basic framework structure (Figure 4) with varying rings, as
illustrated in Table 2.

![Framework structure for all reactants (left) and products (right) within our
data set of molecules that undergo eliminative cyclization.](image)

Reaction pathways are mapped out at B3LYP using a 6-31G(d,p) basis for all atoms
except Cl\(^-\) (6-31+G(d))\(^63,64\) and Fe (LanL2DZ).\(^65\) Vertical excitation energies are com-
puted at TD-B3LYP\(^66\) with the same atomic orbital basis. Gibbs free energies are com-
puted from ground and excited state electronic energies, ground state harmonic frequen-
cies, moments of inertia and molecular masses using standard statistical thermodynamics
formulae, discarding the imaginary frequency of each transition state. Solvation cor-
rections to the free energy are computed using the conductor-like continuum solvation
model with a dielectric constant of 8.93 chosen to resemble dichloromethane. Complete
details of all species involved in each reaction pathway are provided as Supporting Infor-

All \textit{ab initio} and statistical thermodynamics calculations are performed using QChem4.2.\(^68\)
Table 2: IUPAC names and schematic representation of all molecules in our data set

<table>
<thead>
<tr>
<th>IUPAC name</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>cis-1,2-diphenylethylene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-diphenylpyrrole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,4-diphenylthiophene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-diphenylbenzene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2'-(1,2-phenylene)dipyridine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2'-(1,2-phenylene)dithiophene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,2'-(1,2-phenylene)dipyrrole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,3'-(1,2-phenylene)dipyridine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,3'-(1,2-phenylene)dithiophene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,3'-(1,2-phenylene)dipyrrole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-(2-methoxyphenyl)-2-phenylbenzene</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results and Discussion

Thermal cyclization

A prototypical reaction coordinate diagram for the radical cation mediated thermal oxidative cyclodehydrogenation of 1,2-diphenylbenzene is illustrated in Figure 5, and key thermodynamic parameters for all structural variants reported in Table 3.

On the whole, the data presented in Table 3 are consistent with experimental observations reported in the literature;30–33,69,70 oxidative cyclodehydrogenation for all heteroaromatic molecules under investigation – except the dipyridine derivatives, for which no experimental data is available – occurs in the presence of strong oxidizing agents at room temperature. The substantial negative $\Delta_{\text{rxn}}G$ values provide a strong thermodynamic driving force. The Gibbs energies of activation indicate that each reaction step, except the planarization of 3,4-diphenylpyrrole, should be thermally accessible at room temperature, assuming each molecule possesses $\frac{3N_A}{2}k_B T$ J/mol thermal energy (≈ 120 kJ/mol at 298.15 K). Although it is unlikely that all the available thermal energy would be chan-
neled into the reaction coordinate, it is also likely that we have overestimated barrier heights, as the continuum solvation model we have used does not account for explicit solvent stabilization of the radical cation intermediates, which is likely to have a significant stabilizing effect.71,72 Finally, we note that the intrinsic accuracy of B3LYP for modelling isomerization reactions,73 reaction enthalpies74,75 and activation energies74,75 lies in the $6 - 10$ kJ/mol range.

Table 3: Key thermodynamic quantities controlling the thermodynamic stability (Gibbs energy of reaction, $\Delta_{rxn} G$) and kinetic reactivity (Gibbs energy of oxidation, $\Delta_{ox} G$ and Gibbs energies of activation, $\Delta_{\text{plan}}^\dagger G$ and $\Delta_{\text{elim}}^\dagger G$) of candidate molecules for thermal oxidative cyclodehydrogenation (Scholl reaction).

<table>
<thead>
<tr>
<th>R_1</th>
<th>$R_2 = R_3$</th>
<th>Both</th>
<th>Scholl</th>
<th>-oxidant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$\Delta_{rxn} G$ (kJ/mol)</td>
<td>$\Delta_{ox} G$ (kJ/mol)</td>
<td>$\Delta_{\text{plan}}^\dagger G$ (kJ/mol)</td>
</tr>
<tr>
<td>pyrrole</td>
<td>phenyl</td>
<td>-54.5</td>
<td>56.1</td>
<td>136.6</td>
</tr>
<tr>
<td>thiophene</td>
<td>phenyl</td>
<td>-55.0</td>
<td>98.8</td>
<td>93.9</td>
</tr>
<tr>
<td>benzene</td>
<td>phenyl</td>
<td>-67.7</td>
<td>93.9</td>
<td>122.5</td>
</tr>
<tr>
<td>benzene 2-pyridine</td>
<td></td>
<td>-71.8</td>
<td>118.3</td>
<td>103.5</td>
</tr>
<tr>
<td>benzene 2-thiophene</td>
<td></td>
<td>-97.7</td>
<td>60.0</td>
<td>98.2</td>
</tr>
<tr>
<td>benzene 2-pyrrole</td>
<td></td>
<td>-87.9</td>
<td>1.7</td>
<td>105.1</td>
</tr>
<tr>
<td>benzene 3-pyridine</td>
<td></td>
<td>-71.8</td>
<td>117.7</td>
<td>89.1</td>
</tr>
<tr>
<td>benzene 3-thiophene</td>
<td></td>
<td>-93.3</td>
<td>68.8</td>
<td>37.6</td>
</tr>
<tr>
<td>benzene 3-pyrrole</td>
<td></td>
<td>-90.8</td>
<td>6.5</td>
<td>46.1</td>
</tr>
</tbody>
</table>

To the best of our knowledge, the only previous studies of oxidative cyclodehydrogenation reactions have either been performed entirely in the gas phase46 or largely focussed on the arenium cation mechanism76 that has since been experimentally shown47 to be less plausible than the radical cation mechanism investigated here. However, they do report solvation-corrected $\Delta_{\text{plan}}^\dagger G$ values for 1,2-diphenylbenzene of 114.2 kJ/mol at B3LYP/6-31G* and 105.9 kJ/mol at BHandHLYP/6-31G* that agree reasonably with the 122.5 kJ/mol reported here.

High-level gas phase CASPT2/6-31G* calculations on the initial planarization step of the 2,2'-(1,2-phenylene)dithiophene and 3,3'-(1,2-phenylene)dithiophene reactions have been computed in the absence of oxidant, in the context of modelling the factors that control photoswitchability of these molecules.77 In principle, their reported gas phase values are
not directly comparable to our solvation-corrected values. However, the polarity of the
molecule does not change substantially upon planarization in the absence of oxidant, so
the corresponding solvation free energy change is also small, according to the continuum
solvation model we use (full details accessible in Supporting Information). Therefore, the
difference between their reported values of 236.0 kJ/mol and 193.3 kJ/mol, respectively,
and ours of 264.2 kJ/mol and 187.3 kJ/mol, are largely due to differences in electronic
structure models.

Overall, our model qualitatively and semi-quantitatively reproduces existing experimental
and computational data, so can be confidently used to identify trends in reactivity due
to inclusion of heteroatoms and variation of ring sizes within the cyclizing ring system.

From Table 3, it is clear that the Gibbs energy of oxidation, $\Delta_{\text{ox}} G$, is most strongly
influenced by the identity of the terminal rings, but not the position of the heteroatom
within the cyclizing ring system. Pyridine increases the barrier to oxidation relative to
benzene, thiophene decreases it, and pyrrole substantially decreases it. As expected,
these trends are roughly correlated with the oxidation potentials of each ring substituent
drawn from the literature78,79 and reported in Table 4

<table>
<thead>
<tr>
<th>Molecule</th>
<th>E_{ox} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzene</td>
<td>2.08</td>
</tr>
<tr>
<td>pyridine</td>
<td>1.82</td>
</tr>
<tr>
<td>thiophene</td>
<td>1.60</td>
</tr>
<tr>
<td>pyrrole</td>
<td>0.76</td>
</tr>
</tbody>
</table>

Gibbs energies of activation for planarization, $\Delta_{\text{plan}}^f G$, are substantially decreased by
having a heteroatom adjacent to the photocyclizing site, and slightly decreased by the
presence of a thiophene ring anywhere within the cyclizing system. This suggests that
the primary determinant of the barrier to oxidative cyclization is the ability to alleviate
ring strain.
Gibbs energies of activation for elimination, $\Delta^\ddagger_{\text{elim}} G$ obey similar trends to those of oxidation, only in the opposite direction. For molecules with terminal ring substituents, pyrrole and thiophene both raise the barrier while pyridine substantially decreases it. Substitution of the central ring by pyrrole has little effect while thiophene substituent lowers the barrier for reasons that are not entirely clear to us.

Taking all of the above competing effects into account, the molecule with lowest overall rate-determining free energy barrier is 3,4-diphenylthiophene.

Oxidative photocyclization

A prototypical reaction coordinate diagram for the oxidative photocyclization of 1,2-diphenylbenzene is illustrated in Figure 6, and key thermodynamic parameters for all structural variants reported in Table 5.

![Figure 6](image)

Figure 6: Ground (black) and excited state (red) reaction coordinate diagrams for the photochemical oxidative dehydrogenation of 1,2-diphenylbenzene ($R_1 = \text{benzene}, R_2 = R_3 = \text{phenyl}$), with intersystem crossing proposed to occur during the first step of the elimination process, as indicated in blue.

As far as we are aware, there are no prior mechanistic studies covering all stages of the oxidative Mallory photocyclization process. However, the first step in the photocycl-
Table 5: Key thermodynamic quantities controlling the thermodynamic stability (Gibbs energy of intersystem crossing, $\Delta_{\text{el}}^{\text{ISC}} G$) and kinetic reactivity (excited state Gibbs energies of activation, $\Delta_{\text{plan}}^{\dagger,*} G$ and $\Delta_{\text{elim}}^{\dagger,*} G$) of candidate molecules for photochemical oxidative cyclodehydrogenation (Mallory reaction). Gibbs energies of reaction are the same as for the Scholl reaction, as reported in Table 3.

<table>
<thead>
<tr>
<th>R_1</th>
<th>$R_2 = R_3$</th>
<th>$\Delta_{\text{plan}}^{\dagger,*} G$ (kJ/mol)</th>
<th>$\Delta_{\text{el}}^{\dagger,*} G$ (kJ/mol)</th>
<th>$\Delta_{\text{elim}}^{\text{ISC}} G$ (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethene</td>
<td>phenyl</td>
<td>19.2</td>
<td>85.2</td>
<td>-52.8</td>
</tr>
<tr>
<td>pyrrole</td>
<td>phenyl</td>
<td>14.9</td>
<td>148.3</td>
<td>-11.6</td>
</tr>
<tr>
<td>thiophene</td>
<td>phenyl</td>
<td>17.8</td>
<td>123.1</td>
<td>-26.6</td>
</tr>
<tr>
<td>benzene</td>
<td>phenyl</td>
<td>10.7</td>
<td>111.3</td>
<td>-18.6</td>
</tr>
<tr>
<td>benzene</td>
<td>2-pyridine</td>
<td>8.8</td>
<td>105.3</td>
<td>-28.0</td>
</tr>
<tr>
<td>benzene</td>
<td>2-thiophene</td>
<td>36.8</td>
<td>92.7</td>
<td>-69.3</td>
</tr>
<tr>
<td>benzene</td>
<td>2-pyrrole</td>
<td>32.6</td>
<td>155.3</td>
<td>-44.9</td>
</tr>
<tr>
<td>benzene</td>
<td>3-pyridine</td>
<td>6.0</td>
<td>117.3</td>
<td>-31.9</td>
</tr>
<tr>
<td>benzene</td>
<td>3-thiophene</td>
<td>-73.1</td>
<td>155.3</td>
<td>-39.1</td>
</tr>
<tr>
<td>benzene</td>
<td>3-pyrrole</td>
<td>-20.7</td>
<td>214.3</td>
<td>-31.7</td>
</tr>
</tbody>
</table>

Clization of 2,2’-(1,2-phenylene)dithiophene and 3,3’-(1,2-phenylene)dithiophene has been extensively investigated in light of their potential utility as molecular photoswitches. Although our vertical excitation energies are not directly comparable with the adiabatic values reported in the literature, our results are nonetheless consistent with previous findings that planarization proceeds spontaneously in the first excited state for 3,3’-(1,2-phenylene)dithiophene, and partial planarization proceeds spontaneously for 2,2’-(1,2-phenylene)dithiophene.

Overall, the $\Delta_{\text{plan}}^{\dagger,*} G$ values presented in Table 5 imply that planarization proceeds either readily (low positive values) or spontaneously (negative values) following photo-excitation for all molecules in our data set. Planarization appears to be strongly enhanced by the presence of a heteroatom adjacent to the photocyclizing centre, but retarded by distant heteroatoms within 5-membered rings, or the presence of an ethylene bridge within the molecule.

By analogy with the Scholl mechanism data presented in the previous section, a number of these reactions could proceed thermally in the excited state, with $\Delta_{\text{elim}}^{\dagger,*} G$ values < 120.
kJ/mol. However, it is far more likely that they undergo a thermodynamically favourable intersystem crossing ($\Delta_{\text{ISC}}^{\text{elim}}G < 0$), mediated by vibronic interactions with the oxidant.

Comparing the data presented in Tables 3 and 5, it appears that photo-mediated oxidative cyclodehydrogenation reactions will occur more readily and under milder conditions than their thermal counterparts, with free energy barriers that are less sensitive to the identity of the reactants.

Eliminative photocyclization

Finally, it remains to compare the oxidative and purely eliminative photocyclization processes illustrated in Figure 7. Synthetically, the oxidative route is easier, as it does not require appropriate leaving groups to be pre-attached to the photocyclizing rings in appropriate positions, although the eliminative route has a shorter work-up as the low molecular weight elimination product can simply be distilled off from the reaction mixture.

![Figure 7: Oxidative (left) and eliminative (right) photocyclization pathways](image)

Reaction coordinate diagrams for 1-(2-methoxyphenyl)-2-phenylbenzene, a prototypical molecule that can undergo both oxidative and eliminative photocyclization, are illustrated in Figure 8. Key thermodynamic parameters for both pathways are reported in Table 5, along with 1,2-diphenylbenzene reference data.

In contrast to the unsubstituted parent molecule 1,2-diphenylbenzene, 1-(2-methoxyphenyl)-2-phenylbenzene has an unfavourable intersystem crossing free energy along the oxidative
Figure 8: Ground (black) and excited state (red) reaction coordinate diagrams for the photochemical eliminative cyclization of 1-(2-methoxyphenyl)-2-phenylbenzene ($R_1 = \text{benzene}$, $R_2 = \text{phenyl}$, $R_3 = \text{2-methoxyphenyl}$). For reference, the proposed oxidative pathway is shown greyed-out.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Pathway</th>
<th>$\Delta_{\text{rxn}}G$ (kJ/mol)</th>
<th>$\Delta^\ddagger_{\text{plan}}G$ (kJ/mol)</th>
<th>$\Delta^\ddagger_{\text{elim}}G$ (kJ/mol)</th>
<th>$\Delta_{\text{ISC elim}}G$ (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-diphenylbenzene</td>
<td>oxidative</td>
<td>-67.7</td>
<td>10.7</td>
<td>111.3</td>
<td>-18.6</td>
</tr>
<tr>
<td>1-(2-methoxyphenyl)-2-phenylbenzene</td>
<td>oxidative</td>
<td>-51.7</td>
<td>41.0</td>
<td>154.6</td>
<td>17.5</td>
</tr>
<tr>
<td>1-(2-methoxyphenyl)-2-phenylbenzene</td>
<td>eliminative</td>
<td>-91.8</td>
<td>45.8</td>
<td>8.7</td>
<td>-168.1</td>
</tr>
</tbody>
</table>
pathway, higher free energy of planarization and lower overall thermodynamic stability of the products, i.e. it is disfavoured over the unsubstituted molecule in every respect. Therefore, adding on a methoxy leaving group is a poor synthetic strategy unless the eliminative pathway is strongly favourable.

The eliminative pathway has a low energy barrier for progression from the planar intermediate to the excited state product and the intersystem crossing along this pathway is strongly exergonic, suggesting that the reaction could proceed via either pathway. However, as there is no obvious mechanism for the intersystem crossing to occur, we hypothesise that this reaction proceeds to completion in the excited state.

Finally, we note that the free energies of activation for planarization, $\Delta^{+\star}_{\text{plan}} G$, are the largest of all reactants considered in this study, regardless of which rotamer is involved and which pathway is being followed.

Conclusions

Oxidative Mallory reactions appear to optimally balance synthetic convenience (ease of preparation of reactants, mild conditions, tolerant to chemical diversity in reactants) against favourable kinetic and thermodynamic properties. Thermal oxidative cyclodehydrogenation (Scholl) reactions are far more sensitive to the nature of the rings comprising the reactant molecules, which can have both disadvantages (capricious reactivity) and advantages (controllability). There does not seem to be any additional advantage pursuing eliminative photocyclization over oxidative, from the limited results presented here. Future work should further investigate the interplay between substituent effects, ring strain and heteroatom effects.

Supporting Information Available

Molecular coordinates and raw ab initio data for all species involved in each reaction pathway are included as Supporting Information.
Conflict of Interest

The authors declare no conflicts of interest.

Acknowledgement

This research has been supported by the Marsden Fund Council from New Zealand Government funding, managed by Royal Society Te Apārangi.
References

