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Identifying influential spreaders by 
gravity model
Zhe Li1, Tao Ren1, Xiaoqi Ma  2, Simiao Liu1, Yixin Zhang1 & Tao Zhou3

Identifying influential spreaders in complex networks is crucial in understanding, controlling and 
accelerating spreading processes for diseases, information, innovations, behaviors, and so on. Inspired 
by the gravity law, we propose a gravity model that utilizes both neighborhood information and path 
information to measure a node’s importance in spreading dynamics. In order to reduce the accumulated 
errors caused by interactions at distance and to lower the computational complexity, a local version 
of the gravity model is further proposed by introducing a truncation radius. Empirical analyses of the 
Susceptible-Infected-Recovered (SIR) spreading dynamics on fourteen real networks show that the 
gravity model and the local gravity model perform very competitively in comparison with well-known 
state-of-the-art methods. For the local gravity model, the empirical results suggest an approximately 
linear relation between the optimal truncation radius and the average distance of the network.

Network science is playing an increasingly significant role in many domains including physics, sociology, engi-
neering, biology, management, and so on1. The heterogeneous nature of real networks2 asks for a crucial question: 
How to quantitatively measure a node’s importance in a dynamical process? Taking spreading dynamics as an 
example, a popular star in Twitter may remarkably accelerate a rumor and a few superspreaders could largely 
expand the epidemic prevalence of a disease3. Therefore, a good answer to the above question, namely an efficient 
algorithm to identify influential spreaders in complex networks, can help to better control the outbreak of an epi-
demic4, optimize the use of limited resources to facilitate the dissemination of information5, prevent catastrophic 
disruptions of power grid or the Internet6, discover the candidates of drug target and essential proteins7, and so 
on. Till far, most known methods only make use of the structural information8, which can be roughly classified 
into neighborhood-based centralities and path-based centralities.

Typical representatives of the neighborhood-based centralities are degree centrality9 (DC), H-index10 and 
k-shell decomposition method11 (KS). For DC, nodes with larger degrees are more influential. For H-index, nodes 
connecting with many large-degree neighbors are more influential. KS assigns a k-shell index to each node based 
on its topological location, where nodes closer to the core of the network will get higher k-shell indices, and nodes 
in the periphery will get lower k-shell indices. The nodes with higher k-shell indices are considered to be more 
influential. Besides, PageRank12 and LeaderRank13 are two representative neighborhood-based iterative methods, 
both suggesting that the influence of a node is determined by the influences of its neighbors. Two well-studied 
path-based centralities are closeness centrality14 (CC) and betweenness centrality15 (BC). CC claims that a node 
averagely closer to other nodes is more influential while BC assumes that a node locating in many shortest paths 
is of high influence.

Inspired by the gravity law, recently, Ma et al.16 proposed two gravity-law-based algorithms by considering 
both neighborhood information and path information (see Methods for the details of algorithms). Analogously, 
we proposed a variant algorithm named gravity model (GM), which also takes into account both neighborhood 
information and path information, where a node with larger degrees (neighborhood information) and averagely 
shorter distances to other nodes (path information) is more influential. Furthermore, we propose a local version 
of the gravity model (named as local gravity model, LGM for short) to lower the computational complexity and 
reduce the possible noise caused by interactions at distance. Such local model only accounts for pairwise interac-
tions within a truncation radius. Empirical results show that GM and LGM perform very competitively in com-
parison with well-known state-of-the-art methods. In particular, for LGM, an empirically linear relation between 
the optimal truncation radius and the average distance of the network is observed.
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Results
Algorithms. Individually speaking, nodes with large degrees are likely to be more influential. In addition, a 
node is of higher impacts on nearby nodes17. According to the above issues and inspired by the gravity law, we 
regard the degree of a node as its mass, and the shortest distance between two nodes as their distance. Hence a 
node i’s influence can be estimated as
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i j
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where ki is the degree of node i, dij is the shortest distance between node i and node j, and j runs over all nodes 
other than i. Obviously, a node with many neighbors and be close to most nodes is more influential according to 
Eq. 1. Such method is named as gravity model as it adopts the formula of the gravity law.

Although GM can identify the nodes averagely closer to other nodes and with larger degrees, it has two 
shortcomings. Firstly, to calculate shortest distances between all node pairs is time-consuming for large-scale 
networks18. Secondly, in real propagation a node is hard to impact other nodes at distance and to estimate the 
interacting strength between distant nodes is usually inaccurate since the step-by-step decaying influence will be 
disturbed by accumulated noise19. Therefore, by introducing a truncation radius, we only consider the pairwise 
interactions within the truncation radius. Hence a node i’s influence can be estimated as
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where R is the truncation radius. Such method (Eq. 2) is named as local gravity model as it only takes into account 
local information of the network.

Data description. In this paper, fourteen real networks from disparate fields are used to test the performance 
of GM and LGM, including three collaboration networks (Jazz, NS and GrQc), four communication networks 
(EEC, Email, PG and Enron), four social networks (PB, Facebook, WV and Sex), one transportation network 
(USAir), one infrastructure network (Power) and one technological network (Router). Jazz20 is a collaboration 
network of jazz musicians. NS21 is a co-authorship network of scientists working on network science. GrQc22 
is a collaboration network of eprint articles in arXiv categories General Relativity and Quantum Cosmology. 
EEC23 describes email interchanges between institution members of a large European research institution. Email24 
describes email interchanges between users including faculty, researchers, technicians, managers, administra-
tors, and graduate students of the Rovira i Virgili University. PG22 is a snapshot of the Gnutella peer-to-peer file 
sharing network from August 2002. Enron25 is the Enron email network. PB26 is a network of US political blogs. 
Facebook27 describes social circles from Facebook. WV28 is a network of Wikipedia who-votes-on-whom. Sex29 
is a bipartite network in which nodes are females (sex sellers) and males (sex buyers) and links between them are 
established when males write posts indicating sexual encounters with females. USAir30 is the US air transporta-
tion network. Power31 is the power grid of the western United States. Router32 is a symmetrized snapshot of the 
structure of the Internet at the level of autonomous systems. These networks’ topological features (including the 
number of nodes, the number of links, the average degree, the average distance, the clustering coefficient31, the 
assortative coefficient33, the degree heterogeneity34 and the epidemic threshold35 of the SIR model36) are shown 
in Table 1.

Networks N E 〈k〉 〈d〉 C r H βc

Jazz 198 2472 27.6970 2.2350 0.6334 0.0202 1.3951 0.0266

NS 379 914 4.8232 6.0419 0.7981 −0.0817 1.6630 0.1424

GrQc 4158 13422 6.4560 6.0494 0.6648 0.6392 2.7852 0.0589

EEC 986 16064 32.5842 2.5869 0.4505 −0.0257 2.2912 0.0136

Email 1133 5451 9.6222 3.6060 0.2540 0.0782 1.9421 0.0565

PG 6299 20776 6.5966 4.6430 0.0150 0.0355 2.6764 0.0600

Enron 33696 180811 10.7319 4.0252 0.7081 −0.1165 13.2655 0.0071

PB 1222 16714 27.3552 2.7375 0.3600 −0.2213 2.9707 0.0125

Facebook 4039 88234 43.6910 3.6925 0.6170 0.0636 2.4392 0.0095

WV 7066 100736 28.5129 3.2475 0.2090 −0.0833 5.0992 0.0069

Sex 15810 38540 4.8754 5.7846 0 −0.1145 5.8276 0.0365

USAir 332 2126 12.8072 2.7381 0.7494 −0.2079 3.4639 0.0231

Power 4941 6594 2.6691 18.9892 0.1065 0.0035 1.4504 0.3483

Router 5022 6258 2.4922 6.4488 0.0329 −0.1384 5.5031 0.0786

Table 1. The basic topological features of the fourteen real networks. N and E are the number of nodes and 
links. 〈k〉 and 〈d〉 are the average degree and the average distance. C and r are the clustering coefficient and the 
assortative coefficient. H is the degree heterogeneity. βc is the epidemic threshold of the SIR model.
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Empirical results. We apply the well-known SIR model36 to compare the rankings of influences produced by 
algorithms and simulations. Initially, one node (called seed) in the network is in the infected state (I) and the oth-
ers are in the susceptible state (S). Each of the infected nodes can infect its susceptible neighbors with probability 
β. And in each step, every infected node changes to be recovered and will never participate in the dynamics with 
probability λ. The spreading process repeats until there are no more infected nodes in the network. The influence 
of any node i can be estimated by

=F i N N( ) / , (3)r

where Nr is the number of recovered nodes at the end of the dynamics. For simplicity, we set λ = 1, and the cor-
responding epidemic threshold34 is

β ≈
−

k
k k

,
(4)

c 2

where 〈k〉 and 〈k2〉 denote the average degree and the second-order moment of the degree distribution.
Given a network and the transmission probability β, to obtain the standard ranking of nodes’ influences, we 

implement 1000 independent runs, in each run every node is selected once as the seed once. The accuracy of an 
algorithm is measured by the Kendall’s Tau (τ)37 between the standard ranking and the ranking by the algorithm 
(see details in Methods). A larger value of τ means a stronger correlation between the two sequences and thus 
a better performance. Table 2 compares the accuracies of the two proposed algorithms (i.e., GM and LGM) and 
seven benchmark algorithms (see details about the benchmark algorithms in Methods). The transmission prob-
ability for each case is fixed as β = βc (for more values of β, see Fig. 1) and the parameters in relevant algorithms 
are all adjusted to their optimal values subject to the largest τ.

As shown in Table 2, both GM and LGM are very competitive. In particular, G+ and LGM perform best 
among the nine algorithms. Notice that, G+ also adopts the gravity formula16 (see Methods) but a node’s mass in 
G+ is defined as its k-shell index so G+ is indeed a global index. The results reported in Table 2 demonstrate the 
advantage of gravity models (e.g., G, G+, GM, LGM) and show that a local index (LGM) can outperform most 
benchmark algorithms including some global indices. As shown in Fig. 1, results for other values of β not too far 
from the threshold are consistent to the one at βc, suggesting the robustness of our findings.

Since to determine the optimal truncation radius, denoted by R*, asks for more computation, we want to see 
whether topological information can be used to profile R*. As shown in Fig. 2, R* approximately scales linearly 
with the average distance, as

≈⁎R d1
2 (5)

at β = βc. Such approximately linear relation also holds for other values of β not so far from βc. This empirical 
relation can save computational cost in practice.

Discussion
To measure influences of nodes in a certain networked dynamics, a straightforward method is to estimate the 
interacting strengths between node pairs in advance. The gravity law is a simple, elegant and representative for-
mula that estimates the interacting strength between two nodes by simultaneously considering the intrinsic influ-
ences of the two nodes themselves and the distance between them. In this paper, the gravity model (Eq. 1) makes 
use of both the neighborhood information and the path information, which were separately adopted in many 
previous methods. Furthermore, to reduce the computational complexity and to avoid the accumulated noises 

Networks BC CC DC H-index KS G G+ GM LGM

Jazz 0.4590 0.7043 0.8088 0.8417 0.7608 0.8677 0.9025 0.8533 0.8634

NS 0.2979 0.3415 0.5728 0.5561 0.5051 0.8110 0.8464 0.7611 0.8231

GrQc 0.3231 0.5464 0.6443 0.6362 0.6115 0.8337 0.7922 0.7684 0.8417

EEC 0.7151 0.8610 0.8468 0.8641 0.8525 0.8943 0.9189 0.8803 0.9022

Email 0.6254 0.8104 0.7665 0.7887 0.7707 0.8720 0.9076 0.8265 0.8671

PG 0.5605 0.6916 0.5941 0.6216 0.5897 0.6992 0.7082 0.6632 0.6900

Enron 0.3387 0.4241 0.4657 0.4654 0.4636 0.4859 0.4610 0.5055 0.5075

PB 0.6839 0.7865 0.8580 0.8732 0.8633 0.9001 0.9211 0.8887 0.9067

Facebook 0.4450 0.3362 0.6704 0.6948 0.6965 0.7117 0.7361 0.7160 0.7394

WV 0.6305 0.6748 0.6763 0.6788 0.6778 0.6919 0.6917 0.6895 0.6926

Sex 0.4251 0.6119 0.4774 0.4889 0.4934 0.6606 0.6386 0.6092 0.6713

USAir 0.5181 0.8052 0.7320 0.7525 0.7470 0.8514 0.9012 0.8286 0.8817

Power 0.3205 0.3653 0.4207 0.3935 0.3084 0.6610 0.7544 0.6128 0.6947

Router 0.3059 0.5120 0.3107 0.1917 0.1791 0.6216 0.6226 0.5782 0.6441

Table 2. The algorithms’ accuracies for β = βc, measured by the Kendall’s Tau (τ). The best performed algorithm 
for each network is emphasized by bold.
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Figure 1. The algorithms’ accuracies for different β, measured by the Kendall’s Tau (τ).

Figure 2. The relation between R* and 〈d〉 for β = βc. Fourteen pentagrams represent fourteen networks and the 
slope of the blue line is 1/2. The pentagram in black is the outlier – the Enron network. Although the optimal 
truncation radius R* = 7 is much different from what Eq. 5 predicts (i.e., R = 2), the algorithmic accuracy at 
R = 2 (τ = 0.4949) is very close to the best accuracy at R* = 7 (τ = 0.5075) in comparison with the traditional 
methods (e.g., about 0.34 for BC, 0.42 for CC and 0.46 for DC, KS and H-index). That is to say, to apply Eq. 5 
can still achieve much better algorithmic performance than the traditional methods.
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through long paths, we proposed a local version of the gravity model (LGM, see Eq. 2). Both GM and LGM are 
very competitive, and of particular interests, the LGM requires less computation yet performs even better. Indeed, 
LGM is one of the two best-performed methods among many well-known benchmark algorithms.

A potential disadvantage of LGM is that it has a free parameter, namely the truncation radius R. The negative 
effects of the existence of R are twofold. Firstly, it asks for more computation to determine the optimal value of R. 
Secondly, if the optimal value, say R*, is very large, the computational complexity of LGM will be more or less the 
same to GM. Fortunately, as shown in Fig. 2, we found an empirical relation between R* and the average distance 
〈d〉, so that if the computational resource is highly limited, we can use the relation (see Eq. 5) to approximate R*. 
In addition, since most real networks are of small-world property31,38, R* should be small and thus it requires 
much less computation than GM. Fortunately, the difference between two rankings of nodes produced by neigh-
boring R will quickly converge to a very small value, so that to choose a small value of R will probably perform 
very well. In Table 3, we show the values of τ(R), which is the Kendall’s tau between two rankings of nodes’ influ-
ences with truncation radius being R and R + 1. One can observe that after R = 5, all networks are of τ(R) > 0.97 
and a half of them are of τ(R) > 0.99. This indicates a strong saturation, namely the increasing of R will produce 
almost the same rankings if the value of R is already large.

Another similar model (named G+, see Eq. 11) shows very close performance to LGM. In comparison, LGM 
is more efficient since it completely depends on the local topological structure and thus can be calculated not 
only faster but also under the case where the global topology is not known. In the absence of global topology, 
G+ cannot be obtained since it sets a node’s k-shell index as its mass, and to determine the k-shell index needs 
the knowledge of the whole network. In despite the difference between G+ and LGM, the very good perfor-
mance of G+ and LGM strongly suggest the validity and advantage of the usage of the gravity law to estimate the 
interacting strength. Of course, both G+ and LGM are very simple and general, which can be further improved 
by the following aspects (also leaving as open issues for future studies). Firstly, by introducing a few tunable 
parameters that can adjust the relative importance of mass and distance (e.g., to replace d2 by some da and/or to 
replace k by some kb) may result in more accurate predictions as indicated by known variants of the gravity law 
in other applications39. Secondly, we should explore how the topological features and dynamical processes affect 
the prediction accuracy and thus improve the original methods by introducing some topology-dependent and/
or dynamics-sensitivity items40,41. Thirdly, the original gravity law is symmetric, while due to the different roles 
of different nodes or the essentially asymmetric nature of the dynamics42,43, the influence from node i onto node j 
could be different from the influence from node j onto node i, where an asymmetric form of the gravity law may 
be relevant.

Methods
The Kendall’s Tau. The Kendall’s Tau37 is an index measuring the correlation strength between two 
sequences. Considering two sequences with N elements, X = (x1, x2, …, xN) and Y = (y1, y2, …, yN). Any pair of 
two-tuples (x1, y1) and (xj, yj) (i ≠ j) are concordant if both xi > xj and yi > yj or both xi < xj and yi < yj. They are 
discordant if xi > xj and yi < yj or xi < xj and yi > yj. If xi = xj or yi = yj, the pair is neither concordant nor discordant. 
The Kendall’s Tau of two sequences X and Y can be calculated as

τ =
−

−
+ −n n

N N
2( )

( 1)
,

(6)

where n+ and n− denote the number of concordant and discordant pairs, respectively. It can be seen that the 
extent to which τ exceeds zero indicates the strength of the correlation.

Benchmark centralities. Degree Centrality9 of node i is defined as

Networks R = 1 R = 2 R = 3 R = 4 R = 5

Jazz 0.9748 0.9927 0.9976 0.9981 0.9993

NS 0.9348 0.9629 0.9752 0.9797 0.9829

GrQc 0.9197 0.9161 0.9380 0.9628 0.9721

EEC 0.9773 0.9882 0.9963 0.9978 0.9988

Email 0.9596 0.9770 0.9840 0.9927 0.9963

PG 0.9413 0.9596 0.9766 0.9886 0.9957

Enron 0.8479 0.8958 0.9274 0.9611 0.9793

PB 0.9682 0.9865 0.9956 0.9977 0.9984

Facebook 0.8797 0.9431 0.9768 0.9842 0.9899

WV 0.9668 0.9760 0.9958 0.9982 0.9989

Sex 0.9039 0.9042 0.9500 0.9615 0.9712

USAir 0.9607 0.9697 0.9858 0.9912 0.9939

Power 0.9486 0.9672 0.9717 0.9754 0.9785

Router 0.8416 0.9007 0.9402 0.9600 0.9720

Table 3. The Kendall’s Tau between two rankings of nodes’ influences produced by the LGM with truncation 
radius R and R + 1.
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∑=DC i a( ) ,
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where A = {aij} is the adjacency matrix, that is, aij = 1 if i and j are connected and 0 otherwise.
H-index10 of node i, denoted by H(i), is defined as the maximal integer satisfying that there are at least H(i) 

neighbors of node i whose degrees are all no less than H(i). Such index is an extension of the famous H-index in 
scientific evaluation44 to network analysis.

Closeness Centrality14 of node i is defined as

=
−

∑
.

≠

CC i N
d

( ) 1

(8)j i ij

Betweenness Centrality15 of node i is defined as

∑=
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BC i
g i
g

( )
( )

,
(9)s i s t i t

st

st, ,

where gst is the number of shortest paths between nodes s and t, and gst(i) is the number of shortest paths between 
nodes s and t that pass through node i.

Gravity Centrality16 (G) of node i is defined as

∑=
ψ∈

G i k i k j
d

( ) ( ) ( ) ,
(10)j

s s

ij
2

i

where ks(i) is the k-shell index of node i, and ψi is the set of nodes whose distance to node i is less than or equal 
to 3.

Extended Gravity Centrality16 (G+) of node i is defined as

∑=+
∈Λ

G i G j( ) ( ),
(11)j i

where Λi is the set of neighbors of node i.

Data Availability
All relevant data are available at https://github.com/MLIF/Network-Data.
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