
Semantic-based Framework for

the Generation of Travel Demand

Gregory L. Albiston

School of Science and Technology

A thesis submitted in partial fulfilment of the requirements of

Nottingham Trent University for the degree of

Doctor of Philosophy

January 2019

Copyright statement

This work is intellectual property of the author. You may copy up

to 5% of this work for private study, or personal, non-commercial re-

search. Any re-use of the information contained within this document

should be fully referenced, quoting the author, title, university, degree

level and pagination. Queries or requests for any other use, or if a

more substantial copy is required, should be directed to the owner(s)

of the Intellectual Property Rights.

Contains public sector information licensed under the Open Govern-

ment Licence v3.0.

i

Acknowledgements

Firstly, I would like to acknowledge my gratitude to my supervisor

Dr. Evtim Peytchev for his support of my Ph.D. study and related

research. I would also like to acknowledge my co-supervisor Dr. Taha

Osman for his insight, discussion, and feedback during my research

and preparation of this thesis. Finally, the companionship and sup-

port of my partner, friends, family, and peers have helped sustain

me throughout the years of study and it is this for which I am most

grateful.

“All models are wrong but some are useful.”

Prof. George E. P. Box, statistician

“Everything changes and nothing stands still.”

Heraclitus of Ephesus, philosopher

ii

List of Acronyms

AAA Anyone can say Anything about Any topic

ANN Artificial Neural Network

API Application Programming Interface

CEMDAP Comprehensive Econometric Micro-simulator for Daily

Activity-travel Patterns

CLI Command Line Interface

CPM Computational Process Model

CSV Comma Separated Values

CWA Closed World Assumption

ETL Extract Transform Load

GIS Geographic Information System

GML Geographic Markup Language

GPS Global Positioning System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

INSPIRE Infrastructure for Spatial Information in Europe

IRI Internationalized Resource Identifier

JADE Java Agent DEvelopment Framework

JSON JavaScript Object Notation

MATSim Multi-Agent Transport Simulation Toolkit

NNA Nonunique Naming Assumption

OGC Open Geospatial Consortium

OLO Ordered List Ontology

iii

ONS Office of National Statistics

OS Ordnance Survey

OSM Open Street Map

OWA Open World Assumption

OWL Web Ontology Language

RDF Resource Description Framework

RDFS Resource Description Framework Schema

REST Representational State Transfer

RMI Remote Method Invocation

RPC Remote Procedure Call

RUM Random Utility Model

SAWSDL Semantic Annotations for WSDL and XML Schema

SHACL Shapes Constraint Language

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SPIN SPARQL Inference Notation

SQL Structure Query Language

SUMO Simulation of Urban Mobility

SWRL Semantic Web Rule Language

TRANSIMS TRansportation ANalysis SIMulation System

TSV Tab Separated Values

URI Unique Resource Identifier

URL Unique Resource Location

URN Unique Resource Name

XML Extensible Markup Language

XSLT Extensible Stylesheet Language Transformations

WWW World Wide Wide

WKT Well Known Text

iv

Abstract

Traffic and transportation have a wide-ranging impact on the daily

lives of the human population and society. Activity-based travel de-

mand generation models and traffic simulators are tools that have

been developed to investigate traffic and transport problems and as-

sist in developing solutions.

The closer modelling of human behaviour, the emergence of new tech-

nologies and the availability of more detailed datasets is leading to

greater modelling complexity. The robustness of conclusions in inves-

tigations is supported by comparison of multiple techniques and mod-

els yet variations in the platform, data requirements and dataset avail-

ability present barriers to their breadth. This thesis investigates the

development of a Semantic Web framework for activity-based travel

demand generation.

It is proposed that the application of a knowledge-based approach

and development of an orchestrating framework will enable a loosely

coupled modular architecture. This approach will reduce the bur-

den in preparing and accessing datasets through the construction of

a platform-independent knowledge-base and facilitate switching be-

tween modules and datasets.

The principal contributions of this work are the application of a

knowledge-based approach to travel demand generation; the devel-

opment of a Semantic-based framework to control the configuration

of the process and the design; and demonstration of the Semantic-

based framework through the implementation and evaluation of the

modular travel demand generation process, including integration with

two third-party traffic simulators.

v

The investigation found that the proposed approach can be success-

fully applied to model and control the travel demand generation pro-

cess. Multiple configurations were explored, including utilising net-

work communications, and found that this had a noticeable impact

on execution duration but also the potential for mitigation through

distributed computing.

This presents the opportunity for an online infrastructure of datasets

and module implementations for travel demand generation that users

can select and access through the framework. This infrastructure

would remove the need for ad hoc interfaces; data format conversion

or platform dependence to facilitate the process of traffic modelling

becoming quicker and more robust.

Table of Contents

Acknowledgement ii

List of Acronyms iii

Abstract v

Table of Contents vii

List of Figures xiii

List of Tables xviii

List of Listings xx

1 Introduction 1

1.1 Motivation . 1

1.2 Traffic and Transport Modelling Domain 4

1.2.1 Representation of Journeys 5

1.2.2 Terminology of Travel Demand Models 7

1.2.3 Modelling Considerations of Activity-Based Demand Models 8

1.2.4 Types of Activity-Based Demand Models 11

1.2.4.1 Constraints Based 12

1.2.4.2 Discrete Choice/Econometric 13

1.2.4.3 Computational Process Model (CPM) 13

1.2.4.4 Agent-Based . 14

1.3 Utilising Semantic Web Technologies 16

vii

1.3.1 Resource Description Framework (RDF) 18

1.3.2 SPARQL Protocol and RDF Query Language (SPARQL) . 19

1.3.3 Schema Languages . 20

1.3.4 Rule Languages . 20

1.4 Problem Statement . 21

1.5 Proposed Solution . 21

1.6 Research Questions . 22

1.7 Thesis Contributions to Knowledge 23

1.8 Research Methodology . 24

1.9 Thesis Structure . 25

2 Related Works 27

2.1 Introduction . 27

2.2 Context of Travel Demand Modelling 27

2.3 Challenges of Travel Demand Modelling 35

2.4 Conclusion . 38

3 Architecture of the Proposed Semantic-based Travel Demand

Generation Framework 40

3.1 Introduction . 40

3.2 Design of Framework for Travel Demand Generation 41

3.3 Application of Framework for Generation of Travel Demand . . . 49

3.3.1 Population Synthesis . 49

3.3.2 Knowledge-Base Construction 50

3.3.2.1 Spatial Allocation 51

3.3.2.2 Individual Classification and Linking 51

3.3.2.3 Network Conversion and Land Use Relations . . 53

3.3.3 Travel Demand Model . 54

3.3.3.1 Activity Pattern Generation 54

3.3.3.2 Scheduling . 55

3.3.3.3 Trip Planning . 56

3.3.3.4 Network Routing 56

3.3.3.5 Feedback and Learning 57

viii

3.3.4 Travel Simulator Interface 57

3.4 Design of Framework Software Application and Configuration . . 58

3.4.1 Design of Framework Software Application 58

3.4.2 Configuration of Framework Components 61

3.4.2.1 Local Knowledge-Base and Local Modules Con-

figuration . 61

3.4.2.2 Remote Knowledge-Base and Local Modules Con-

figuration . 62

3.4.2.3 Local Knowledge-Base and Remote Modules Con-

figuration . 63

3.4.2.4 Remote Knowledge-Base and Remote Modules Con-

figuration . 65

3.4.2.5 Implications of Remote Configurations 66

3.5 Chapter Summary . 67

4 Semantic Modelling of Travel Demand Generation Data 69

4.1 Introduction . 69

4.2 Semantic Web Schema Design . 70

4.2.1 Semantic Web Principles 71

4.2.2 N-ary Relationships . 74

4.2.3 Ordered Lists . 76

4.2.4 Value Set Design Pattern 77

4.3 General Data Concepts for Travel Demand 79

4.4 The Temporal and Geospatial Modelling of Travel Demand 87

4.4.1 Geospatial . 87

4.4.2 Temporal . 91

4.5 Concepts from the Physical World 94

4.5.1 Person . 95

4.5.2 Travel Group . 98

4.5.3 Mode . 99

4.5.4 Vehicle . 103

4.5.5 Transit Line . 106

4.5.6 Activity . 108

ix

4.5.7 Location . 112

4.5.8 Geographic Area . 119

4.5.9 Network Infrastructure . 119

4.5.10 Goods . 123

4.6 Concepts for Travel Demand Modelling and Traffic Simulation . . 123

4.6.1 Travel Scenario . 124

4.6.2 Activity Pattern . 127

4.6.3 Activity and Travel Schedule 129

4.6.4 Stage Estimate . 131

4.6.5 Trip Context, Stage Request and Trip Plan 135

4.6.6 Trip Vehicle . 138

4.6.7 Activity and Travel Result 139

4.7 Extension of the Person and Travel Group Concepts 140

4.8 Utilisation of the Schema . 146

4.9 Organisation of the Knowledge-Base 149

4.10 Chapter Summary . 152

5 Framework Configuration for the Selection of Alternative Be-

haviour, Techniques and Data 155

5.1 Introduction . 155

5.2 Constructing the Knowledge-Base of the Framework 156

5.2.1 Constructing a Local Knowledge-Base from Local Sources 157

5.2.2 Constructing a Local Knowledge-Base from Remote Sources 159

5.2.3 Retrieving and Transforming Data for the Local Knowledge-

Base . 164

5.3 Controlling and Executing the Modules of the Framework 168

5.3.1 Framework Configuration 169

5.3.2 Service Definition . 170

5.3.2.1 Service and Graph Query Manipulation 172

5.3.2.2 File and HTTP Service URIs 181

5.3.3 Query Definition . 184

5.3.4 Module Definition . 187

5.3.5 Caching of Invariant Data 187

x

5.3.6 Ensuring Validation and Conformance of Data to the Schema191

5.3.7 Ensuring Validation and Conformance of SPARQL Queries

to the Schema . 194

5.3.7.1 Validation of Query Unique Resource Identifiers . 196

5.3.7.2 Validation of Query Variable Names 198

5.3.8 Reporting the Schema Data and Query Validation 203

5.3.9 Executing the Framework in Local and Remote Configura-

tions . 205

5.3.10 Altering the Execution Flow of Modules 207

5.4 Requirements of the Framework 210

5.5 Security of the Framework . 212

5.6 Chapter Summary . 214

6 Implementing the Travel Demand Generation Framework 217

6.1 Introduction . 217

6.2 Implementation of Prototype Framework Modules 217

6.3 Configuration of the Framework and Knowledge-Base 219

6.4 Design Features of the Prototype 220

6.4.1 Scheduling Module . 221

6.4.2 Trip Planning Module . 230

6.4.3 Network Routing Module 245

6.4.4 Traffic Simulator Interfaces 249

6.5 Chapter Summary . 253

7 Evaluation of Prototype Travel Demand Generation Framework256

7.1 Introduction . 256

7.2 Construction of Travel Demand Generation Prototype Scenario . . 258

7.3 Evaluation of Travel Demand Generation Prototype 263

7.3.1 Activity Intervals and Travel Stages of Generated Schedules 264

7.3.2 Variation of Traffic Simulation Results to Generated Sched-

ules . 270

7.3.3 Issues and Summary of the Prototype Scenario 277

7.4 Evaluation of Framework Configuration 278

xi

7.5 Challenges in utilising Semantic Web Technologies for Implement-

ing Travel Demand Generation 289

7.5.1 SPARQL Language Expressivity and Query Optimisation . 289

7.5.2 SPARQL Extension Property Function Arguments 292

7.5.3 RDF/XML Serialisation for Traffic Simulator Interfaces . . 293

7.5.4 Traffic Simulator Integration 294

7.6 Chapter Summary . 296

8 Conclusions and Future Work 298

8.1 Overview of the Work . 298

8.2 Thesis Contributions to Knowledge 306

8.3 PhD Research Limitation and Plans for Further Work 312

References 316

Appendix A: Contributions to Open Source Projects and Standards331

Appendix B: GeoSPARQL-Jena: Implementation and Benchmark-

ing of a GeoSPARQL Graphstore - Submitted Journal Article 334

Appendix C: Semantic-based Assembly Framework for the Gener-

ation of Travel Demand - Prepared Journal Article 366

xii

List of Figures

1.1 Diagram of journey representations indicating the level of detail

required in their construction. 5

1.2 Diagram of a daily commute followed by leisure activity to illus-

trate travel terminology. 8

1.3 Graph of trips in progress by start time and purpose, Monday to

Friday. 9

1.4 Graph of trips in progress by time of data and day of week. 10

1.5 Basic integrated activity-based micro-simulation components. . . . 12

3.1 Diagram of Travel Demand model sequence showing Framework

layers. 42

3.2 Diagram of selecting alternative implementations during the stages

of the modelling process. 44

3.3 Diagram of main stages for Travel Demand modelling framework. 45

3.4 Diagram of modular stages for Travel Demand modelling framework. 49

3.5 Diagram of time-line representation of a travel survey as the basis

for an Activity Pattern template. 55

3.6 Diagram of the software components of a user application. 59

3.7 Diagram of the alternative component configurations using differ-

ent Semantic Web libraries. 60

3.8 Diagram of the software components of a module and knowledge-

base. 61

3.9 Diagram of the local configuration using a single computer. 62

3.10 Diagram of a remote configuration with data held on a remote

computer. 63

xiii

3.11 Diagram of a remote configuration with module held on a remote

computer. 64

3.12 Diagram of a remote configuration with data and module held on

remote computers. 65

4.1 Diagram of notation used in schema diagrams. 70

4.2 Diagram of schema multiple relations of same property. 74

4.3 Diagram of example N-ary patterns for distinguished participant

and no distinguished participant. 75

4.4 Schema for published Ordered List Ontology vocabulary. 77

4.5 Diagram of schema for example statements complying with RDF

standard. 78

4.6 Diagram of schema for example statements applying the value set

design pattern to comply with OWL DL/OWL2. 79

4.7 Diagram of schema concept domains. 80

4.8 Schema for Feature and Geometry for published GeoSPARQL vo-

cabulary. 88

4.9 Schema for Simple Features geometries aligned to GeoSPARQL. . 90

4.10 Schema for Interval, Instants and Duration from published Time

Ontology in OWL (OWL Time) vocabulary. 92

4.11 Diagram of Time Instants and Interval. 93

4.12 Schema for Time Interval and Days of Week. 94

4.13 Diagram of main components and schema data concepts related to

the physical world. 95

4.14 Schema of Person and Travel Group. 96

4.15 Diagram of example extension to the Person class showing alter-

native representations of the same characteristics. 97

4.16 Schema for Mode and Mode Definition. 101

4.17 Diagram of example Mode class hierarchy with individuals. 102

4.18 Schema for Vehicle and Vehicle Definition. 104

4.19 Diagram of example Vehicle class hierarchy with individuals. . . . 105

4.20 Schema for Vehicle Route. 106

4.21 Schema for Transit Line. 107

xiv

4.22 Schema of Activity, Activity Type and Activity Priority. 109

4.23 Diagram of example Activity Types. 110

4.24 Diagram of example Activity Priorities. 111

4.25 Diagram of example data model for a shop providing retail and

employment activities. 112

4.26 Schema for Location. 113

4.27 Diagram of example Location class hierarchy. 114

4.28 Schema for Access Point. 115

4.29 Diagram of alternative routes to reach a house location following

roads with (dashed line) and without (dotted line) considering an

access point (black square). 116

4.30 Diagram of alternative routes to reach a house location following

roads and pathways using car (dashed line) and pedestrian (dotted

line) modes via general (black square) and pedestrian only (grey

square) access points. 117

4.31 Schema for Location Popularity. 118

4.32 Schema for Geographic Area. 119

4.33 Schema for road network described as a graph structure of links/edges

and nodes. 120

4.34 Diagram of main components and schema data concepts for module

interactions. 124

4.35 Schema for Travel Scenario. 125

4.36 Diagram of extended Travel Scenario definitions. 126

4.37 Diagram of example Travel Scenarios with Mode Definitions. . . . 127

4.38 Schema for activity pattern templates. 128

4.39 Schema for Activity & Travel Schedule. 130

4.40 Schema for Stage Estimate. 132

4.41 Diagram of trip generation process showing data passed between

modules. 136

4.42 Schema for Trip Context, Stage Request and Trip Plan. 137

4.43 Schema for interactions between Trip Context, Stage Request and

Trip Plan. 138

4.44 Schema for Trip Vehicle. 139

xv

4.45 Schema for Activity & Travel Result. 140

4.46 Diagram of example extension of the core concepts of Person,

Travel Group, Vehicle and Location. 141

4.47 Schema of Agent, Person and Vehicle Agent. 145

4.48 Schema for Travel Group, Persons, Locations and Activities. . . . 147

4.49 Diagram of named graphs applied to the prototype knowledge-base.151

5.1 Diagram of construction process for conventional activity-based

travel demand process. 157

5.2 Diagram of construction process for knowledge based activity-based

travel demand model. 158

5.3 Diagram of construction process for knowledge-based activity-based

travel demand model using SPARQL endpoints. 160

5.4 Diagram of construction process for knowledge-based activity-based

travel demand model using schema and context aligned SPARQL

endpoints. 163

5.5 Diagram of the framework structure using the RDF data model of

the Framework Configuration to exchange information with mod-

ules and data graph. 169

5.6 Schema of Framework Configuration. 171

5.7 Diagram of two example Framework Configurations for services

using local scenario and results with remote knowledge-base. . . . 173

5.8 Diagram of example Framework Configuration for use in query

manipulation. 176

5.9 Diagram of two example Framework Configurations for query using

the same module to request stages but different calculations of utility.185

5.10 Schema for Validation Result. 204

5.11 Diagram of example schema for validation Result Types. 205

5.12 Diagram of alternative configurations of modules during framework

execution. 208

6.1 Diagram of named graphs applied to the prototype knowledge-base.219

6.2 Diagram of the modules implemented for the prototype. 220

xvi

6.3 Diagram of initial and final activity duration expansion to fill the

scenario time interval. 223

6.4 Diagram of activity duration extended following selection of travel. 225

6.5 Diagram of travel moved forward and final activity duration ex-

tended. 228

6.6 Diagram of showing proximity of transfer locations to destination

not providing shortest path route. 236

6.7 Graph of probability change over distance by mode for Random

Utility Model. 242

6.8 Diagram of unidirectional and bidirectional routing through di-

rected graph of edges. 249

6.9 Diagram of SPARQL query and XSLT template process for Traffic

Simulator Interface. 252

7.1 Map of road network and locations. 261

7.2 Number of activities by activity type per one-minute interval. . . 265

7.3 Number of travel stages by simulator per one-minute interval. . . 266

7.4 Map of road network link usage density across five groupings. . . 269

7.5 Distribution of trip frequency for road links from schedules. 270

7.6 Number of travel stages by simulator per one-minute interval. . . 271

7.7 Mean error of travel stages by simulator per one-minute interval. . 272

7.8 Mean percentage error of travel stages by simulator per one-minute

interval. 273

7.9 Maximum error of travel stages by simulator per one-minute interval.274

7.10 Minimum error of travel stages by simulator per one-minute interval.276

7.11 Mean duration for completion of person type scenarios (10 itera-

tions). 282

7.12 Mean duration for completion of in-memory Resident scenario with

varying execution threads (10 iterations). 284

7.13 Mean duration for completion of alternative in-memory configura-

tions (10 iterations). 287

xvii

List of Tables

1.1 Table of trip purpose by proportion of average number of trips and

distance travelled. 9

5.1 Table of edit distance and validation outcome between variable and

candidate names. 203

6.1 Table of mode definition parameters for maximum speed (m/s),

fixed cost and variable cost. 241

6.2 Table of number of routes generated in an exhaustive set of origin

and destination locations for each mode. 247

7.1 Table of scenario activity intervals and travel stages by person type.264

7.2 Table of mode share for travel stages. 265

7.3 Table of travel stage distance (metres) by mode. 266

7.4 Table of travel stage duration (seconds) by mode. 267

7.5 Table of travel stages between activity intervals. 268

7.6 Table of simulator and schedule duration for travel stages. 271

7.7 Table of difference between simulator and schedule duration for

travel stages. 274

7.8 Table of mean completion durations (seconds) across person-types

and storage options (10 iterations). 281

7.9 Table of mean completion durations (seconds) of in-memory Resi-

dent scenario with varying execution threads (10 iterations). . . . 285

7.10 Table of mean completion durations (seconds) of alternative in-

memory configurations (10 iterations). 287

xviii

Listings

3.1 Example SPARQL query for selecting alternative routing modules

based on characteristics. 47

4.1 Example SPARQL query to classify Persons. 149

5.1 Example SPARQL query to retrieve household and person data

based on geographic area from a remote endpoint. 161

5.2 Example SPARQL query to select and transform data within a

graph. 165

5.3 Example SPARQL query to select and transform data between

graphs. 166

5.4 Example SPARQL query to select and transform remotely held

data from a service. 167

5.5 Example SPARQL query template with identifiers for service and

graph. 175

5.6 Example SPARQL query prepared for execution with substituted

service and graph URIs. 177

5.7 Example SPARQL query prepared for execution on a single service. 178

5.8 Example SPARQL query prepared for execution on single service

and graph. 179

5.9 Example SPARQL query for ASK and DESCRIBE keywords to

confirm execute a remote module through its Property Function. . 198

5.10 Example SPARQL query to execute a local module through its

Property Function. 206

5.11 Example SPARQL query to execute a remote module through its

Property Function. 207

xix

5.12 Example SPARQL query to select different routing modules based

on class, data property filtering, list of classes and default option. 209

6.1 SPARQL query implemented for calculation of trip utility. 244

xx

Chapter 1

Introduction

This thesis proposes a core data model for travel demand modelling and defines a

framework to support the selection of alternative techniques and data sources. It

is proposed that the core data model for activity-based models and traffic simu-

lations will improve the interoperability of data sources and modelling techniques

through a common knowledge-base. The supporting framework will enable users

to configure and control the knowledge-base and the applied techniques through

a consistent mechanism. It is intended that these improvements will reduce the

time and resources required to assemble a real-world traffic simulation and facil-

itate greater comparison and validation between models and implementations.

In this chapter, there will be a discussion of the motivational context for

this work along with the primary features of the traffic and transport modelling

domain and Semantic Web technologies. There will then be an outline of the

problem and proposed solution before considering the research questions and

contributions described in the remainder of the thesis.

1.1 Motivation

The consequences of traffic and transportation are directly and indirectly experi-

enced by the human population every day. This experience can have consequences

in terms of travel time or financial cost but can also have an impact upon an in-

dividual’s health, environment and economic opportunity [1]. Therefore, it is

1

important to develop high-quality solutions to the problems faced. The under-

standing of traveller behaviour is seen as crucial to managing and developing

transport infrastructure and the adaptation to emerging technologies [2]. One

tool in developing solutions to these problems are travel demand models and

traffic simulations, which seek to create representations of human travel within

the physical environment to evaluate the likely outcome of transport policy de-

cisions. These systems also provide input into other domains for modelling and

informing policy decisions and so have a wide-ranging utilisation and impact [3].

To address these matters there has been a multi-decade research into the

modelling and simulation of travel and transport. The complexity of the travel

experience, the wide range of contexts, the involvement of human behaviour and

the emergence of new technology has led to the development of numerous models,

techniques and implementations. The stages of the process have often been ad-

dressed on an individual basis requiring additional efforts to integrate together or

have been developed as proprietary closed solutions that are not widely available

[4].

At each stage of the process there are numerous design and implementation

decisions, which can produce diverse, but valid, outcomes that are best under-

stood through the consideration of multiple scenarios, repetitions and implemen-

tations. Each stage has diverse implementation decisions, technologies and de-

signs that make comparison and utilisation difficult. The systems produced have

a complexity and cost in time and resources that hinders the comparison between

approaches, adoption of best practice, development of new techniques.

Moreover, the conceptual and practical need exists for all models to be imper-

fect simplifications of the physical environment and social behaviour they target

[5]. The need for verification and comparison between these systems and their

models will remain regardless of their increasing complexity and the computa-

tional resources available to solve them. This need will likely increase as greater

complexity leads to greater challenges in the explanation of outcomes [6].

This lack of integration and comparison exists despite the fundamental simi-

larity between models and techniques. Therefore, the practical integration should

be achievable with several examples performed on a one-to-one basis. Yet, this

has not resolved the ongoing issue of integrating many models, switching between

2

these models and the models being available for further re-use. Achieving an

integration requires overcoming a host of practical implementation issues includ-

ing converting between data formats and managing multiple operating systems,

database platforms and programming languages.

The proposal and introduction of overarching interfaces that satisfies all the

potential variations that exist is complex, difficult to maintain and highly unlikely

to be sustainable. Instead a solution is needed that orientates the different models

to the fundamental concepts of the domain and then allows the flexibility to adjust

for variations between models without them conflicting.

It is proposed that Semantic Web technologies can be used to develop a frame-

work that will assist in integrating datasets together into a coherent knowledge-

base. Upon this knowledge-base can then be applied the modular components

required to generate and simulate travel demand. The extensible nature of the

Semantic Web will enable modules with different design assumptions and data

requirements to operate alongside each other upon the common knowledge-base.

Therefore, reducing the burden for comparison between implementations.

The Semantic Web is designed upon principles of open, structured and re-

usable data to facilitate machine to machine interactions. These principles will

enable the publication of high-quality input datasets for direct consumption and

utilisation as part of the local knowledge-base, rather than the current reliance

on human-driven sourcing, cleaning and conversion. Datasets can be published

at a national level with users able to select subsets based upon their interest area.

Further, the online design of Semantic Web technologies will enable module

components to operate upon remotely held data, such that the knowledge-base

need no longer be a single physical entity. This would enable the modular com-

ponents of the process to be remote services that are directed to the data to act

upon by the user, rather than being locally installed and configured instances.

This would alleviate the technical and resource burden from users, facilitate re-

producible results and allow domain-experts to develop best practice techniques.

Removing these burdens, raising the quality of data and encouraging compari-

son between techniques will allow greater focus upon effective solutions and help

alleviate the risk of error in outcomes.

The diversity of datasets, design choices and modelling approaches means

3

that a single unified data model and set of component interfaces is a complex

objective to achieve and likely to be unsustainable as new data sources and con-

ceptual models emerge. Therefore, a more flexible approach would be suggested

that enables users to adapt data and modules to their knowledge-base as they

investigate alternative scenarios and techniques.

This work proposes a Semantic Web-based framework that identifies data

structures for fundamental components of activity-based travel demand models.

It is proposed that the semantic modelling of these concepts into a structured

knowledge-base will allow the development of modular components that can be

more easily interchanged, while still allowing users control over the organisation

and structure of their experimental scenarios.

It is intended that the modelling process can become less burdensome and

more flexible for incorporating new concepts and approaches based upon the

knowledge-base. Further, it is proposed that a Semantic Web basis will enable

the assembly of models and simulations from both local and online sources to

enable quicker modelling, knowledge inferencing and improved comparability of

results.

In other words, a knowledge model of the travel demand problem domain will

allow models to be aligned around their similarities. Each model can then expand

this knowledge model for their own purposes and focus. Users may still have to

align models, but by mediating knowledge concepts rather than implementation

details. The introduction of more flexible integration can then allow the multiple

stages of the process to be further decomposed from a few large monolithic steps

to many smaller steps. This can then allow greater comparison of the alternative

design choices between models.

1.2 Traffic and Transport Modelling Domain

Traffic and transport planning is a wide-ranging field that impacts on the daily

lives of most members of society through transport congestion, infrastructure

investment, safety, pollution etc. [1, 3] The understanding of traveller behaviour is

seen as crucial to managing and developing transport infrastructure and adapting

to emerging technologies. The Traffic and Transport Modelling domain seek to

4

support this by modelling the complexity of the physical environment and human

behaviour.

This section provides further detail relating to activity-based demand models.

It outlines how human travel can be defined and described; some of the general

terminology used for travel demand models; the general considerations of activity-

based demand models; and the main approaches to developing activity-based

demand models.

1.2.1 Representation of Journeys

The conceptual evolution of Travel Demand Modelling from trips to activities can

be seen in Figure 1.1, based upon [7]. In trip-based models, the focus has been on

the travel portion of a person’s day as they commuted to and from employment or

education, with other activities a secondary consideration. A broader perspective

of the journey is provided by considering the continuous time period of a tour,

encompassing both travel and activity. In an activity-based model, the travel and

activity are considered separately with timing constraints imposed by the type of

activity being undertaken.

Figure 1.1: Diagram of journey representations indicating the level of detail re-
quired in their construction. (Based upon [7].)

5

The three representations can be further described as follows:

• Trip Based: A trip is a sequence of one or more stages, continuous movement

using one mode of transport or vehicle, between two activities that are in

different locations. The simplest representation and easiest to model but

lacking the depth and nuance of human activities.

• Tour Based: A tour is a sequence of trips starting and ending at the same

location. A trip chain may also be modelled which ends at a different

location to the start. This approach captures the reliance of trips upon

each other and that there may be sub-trips which take place beyond the

initial activity, such as travel for lunch at work.

• Activity Based: An activity is a continuous interaction with the physical

environment, service or person by an individual. A schedule is developed

for individuals, grouped into households, that takes into consideration the

time and location constraints of household members and negotiates the con-

flicting journey demands. A fuller representation of the process for journey

planning and scheduling.

This focus on activities, termed Activity Based Modelling, introduces a need

for a broader range of information about the potential activities and their loca-

tions. Further there is a need to consider human behaviour in selecting and

scheduling activities that can be limited by fixed or flexible constraints, e.g.

shop opening hours or contracted employment hours, as well as the negotiation

amongst individuals within households for the use of resources, e.g. vehicle avail-

ability, and skills, e.g. adult drivers to transport adult non-drivers and children.

It should also be considered that once a plan has been established it is not fixed

but subject to change due to travel delays and other factors which means there

is feedback and review of the plan as it progresses over a day.

The advantages of activity-based models include developing behavioural real-

ism, integrity between components, greater spatial and temporal resolutions, and

supporting dis-aggregate traffic micro-simulators. However, due to the complex-

ity of the domain and ongoing research to identify definitive approaches, these

6

objectives have been met to varying degrees through a number of different im-

plementations [8, 9]. It has also been commented that the modelling of human

behaviour is lacking in most transport models [4]. The main design approaches

for activity-based models are discussed further in Section 1.2.4 after discussion of

modelling terminology and considerations in the following sections.

1.2.2 Terminology of Travel Demand Models

The modelling of traffic and transport has developed over several decades with

the terminology used to describe its components also developing. This section

outlines the concepts and terms related to describing travel and activity as used

in general for travel demand models [7, 10].

• Activity: a continuous interaction with the physical environment, service or

person for a time interval. This includes any idle/non-travel waiting before

or during the activity.

• Stage: a continuous movement with one mode of transport, and one vehicle

(if used). It includes any idle waiting immediately before or during the

movement.

• Trip: a continuous sequence of stages between two activities.

• Tour: a sequence of trips starting and ending at the same location.

• Journey: a sequence of trips starting and ending at the reference location

of the person.

• Reference Location: the location from which a person starts and ends their

journey. Typically the person’s main residence, but could be multiple lo-

cations for holiday home owners, stop-over commuters, away from home

students or children of separated parents.

Figure 1.2 illustrates these terms when considering a typical routine for a

person in employment followed by a leisure activity. The person’s commute to

and from work is undertaken by transitioning from one mode to another, e.g.

7

walking to a bus stop and catching a bus. In this figure, there is no consideration

of the modes or timings of the journeys or activities.

Figure 1.2: Diagram of a daily commute followed by leisure activity to illustrate
travel terminology.

1.2.3 Modelling Considerations of Activity-Based Demand

Models

The consideration of activities as the source of travel demand presents several

modelling aspects [7, 9, 10]. The general term activity can encompass the whole

scope of human undertakings. Therefore, activities are not all equal in priority,

performed by all people or executed in the same order. The characteristics of

activities will vary in duration, proximity, occurrence, capacity and financial cost.

Certain activities are undertaken in isolation for short-term needs while others

form part of long-term projects to satisfy personal objectives. Activities can

be performed solo or coordinated within a group of individuals, e.g. familial

households or commercial organisations. The ordering of activities can also be

influenced by group dynamics with one member being required to escort another

member to an activity prior to undertaking their own activity, e.g. parents taking

children to school.

These different aspects of activities introduce multiple considerations. It is

impractical to itemise and define all potential activities and therefore groupings

of the most important are required. A criticism of previous travel demand mod-

els has been a focus upon commuter activities [11, 12]. This focus is despite

recent research for trip purposes and distance travelled showing commuting shar-

8

ing an equivalent proportion with other activities, as shown in Table 1.1, and

that approximately 5% of the UK population work from home [13], so will not

be commuting but still undertake other activities. These broad categories could

also include more specific activity types that a user may wish to explore.

Trip Purpose Trips (%) Distance (%)
Leisure inc. entertainment, holidays, sport and day trips 17 21
Commuting 15 20
Visit Friends 15 19
Personal business and other escort 18 14
Shopping 19 11
Personal trips in course of work 3 10
Education inc. escort 12 5

Table 1.1: Table of trip purpose by proportion of average number of trips and
distance travelled. [14]

Broadening the range of activities under consideration also has an impact on

the time periods of modelling. The primary focus upon commuter, freight and

school journeys places an emphasis on the weekday morning and afternoon peak

periods [11, 12]. Yet research into sources of travel demand shows the breadth of

activities taking place over the day [15], as illustrated in Figure 1.3 and Figure

1.4.

Figure 1.3: Graph of trips in progress by start time and purpose, Monday to
Friday. [15]

Both figures show trip survey data for the United Kingdom and clearly follow

the classic M-shaped curve of travel demand [16]. This M-shaped curve exists

9

during the working week when there is low demand during the morning, midday,

evening and night, but peaks and troughs around the two rush-hour periods in

the morning and afternoon. Figure 1.4 also shows the weekend days with the

peak occurring around midday and so producing a different travel demand.

It should be noted that these distributions have been indexed against the

average volume of trips and so do not show the absolute volumes between weekday

and weekend, i.e. many more trips could be taking place during the weekdays

than the weekend. It is also worth noting that Figure 1.3 has a large number of

trips attributed to the education activity, which is a seasonal activity. During

holiday periods, e.g. summer and New Year, those in education will engage in

other activities with different location and timings. These factors highlight that

more sophisticated travel models must represent a range of activities over a wide

proportion of the day with intra-day, inter-day and inter-week variations.

Figure 1.4: Graph of trips in progress by time of data and day of week. [15]

These factors are further complemented by other decision making influences.

Many activities can only take place at a location when it is open or during certain

periods of the day, e.g. daylight hours. These physical locations will also have

a finite capacity and may have an associated financial cost which affects their

popularity. The popularity of a location may also have less quantifiable factors

that can draw individuals to it regardless of closer options that would be more

expedient, e.g. service quality or reputation. Therefore, there are practical limits

10

to the modelling realism.

1.2.4 Types of Activity-Based Demand Models

The development of activity-based demand models represents a paradigm shift in

the approach to modelling travel demand. The developed approaches to imple-

menting this paradigm are diverse as there are a range of design considerations

to model, as described in Section 1.2.3.

The process of traffic modelling of real-world scenarios requires a number of

stages that can generally be categorised as data collection, population synthesis,

demand modelling and traffic simulation as illustrated in Figure 1.5. At each

stage, a range of options and techniques are available to the modeller, e.g. data

formats, data granularity and modelling parameters, that require adaptation to

integrate.

The burden of adapting and aligning between the stages limits innovation and

quality improvements despite fundamental components of the domain existing

[17]. The specific data requirements vary between implementation and design

approaches, but the general requirements are regarded as being similar across

activity-based and trip-based models [9]. Broadly these requirements are travel

diaries, population and household census, land-use parcel data and transport

network infrastructure, i.e. roads and public transit connections.

In an ideal scenario, every individual is able to complete all trips with maxi-

mum efficiency, i.e. shortest travel time, and minimal inconvenience, i.e. depart-

ing at the time and using the mode of their choice. However, the finite capacity

of the road network and public transit services means that this is not always

possible. Therefore, an individual must make a behavioural response in order to

compensate or adjust to select an alternative trip. These responses have been

identified as [18]:

• Ignore: continue the trip as planned.

• Negation: abandon the trip.

• Modal: switch from current mode to an alternative.

11

• Spatial: select an alternative route.

• Temporal: change the departure time.

Travel demand models seek to incorporate these behavioural responses through

the features and design principles that they implement. Below are brief outlines

of the predominant approaches for activity-based travel demand models although

implemented models may incorporate multiple approaches [8, 19].

The unifying basis of these different modelling approaches are the activities

that a human is undertaking in their daily lives. It is proposed that a common

knowledge-base could support the data requirements of multiple demand model

implementations to enable common concepts, e.g. population, road network, and

locations, to be re-used while also providing implementation specific data.

Figure 1.5: Basic integrated activity-based micro-simulation components. (Based
upon [9].)

1.2.4.1 Constraints Based

A schedule is developed and checked for its feasibility according to travel and

time constraints. Space-time prisms examine the feasibility of travelling between

two locations in the specified time-frame according to maximum speed. A set of

12

activities are provided with timings, duration and tolerances. All combinations

of route, mode and locations between the activities are found as a sequence of

travel. A sequence that does not violate the constraints of the activities and

travel times is then selected.

1.2.4.2 Discrete Choice/Econometric

A person is assumed to be an entirely rational entity that chooses from a finite

set of probability weighted choices. Typically, the probabilities are calculated to

maximise utility using attributes related to the choice and person. Taking the case

of a single choice as in Equation (1), an individual (J) has multiple influencing

attributes (x). The fitted model’s observed coefficients (βτ) are multiplied by the

attributes and summed to derive the observed value (V). Negative coefficients

are applied when a smaller attribute value is preferred e.g. cost, time or distance.

UJ = βτJxJ + εJ = VJ + εJ (1)

Pi =
eVi∑
j e

Vj
(2)

This observed value (V) and the unknown error term of unobserved variables

(ε) form the choice utility (U). The probability of selecting a choice (i) is found

from the sum of the choice set for an individual (j) as in Equation (2), where

in a multinomial logit model the closed form probability does not require the

error terms and follows a logit probability [9]. A single choice probability is

the exponential of its observed value normalised across the sum of exponential

observed values of all choices in the set.

1.2.4.3 Computational Process Model (CPM)

Computational Process Models, also known as rules-based approaches, were in-

troduced as an alternative to the unrealistic behavioural assumption of utility

maximisation. The basis for decision making is derived from heuristic responses

so that behaviour is more similar to habitual rather than self-optimising. The

rules are activated by contextual variables through an if. . . then. . . structure.

13

A ruleset is considered complete if a rule activates for all variable cases and

consistent if a single rule activates in each case [20]. Semantic Web rules en-

gines and reasoners support the description and processing of rules in a range of

languages. This approach allows exploration of how a decision maker formulates

and executes the schedules by capturing the explicit scheduling constraints. They

are able to model interdependent decisions as well as behavioural principles. The

modelling focus tends to be on activity scheduling rather than activity generation.

They have further been categorised into weak and strong CPMs [21].

• Weak CPM: Apply heuristics consisting of a sequential or partially sequen-

tial decision making process. There is assumption of utility maximisation,

or other rational method, at the level of individual decision steps, e.g. [22–

24].

• Strong CPM: Employ a production system, or other rule-based approach,

at the level of individual decision steps, e.g. [20, 25–28]. The production

systems are often modelled based upon decision trees [20] or heuristic rules

[25, 28].

1.2.4.4 Agent-Based

An extension to activity-based models is incorporating agent-based design to

further explicitly model individuals as entities which interact and respond to the

dynamic environment to produce emergent behaviour [19]. This is in contrast

to the passive continuation of the predetermined plan of earlier approaches. In

principle, this re-planning process could be achieved in other approaches but is not

highlighted in the examined literature. The agent-based design has been explored

to address shortcomings in activity-based models through improved modelling

of emergent phenomena, population heterogeneity and complex behaviour and

learning [19].

The agent paradigm seeks to model autonomous individuals in the domain

of interest. The state and behaviour of these individuals flexibly change based

on previous experience and the contextual environment. Humans display agency

and conceptual models have applied terms such as mind and body to encapsulate

14

behaviour, actions, sensors and effectors [29]. These agents are partitioned into

regions that forms the environment within which they communicate and inter-

act with other agents. In a holonic agent-system the agents can themselves be

composed of other agents whose actions fulfil their own goals and those of the

over-arching agents [30]. This, therefore, defines abstract entities as agents e.g.

commercial organisations are agents composed of their employees. By defining

discrete individuals and regions these systems can be organised and executed as

distributed systems with agents transferring from region to region. The focus on

individual entities in the environment aligns with the micro-simulation paradigm.

The advantages of agent-based modelling have been found in situations where

complex interactions are taking place between agents; there is an important

spatial component; the agent population has heterogeneous characteristics and

agents exhibit complex behaviours involving learning and adaptation. Therefore,

the approach has been applied to the traffic and transport domain. However, chal-

lenges are presented in the computational complexity of modelling large systems;

the outcome patterns of interactions are unpredictable; and predicting overall

system behaviour is extremely difficult due to the strong likelihood of emergent

behaviour. [19]

The definition of agent-based systems in traffic and transport has been imple-

mented in a variety of different manners. However, the following general charac-

teristics have been identified [19, 31]:

• Self-Contained: identifiable and discrete with a set of characteristics and

behaviour rules.

• Autonomous: exhibit control over their own actions and are able to make

decisions.

• Proactive: react to external events to achieve their goals.

• Social: interact and communicate with other agents to accomplish their

task and achieve the complete goal of the system.

• Flexible: ability to learn and adapt its behaviour based on experience.

15

In practice, a range of approaches have been applied to modelling the activity

and travel of people as software agents. This includes executing a travel plan but

making no changes until a review at the end of the day to select an alternative plan

[32]. In other cases a more detailed approach is applied with agents responding

to the changing environment during simulation, termed the nanoscopic level,

through adjustments to driver behaviour while following a plan of travel for the

day, termed the microscopic level [33].

1.3 Utilising Semantic Web Technologies

The Semantic Web is not a single technology but a hierarchical collection of for-

mal standards and recommendations with supporting tool implementations. Its

objective is to enable the structuring of data for automated interpretation and

facilitate exchange between applications [34, 35]. Further developments include

extending these standards to produce complete Semantic Web applications. The

components of the Semantic Web are platform and programming language inde-

pendent for transferability between implementing tool-sets.

The basis of Semantic Web technologies is the modelling of data to develop

a knowledge model. The development of a knowledge model enables the identi-

fication and expression of common concepts and their relationships. Contextual

facts can be asserted to construct a knowledge-base. Semantic modelling upon

a knowledge-base using the relations, and their defined meanings, enables the

inferencing of additional implied facts or the identification of inconsistencies.

Knowledge-bases can then be shared and utilised as the basis to develop appli-

cations and task solving models. Sharing and reuse of the commonly defined con-

cepts and relations is achieved through vocabularies, also termed ontologies [36].

These concepts and relations can be applied to provide consistent understanding

and structure giving interoperability between knowledge-bases. Numerous vo-

cabularies have been developed including spatial (GeoSPARQL [37]), temporal

(OWL Time [38]) and also for specific domains (transport domain topics include

traffic disruption [39], automotive [40], infrastructure [41], and buildings [42]).

This enables the incorporation of facts from multiple knowledge-bases to ex-

tend a dataset and for knowledge-bases to adhere to a published structure. These

16

relations can then be used as the basis for additional concepts, either in depth

of detail or breadth of coverage. The expected shape of the data can also be ex-

pressed as part of the vocabulary to form a schema that ensures the frequency of

relations, the content of instance data and the inter-relationship of concepts are

as intended. The structure and shape of the knowledge-base can be automatically

interpreted to ensure data quality compliance, logical consistency and derive new

statements. The Semantic Web uses these modelling benefits to retrieve, join and

transform data for the user’s application.

The primary objectives of this work are to provide a data-focused, modular

approach that can be explored and adapted by the user. An immediate benefit of

a Semantic Web approach is the storage and organisation of the diverse datasets

required by the travel demand generation process. The extensible graph structure

of a graph database combined with an engineered schema forms a knowledge-base,

which can be partitioned into multiple logical graphs. Semantic Web technologies

can be applied to the structured data of the knowledge-base to obtain inferences

or apply rules to describe conditions and outcomes. By allowing the practitioner

to specify their own vocabulary and rules the demand model can be expanded

and customised to incorporate new behaviours and effects. This could incorporate

the activities of interest, parameters of individuals or the behaviour and decision-

making process.

The use of rules in activity-based demand models forms the basis of Com-

putational Process Models and therefore potential exists for designing modules

utilising Semantic Web rules languages. The focus during this investigation has

been upon SPARQL based querying with RDFS inferencing as the combination

provides flexibility and control without certain complexities introduced by OWL

schemas or rules-based extensions, e.g. modelling restrictions [38], Open World

Assumption and computational complexity. However, overlap exists such that

certain outcomes could be achieved using several alternative Semantic Web tech-

nologies each with their own advantages. Key components of the Semantic Web

are briefly outlined in the following sections to provide context of the terminology

and further describe their application.

17

1.3.1 Resource Description Framework (RDF)

This fundamental data structure of the Semantic Web uses a directed labelled

graph approach based upon subject-predicate-object triples [39]. This allows an

extensible and adaptable structure to represent concepts, data and relationships

as a metadata standard. New concepts can be incorporated by modifying the

structural schema without needing to alter the underlying data. Each part of

the triple is either a unique resource, described by a Unique Resource Identifier

(URI), or a literal data value and type, such as a string or integer. The resources

can represent real objects or abstract concepts and are cross-referenced with other

resources to form a graph structure.

The triples of the knowledge-base can be persistently stored in a graph database,

more specifically a triplestore or quadstore, as one or more URI named graphs

to allow data partitioning. Queries can be performed on a single, collection or

all graphs in the database. This means that sets of triples can be conveniently

accessed, exported or deleted. This provides a mechanism to isolate different

scenarios, multiple instances of the same scenario and to keep invariant data,

e.g. population characteristics and road network, separate from generated variant

data, e.g. a household’s travel plans. Graph databases represent an alternative to

traditional relational databases and are capable of storing and searching billions of

triples. Data and schema can also be expressed separately so that the same data

can be used to derive alternative inferences or structure for a knowledge-base.

The subject-predicate-object triples of the graph database aligns to the column

and row structure of the tables within a relational database. Each unique predi-

cate expresses a different column and each subject forms a new row of the primary

key column. Each class of the subject is a separate table. The combination of

subject-predicate corresponds to a row/column cell within the table and the object

as the cell’s content. However, the graph structure allows the dataset to contain

an unlimited number of triples for a particular subject varying in either predicate

or object, following the AAA principle discussed further in Section 4.2. Thus the

graph database can support describing relations in an arbitrary manner for an

arbitrary number of classes.

In relational databases, the structure is fixed according to the tables of the

18

schema and can only incorporate additional predicates/columns through program-

matic intervention on the database. Therefore, a relational database is reliant

upon the schema being fixed during the design process while a graph database

can accept any additional relations provided by the user or other sources. The

schema of the knowledge-base is also expressed as triples in a graph database and

so forms part of the data content. This schema can be used to apply structure

and shape by expressing constraints to identify violations, e.g. cardinality, class

membership or datatype.

1.3.2 SPARQL Protocol and RDF Query

Language (SPARQL)

The SPARQL query language provides a mechanism to explore, retrieve and

modify RDF data as well as derive additional information, such as arithmetic or

aggregation operations found in the relational database Structured Query Lan-

guage (SQL). SPARQL endpoints can be deployed on to graph databases to

process queries and return data for local or remote usage. The triple pattern of

RDF provides a consistent graph matching structure to queries, while the syntax

is standardised and platform independent.

The protocol permits the direct use of remote SPARQL endpoints through

Federated Queries over the Hypertext Transfer Protocol (HTTP) [43]. This means

a single query could access an authoritative external data source, such as road

network data from a Transport Authority, and apply it to locally stored data.

Alternatively, computational processing can be split into stages or partitioned

among discrete hardware, e.g. spatial queries for different regions held on separate

hardware. Data can be dynamically retrieved when required for processing so

that the latest version is used rather than relying on periodic static releases with

obsolete data.

The query protocol allows the underlying graph database to contain addi-

tional data not required in the current context but relevant for alternative uses.

Therefore, a single coherent knowledge-base can be maintained rather than sep-

arate sets of data sources for multiple models. Extensions can be implemented

as property and filter functions to increase the functionality of queries on the

19

graph database. This allows the triggering of complex data processing and data

generation using standard query syntax.

1.3.3 Schema Languages

Inference reasoners apply schemas onto datasets to automatically verify logical

consistency and infer knowledge, such as class membership and relationships.

The schemas follow a standard vocabulary to describe relationships and infer-

ences. The Resource Description Framework Schema (RDFS) is a data modelling

vocabulary to extend RDF by describing groups of related resources and the re-

lationships between them and provides many fundamental inferences [40]. The

Web Ontology Language (OWL) language is a collection of logic based semantics

to describe knowledge and relationships with greater expressiveness than RDFS

[41]. The Shapes Constraints Language (SHACL) provides conditions for vali-

dating RDF data and describing rules and functions in SPARQL to ensure the

graph data is structured correctly [42]. The practical considerations relating to

these schema languages is discussed later in further detail (Section 4.2).

1.3.4 Rule Languages

Semantic Web Rule Language (SWRL), and other rule languages, allow the defi-

nition of rules to complement schema languages and express additional relation-

ships within the schema using if...then... structured statements. The specified

rules syntax may provide specific functions that the interpreting engine can exe-

cute but there is limited or no control over rule execution.

The SPARQL Inference Notation (SPIN) framework is a standards submission

that utilises SPARQL syntax for the execution of queries as rules [43]. Rules can

be formed into templates or functions for reuse in other rules while execution

order and frequency can be controlled. Several schema and rule languages can

be embedded and shared as part of the schema. This allows data structure and

processing to be examined, shared and executed together across platforms.

20

1.4 Problem Statement

There are several challenges presented by the development and utilisation of travel

demand models and traffic simulators. There is a diverse array of data, techniques

and solutions within the domain while the design and modelling decisions applied

to implementations have evolved as research has progressed. This presents chal-

lenges to users in selecting the appropriate approach and ensuring verification of

outcomes across multiple implementations and models.

There is limited integration between implementations of models and traffic

simulators so that users must employ ad hoc techniques to obtain and exchange

data. Further, data may not be published in a format supported by an imple-

mentation or aligned to its schema and so must be converted by a third-party

tool or an ad hoc technique. The development of these ad hoc techniques requires

a thorough understanding of both the data and implementation with the risk of

introducing error but also reducing investigative resources.

The data requirements of implementations are set to further increase. Future

developments will see more complex modelling of human behaviour; the diversifi-

cation of datasets; and the incorporation of new technologies into policy-making.

This will further complicate the selection process of implementations and the

verification of their outcomes.

Finally, the increasing behavioural complexity and data requirements will

likely lead to further computational requirements. The development and im-

plementation of activity-based models have already been hindered by their com-

putational demands as more tractable solutions were explored.

1.5 Proposed Solution

The modelling of traffic and transport is a wide-ranging domain that has a direct

impact on people’s lives, through investment, policy decisions and the environ-

ment, as well as influencing other domains of research. It encompasses a wide

breadth and depth of information that is only likely to increase and produce

greater burdens on the development and utilisation of models. Therefore, a sys-

tematic approach is required in the organisation and access of this data so that

21

quality outcomes of reduced error, model comparison and reproducible results can

be achieved. It is proposed that following a knowledge-based approach will allow

the orientation of the modelling process upon the data rather than the system

interfaces and boundaries between tools and models.

This will produce a constructed knowledge-base using a schema, which de-

scribes the relationships between fundamental concepts, and the investigative

data. The functionality of the modelling process would be defined as loosely

coupled inter-operable modules, which are configured through external module

parameters also stored in the knowledge-base. The schema will encompass a core

schema extended to include additional concepts required by the modules. The

core schema would allow publishers to produce data in directly consumable for-

mats with minimal transformation, while its extension will enable modules to

achieve more diverse functionality. The use of a metadata standard for the core

schema will assist in the proper use and interpretation of the data and linkages

to other datasets and schemas. This would promote re-use of data, assist com-

parison of techniques and reduce the burden of solution assembly upon users to

achieve quicker, more comparable and less error-prone investigative analysis.

The proposed modules can be implemented as innovative approaches or wrap

existing tools to incorporate state of the art research. These modules encompass

a broad range of tasks that operate upon the data of the knowledge-base and

so may, in turn, be decomposed into sub-modules. Enabling users to select and

switch between modules, sub-modules and data sources will encourage wider ver-

ification of models, implementations and scenario outcomes through alternative

configurations. By defining a common mechanism to mediate this process the

burden of selecting, transforming and processing data will be reduced. A frame-

work will be developed that will allow users to specify how data is selected; the

modules to process the data; the location of data sources and module services;

and the validity of the user configuration.

1.6 Research Questions

It has been proposed in the previous section that an underpinning knowledge-base

can provide the basis for undertaking traffic and transport demand modelling in-

22

corporating a range of models and data. Therefore, this thesis is based on the

following hypothesis:

“The application of a knowledge-based approach and orchestrating framework

will enable a loosely coupled modular architecture for activity-based travel de-

mand generation and traffic simulation.”

Consideration of the above hypothesis provides a set of research questions to

direct the focus of the investigation. The selected research questions for further

exploration are:

RQ1 How can a loosely coupled modular Semantic Web knowledge-base be ap-

plied to travel demand modelling and traffic simulation?

RQ2 What data concepts are required to construct a knowledge-base for travel

demand modelling and traffic simulation?

RQ3 How can alternative techniques and data be selected using a Semantic Web

knowledge-base?

RQ4 Can a Semantic Web framework be implemented for the generation of travel

demand?

1.7 Thesis Contributions to Knowledge

The principal contributions of this work can be summarised as:

• Applying a knowledge-based approach to the process of travel demand gen-

eration.

• Development of a Semantic-based framework for travel demand generation.

• Design and demonstration of a Semantic-based travel demand generation

framework.

23

1.8 Research Methodology

The research methodology adopted for this project is based on a building a soft-

ware artefact to demonstrate the application of Semantic Web technologies to

Activity-Based Travel Demand Generation. The following research activities were

undertaken during the course of the project:

Literature Review

The research involved an extensive literature review into the fields of Activity-

Based Travel Demand, Traffic Simulation, Population Synthesis and Semantic

Web. This review was carried out to develop a foundation based on existing

approaches and incorporate current research progress. There was further review

undertaken into published datasets, tools, ontologies and other relevant mate-

rial, including population census, travel surveys, and transport infrastructure,

to support the design and construction of the schema, prototype and evaluation

scenarios.

Analysis and Design

The outputs from the review of existing literature, tools and datasets were anal-

ysed as part of the design process. This process established the necessary re-

quirements, features and organisation of the schema, framework and prototype.

The outputs of the review were also used to identify the research questions for

investigation. The design process also included the comparison and selection of

tools and programming languages, such as Semantic Web library, traffic simula-

tors, and software project management tools, that would be utilised during the

prototype implementation.

Iterative Development

The implementation of the prototype was undertaken following an iterative ap-

proach. The discrete modules were developed in a series of phases to develop and

refine functionality. The design and limitations of these modules were reviewed

24

and developed during each iteration.

The prototype was implemented using the Java programming language, which

was selected due to its maturity and performance, as a Gradle multi-part project.

The selection of Gradle allowed the development of each module as a discrete soft-

ware artefact and a build management environment to manage software library

dependencies. These libraries were selected to assist the pace and robustness of

development and included the Semantic Web library Apache Jena, which was se-

lected due to its standards compliance and wide usage in Semantic Web research

and applications, along with the SUMO and MATSim traffic simulators which

feature prominently in Traffic and Transport research.

A test-driven development approach was applied through unit testing to de-

velop the functionality of the modules and mitigate against error and regression

during development. This was supported by version control software to manage

the evolving source code and documentation. These software project manage-

ment processes were applied to raise the quality of the development and assist in

the later publication of source code and re-use. Developments from this phase

also lead to contributions and feedback to open source projects and standards

(see Appendix A).

Evaluation

The evaluation of the prototype was performed in two phases. The first phase

considers the application of a knowledge-modelling and modular approach by

considering the travel demand and traffic simulation output from a constructed

scenario. The second phase considers the performance of the framework in ful-

filling travel demand generation in alternative configurations. Consideration was

also given to the significant challenges and issues encountered during the devel-

opment process. Testing and evaluation of discrete pieces of functionality were

applied during the iterative development through unit testing.

1.9 Thesis Structure

The remaining chapters of this thesis are organised as follows:

25

• Chapter 2 discusses the identified related work in the context of travel

demand modelling, traffic simulation and Semantic Web.

• Chapter 3 describes the proposed framework and how a Semantic Web

knowledge-base can be applied to travel demand modelling and traffic sim-

ulation.

• Chapter 4 presents the developed common schema of data concepts, the

basis of its development and organisation into relevant domains.

• Chapter 5 provides the design of the orchestrating framework, necessary

processes and discusses the alternative configurations it supports.

• Chapter 6 describes the implemented prototype for travel demand genera-

tion using a Semantic Web framework.

• Chapter 7 evaluates the implemented prototype for the generation of travel

demand with two third-party traffic simulators and compares the perfor-

mance of the prototype in alternative configurations.

• Chapter 8 concludes the research, summarises the main outcomes and out-

lines suggestions for further work.

26

Chapter 2

Related Works

2.1 Introduction

This chapter discusses the identified related work by examining the overall con-

text of travel demand modelling. There is consideration of the development of

these models, integration with traffic simulators and identification of future re-

quirements. Examination is also undertaken of existing applications of Semantic

Web technologies to transport domain. This is then followed by discussion of the

challenges presented by existing travel demand models.

2.2 Context of Travel Demand Modelling

The impact of transport upon the human population is wide ranging and influ-

ential with a daily impact on the lives of most members of society. This can be

experienced directly through traffic congestion and infrastructure investment but

also indirectly through travel safety and pollution [1]. Traveller behaviour both

influences and is influenced by the economic development and land-use of their

environment. The development of transport policy is supported by travel demand

modelling and traffic simulation to manage and develop transport infrastructure

and adapt to emerging technologies [3].

This requires the construction of complex systems that combine multiple con-

cepts, datasets and techniques resulting in the reconciliation of data from multiple

27

sources and tools to enable their integration. However, the fundamental concepts

and environment being modelled are consistent suggesting a common data model

is achievable. The generation of travel demand is one stage in the process of

constructing traffic simulations to investigate transport planning problems by

modelling the movement of residents, non-residents and freight [11]. The process

of model assembly for an integrated activity-based micro-simulation encompasses

several stages: population synthesis, activity-based demand model and traffic

simulation [9].

The process of population synthesis is the generation of individuals, and their

relevant characteristics, to reside in the geography of the examined scenario. The

purpose of the demand model is to produce planned journeys undertaken by

these individuals through the geography. These journeys utilise different modes

of transport at different times of the day or as part of the movement of goods

between locations [7]. Traffic simulation explores the capability of the road and

transport infrastructure to supply capacity to meet the demand for travel and

transport. For each of these factors the focus, scope and complexity of models

and tools can vary considerable.

The representation of traffic demand has moved from a trip based approach,

which emphasises transport utilisation, to an activity based approach, which fo-

cuses upon the individual. This has seen a transition in transport research from

the 4-step model (trip generation, trip distribution, mode choice and route as-

signment) of the 1970s, with a focus upon trips and journeys, to modern activity-

based approaches [7], with consideration of human activities and travel. This

transition is a recognition that the demand for travel originates from the need to

move people and goods between daily activities rather than being inherent within

the transport network [11].

These more recent activity-based approaches more closely capture human be-

haviour, decision making and planning. However, the resulting increase in data

requirements and computational complexity has limited their significant progress

until the last two decades [44]. The increase in computing power over recent

decades has enabled this transition from macro-level simulation, based on math-

ematical equations applied to aggregate distributions, to micro-level simulation,

focused upon individual entities. The micro-level simulation provides closer mod-

28

elling of the physical environment and incorporation of supplementary data into

the models and simulators but with a corresponding increase in data complexity

[45].

There have been a limited number of practical examples of activity-based

models outside of key large North American cities, which use proprietary or in-

house implementations [9, 21]. This lack of adoption of activity-based models has

partly been attributed to perceptions of additional data requirements and imple-

mentation burden, despite identified alignments with traditional models [9], and

the computational complexity of activity-based models [44]. These models and

tools have been developed as proprietary closed source developments, which lim-

its their accessibility and cannot be easily extended, or represent fresh academic

efforts with a specific research focus that have not been concerned, or designed,

for sharing or re-use [4].

There has also been limited general availability of traffic demand data sources

for research with a reliance upon unpublished local datasets or stochastic gen-

eration [46, 47]. This has in part been attributed to the conflicting priorities

of maintaining individuals’ data-privacy and the need for spatial granularity in

activity-based micro-simulation.

The development of travel demand models involves tuning parameters for their

specific geographic scenario. This has led to research into their transferability to

another geographic context [21, 47–49], but not necessarily producing a generic

or readily transferable environment for wider research to take place. Investiga-

tions have found some components to be transferable while other components

may require parameter re-calibration [21]. However, in some cases specific ge-

ographic related design assumptions have been incorporated which limit their

transferability [47].

There have also been investigations into direct integrations between more

general travel demand models and traffic simulators [50–52]. These demonstrated

that integration is achievable, but highlighted that developing interfaces between

modules was the most time consuming task and identified designing interfaces for

modules in different programming languages and platforms as an area of future

work. Ideally a model should be readily accessible for re-use in a number of

different scenarios, such as geographical locations, with only adjustment to the

29

input data.

The accessibility and transferability of travel demand models and traffic sim-

ulators is of importance during investigations. Simulation software should be

readily able to be verified and validated [53] against alternative implementations

of the same or different models so that their relative merits can be explored.

This includes the need to check different implementations have replicated the

same model through reproduction of results or the alignment of alternative mod-

els exploring the same target phenomenon. Given that all models and simulations

are incomplete representations of the physical world, it is good practice for com-

parison of results to be applied across different implementations.

This is particularly the case in activity-based models that are often reliant

upon population sampling to reduce data gathering and computational complex-

ity but at the risk of introducing greater uncertainty [8]. A range of model

designs are also employed for determining variables such as mode, destination

and scheduling time period [9]. Therefore, users should expect to be able to re-

peatedly perform their investigations across multiple frameworks with minimum

investment of time and resources.

Setting up multiple travel demand and traffic simulators can require repeated

data conversion that consumes user time and also a thorough understanding of

each implementation. Adaptation may be required to each stage’s schema and file

format. The analysis of framework output also requires conversion of the results

multiple times to the desired analytical format. The time and resources required

to prepare and deploy such complex systems, whether 4-step or activity-based,

limits validation and verification between alternative models.

These factors have meant that the utilisation of a traffic model and simulator

is a significant commitment requiring long term investment in time and resources

to deploy and then acquire, clean and appropriately format the input datasets for

its specific requirements. Undertaking this for a single simulator can be difficult

to achieve and maintain with meaningful verification, multiple test scenarios and

constantly evolving data. Therefore, multiple models and simulators are often

not readily available to provide direct comparable results during research.

The development away from the macro-simulation 4-step models to micro-

simulation activity-based models has placed greater attention upon human be-

30

haviour in travel. The primary focus of transport modelling and taffic simulation

has been upon car and freight transportation to evaluate traffic flow and the im-

pact of traffic control measures [11]. This focus on car transportation is viewed as

untenable due to its environmental, economic and health impacts with alternative

healthier and safer modes needing to be modelled and investigated [1].

The emphasis on vehicles and traffic control has meant that the modelling

of human behaviour is lacking in most transport simulators [4]. The continued

human involvement in transport and traffic decisions will necessitate micro-level

simulation yet the verification of human behaviour at micro-level is considered

difficult on a purely empirical basis [54].

There are also further limitations in the scope of activities and travel patterns

modelled compared to those which travel research has shown are exhibited by

individuals. There has been a primary focus upon commuter and freight trans-

portation simulation, as previously mentioned, which along with school journeys

places an emphasis on weekday morning and afternoon peak activities and travel

[11, 12].

This is despite research into sources of travel demand showing a broader range

of activities and time periods being undertaken by individuals [14] and increasing

complexity in activity patterns [44]. Therefore, transport models must develop to

encompass a greater variety and volume of data in order to capture and express

the increased breadth of activities and time periods.

The time-frame of scheduling and planning has generally focused on the short

term, i.e. days, weeks or months, of traffic simulation and its use for exploring

traffic congestion and travel patterns. The long term view would incorporate

changes to land use, e.g. new roads and facilities, resources, e.g. car purchases,

and demographics, e.g. births, marriages, ageing, and deaths, and their impact

on travel demand [9]. This has led to the proposal of more complex modelling and

simulations where social and economic decisions are closely modelled to produce

a simulated artifical society [55].

The activity choices and time periods form part of the human behavioural

responses, which have been noted as lacking in traffic demand and simulation [4].

These behavioural responses include route choice which has been modelled from

the perspective of rational self-optimisation [8]. Inconsistencies between modelled

31

and human behaviour have been attributed to varying perception of an optimal

route, reduced information and the penalising effects of congestion [7].

Yet research has shown that humans are imperfect decision makers [56] and

apply procedure rather than substantive rationality [6]. This has led to wide range

of modelling approaches which can incorporate multiple paradigms for human

behaviour [8]. Alternative approaches have sought to use rules-based responses

to the input stimulus [20] or to incorporate agent-based systems which display

autonomy, pro-activity and communication to meet their goals [19]. Therefore,

there is a breadth of modelling approaches to capturing the complexity of human

behaviour and decision making.

Conversely, there are a variety of implementation and design choices within

each class of modelling approach. Further, the feedback loop of data for travel

experience, as opposed to travel planning, from traffic simulation to activity based

models is often absent [9]. This additional data would enable and sustain human

based behaviour, e.g. habits and learning, and enable new observations to emerge

over repeated cycles.

The need for wider consideration in modes of transport is also reflected in

new technological developments that will influence human travel and policy mak-

ing. These technological developments, e.g. automated driving; vehicle to vehicle

communication; and vehicle to infrastructure communication, present new oppor-

tunities for co-ordination between participants in the transport environment, but

also introduce challenges in their deployment that traffic and travel modelling

and simulation can assist in addressing [4, 12].

Developments in web-based social networking applications and platforms also

offer new and wider access to transport methods, such as car-pooling and car/lift-

sharing services, that could help alleviate road congestion but require more diverse

modelling [57]. Therefore, the data and modelling requirements being sought by

users will further increase complexity.

These technologies also provide new sources of data that can complement

travel demand models, e.g. GPS traces [58]. These can provide greater coverage of

traffic flow data than provided by traditional static traffic sensors, e.g. induction

loops and cameras, or surveys by not being fixed to specific points in the road

network. However, data privacy concerns can limit scope and publication of

32

datasets [59, 60].

The data produced by these types of sensors concerns traffic volume, but not

the travel purpose, i.e. origin and destination activities. This reduces the appli-

cability and sensitivity for modelling policy, infrastructure and land-use changes

[9]. Therefore, they do not represent a complete replacement of activity-demand

modelling, but can provide complimentary data.

This wide variety of techniques and data requirements illustrates the need for a

knowledge model of the domain. The development of a knowledge model for travel

demand requires the identification of the problem domain’s common concepts and

their relationships. Research has been undertaken to develop standardised and

consistent definitions for transport modelling of movement and activity [10]. This

is further supported by the publication of transportation and land use related

ontologies [39, 61, 62].

The EC INSPIRE project [63] seeks to provide a standardised spatial infras-

tructure data format across the EU, including transport networks, with work in

progress to develop RDF vocabularies [41]. Other research efforts investigated the

additional data requirements to incorporate transport models into the CityGML

format [17], the alignment of CityGML with ontology based approaches [42] and

the conversion of the GML format to RDF [64]. To the best of our knowledge,

there are no published works focusing on traffic demand modelling.

The Semantic Web has been developed to transition the World Wide Web

(WWW) from a distributed network of web-pages and documents focused around

presentation of information to openly accessible data repositories focused upon

structured information [36]. This will enable the development of more sophis-

ticated computer to computer interactions and computer support for decision-

making [34, 35].

The development of the Semantic Web is based on a hierarchical collection of

formal standards and tools that support and extend the functionality offered to

achieve the proposed vision. The components of the Semantic Web are platform

and programming language independent for transferability between implementing

tool-sets with new and revised standards being developed as the need is identified.

These interoperable tool-sets remove the need for systems to develop their

own interfaces between technological components. Therefore, alternative imple-

33

mentations can be utilised consistently across operating system and programming

language platforms. The Resource Description Format (RDF) provides a common

data format for the representation of data and schema concepts using a graph

structure. This RDF data can be serialised in file formats or persistently stored

in graphstores that can be extended in schema without modifying the database

structure, unlike in traditional relational databases. The SPARQL query lan-

guage allows graph structured data to be queried and retrieved in closed offline

and open online contexts, unlike Structured Query Language (SQL) used with

relational databases which was developed for offline usage.

The design of the Semantic Web is based on structured data, machine to

machine processing and open data exchange between applications [65] so that

data can be reused and flexibly adapted. Technologies have also been developed

to facilitate the processing of existing data sources in flat files [66], structured

files [67] and relational databases [68] into Semantic Web formats. Semantic Web

standards support the retrieval of data from local and remote online sources [43].

The use of a Semantic Web approach also enables the incorporation and link-

ing with facts from other data sources as part of the data model. It is further en-

visaged that autonomous agents will be able to interpret ontologically structured

data and make reasoned decisions [65], which is in keeping with micro-simulation

and activity-based modelling’s focus upon individuals.

This is achieved through ontologies expressing a vocabulary enabling commu-

nication between agents, even if they do not share a global theory, as a com-

mitment to the vocabulary means it will be used coherently and consistently

[69]. This use of ontologies has been applied to develop web service descriptions

of Semantic Web Services by describing the semantics of data and behaviour of

services so assisting interoperability and ultimately leading to their automated

discovery, negotiation, composition and invocation [70].

There has been development of frameworks to support these web services

for biomedical datasets. These have been based on retrieval of single triples

[71] thereby lacking the flexibility to retrieve additional data or the execution

of SPARQL queries. Other efforts have extended this approach to provide a

SPARQL query mechanism to retrieve grounded facts, but with the user being

unaware and unable to control the origin and provenance of the data and ser-

34

vices [72]. In the travel demand generation process a user would be specifically

targeting datasets and techniques relevant to their investigative interest. The

approach also does not use the standardised SPARQL mechanisms for retrieving

remote data and instead reformulates queries into requests for individual triples,

incurring additional network overhead and limiting query expressivity.

Research has been taking place into transferring existing data sources and

datasets to the Semantic Web. This includes publishing demographic census and

similar data that form inputs to traffic demand modelling [73, 74]. A key aspect

of Semantic Web technologies is an extendible data model and the ability to share

information for reuse in a flexible and convenient manner [75].

The application of the Semantic Web in the transport domain has seen the

development of several traffic prediction and routing systems [76–80]. These were

able to utilise diverse information sources to improve prediction accuracy by ex-

ploiting the underlying semantics of the data. A number of issues were highlighted

including data quality, data assimilation, scalability and time reasoning within

macroscopic simulations and the need for developing generalised approaches and

tools.

Initiatives such as the UK’s data.gov.uk [81] are making a broader range of

data sources easily accessible but the incorporation into traffic models continues

to be an ad hoc process. The recent trends of Big Data, Open Linked Data [82]

and volunteer initiatives, such as Open Street Map [83], has seen the increased

gathering, processing and availability of large detailed datasets. This presents an

opportunity for traffic demand models to incorporate a greater range of informa-

tion and modelling processes. Travel demand models have also been identified as

having contributions to domains outside of transportation, e.g. environment and

health [8]. This leads to greater associated complexity in the breadth and depth

of data.

2.3 Challenges of Travel Demand Modelling

Several challenges are presented to users when selecting and utilising travel de-

mand model and traffic simulator frameworks. These frameworks are generally

developed as collections of tools and models that fulfil the distinct functions of

35

the modelling process [8]. Due to development focus, one tool in the collection

may provide advanced features or design while another is more limited, e.g. sup-

ported transport modes, activity model, routing algorithms or human behaviour

model. Therefore, a user must evaluate between frameworks and compromise on

certain features to utilise others.

An alternative approach is for frameworks to be designed as modular software

applications [4, 32]. These define interfaces and objects that are extended by new

modules as part of the application. This requires a high quality approach to the

development of the software archiecture and interfaces to ensure that variations in

modelling paradigm and scale are accomodated [4]. Later developments of modu-

lar interfaces can require modules to be redeveloped to enable compatibility with

newer features and functionality. This places an ongoing maintenance respon-

sibility upon the developers and can prevent users from utilising unmaintained

modules, or require multiple versions of the core software.

The file formats supported by a framework may also force its selection. Geospa-

tial and road network data are provided in a wide range of standard file formats

with each framework supporting a subset and potentially its own bespoke format.

A user may not have the technical skills or resources to convert their own data

file format into one of the supported formats. Other input data will rely on the

framework’s generation tools or need conversion to each framework’s schema as

no common standard exists.

Given that all models and simulations are incomplete representations of the

physical world, it is good practice for comparison of results to be applied across

different implementations [53]. This is particularly the case in activity-based

models that are often reliant upon population sampling to reduce data gathering

and computational complexity but introduces greater uncertainty [8].

A range of model designs are also employed for determining variables such

as mode, destination and scheduling time period [9]. Therefore, users should ex-

pect to be able to perform their investigations multiple times and across multiple

frameworks with minimum investment of time and resources. Setting up multi-

ple configurations can require repeated data conversion that consumes user time

and a thorough understanding of each implementation. The analysis of frame-

work output also requires conversion of the results multiple times to the desired

36

analytical format.

There is potential to convert the output of one framework’s tool for reuse in

another framework as a one-to-one integration [47, 51, 52], although that may not

be their intended design. However, the user would again need to have a thorough

understanding of both tools’ configurations to avoid error and reconcile design or

data differences.

Frameworks are also developed in a variety of programming languages and

platforms. The transference of data between tools or utilising domain libraries

may require the user performing manual processes unsuitable for large numbers

of investigative cases and risking introducing error. In each of these cases there

is a required level of user technical skill and resources that may not be available

and diminishes the investigative portion of a project.

The process of selecting obtaining and preparing input data for these frame-

works also places a burden upon the user. The MatSIM traffic simulator [32] does

not provide tools for the generation of activity-based travel demand, while the

SUMO traffic simulator [46] provides a limited tool based upon even distribution

of aggregate population statistics, a subset of activities and single mode journeys.

Geographic, road network and population data are external to the framework and

their tools. Each required dataset is typically published by a different agency or

organisation.

A user will need to identify the required data for their target area, source

from the multiple providers, clean, combine and reformulate to then use in their

model and selected framework. The data requirements between users are likely to

be very similar with only relatively specific enhancements for their interest area.

Yet no unified datasets or combining mechanisms have been identified.

Each of these identified challenges requires investing additional resources and

potentially developing ad hoc solutions which could compromise the investigation

by not accurately deploying the appropriate travel demand models and traffic

simulators. Users also face the barrier that completing these activities for a single

framework does not automatically allow many frameworks to be utilised in an

investigation. Traffic demand modelling has also relied on close relationships with

transport authorities to produce specific local demand models or generate random

traffic flows from the limited public data [46], which limits the reproduction of

37

previous research and the progress or quality of new research.

The development of travel demand models also requires several further fea-

tures. There has been a primary focus upon week day commuter car and freight

transportation to evaluate the impact of traffic control [11] yet changing working

patterns and business hours are emerging [12] with commuting only representing

15% of trips and 20% of distance travelled [14]. Technological developments are

also presenting alternatives for coordination and planning [4, 57], such as car-

pooling, car-sharing, automated vehicles and vehicle communication, which need

to be modelled.

There is an identified need for models to be further developed to cover mul-

tiple days, improve cooperation between household members, incorporate social

network relationships and develop non-utilitarian human behaviour and decision

making [8]. Human behaviour modelling has tended to apply a single or a few

approaches to all individuals and not consider all the contextual information that

could be utilised [9]. Further, human behaviour itself can exhibit irrational and

subjective choices that vary in context and experience [6, 56]. These present

problems in the prediction and validation of transport systems [19]. These design

goals further increase the breadth and depth of data requiring management and

increase computational complexity resulting in longer model run times [19].

2.4 Conclusion

The previous discussion has highlighted that the development of travel demand

models and traffic simulations are expected to lead to increased complexity and

corresponding increases in data requirements. This is driven by the need for

greater modelling of human behaviour and providing more diverse behavioural

responses for the different transport participants. This in turn will assist in sup-

porting the need to explore wider policy making to support alternative modes of

transport from the traditional car and freight; the impact of emerging technolo-

gies; and the increased complexity of human activity patterns. Therefore, there is

a need for modelling technologies and solutions that can support the organisation

of this diverse data and the access to emerging solutions.

It has also been identified that the complexity and approaches of the transport

38

domain and modelling human behaviour are best explored when comparison is

made across multiple models and implementations. This enables the identification

of relative modelling strengths and weaknesses to support robust conclusions.

However, the current burden of data preparation and integration between stages

inhibits investigations. This is despite models and simulators being successfully

integrated on typically one-to-one basis.

The Semantic Web technology has been identified as a solution for supporting

the resolution of such issues. The technology provides a knowledge modelling

approach to assist in the description and sharing of data. This enables common

concepts to be re-used between modelling components and simulators, while also

allowing variations and extension to these concepts. There have already been

successful efforts to apply Semantic Web technologies in other transport related

solutions. Vocabularies and datasets for the transport domain have also been

published online and these provide the potential for quicker access to data and

the aligning of concepts, so that interoperation of models and simulators becomes

more widespread.

The service orientated architecture provides for accessing this data and also

the basis for separating the modelling components into discrete services, so that

data and processing can be distributed and redirected. This provides the poten-

tial for decomposing the numerous modelling choices and alternatives of travel

demand modelling into discrete services. This will mean that users can select

and assemble the models for their investigations rather than being reliant upon

the traditional single monolithic implementation. Therefore, Semantic Web tech-

nologies can provide a basis for achieving the proposed knowledge-based approach

and is the technology of choice for further investigation in this thesis.

39

Chapter 3

Architecture of the Proposed

Semantic-based Travel Demand

Generation Framework

3.1 Introduction

This chapter seeks to establish the overall design of the framework to address the

challenge of applying a loosely coupled modular Semantic Web knowledge-base

to demand modelling and traffic simulation as stated in research question RQ1.

It provides an overview of both Semantic Web technologies and travel demand

modelling and then considers the implications for the framework. Current travel

demand models cover a broad range of design decisions and concepts that it is im-

practical to exhaustively explore and discuss. Therefore, general components are

identified with specific reference to aspects of activity-based models, but potential

exists to apply the framework more generally. Future developments to transport

models will likely increase data complexity that an extendible knowledge-base

can assist in managing.

The many tools and implementations currently provided by travel demand

models and traffic simulator would each conceptually form modules of the frame-

work. These modules would then interact through a core extendible schema to

facilitate interoperability and minimise user intervention (Chapter 4). The pur-

40

pose of the framework is to enable users to retrieve, transform and re-use their

data across multiple travel demand, traffic simulator and supporting modules

for their investigations (Chapter 5), while also incorporating their own data and

techniques.

The following sections of this chapter provide a motivating scenario and gen-

eral overview to establish the context of the proposed framework. This is fol-

lowed by examination of the proposed framework by considering in more detail

the stages of the travel demand generation process; potential modules for travel

demand generation; and the alternative configurations to which the framework

can be applied. It is intended that this will highlight the breadth and scope of

the proposed framework and how it will address the problem.

3.2 Design of Framework for Travel Demand

Generation

The core stages of an integrated travel demand model are the sequence of popu-

lation synthesis, travel demand generation and traffic simulation [9] as previously

illustrated in Figure 1.5. Data from each discrete stage is passed to the next

stage with iterative feedback sometimes occurring from traffic simulation back

into travel demand model. Each stage is also reliant upon a variety of input

datasets, such as demographics, network supply, travel diaries and land use. The

proposed framework introduces a semantic modelling layer between the stages as

shown in Figure 3.1.

The introduction of this framework layer would enable conversion of the input

and output of each stage into the common RDF format and the formation of

an underpinning knowledge-base. The common format and knowledge-base will

enable different implementations of the stages to be interchanged more easily as

shown in Figure 3.2. The user is able to select different modules of functionality

from a menu of modules for each stage. This will allow a broader range of

techniques to be evaluated and analysed during an investigation on the same

knowledge-base, rather than utilising a single set of integrated components or

multiple discrete instances.

41

Figure 3.1: Diagram of Travel Demand model sequence showing Framework lay-
ers.

The developers of modules are no longer required to select a modelling frame-

work and adhere to its platform, interface and design decisions. Instead they

can design their module based on the RDF data inputs and outputs from the

knowledge-base. A module implemented in one programming language can in-

teract, or be replaced, by another in a different programming language. Existing

implementations can potentially be incorporated by wrapping with an RDF in-

terface to convert between the knowledge-base and the module. These interfaces

provide an Extract Transform Load (ETL) process that can utilise existing tools

to convert to RDF through Data Materialisation or provide virtual triples of a

dataset stored in a relational database through On-Demand Mapping [68]. A

single set of interfaces to the platform-agnostic knowledge-base would need to be

maintained.

The use of a common knowledge-base also provides for the primary stages to

be decomposed further into sub-modules. The main stages in Figure 3.2 represent

complex processes which draw upon ancillary data of the knowledge-base. This

presents opportunity for different combinations of sub-techniques to be evaluated

during an investigation, e.g. replacing a search strategy or choice model. Investi-

gation and implementation of new ideas could also focus upon specific elements

42

of the larger set of components.

These sub-modules would interact with existing implementations through the

knowledge-base data model rather than reimplementing entire stages of the pro-

cess or extending an existing implementation. This should facilitate exploring new

techniques and identifying best practice. The storage of data in the knowledge-

base also allows the sharing of both scenario and results data for sharing, re-use

and comparison.

43

Figure 3.2: Diagram of selecting alternative implementations during the stages
of the modelling process.

The main components and flow of the travel demand modelling framework

are shown in Figure 3.3. The framework incorporates the construction of the

knowledge-base from input datasets and techniques, e.g. population synthesis

and activity pattern generation. The constructed knowledge-base is then used to

inform the travel demand model to generate trips and journeys for the scenario.

These journeys are simulated for their physical interactions with each other and

44

the road transport environment by a traffic simulator.

The control and manipulation of the knowledge-base and the module stages

is facilitated through SPARQL queries to retrieve and transform the required

data. As illustrated in Figure 3.2, the modules could represent one or more

implementations, e.g. network routing could have different implementations for

different modes to provide diversity within a scenario or two implementations

which cover multiple modes that are compared during an investigation.

Figure 3.3: Diagram of main stages for Travel Demand modelling framework.

An immediate benefit of this approach is providing the storage of the diverse

data required to satisfy the different stages in the extensible graph structure of a

graph database. The combination of this data with an engineered schema forms

the knowledge-base. This knowledge-base provides the structure for interactions

between different modules and data concepts, e.g. the Trip Planning module

requesting an estimated travel time from the Network Routing module.

The input and output data from each stage, scenario or execution can be par-

titioned into different named graphs within the graph database of the knowledge-

base for reuse or extraction through SPARQL queries. This can assist with man-

aging data disposal and alternative datasets, such as repeated scenarios, alter-

native time periods, different geographic areas, design implementations and user

requests. A single knowledge-base containing multiple graphs can be constructed

rather than multiple sets of input files or databases.

Users can convert existing datasets or the output from external tools into RDF

45

and import into the graph database. The extendible nature also allows additional

data for topics of specific research interest, e.g. vehicle characteristics or social

network relationships, to be linked and stored in the same graph database without

interference to the execution of the travel demand modules.

This means that implementations can extend the core knowledge-base but still

operate on the same graph database. Therefore, modules with alternative design

principles or providing new functionality, e.g. environmental or communication

models for vehicles, can be applied to the same set of underlying data. The

structure of input data can be transformed using SPARQL queries or linked to

existing concepts by extending the core schema.

Execution of modules is achieved in SPARQL queries using property functions

for each module. Therefore, the SPARQL query can control the data selected and

its processing. This allows the user to change between modules by simply modi-

fying the query. Modules can also be selected according to the characteristics of

the data through class membership, data properties or inter-relationships (Sec-

tion 5.3.10). This can address the identified limitation of travel demand models

applying a single behavioural approach to all participants (Section 1.4).

An example of this is shown in Listing 3.1 where the modules are implemented

as property functions and can be identified by the mod namespace prefix. In the

example, two sets of persons are selected from the population, one based on

their membership of an income quartile class and the other based upon being an

employee with an income greater than the stated threshold. Each set of persons

has a different routing approach selected to generate travel demand based on

their contextual data, which has been a criticism of many travel demand models.

Therefore, different behaviours can be described for subsets within a population

but as part of the same query. Modules can interact based on the data provided

rather than how that data is sourced.

Another advantage of SPARQL is that it supports federated queries that

can retrieve data in both local and remote online graph databases. External

knowledge-bases set up as SPARQL endpoints, e.g. LinkedGeoData for land use

and network infrastructure data [61], can be queried to retrieve relevant RDF

triples and accelerate knowledge-base construction.

46

PREFIX mod: <http://example.org/module#>

PREFIX ex: <http://example.org/local#>

SELECT ?person ?route

WHERE{

{

?person a ex:Quartile4Income .

?route mod:routingMethodA (?person ?start ?end).

}UNION{

?person a ex:Employee .

?person ex:income ?income .

FILTER(?income > 50000)

?route mod:routingMethodB (?person ?start ?end).

}

}

Listing 3.1: Example SPARQL query for selecting alternative routing modules

based on characteristics.

A step further is remote services providing property functions that perform

the functional stages of travel demand modelling based on input parameters.

Therefore, a user focused upon only the simulation stage output could write

a query to target remote services of data and modules providing configuration

parameters then only store the configuration and results locally.

The execution of queries can be separated into multiple stages to allow re-

trieval and manipulation of partial data in the knowledge-base or to use alterna-

tive sub-modules. Partial data can be supplied as URI references accompanied by

the URL reference of the remote service. Modules can query against the service

URL to retrieve the data associated with the parameter URI and then perform

their task.

The overall approach of using remote services would require data retention

policies as generated data could be stored by the remote service. Potentially only

a small proportion of URI references for the generated data would be transferred

47

between services. A user wishing to retain a complete record in perpetuity may

need to request the relevant data from the services, which would be simplified by

storing each user request in its own named graph.

The alignment of these remote services would require an understanding of their

data requirements and behaviour. Service and data descriptions form part of the

SPARQL standard as part of the Semantic Web’s open network design. Remote

services could also provide RDF responses to document their functionality and

design assumptions to assist users. The description of data semantics and service

behaviour through ontologies and annotations has been developed in standards,

such as SAWSDL, to enable the machine interpretation and ultimately lead to

automated discovery, negotiation, composition and invocation of these services

[70]. Therefore, mechanisms exist and are being developed that could support

this approach.

National, or international, knowledge-bases would allow re-use of quality and

consistent datasets while remote modules can provide best-practice implemen-

tations. Currently users construct a local dataset and model for their specific

problem or geographic area by establishing their own infrastructure and sourc-

ing, processing and transforming data files for the selected tools. The proposed

approach would reduce these requirements as the data and interfaces are already

designed around the same data paradigm of RDF. Users would be able to select

a local, remote or hybrid execution of the travel demand generation based upon

their need and focus.

To conclude, the knowledge-based approach to integrating the population syn-

thesis, travel demand and traffic simulation processes results in a novel framework

that improves the integration between independently developed implementations;

assists users to manage and structure local data; allows users flexibility to com-

pare alternative implementations; and provide the basis for accessing standardised

datasets, scenarios and tools as on-line internet services.

48

3.3 Application of Framework for Generation of

Travel Demand

This section provides more detail on the general components identified in Figure

3.3. These components are further decomposed into key stages as shown in Fig-

ure 3.4 to provide more detail on the processes taking place. These component

modules could incorporate multiple sub-stages in their implementation.

Figure 3.4: Diagram of modular stages for Travel Demand modelling framework.

3.3.1 Population Synthesis

This stage provides the conversion of aggregate demographic data into a dis-

aggregated set of persons grouped into households. Each person and household

are described by a set of characteristic variables. The synthesised population and

additional data sources may require further reorganisation and cross-reference

prior to use by the travel demand model (Section 3.3.2). In some existing travel

demand models, an integrated synthesiser is available, but the user is then limited

to the chosen algorithm and implementation choices in this active field of research.

In the proposed approach, any population synthesiser can be utilised once

its output is serialised into RDF and published locally into the knowledge-base

49

or retrieved from a remote SPARQL endpoint. The population’s characteristic

variables can be reformulated to a user’s chosen schema as part of constructing

the knowledge-base.

3.3.2 Knowledge-Base Construction

The purpose of this stage is to bring together the synthetic population, activity

patterns, land use, network infrastructure and local modelling of the problem

domain. The user can develop a formal schema that extends the core schema

(Chapter 4) using inference languages and apply a reasoner to the data to per-

form inferencing. The use of the inference languages has successfully resolved

reconciliation between heterogeneous information sources, allowed sourcing of

structured data from public datasets, e.g. Linked Open Data, and produce new

and interesting facts as inferences [76, 77]. These inferences can be asserted into

the knowledge-base to persist or form virtual triples, i.e. triples that are removed

when the reasoner is removed.

The inferencing process can automatically allocate instances to classes, cre-

ate data properties, infer relationships and identify contradictory data in the

knowledge-base, e.g. a child who possesses a driving licence. Class membership

can be assigned based upon relationships and data e.g. vehicle ownership, age or

income. Alternatively, SPARQL queries, or a rules language engine, can perform

these tasks with varying flexibility and restrictions. SPARQL queries can also

permanently transform, remove or add data to the knowledge-base.

SPARQL queries can be stored as text files and can be applied manually to the

knowledge-base or applied programmatically. Therefore, the queries can be easily

distributed to share best practice and users can implement local modifications

before applying to the knowledge-base.

Traffic and transport, particularly in micro-simulation, heavily utilise spa-

tial relationships between objects. Graph databases can be extended to natively

support these spatial relationships, as in some relational databases. These ex-

tensions, such as those complying with the GeoSPARQL standard [37], allow

the knowledge-base to be searched for data based on the spatial relationships

using SPARQL queries without the need for external spatial processing (Section

50

4.4.1). Three general stages of knowledge-base construction have been identified

as shown in Figure 3.4.

3.3.2.1 Spatial Allocation

The synthesised population must be aligned with the land use data for the zones

and regions of interest. The generated households are produced for an entire

zone but must be allocated to the individual physical locations of homes within

the zone. The allocation process between households and homes can be achieved

through user defined SPARQL queries, a library of best practice approaches or

implemented modules for more sophisticated techniques. This step is described

in literature as one of the final steps in population synthesis but there is limited

reporting of techniques and theoretical results [84].

The decoupling of the Spatial Allocation task from the Population Synthesis

process allows the user to adapt the allocation process to their chosen schema,

available data and selected approach, rather than that implemented by the se-

lected Population Synthesis tool. For example, an allocation based upon house

prices and number of bedrooms would produce a different knowledge-base in-

stance to another allocation approach that utilises household composition. In

this way numerous alternatives can be explored with consideration of the varying

impact on the traffic simulation results.

3.3.2.2 Individual Classification and Linking

In existing activity-based models, the functionality is typically based upon hard-

coded characteristic values, such as specific household compositions or types of

locations, or a fixed set of configurable parameters, such as school and retirement

age. This functionality includes decision making processes with a criticism that

existing models apply a single or a few approaches to all individuals [9], i.e. all

employees make travels decisions in an identical manner or that the factors in a

commuter’s and tourist’s decision making are identical.

It is proposed that these shortcomings can be overcome through local user

control and generic module design. The user’s control, over the local schema and

in manipulating the knowledge-base data, provides choice in the characteristic

51

values and their inter-relationships that are present in the user’s scenarios. For

instance, a core schema would define location and activity, but it is the user’s local

schema that extends these to define the specific types of locations and activities.

Therefore, it is the user that determines the design of the local schema and data

rather than fitting the data to a modules’ design assumptions.

Modules should be designed against generic concepts, rather than specific

instances, so that the user has as much flexibility as possible. For example, a

routing module would not specify the modes of transport supported but instead

the data parameters required to perform routing for any mode and its design

assumptions. The user would then select modules based on available data and

investigation design, e.g. one user may consider it adequate that car and bicycles

use the same routing approach while another would select a dedicated module

for each. Certain cases may require a module to extend the breadth of the core

schema, but should be minimised, e.g. vehicle routing module that considers

road conditions, such as low bridges, requires additional vehicle characteristics

not required by a generic router.

In the Semantic Web, classes are sets of individuals and can be sub-classed to

any hierarchical depth [85]. A person, household or activity are all examples of

individuals in this context. An individual can belong to multiple classes that can

be asserted or inferred using a reasoner, SPARQL query or rules engine. Classifi-

cation can be based on context using the individual’s existing class membership

and the values, cardinality and inter-connecting properties. Illustrative examples

are:

1. A person with access to a car and possessing a driving licence belongs to

the Car Driver class.

2. A person aged between 5 and 11 belongs to the Primary School Student

class.

3. Retail location selling luxury items and open after 6 pm assigned Affluent

Evening Retail activity type.

4. Leisure activities sub-classed into Exercise, Sport or Culture classes but

also Indoor or Outdoor.

52

5. People working at the same location are inferred to be colleagues of each

other.

The hierarchy depth of classification and properties becomes a user choice

to an arbitrary level of detail based on data sources, design assumptions and

implementation context. e.g. the core class and property triple ”Person hasAc-

tivityAt Location” is sub-typed as ”Employee hasEmplyomentAt Workplace” and

”Student hasEducationAt School”. The user asserts the data according to the

sub-types, but generic modules can still access the core concepts through inferred

memberships.

Filtering according to temporal, e.g. opening hours, or spatial, e.g. activity

location, or any other characteristic allows different contexts to exist within the

same knowledge-base. Locations modelled with an area of effect, e.g. school

catchment or retail operational area, enable partitioning and selection rather

than assuming a pervasive effect as in many existing models.

The allocation of an individual to a class, or their existing relationships to

other individuals, can be used to apply default values or create new relation-

ships, e.g. a person belonging to a household is inferred to be resident at the

household’s location. The creation of new relationships can also be constrained

by applying filtering. Persons could be associated or limited to activities in a

certain geographic area or specific types.

Different derived schema and data will produce alternative knowledge-bases

that still function with the generic modules. Modules that extend the core schema

would operate on the same knowledge-base without interference to generic mod-

ules.

3.3.2.3 Network Conversion and Land Use Relations

This stage consists of two parts: the conversion and addition of road network,

and other transport infrastructure, data into RDF format and the linking of land

use data to the road network. This process can involve conversion of location ad-

dresses and post-codes to spatial coordinates in the selected coordinate reference

system. Formats for road network information typically follow a node (junction)

and edge (road) graph structure but there is a need for a standardised RDF

53

vocabulary for transport networks and supporting infrastructure.

The INSPIRE project [63] includes a transport infrastructure theme. Work

is in progress to develop RDF vocabularies for INSPIRE [41], but no vocabulary

yet encompasses the whole transport domain for simulation purposes. Other

research has investigated additional data requirements of transport models for

CityGML [17] and the conversion of GML to RDF [64]. A standardised schema

and tools would allow routing operations and interpreting of road semantics to be

performed on the knowledge-base without the current dependency on a specific

traffic simulator or GIS system.

Once the network infrastructure has been stored in the knowledge-base then

geospatial relationships are identified between infrastructure and land use loca-

tions. This primarily consists of identifying the proximity of roads, buildings and

public transport access points to each other.

3.3.3 Travel Demand Model

A variety of travel demand models have been developed based upon several dif-

ferent techniques, such as the Four Step Model, Activity Based and Agent Based.

The focus in this work is on constructing activity and travel schedules based on

template activity patterns. The generation of activity pattern templates takes

place prior to the knowledge-base construction as they serve as an input to that

stage. However, since travel demand models exist that do not require activity

patterns it is discussed at this stage.

3.3.3.1 Activity Pattern Generation

The activity pattern is a typical data structure of agent-based models and provide

a template, or skeleton [19, 20], from which a person’s activity and travel schedule

are assembled according to the context, see Figure 3.5. The generic templates

are populated with contextual instance data to form a schedule. In the example,

assumptions are made that the initial and final activities are extended to fill the

entire scenario time-period, but alternative implementations may make different

assumptions. The locations and travel choices will create varying travel durations

between activities. Waiting times are included in the activity or travel stage [10]

54

to remove empty periods, but time gap filling approaches vary, e.g. extend activity

duration; allow travel time contingency or plan extra activities.

Figure 3.5: Diagram of time-line representation of a travel survey as the basis for
an Activity Pattern template.

The patterns available may be fixed [8] or derived from travel diaries of a

sample population using classification algorithms [20, 86]. The travel diaries

may be used to derive the activity choices, durations, indicative start and end

times, journey mode and household co-operation. Sets of activity patterns can

be associated with households and individuals in the synthetic population based

upon the corresponding characteristics. Any activity generator could be utilised

once its output is serialised to RDF and then aligned with the knowledge-base

schema.

3.3.3.2 Scheduling

The activity patterns are applied to a context, i.e. population, geography, and sce-

nario, different from that in which they were derived to form a schedule. Adapting

to an alternative context requires consideration of preserving minimum activity

duration; tolerance for timing slippage; and extending or including additional

activities to fill time gaps. The scheduling process typically covers a single day,

but future developments include multi-day scheduling; improved co-operation

between household members; and the incorporation of social network data [8].

Schedulers also need to ensure that consistent travel takes place for tours that

return to same location and journeys that return to an individual’s reference

location [10].

55

Activity prioritisation is used in some scheduling approaches to allow co-

operation between household members’ schedules. Mandatory activities, e.g. ed-

ucation and employment, are determined first with invariant start and finish tim-

ings. Maintenance, e.g. food shopping, and discretionary, e.g. leisure, activities

are then assigned with flexible strategies for duration and inclusion [9]. Schedule

coordination, such as adults escorting school children and shared vehicle usage,

is modelled by mandatory activities being scheduled on an individual basis and

then reviewed for cooperative travel across the household before allocating lower

priority activities.

3.3.3.3 Trip Planning

This stage is a key distinction between travel demand models with travel decisions

typically consisting of activity location; trip mode and activity time frame [87].

The scheduling stage determines the short term planning over a day or week,

while this stage considers the near term planning of individual trips within the

day. Design decisions are influenced by choice type and resolution order due to

their interdependence and impact on later decisions [9, 20, 88]. Route choice is

a further development in activity-based models [8, 9], but already a feature in

some agent-based models [19]. These decision-making and trip planning processes

represent a range of design approaches (Section 1.2).

3.3.3.4 Network Routing

The topology of the transport network has an influence on the travel decisions

taken by persons and the connectivity between locations, infrastructure and ser-

vices. Many transport simulators provide tools to perform routing using a variety

of algorithms, e.g. A-star and Dijkstra. This module interprets the network sup-

ply information in the knowledge-base to inform the travel demand models and

removes dependency on transport simulator tools. The removal of this depen-

dency will enable alternative algorithms to be considered that are developed for

large road network datasets [89, 90] or satellite navigation systems [91] and which

may be the focus or requirement of an investigation.

This module can be executed either prior or dynamically during demand mod-

56

elling, with generated routes stored in the knowledge-base for re-use or reference.

However, the prior option requires an exhaustive set of all route combinations

which becomes very large as the number of points of interest increases.

An area for future work is consideration of semantics present in road network

datasets, such as temporal context, trip purpose and physical characteristics.

These features are lacking in the examined routing tools such that routes ignore

private or resident only access, road closures at specific time periods, weather

events, traffic signalling, previous travel experience, and tall vehicles under low

height bridges etc. These are characteristics that affect routing and can be ac-

commodated in the proposed knowledge-base. Alternative services could also be

modelled, such as taxi services, car sharing, lift sharing and autonomous vehicles.

Therefore, this module presents a wide set of complex factors that would benefit

from being developed separately to traffic simulators so that greater comparison

can be made between implementations and better inform the demand modelling

stages.

3.3.3.5 Feedback and Learning

The process of feedback and learning is based upon the relative success of the

proposed travel plan. The outcome of the simulation process is fed back into the

travel demand model to inform the decision-making process. Generally learning

and adjustment to schedule and trips is performed following a batch simulation

of a whole schedule [32]. However, iterative schedule adjustment due to travel

delays during simulation have been developed [8, 19].

The whole knowledge-base can be made available for interface with simulator

APIs [92] or as part of an artificial transport framework [33]. Therefore, the

simulation stage can be performed as an iterative step-wise process with travel

demand being adapted as simulation conditions change. This would facilitate

both the iterative inter-simulation and reactive intra-simulation rescheduling.

3.3.4 Travel Simulator Interface

The outcome of a travel demand model is a person’s activity and travel schedule.

Interfacing directly with traffic simulators, or aggregation of travel demand into

57

Origin/Destination matrices, can be achieved through knowledge-base query and

data conversion into the required format. The information required by a specific

traffic simulator may not require the complete schedule with requirements vary-

ing. For example, MATSim [32] as a minimum requires people to be identified

with a plan of activity type, end time, travel mode and location in XML format.

SUMO [46] requires both person schedules and vehicle routing with start and

stop locations and departure times in XML format. TRANSIMS [86] requires

person and vehicle information including the household, person, purpose, mode,

vehicle, start and end locations with departure and arrival times in CSV format.

Network supply information is an additional input that is already required in

the knowledge-base for travel demand generation. Simulators typically support

their own bespoke file format for configuration parameters and network supply,

but some standard network topology formats are supported. Therefore, interfac-

ing to a simulator will require specific interfacing modules, but some topology

serialisations would be re-usable.

3.4 Design of Framework Software Application

and Configuration

The previous sections have discussed the framework by considering the module

components that are required for generation of travel demand. In this section

there will be examination of the organisation and execution of the framework

by considering the design of the framework as a software application and the

potential physical configurations. These alternative configurations offer flexibility

to the user in how data is obtained and modules are utilised to undertake the

travel demand generation process.

3.4.1 Design of Framework Software Application

This section identifies the software components that are required for the frame-

work. These software components are the building blocks of the framework and

the travel demand generation process and therefore it is important to provide

58

clarification of their role. The three primary software components are the User

Application, Semantic Web library and the Graphstore as shown in Figure 3.6.

Figure 3.6: Diagram of the software components of a user application.

• User Application: represents the entry point for executing the travel de-

mand generation process. The User Application could provide a Graphical

User Interface (GUI) or Command Line Interface (CLI) but may be pro-

gramming code custom written by the user. The User Application will load

any local knowledge-base with dataset or configuration data required for

execution.

• Semantic Web Library: provides an Application Programming Interface

(API) that complies with the published standards, e.g. RDF and SPARQL.

The User Application utilises this library to access Semantic Web technolo-

gies. The library is dependent upon a specific platform and programming

language. However, the Semantic Web data formats are interoperable so

that the output of one Semantic Web library can be utilised by a different

library.

• Graphstore: the storage provider for one or more RDF graphs. The graph

data may be held in-memory or persistently on disk depending on the de-

sign. Implementations are specific to each Semantic Web library but the

contents can be serialised to an interoperable Semantic Web format. The

knowledge-base, the collection of knowledge and data, is manifested by the

data held in one or more Graphstores.

59

The interoperability of the Semantic Web standards decouples applications

located on the same or different physical machines. They can each have differ-

ent standards compliant Semantic Web libraries and Graphstores as illustrated

in Figure 3.7. Each software component can be developed in a discrete manner.

Therefore, developers can make their own contributions without concern for com-

pliance with specific interfaces or using a single platform. Following a common

schema, as discussed in Chapter 4, simplifies the exchange of data between dis-

crete components. However, compliance to the data schema is not mandated as

discussed further in Chapter 5.

Figure 3.7: Diagram of the alternative component configurations using different
Semantic Web libraries.

Applying the discrete component design allows the functionality of the differ-

ent process stages to be separated from the user application, termed in this work

a module. Similarly, the data that forms the knowledge-base in the Graphstore

can be separated from the User Application. The knowledge-base can be further

separated across multiple physical Graphstores. The arrangement of these two

components are shown in Figure 3.8.

The Semantic Web is designed for on-line interoperability using the HTTP

communication protocol. Therefore, Semantic Web libraries provide functionality

for sending and receiving HTTP requests as part of the HTTP servers. The

HTTP server provides a service for accepting SPARQL queries and responding

with the results from those queries. This functionality can be used by both these

60

components to make them remotely accessible. Similarly, a User Application, as

shown in Figure 3.6, would have access to using the HTTP server and constructing

HTTP requests and responses.

Figure 3.8: Diagram of the software components of a module and knowledge-base.

The three components of User Application, Module and Remote knowledge-

base can therefore be arranged in a variety of configurations. These configurations

influence the physical arrangement of computers that can be used to execute the

framework and will be discussed further in the next section.

3.4.2 Configuration of Framework Components

The previous section identified three software components that are utilised within

the framework: User Application, Module and Remote knowledge-base. This sec-

tions will discuss how these components can be configured to provide alternative

physical arrangements. These arrangements provide choice to the user in where

they obtain the data and functionality to execute the travel demand generation

process. The wider the choice and the less burdensome the access process then

the greater potential for robust investigations. There will be consideration across

four main configuration examples although further variations, e.g. mixes of local

and remote knowledge-base, could be applied.

3.4.2.1 Local Knowledge-Base and Local Modules Configuration

The first configuration to be considered, and most straightforward, is where the

User Application, Modules and knowledge-base are all located on a single physical

61

computer. This represents a conventional set-up where an application is supplied

with configuration and data files to be executed in a local environment and is

illustrated in Figure 3.9.

Figure 3.9: Diagram of the local configuration using a single computer.

A graphstore is able to store multiple graphs of data. Similarly, multiple

Modules may be present to be executed. Therefore, a configuration needs to be

expressed by the user to select the correct graphs, functionality, and queries to

be used in a specific execution. This configuration is described by a RDF data

structure, termed Framework Configuration, called Config in the diagram. The

further details of the Framework Configuration are discussed in more detail in

Section 5.3. However, in this context it provides a directory to locate data and

queries to be used. The User Application can access all the required data and

modules locally using the provided configuration.

3.4.2.2 Remote Knowledge-Base and Local Modules Configuration

The next configuration considers where data is located on remote computers as

published RDF datasets. The term remotely accessible or remote are applied for

any service that is available outside of the application. Therefore, it is remote

to the application rather than remote to the physical computer. The use of the

term Computer in these diagrams is a simplification for clarity.

The data is accessible through SPARQL endpoints provide by HTTP servers

and can be retrieved using Federated Queries. The RDF graph structure permits

some or all of the data to be located remotely and combined with local data and

modules. This is illustrated in Figure 3.10 where part of the knowledge-base has

62

been located on a separate computer and is accessed over a HTTP connection.

Figure 3.10: Diagram of a remote configuration with data held on a remote
computer.

The knowledge-base in Computer B contains two graphs of data. These could

be different sets of data with each being used during execution. Alternatively

they could be different versions of the same data with each being used in sep-

arate Framework Configurations. Each dataset is referenced in the Framework

Configuration by their Unique Resource Identifier (URI).

3.4.2.3 Local Knowledge-Base and Remote Modules Configuration

The positioning of components is not limited to the data of the knowledge-base.

The Modules in Figure 3.10 are positioned locally and accessing remote data.

Therefore, the inverse would also hold with the Modules positioned and executed

remotely on data held locally, as illustrated in Figure 3.11.

63

Figure 3.11: Diagram of a remote configuration with module held on a remote
computer.

The Framework Configuration supplies the information required to access the

graphs of data in a generic Semantic Web-based approach. This enables develop-

ers to implement their models and functionality in their own environment. They

do not have to publish across multiple platforms or provide documentation on

how to deploy the module. Instead resources can focus on explaining the design,

data requirements and implementation of the module to inform users and obtain

feedback for future developments.

The user does not have to deploy the module locally avoiding the time and

resources required to address configuration or environment issues. There can

instead be a focus on preparing the data relevant to their investigative scenarios.

The utilisation of a new version or alternative module requires only adjustment

of the URI referring to the module and its hosting service.

64

3.4.2.4 Remote Knowledge-Base and Remote Modules

Configuration

The final configuration is when both data and modules are positioned remotely.

Since both the data and modules can be configured to be remotely retrieved

then it is not required that either are local. In this case only the Framework

Configuration is held locally by the user.

The User Application retrieves any data it requires from the remote knowledge-

base, e.g. households in an area, to initiate or fulfil the data requirements of the

initial remote Modules. However, once begun these Modules may also make direct

data requests of the remote knowledge-base. This is achieved by referring back

to the Framework Configuration. The local knowledge-base could then be the

recipient of the final results of the travel demand generation process or retrieve

them from where they are remotely held once completed.

Figure 3.12: Diagram of a remote configuration with data and module held on
remote computers.

65

3.4.2.5 Implications of Remote Configurations

These remote configurations can be scaled across as many computers or services

as required to perform the process, e.g. modules and datasets could be stored on

the same computer or each hosted by a different computer. By defining Modules

and knowledge-bases as services the functionality and data can be sub-divided

as an implementation requires with the user able to supply the Framework Con-

figuration required to satisfy it. For example, Module A is implemented with

three sub-modules: Module B, Module C and Module D. The user constructs a

configuration that redirects Module A to use Module C1. The Module C1 has

two sub-modules and the user redirects one of these to their own implementation

of the functionality while continuing to use the other default sub-module.

The HTTP request is sent using a URL that could be responded to by an

on-line service or by a local service on the same physical computer. Similarly,

requests sent to different URLs could be serviced by a single physical computer.

Alternatively, requests to a single URL could be serviced by a cluster of com-

puters with requests being allocated to balance workload across the cluster. The

transmitter of the request does not know, or need to know, where the response is

actually coming from or how it has been handled, although there is the need to

ensure the response is trusted (Section 5.5).

This means that the physical location and configuration of a service can be

changed without any impact upon the requesting application and so decoupling

requester from responder. These general benefits of a service orientated archi-

tecture mean that the framework can be re-organised and up-scaled. Therefore,

development of complex and computational demanding functionality, such as hu-

man behaviour models, can be developed and then executed upon clusters of

distributed computers.

The potential to host multiple configurations provides benefits beyond con-

ventional set-ups for the travel demand generation process. It does not restrict a

user to pre-specified set-ups and allows easier access to data sources and module

implementations. This in turn reduces the burden of setting up and executing the

travel demand generation process, e.g. by removing the extract transform load

(ETL) process (Section 5.2), so that investigation can be undertaken quicker.

66

The control of these configurations and enabling switching between them

without breaking the execution process is vitally important. There is also a

computational cost in preparing and transmitting HTTP requests that can im-

pact execution times. The developed approach, the Framework Configuration,

for addressing these matters are discussed further in Section 5.3.

3.5 Chapter Summary

This chapter has introduced the design of the framework components to address

Research Question RQ1 by identifying the knowledge-base as the underlying data

repository for the travel demand modelling process. The main stages of the travel

demand process have been further described as a set of module components.

These modules interact through the common data concepts that have been mod-

elled in the knowledge-base.

It has been identified that the existing three stage process of Population Syn-

thesis, Travel Demand Model and Traffic Simulation needs to complimented by a

Knowledge-Base Construction stage. In this stage the input datasets are aligned

to the common schema and with each other. This can include the spatial alloca-

tion of households to residences; classification of concepts into the user’s schema

based on properties and characteristics; and the reconciliation of land use with

road network infrastructure.

The development of a common schema will facilitate interoperability between

modules and reduce the need for user intervention in transforming concepts con-

tained in the datasets. In Chapter 4 there is discussion of the developed common

schema of data concepts to investigate Research Question RQ2, while Chapter 5

will consider how adaptations can be made when modules do not follow the same

schema.

The Travel Demand Model stage was further decomposed into five modules to

develop an activity-based approach. These modules were identified as examples

of functionality to which alternative techniques could be applied. The inclusion

of alternative and existing travel demand models would substitute some or all of

these modules by ensuring that data concepts at the boundary of the module or

stage are satisfied. Chapter 6 discusses in further detail the implementation of

67

the Scheduler, Trip Planning, Network Routing, and Traffic Simulator Interface

modules in the development of the prototype.

There was also discussion of the application design and physical configura-

tion of the framework which proposed both local and remote configurations. An

objective of the framework is to provide users with greater control over the se-

lection of modules and the sources of data. Therefore, accessing remote sources

supports this objective but also introduces the potential for user error in access

and integration. Chapter 5 investigates ensuring data and query quality provided

by none expert users and also discusses Research Question RQ3 for the selection

of these alternative sources.

68

Chapter 4

Semantic Modelling of Travel

Demand Generation Data

4.1 Introduction

The previous chapter discussed the components for travel demand generation

with focus on activity-based models and how a knowledge-based and Semantic

Web approach can be applied. This chapter discusses the knowledge modelling

of the data concepts identified for the framework’s components (see Figure 3.3).

These data concepts form a schema describing the framework’s main concepts

and their interaction as the basis for addressing research question RQ2. This

schema forms the basis of the implemented modular prototype design discussed

in Chapters 6 and 7.

The chapter begins with discussion of general principles and design patterns

for semantic web schema design. The top-level data concepts for travel demand

modelling are then described before more detailed examination of the fundamen-

tal data concepts which are widely re-used before focusing upon the identified data

concepts. The data concepts have been split into those travel demand concepts

that should be generally recognisable from real-world experience and those that

are specifically related to the travel demand modelling and simulation process.

Throughout illustrative examples are provided to demonstrate how the schema

can be extended by a user for their investigative scenario. There is then con-

69

sideration of the utilisation of the schema through detailed examination of its

application to key classes and the inter-relationships between concepts. Finally,

there is discussion of the graph organisation of the knowledge-base and how it

can be applied to organise data into distinct datasets for operational use.

Notation of Schema Diagrams

This chapter and later chapters use graph diagrams of the schema and supporting

examples to show class, instance and property relations as illustrated in Figure

4.1. The notation shows classes as nodes (boxes) linked by edges (lines) of object

property or sub-class relations. Object property relationships are shown primarily

through edges but secondary object and data properties are listed below the class

names with corresponding class or datatype.

Property cardinalities are also shown to indicate the schema shape and enable

data validation. Only namespaces from public vocabularies are shown in the

diagrams to assist their identification. Classes are shown by a circle and properties

by a rectangle. The illustrative example diagrams show individuals, or instances,

of classes using the rdf:type property and indicated by a diamond symbol.

Figure 4.1: Diagram of notation used in schema diagrams.

4.2 Semantic Web Schema Design

The main technologies of the Semantic Web have previously been discussed with

regards to their functionality (Chapter 3) and their general application (Section

1.3). In this section there will be discussion of the principles upon which the

70

Semantic Web has been developed in relation to data modelling. It will also

outline the particular design considerations and published public vocabularies

that have been applied during the development of the framework schema which

is described later (Section 4.5).

4.2.1 Semantic Web Principles

The core technology of the Semantic Web is the Resource Description Framework

(RDF) from which a variety of technologies have been developed to fulfil specific

purposes. Therefore, the selection of Semantic Web technologies is dependent

upon the purpose. If an application does not require querying of data then it

does not require SPARQL. If an application does not require Description Logic

inferencing then it does not require OWL.

The choice to not utilise a technology, e.g. OWL, does not preclude the

use of another technology, e.g. graphstore data storage and SPARQL data re-

trieval. There is also overlap between technologies where the same outcome can

be achieved using different technologies, e.g. OWL, SPARQL, SHACL and SPIN

can all be used to infer data and determine class membership.

The premise of the Semantic Web is based upon the design principles of mod-

elling for re-use and on-line access to data. Basing the framework upon the

Semantic Web enables sharing of data and schemas in an inter-operable manner

while allowing the users and module developers choice in the technologies they

apply. In this section there will be an outline of three principle areas of the

Semantic Web to highlight the impact that they have on the development and

usage of the schema and framework.

Anyone can say Anything about Any topic (AAA)

The premise of the World Wide Web is that the publication of information is

controlled by the information producer. This means that there is not a central

authority determining the accuracy or appropriateness of information and it is

instead a consideration of the consumer. This does not mean that information

cannot be produced and attributed to authoritative sources, but that any in-

formation can be produced by any provider. This principle has been termed as

71

Anyone can say Anything about Any topic and means in practice that information

from different sources can be contradictory, inaccurate, deceptive or out dated

[36].

Designing to the underlying AAA principle leads to the notions of alternative

models to represent the same concepts and producing models that can be re-used

and extended. The support of alternative data models can be seen in the design of

the Resource Description Framework where properties can be asserted for classes

without constraint or contradiction until a perspective of the context is applied

through a schema or language, e.g. RDFS or OWL.

The re-use and extension of data models allows sharing of best practices and

consistent structuring of data, while enabling its application for new purposes.

An anti-pattern of the sharing for re-use modelling process is creeping conceptu-

alisation where the developed schema exhaustively anticipates all applications of

the model [36]. It has been sought to avoid this anti-pattern with the proposed

schema by limiting it to the essential classes and properties.

In the following explanation of the schema a distinction is made between those

elements which are deemed necessary for the proposed framework and providing

illustrative examples intended to give context or understanding. Indeed it is

intended that one of the benefits of applying a Semantic Web approach to the

traffic and transport simulation domain is to allow flexibility in the data model so

that a wide variety of implemented models and tools can be utilised by allowing

alternative properties and additional classes to exist alongside each other.

Non-unique Naming Assumption (NNA)

The AAA principle discussed previously introduces another aspect of the Se-

mantic Web which has implications for inferencing. The decentralised approach

allows publishers to describe concepts and models in the manner of their own

choosing. Therefore, two publishers may select different names (URIs) to iden-

tify identical resources. Both identifiers are correct in their own context so it

cannot be assumed that different identifiers refer to different resources, unless it

is established that the two resources are not the same. This is different to other

modelling approaches where it is assumed that resources are not the same, unless

72

it is established that they are the same.

Open World Assumption (OWA) and Closed World Assumption (CWA)

The Semantic Web is designed upon a principle of a distributed network. In such

an environment, information can be separated and split over the numerous partic-

ipants of the network. Each participant may only hold partial information about

any resource or a participant may not be accessible to provide their information.

This has lead to the development of the principle Open World Assumption

(OWA) and is applied in some schema languages, e.g. OWL [93]. The application

of these schema languages allows the inferring of additional facts not present in

the data but implied by the structure and content. The OWA principle means

that conclusions cannot be made about a resource if it relies on the assumption

that complete information is available. Contradictory information may be held

on another part of the network which would invalidate the previous conclusion.

This has implications for inferencing such as the absence of a statement in a

dataset does not mean the negative of the statement can be assumed, e.g. the

absence of a visitor record for a location does not mean that there has never been

any visitors. Applying this assumption reduces the inferences, i.e. conclusions,

that may be found when applying a schema to a dataset but it does ensure

that those conclusions will never be contradicted. There can also be further

complications introduced that increase the complexity and place restrictions on

modelling achieved by the schema language [94].

This is quiet different to Object-Orientated Languages where a Closed World

Assumption (CWA) is applied [85] and has also been adopted for some Seman-

tic Web technologies [95, 96]. Following this principle, it is assumed that the

information available is complete for the resource. In CWA it is accepted that

contradictory information may arise later but arriving at the conclusions at the

current time is more important. This means that more definite inferences can be

made, e.g. no visitor records for a location means that the location has had no

visitors. It is commented that in many pratical applications OWA does not make

a difference or can be ignored in favour of CWA [36].

73

4.2.2 N-ary Relationships

The fundamental structure used in RDF and other schema language is the triple

[97]. These triples express statements of the form subject, predicate and object.

These form a binary relation between the subject and the object. For example,

Peter owns X123 is a statement that identifies the owns(predicate) relation be-

tween Peter (subject) and X123 (object). Additional statements can be created

that expresses Peter’s ownership of multiple cars as shown in Figure 4.2.

Figure 4.2: Diagram of schema multiple relations of same property.

Difficulty arises when additional information is expressed about the relation-

ship between Peter and his cars. For example, the date that the car was purchased

by Peter. The n-ary relation has been proposed as a design pattern to resolve

this issue [98]. There are two forms to the pattern based on creating a class and

introducing a list. The latter is proposed for certain specific cases of n-ary rela-

tions and is not considered further as the selected approach in the core schema

relating to lists is to use the Ordered List vocabulary (Section 4.2.3) due to its

benefits with SPARQL queries.

In the class-creation approach a connecting class is created to form a bridging

relation between the related individuals. There are two approaches proposed

based upon whether there is a distinguished participant as shown in Figure 4.3.

The selection of either is reliant upon modelling context with both approaches

being applied in the schema.

In the distinguished participant approach it can be seen that Peter is the

subject at the root of the graph, while in the no distinguished participant the

emphasis is placed upon the created Car Purchase class as the subject with both

expressing the same information. It can also be seen in this example that for

both approaches that there is no direct relation between Peter and the cars,

74

Figure 4.3: Diagram of example N-ary patterns for distinguished participant (top)
and no distinguished participant (bottom).

which would have to be asserted or inferred if required.

It is noted that adopting the class-creation approach for n-ary relationships

increases the complexity of expressing class restrictions in OWL. However, the

desired constructs can still be achieved and usage of OWL with the framework

and schema is an optional user choice.

An alternative approach to n-ary relations is the use of reification which was

included in the original RDF specification, but discontinued in the later version

[97, 99]. The reification approach was intended to provide additional information

about a specific statement, e.g. the origin of a statement, rather than additional

statements in the knowledge-base. The reification design pattern was found to

75

cause issues for inferencing with reasoners and distrupted the graph structure

leading to its discontinuation [99]. Therefore, it has not been applied as a design

pattern in the core schema.

4.2.3 Ordered Lists

This section discusses the approach that has been applied for organising items in

an ordered list. A common data structure is the need to group together items

that have a related purpose, generally termed a collection. The RDF [100] and

RDFS [101] vocabulary provide several different types of collections which vary

in semantics according to whether repetitions are permitted and the items are

ordered.

The use of lists, which provide an ordered sequence, occurs frequently in the

core schema to assist in organising items, e.g. the time intervals of a schedule. In

some cases these items could be grouped as an unordered collection and sorted

by characteristics when retrieved. However, this introduces additional processing

that could be avoided when the collection is created by applying a list structure.

The RDF and RDFS collections relating to lists are minimalist approaches

which define the list as a chain pointing from element to element. Each prop-

erty of the chain is defined according to its position in the chain. This makes

these structures inefficient to retrieve in SPARQL, which can resolved through

implementation specific extensions, but are not part of the SPARQL standard.

The Ordered List Ontology [102] defines a vocabulary, illustrated in Figure

4.4, based upon a root resource to the list that has a series of slots. This root

resource can be further extended by other classes and properties. These slots have

properties relating to their stored item, i.e. the contents of the list, its integer

index position in the list and consistent properties to form a chain structure with

other slots, in the same manner as the general RDF list structure. The number

of slots in the list, and therefore items, is also a property of the root resource.

The SPARQL protocol provides syntax for ordering by property values so that

query results are returned in an ordered manner. This means that data following

the Ordered List Ontology structure can be returned in order of index or specific

items can be retrieved based on the index of their slot. A single item can also be

76

Figure 4.4: Schema for published Ordered List Ontology vocabulary. [102]

referred to in multiple lists. Therefore, applying this vocabulary provides simpli-

fication to SPARQL querying without relying upon implementation extensions

for a commonly applied data structure.

4.2.4 Value Set Design Pattern

This section discuses a design approach that has been applied repeatedly in the

core schema. It outlines the basis for this approach in the context of Semantic

Web language restrictions and assisting with usability of the schema.

The Semantic Web defines several languages that provide rules and condi-

tions to structure RDF data and form the basis for inferencing, including Re-

source Description Framework Schema (RDFS)[101] and Web Ontology Language

(OWL)[103]. There are three profiles of the OWL language: Full, Description

Logic (DL) and Lite. Each offer different restrictions and features which can

influence computational completeness and decidability. The Description Logic

profile is the basis of the OWL2 language [93] which superseded OWL. Both the

OWL and RDFS languages are based on the Resource Description Framework

(RDF).

RDF provides a structure to data based upon triple statement of subject,

property, object. The subject and property must be resources while the object

can be a resource or a literal. Resources are represented by Unique Resource

77

Identifiers (URI) while literals are strings with corresponding datatype.

Classes, which form sets to group items together, are themselves a type of

resource. Instances of these classes are termed individuals. In designing a schema

two common features are referring to a group of individuals, i.e. a class, and

defining common characteristics for the group. An example of this would be the

following statements:

Example Statements:

Peter is qualified to drive cars and vans.

Peter owns the car X123.

These statements identify a specific car that Peter owns and the class of

vehicles that he is qualified to drive. These could be represented by the schema

illustrated in Figure 4.5.

Figure 4.5: Diagram of schema for example statements complying with RDF
standard.

A triple of the form Peter qualifiedToDrive Car is permitted in OWL Full and

RDFS but is not permitted in OWL DL, OWL Lite or OWL2 [104]. In these latter

languages there are restriction that separate classes, properties, individuals and

data values. This means that classes cannot be the subject of properties except

for specific exceptions, such as rdf:type. Applying a reasoner based upon these

languages would result in failure and many Semantic Web tools are developed

based upon the restrictions of OWL DL or OWL2 [103]. Adopting this approach

in the core schema would therefore preclude usage of these languages and many

tools by users.

To comply with these restrictions a Value Set, or Enumeration, design pattern

[104, 105] has been applied. In this design pattern the classes of interest are

78

asserted as individuals as illustrated in Figure 4.6. The asserted individuals

would themselves be used as the object of statements about the general group.

These individuals often represent sibling classes and so themselves could form

a class. In addition to complying with all the language restrictions this approach

does not prevent the user from applying their own classes to group individuals,

e.g. Person for Peter and Car for X123. To avoid confusion between the class

and individual the term type has been used in the core schema.

Figure 4.6: Diagram of schema for example statements applying the value set
design pattern to comply with OWL DL/OWL2.

The second identified modelling feature is defining common characteristics for

a group. This assists in maintaining consistency if values are modified and reduces

repetition in the data. The properties available for a user to define the relations

between the subject and object of a triple are object and datatype properties.

In OWL DL, OWL Lite and OWL2, these properties are restricted to being

between individuals and not classes. This presents the previous issue in using

these properties on classes. This can be resolved by using the type individuals

asserted to represent classes to also be the subject of the properties for the com-

mon characteristics of the group members. In conclusion, the use of the Value Set

design pattern ensures language compliance for the user; permits the classifica-

tion of individuals into the user’s own classes; and allows the defining of common

characteristics.

4.3 General Data Concepts for Travel Demand

The previous chapter discussed the identified modules of the framework for travel

demand and described their purposes. These module components are intended

79

to interact through the data present in the knowledge-base to support the overall

objective of travel demand modelling. The data requirements of the modelling

process incorporate a wide range of physical and abstract entities.

This section will provide general description of these entities and their or-

ganisation into separate domains. These domains are broader than the specific

concepts of the core schema which are described in the following sections. Addi-

tional data and concepts are intended to align under these general concepts, but

are not required to operate the core schema with the module components, e.g.

vehicle emissions data.

A summary list of examples and key terms is provided, but is not intended

to be exhaustive. Figure 4.7 illustrates the top level domain concepts that have

been identified. Interconnections exist between these domains, particularly for

all domains to the geospatial and temporal, but these are not shown for clarity.

Figure 4.7: Diagram of schema concept domains.

Travel demand is based upon the movement of people and goods from one

location to another. The purpose of movement for people can broadly be cate-

gorised as people accessing goods or services provided by organisations; fulfilling

or accessing occupations with organisations; and social interactions with other

80

people. The purpose of movement of goods is for delivery to people or to organ-

isations where they may be consumed or further transported at a later time.

Fulfilling these activities requires travel through a geospatial environment

from place to place. This travel utilises transport vehicles and infrastructure

with the available options and duration varying temporally.

The following statements have been used as a conceptual basis for the identi-

fied groupings:

• People have demographic characteristics.

• People form relationships with other people.

• People have access to transport choices.

• People make activity choices influenced by demographic characteristics.

• People reside in places as household groupings.

• People travel to places for activity choices.

• Organisation provide activity choices and goods at places.

• People and organisations require goods.

• People and organisations utilise vehicles for transport and movement of

goods.

• Vehicles operate within transport infrastructure.

• Environments vary geospatially and temporally.

Geospatial and Temporal

These concepts are incorporated into all the other top level concepts and rep-

resent that traffic demand modelling and simulation takes place over a spatial

environment with varying time component. The spatial environment requires the

capturing of specific points and more complex line-string and polygon shapes.

The interaction of these shapes through their spatial relationships, e.g. shapes

81

overlapping or containing each other, enables relevant selections and interactions

to be made.

The representation of time variation requires the capturing of both specific

points in time such as an event/instant or the interval in time when a condition

may or may not be available. The tracking of temporal factors has an impact

both within a scenario and between scenarios. This can include the selection of

activities to undertake, availability of transport infrastructure or comparing the

performance between simulated and planned trips.

• Point

• Linestring

• Polygon

• Instant

• Interval

People

This concept represents both the specific details about an individual, e.g. age,

household composition and occupation, along with the aggregated population de-

mographics for an area from which individuals are derived during the Population

Synthesis component. It is the key concept with interconnections to all other

concepts as the selection choices and composition of the environment are derived

from people. People individually, or in groups, form households that are used

as a common collection in demographics and simulations as it can determine the

resources and decision making requirements that an individual faces.

• Age

• Gender

• Employment

• Household composition

82

• Vehicle ownership

• Occupation type

• Driving licence coverage

• Inter-personal relationships

Spatial

This concept captures the physical locations which people travel between and

spend their time. It could include buildings providing services, such as retail,

entertainment and leisure, or occupation, such as employment, education and

volunteering, or the home residence, such as a houses and apartments. Residing

in these places represents that the person no longer needs to travel for a period

of time while an activity is undertaken. However, the capacity to supply an

activity is finite. The availability of activities is also time variant depending

upon the opening hours of the place. It should also be noted that a place can

fulfil multiple activities or services, both in terms of the organisations present

and the purpose of the individual, i.e. a retail place is also an employment place.

• Buildings

• Land use

• Education

• Employment

• Leisure

• Retail

• Housing

• Administrative organisational areas

83

Activities

The undertaking of activities by humans is the source of travel demand. The

nature of activities can encompass the full range of human enterprise. These

activities take place in different locations, are available at different times of the

day and occur upon different days. The choice of activity selected by an individ-

ual varies according to their circumstances and preferences. The structure of a

schedule may be derived from a template of activities.

• Type

• Location

• Availability

• Duration

• Templates

Network Infrastructure

This concept captures the transportation infrastructure necessary for people to

undertake travel, such as road network, railway stations, bus stops and car park-

ing, along with supporting information, such as road semantics and traffic sig-

nalling.

• Road, cycle and pedestrian networks

• Train station and railways

• Tram lines and stops

• Bus stations and stops

• Ferry and airport terminals

• Public transport routing and scheduling

• Car parking facilities

84

• Petrol stations

• Traffic signals and sequencing

• Access permissions and restrictions

Vehicles

This concept represents the physical mode of transport utilised by people or goods

and their characteristics. In some case this is tightly bound to the infrastructure

available, such as rail or ferry travel, while in others it is dependent upon the

choices and resources available to a person. An output of traffic simulation is

the economic and environmental impact of travel caused by vehicles, e.g. emis-

sions and fuel efficiency. Given the increasing automation and diversifying energy

sources of motorised vehicles it is likely that this concept will need to extend be-

yond the purely motorised aspect to incorporate communication and autonomy.

• Physical characteristics

• Performance characteristics

• Economic characteristics

Goods

This concept represents the physical products that people and organisations con-

sume and are moved between locations by organisations. The movement of goods

creates demand for travel according to the places that supply and demand them.

Organisations organise logistics to seek to optimise the speed of movement and

reduce costs. This domain is not a particular focus of this work and is incorpo-

rated in the abstract sense of freight vehicles moving between locations without

consideration of the drivers and inputs for that behaviour. Its inclusion is to

recognise its place in the overall process.

85

Organisations

Organisations represent collections of individuals that are unified under a common

purpose. Individuals may belong to multiple organisations and fulfil different roles

within them. Organisations can be broadly categorised into the public, private

and voluntary sector according to their purpose and configuration. These sectors

would satisfy the employment, education, retail or leisure activities that people

seek to undertake, but also include the households into which individuals are

grouped. An organisation may consume or supply services from one or more

places while a place may support one or more organisations.

In turn the organisation will potentially produce, consume and transport many

goods and potentially provide employment or services to many people. Organisa-

tions may also be in direct control of the movements of their vehicles or elements

of the transport infrastructure. Therefore, the organisation is a unifying concept

that draws together and interacts with all the different concepts identified.

• Public sector

• Private sector

• Voluntary sector

Demand Modelling and Simulation

The process of travel demand generation and simulation incorporates a number

of abstract data concepts. These abstract concepts can include the rules or pa-

rameters for decision making; the activity and travel schedule; or the potential

routes for travel through a transport network.

• Scenario parameters

• Routes

• Schedules

• Mode costs

• Behaviour rules

86

• Scheduling rules

• Simulation results

The following three sections will examine these general concepts in greater

detail and demonstrate how they have been modelled in the schema. The sections

have been organised to discuss the fundamental geospatial and temporal concepts;

the grounded concepts drawn from the physical world; and finally the abstract

concepts derived for travel demand modelling and simulation.

4.4 The Temporal and Geospatial Modelling of

Travel Demand

The overall purpose of travel demand models is the modelling of the real world

that is experienced within a spatial environment that varies through time. There-

fore, these two concepts and how they are represented is a fundamental and recur-

ring theme. The handling of these concepts will have an effect on the accuracy,

consistency, versatility and re-usability of the schema. This section discusses

these two fundamental concepts and outlines the adopted approaches taken in

the schema.

4.4.1 Geospatial

The examination of travel demand generation is inextricably linked to considera-

tion of geospatial data. Activities and travel performed by people takes place in

the physical environment with positioning and interactions having an influence

upon outcomes. This influence can be found in all stages of the process, in-

cluding the preparation of the knowledge-base, generation of the travel demand,

executing traffic simulation and the analysis of the modelling results.

The representation of geospatial data covers a wide range of factors and nu-

merous standards have been developed. In many cases there is a distinction

between the abstract notion of an object (feature) and the physical description of

its geospatial shape (geometry). This enables different geometry representations

87

of the feature to exist, which may vary in the level of detail, coordinate reference

system or data format.

The GeoSPARQL standard [37] has been developed to provide an RDF data

model that is compatible with the SPARQL protocol. This is shown in Figure

4.8 by the two related classes of Feature and Geometry. The Geometry class has

further meta-data properties for the serialisation of its geometry shape. These fea-

tures and geometries can be compared for their spatial relationships, e.g. points

within a polygon, which are much broader than tests of distance or equivalence.

These spatial relations have usage in tasks relating to preparing the knowledge-

base as discussed previously (Section 3.3.2). However, there are other forms of

functionality that are outside the standard, such as determining which side of a

line a point is positioned or the distance a point is positioned along a line, that

are needed for accurate micro-simulation and need to be provided by modules.

Figure 4.8: Schema for Feature and Geometry for published GeoSPARQL vocab-
ulary. [37]

Implementations of the standard extend the SPARQL functionality to pro-

duce more sophisticated query results and reduce complexity. This functionality

can include characteristics about a geometry and its spatial relation to other ge-

ometries. There exist numerous formats, or serialisations, for geometries which

88

provide alternative representations of the same information. Similarly, coordinate

reference systems can describe geometries for use in different contexts. There-

fore, implementations can provide handling of these additional requirements, but

following the same data model.

The GeoSPARQL standard is influenced by the Simple Features standard

[106]. This details spatial functions for use in SQL relational databases with

geometry shapes represented in Well Known Text (WKT) and Well Known Binary

(WKB) formats. A key feature of the Simple Features standard, and by extension

GeoSPARQL, is that all geometries are treated as being in a two-dimensional

plane. This provides a simplification for interpretation of spatial relations and

calculation. The calculation of distance between geometries can be achieved using

Euclidean distance derived from Pythagorean theorem.

However, this assumption is not always the case with many popular coordinate

reference systems used for global positioning, e.g. WGS84, being geodetic. In a

geodetic system the points are positioned on the surface of a sphere, which closely

approximates the earth’s surface. Applying Euclidean distance to these points

does not measure the surface distance across the sphere but the chord. Instead the

computationally more expensive great-circle , or orthodomic, distance is required

for an accurate distance.

The error introduced by this assumption is accepted in the Simple Features

and GeoSPARQL standards as it is offset by the computational simplification,

being less significant at small scales and only applying for certain datasets. Co-

ordinate reference systems for two-dimensional plane, i.e. Cartesian coordinates,

have been developed which are highly accurate at the national level. These co-

ordinate reference system place points relative to an origin in the plane and are

only suitable for relatively small geographic areas. However, these geographic ar-

eas can cover whole countries, e.g. the United Kingdom has the single Cartesian

coordinate reference system OSGB36.

The geographic area of interest in travel demand generation is typically at city

or smaller scale. Therefore, the national coordinate reference systems are suit-

able. Datasets that are provided in a geodectic coordinate reference system can

be converted to an appropriate Cartesian system using published mathematical

transformations and tools.

89

In Figure 4.9 are shown the geometry classes of the Simple Feature standard

in RDF with the primary interest being Point, LineString and Polygon along

with their collections MultiPoint, MultiLineString and MultiPolygon. However,

other representations of geometry classes could be utilised if the user chose.

Figure 4.9: Schema for Simple Features geometries aligned to GeoSPARQL. [37]

An alternative vocabulary to GeoSPARQL in RDF is the Basic Geo Vocabu-

lary [107]. This describes the WGS84 latitude and longitude coordinates as two

properties of a subject and is a much simpler and directly accessible represen-

tation. However, its usage forces datasets to use a single coordinate reference

system, i.e. WGS84, and would require conversion of datasets prior to adding

to the knowledge-base. This is a popular global coordinate reference system for

datasets, but not universal with national agencies often preferring Cartesian sys-

tems, e.g. road networks. The vocabulary can also only express one shape, i.e.

points, does not describe spatial relations and there is no standardisation in the

calculation of distance units of measure or method.

In conclusion, adopting the GeoSPARQL data structures provides a consistent

representation of geospatial data with potential for data being readily available

in this RDF format. It also allows modules and users to leverage implementa-

tions that can handle variations in format and context as well as providing more

sophisticated querying. Investigation was undertaken into implementing the full

GeoSPARQL standard as an extension to the Apache Jena library as the existing

support for spatial query did not conform with the GeoSPARQL standard, or

meet the needs of the project, and no existing alternative implementation was

90

identified that provided full support.

The developed implementation included features such as Semantic Web stan-

dards compliance, minimal configuration and a short initialisation period along

with automatic switching between coordinate reference systems and units of mea-

sure. There was also an additionally developed novel feature of caching invariant

geospatial literals and other data that is repeatedly re-used in spatial queries to

produce a performance improvement of up to 20%. An extendible benchmarking

framework was also implemented to enable comparison with two existing partial

implementations using a published geospatial benchmark.

This benchmarking demonstrated that the developed implementation achieved

comparable or faster query responses, while also providing much faster data load-

ing and initialisation durations. This benchmarking framework is planned to be

extended in future work into a conformance framework to provide an automated

tool for demonstrating compliance of the developed implementation, and other

GeoSPARQL implementations, with the GeoSPARQL standard. Further discus-

sion of this investigation can be found in Appendix B.

4.4.2 Temporal

The representation and tracking of time is an important aspect of travel demand

modelling. Human travel and activity occur over time durations and at different

time points which causes variation in volume, behaviour and location. The time

of day, day and season have already been discussed as having a varying influence

on activity and travel (Section 1.2.3). Travel time itself is also regarded as a

key metric in transport planning [108, 109] making it an important part of the

analysis process. The temporal domain is therefore important in the modelling,

execution and analysis of transport and travel models.

The public Time Ontology in OWL (OWL Time) vocabulary [38] defines tem-

poral concepts, properties and their topological relations. The focus is upon de-

scribing resources in the world and Web pages. The representation of time con-

cepts is achieved through literals or RDF properties. The string literal approach

uses XSD dateTimeStamp[110] which consists of a calendar date, wall clock time

and time-zone offset, e.g. ”2000-01-01T09:00:00+0:00”ˆˆxsd:dateTimeStamp. In

91

RDF, a subject will have properties representing each part of year, month, day,

hour, minute and second. The recording of time is through instants representing

a specific point in time and intervals representing a duration of time, which are

formed from two instants : start and end. This robust representation of time is

shown in Figure 4.10.

Figure 4.10: Schema for Interval, Instants and Duration from published Time
Ontology in OWL (OWL Time) vocabulary. [38]

In the context of travel demand modelling this introduces a level of com-

plexity that can be considered unnecessary, given that current travel demand

models focus upon a single day period. The models are typically executed with-

out consideration of a specific reference date. Instead time is considered from

the abstract basis of a time during the day, i.e. 9am rather than 9am on 21st

March 2001. While a base date (e.g. 01/01/1900) could be provided and the

time component extracted this presents extra complexity during execution. It

also introduces data which does not have relevance or correctness and could be

misunderstood or misused.

The use of RDF properties, while having use for logical reasoning, presents

additional complexity when storing, extracting and sharing data. A complete

time value requires three triples, i.e. properties for hours, minutes, and seconds,

compared to a single triple for the literal approach. The representation of an

interval of time requires eight triples compared to two triples for the literal ap-

proach. Logical reasoning between different time values can also be performed by

parsing the string literals with an appropriate library so the functionality is still

92

available to modules that require it. Therefore, limited or no benefit is provided

by the full OWL Time vocabulary but with an increase in complexity.

Figure 4.11: Diagram of Time Instants and Interval.

The adopted approach has been to use literals in the XSD forms of time, e.g.

”09:00”ˆˆxsd:time for 9am, and duration, e.g. ”PT10M”ˆˆxsd:duration for 10

minutes. These are used together with OWL Time Day of Week to consistently

represent the seven days of the week. If a module is designed to consider specific

dates, e.g. seasonal factors such as weather conditions, then the XSD date can

be incorporated as an additional property without interference to existing data

and affect upon modules which do not require it.

The time interval represents a period of time from a start to an end, as

illustrated in Figure 4.11, and occurs frequently in travel demand modelling.

Items may have a validity period when they are eligible for selection or utilisation.

Alternatively, it could represent when an event or activity is taking place. Figure

4.12 shows the Time Interval class that is defined in the schema.

The class provides a simple representation of the points in time when the

interval starts and ends along with the duration, i.e. the difference between

the start and end times. This class can be sub-classed for those items which

are themselves intervals, e.g. parts of a schedule, or referred to through the

hasTimeInterval property when multiple or optional intervals apply, e.g. opening

hours of a location. Differentiation of days is through the has Day property to

the OWL Time class Days of Week, shown here with its set of instances.

93

Figure 4.12: Schema for Time Interval and Days of Week.

4.5 Concepts from the Physical World

In this section there will be discussion of the specific data concepts that have

been identified to allow the general components of the framework to consistently

interact, as previously discussed (Section 3.2). Figure 4.13 shows the transmission

of these data concepts between the general module components.

It is not intended that the described concepts are definitive and instead will

be extended or supplemented in the knowledge-base according to the needs of the

user and the selected modules, as supported by the AAA principle (Section 4.2.1).

Throughout this section there are illustrative examples of how these concepts

can be extended, but have not been included in the core schema. Many of these

illustrative examples have been applied in the prototype scenario design discussed

94

in Chapter 7.

Figure 4.13: Diagram of main components and schema data concepts related to
the physical world.

4.5.1 Person

The purpose of transportation is the movement of people and goods [11]. Cur-

rently all transportation of goods by freight and movement of people by vehicle

or personal locomotion requires human oversight and control. Therefore, both

the demand and supply of transportation are generated by people.

In an activity-based modelling perspective, people generate transportation

demand as a consequence of undertaking activities at spatially separate locations.

Activities undertaken at the same location do not require movement, or at least

not a meaningful quantity to model, and therefore do not generate demand.

The transportation supply required to satisfy this demand, either through

personal means or accessing a service, produces the physical manifestation of

transport, i.e. traffic. Maximising the efficiency of transport supply is the primary

focus of policy decisions and interventions, but are downstream actions of activity-

based modelling. Therefore, the primary focus is upon the individual person as

95

the originator of the transportation demand.

Figure 4.14: Schema of Person and Travel Group.

Figure 4.14 shows the class of Person and its formation into groups through

the Travel Group. This has been placed in the People domain (Figure 4.7). Each

person has a set of characteristics which describe them and would typically be

modelled as data properties. However, there are no required characteristics in

the schema and instead these are incorporated by the user extending the schema

according to the data available and selected modules.

In a transport modelling context, a Person can be defined by a wide variety

of characteristics, including age, sex, income, possession of driving licence and

vehicle ownership [111–113], and are typically drawn from census information

[114]. The census data must be converted for use in activity-based models and

traffic simulators through a Population Synthesis process to convert aggregate

data into a disaggregate set of persons.

The characteristics themselves can also be aggregate or disaggregate values.

Figure 4.15 shows alternative representations of the same characteristics with use

of aggregate groups using object properties (left) and disaggregate values using

a mix of object and data properties (right). The disaggregate values could be

represented using only data properties, but in some cases this would present a

poor modelling approach that is prone to error, e.g. using string data values

rather than individuals.

The selected modelling of the characteristics will be dependent on available

data, techniques and models. This highlights a practical difficulty in defining a

definitive schema, which itemises all object and data properties, for the travel

demand and transport simulation domain. In one model an assumption that all

Persons have only a single employment would be valid, but this is not the case

96

Figure 4.15: Diagram of example extension to the Person class showing alternative
representations of the same characteristics.

in real-world data and so not all potential models.

Certain person data characteristics, e.g. vehicle ownership, home size and

employment type, must be transformed and aligned with other contextual infor-

mation to provide relations through object properties to other individuals and

concepts, e.g. ownership of a car requires instantiating a car individual in the

knowledge-base, typically during the Knowledge-Base Construction stage (Sec-

tion 3.2). These individuals and concepts will in turn have their own character-

istics and relations.

The significance and relevance of characteristics and relations will vary based

upon the context and design of implemented models. For example, in the context

of network routing the age of a person as a passenger in a car is not relevant.

When considering driving a car then age is relevant as children should not be

driving. In another context, other characteristics, e.g. holding a vehicle driving

licence, can imply that a person has an appropriate age and therefore the age

characteristic may not be required. When modelling using public transport the

age can be relevant as pricing policies can be age based. The CO2 emissions of a

vehicle may not be relevant when examining the pricing structure of a toll bridge.

As outlined previously, seeking to stipulate the precise characteristics of per-

sons in the schema as data and object properties is not practical. Therefore, ex-

plicit characteristics are not asserted in the schema and instead can be determined

by the user and the particular implemented modules they are using. However,

applying the proposed approach to construct a Semantic Web knowledge-base al-

lows this wide range of data to be modelled and available for general use through

SPARQL queries. The required data can be selectively retrieved according to the

context and removing the need to define fixed interfaces that pass data between

97

stages. The concept of the Person can be extended with further characteristics,

e.g. familial relationships, by additional domain vocabularies [115, 116] or the

user’s own schema.

4.5.2 Travel Group

Humans are social animals who live in organised groups to cooperate, share re-

sources and coordinate their activities. This is captured broadly in Figure 4.7 by

the Organisations domain. The typical organisational unit of persons in popula-

tion and transport modelling are households [84, 114]. Scheduling of activities are

coordinated between persons in the household to ensure that they can be under-

taken together or that each person can undertake their activity when resources

are limited [9], e.g. a parent escorting a child to an activity or families that own

a single car. The notion of a household is not limited to a family, but applied

more broadly to the sharing of facilities inside a home [117].

In a wider context, people organise into groups for other activities. This can

include commercial organisations, but within these organisations there may be

multiple sub-groups based on geographic or organisational constraints. Mem-

bers of car-sharing or bike hire schemes when people can hire vehicles for short

term periods are also organisations. Each of these groups will have different

behavioural dynamics to influence scheduling; ranging from the tightly coupled

relationship between parent and young child to a loose association of common

interest. Therefore, there is a need to group persons together, but there is a

diversity in how the groups will behave.

This is modelled in the schema by the Travel Group which forms a base

class, from which the user can create sub-classes as required, and has members of

individual Persons. The concept of the Travel Group can be enriched with further

information, e.g. roles, organisational units or associated locations, by additional

domain vocabularies [118, 119]. However, these concepts are not essential to

travel demand modelling and so have not been included.

98

4.5.3 Mode

A person can travel between places using a variety of modes of transport and a

single trip could incorporate switching between modes for different stages. These

modes can include privately owned vehicles or the use of public transit, e.g.

buses and trains. A set of modes not yet found frequently in travel demand

modelling and traffic simulation literature are the service modes of taxi and pick-

up services, which are gaining increasing prevalence with smart-phone apps able

to conveniently request and pay for usage, along with car-sharing and lift-sharing

schemes [57]. This concept of alternative travel methods positions Mode within

the Network Infrastructure domain in Figure 4.7. The usage of a mode has

implications for its availability, accessibility and utility. For example:

• Public transit only being available at a certain frequency and periods of the

day.

• Public transit is accessible only at the location of connections to the service,

i.e. bus stops and train stations.

• Cars accessibility is determined by its location, e.g. at home when at work,

destination parking or usage by other members of the group.

• The utility of a mode can be influenced by the speed of travel, route re-

quirements, financial cost and the weather, e.g. raining while cycling.

The mode of transport incorporates a range of factors and concepts which can

be defined as data properties. In the traffic simulation stage the mode of vehicles

is used to restrict access along edges and apply turning restrictions at junctions.

It is also used to impose the legal speed limit that the general class of vehicles

should not exceed, which is distinct from the speed an individual vehicle can

achieve and is a feature of some simulators [46]. This legal speed limit informs

the estimation of the best-case travel times for routes discussed later (Section

4.6.4).

It has been discussed previously (Section 4.2.4) that the OWL2 language re-

quires that the subject of a triple must be an individual and object of a triple

99

must be an individual or a literal, except for the key rdf:type property. There-

fore, a class of Mode is defined for which the user’s choice of modes of transport

is instantiated as individuals. These individuals can then have property relations

with individuals from other classes to ensure consistency and re-use. The alterna-

tive design would be to define mode as the classes into which vehicles and people

are placed, which would prevent the additional attribute properties being utilised

and confusingly suggest a person is a mode of transport rather than a person has

a mode of transport.

The additional properties provide an additional consideration during the mod-

elling process. A user may wish to explore different characteristic values to in-

vestigate their impact and influence across different investigations. These Mode

values would either need replacing for each investigation, have multiple variant

properties with the current version selected or have the whole knowledge-base

replicated.

The adopted approach is to define a Mode Definition concept to form an N-

ary relation (Section 4.2.2) for the mode’s characteristic values as illustrated in

Figure 4.16. This definition can be associated with one or more scenarios (Section

4.6.1) and so re-used as required. Therefore, only the Travel Scenario needs to

be selected to obtain the relevant parameters for the whole scenario. Multiple

scenarios can be present in the knowledge-base simultaneously allowing them to

be retained as a record of their defined values and also re-used.

The UK Census 2011 [13] identifies more detailed modes of transport for

travelling to work by commuters as well as highlighting that 5% of the working

population are based at home. These are detailed below to illustrate the breath

of modes that a travel model and traffic simulator may seek to model:

• Driving a car or van

• Passenger in a car or van

• On foot (walk)

• Bus, minibus or coach

• Train (rail)

100

Figure 4.16: Schema for Mode and Mode Definition.

• Underground, metro, light rail or tram (rail)

• Bicycle

• Work mainly at or from home

• Taxi

• Motorcycle, scooter or moped

• Other method of travel to work

In Figure 4.17 an example Mode class hierarchy is shown with individual

instances to show a possible organisation of the concepts discussed previously. A

special individual of AnyMode is defined for convenience to allow access for all

the defined modes when determining access through network infrastructure, e.g.

generating routes or during traffic simulation.

Personal Mode

A further area of consideration is the personal locomotion of an individual. It has

previously been discussed (Section 1.2) that travel demand and traffic simulation

has focused upon vehicle modes with neglect of pedestrian modes e.g. MATSim

101

Figure 4.17: Diagram of example Mode class hierarchy with individuals.

simulator [32] does not model bidirectional routing of pedestrians and instead

relies upon teleportation between places. This is also illustrated in the SUMO

simulator [46] where pedestrians are treated as a type of Vehicle, an inconsistency

with the definition of vehicles in the following section (Section 4.5.4). In both

simulators the Mode determines the access through the transport network.

In the same way as vehicles from different manufacturers have varying char-

acteristics so does the mobility of individual people. This mobility includes the

speed at which the person travels but also the routes which are accessible. A

modelling perspective will require some aggregation yet there are identifiable

sub-groups that may require specific modelling. Elderly and disabled people may

not be able to access flights of stairs or may use mobility aides, e.g. wheelchairs

or mobility scooters, which cannot handle inclines. Therefore, modelling the

pedestrian phase of a Person can lead to distinctions between personal modes.

In addition, not all modelled Persons may be required to undertake pedestrian

102

stages, e.g. a freight delivery driver will not walk between delivery activities, but

would instead be expected to move the vehicle.

It should be noted that explicit modelling for the use of mobility aides and

their restricted access is not present in the SUMO [46] and MATSim [32] traffic

simulators. Instead only a generic pedestrian class is defined. This shortcoming

has been notified to the SUMO developers and has been adopted as a future

enhancement (see Appendix A).

4.5.4 Vehicle

Persons can reduce travel times and improve efficiency of moving goods by util-

ising vehicles. The definition of a vehicle is a machine which transports people

or cargo. Therefore, it includes cars, trucks, buses, trains and ferries and also

bicycles [120]. Therefore, a vehicle is a broad definition that encompasses road

and non-road usages that can be motorised and non-motorised. This is presented

in Figure 4.7 by the domain of Vehicles.

Accessibility of vehicles can also vary with privately owned cars, car-sharing,

car-hire or utilisation of taxi services, while public transit vehicles are only avail-

able at fixed geographic locations. Therefore, numerous sub-classes can be used

to distinguish between different types of vehicles. This continues when consid-

ering the manufacturer, design and performance of a vehicle leading to further

sub-classifications and distinctions.

The availability, accessibility and performance of a vehicle are influential in

the modelling and simulation of the transport environment. An individual ve-

hicle could therefore belong to multiple classes and be described by a range of

characteristics, including physical dimensions, seating capacity, speed and CO2

emissions. A further key characteristic is the mode to which the vehicle be-

longs and there is a strong relationship between mode and vehicle. The physical

construction of a Vehicle is separate to any autonomous software or emerging

technology that may control it (Section 4.7).

Following the approach described previously (Section 4.5.3) a Vehicle Defini-

tion is associated with the scenario and relevant individual Vehicles through a

Vehicle Type as shown in Figure 4.18. This has the benefit of removing repeti-

103

tion of common characteristics and allowing multiple scenarios with their varying

values to exist alongside each other in the knowledge-base.

These characteristics can include simulation specific parameters, e.g. vehicle

max speed, acceleration and deceleration, which may be varied for different road

conditions. This use of Vehicle Type is in keeping with the modelling approaches

of SUMO and MATSim simulators where common values are re-used.

Figure 4.18: Schema for Vehicle and Vehicle Definition.

There is the potential that an input dataset has individual vehicles, number-

ing in the thousands or more, with each having their own characteristics. This

presents an issue as there is a mismatch between the individual approach of

the dataset and the schema’s Vehicle Definition just described. Transformation,

back and forth, between the characteristics being defined on individual vehicles

and gathered together in the Vehicle Definition can be achieved using SPARQL

queries.

An example Vehicle class hierarchy is shown in Figure 4.19 which distinguishes

between cars and motorcycles. The Car Vehicle class has been further sub-classed

104

to distinguish between large and small vehicles, which each have individuals.

These individuals would have their own Vehicle Type property, which in turn has

a Vehicle Definition for the scenario.

Figure 4.19: Diagram of example Vehicle class hierarchy with individuals.

Vehicle Route

The output of the travel demand stage is a schedule of activities and the travel

stages required to travel between them. The traffic simulation stage requires

routing information for each of the travel stages to identify where a person, and

potentially their vehicle, will travel. In the case of the SUMO simulator [46]

a listing needs to be provided of each vehicle’s complete route, i.e. excluding

any pedestrian stages. This information is also required for vehicle’s operating

upon public transit lines and may also be useful for analysis of vehicle travel in

a scenario, e.g. planned versus actual route.

Therefore, a Vehicle Route concept has been incorporated as shown in Figure

4.20 so that this information can be included in the knowledge-base during sched-

ule construction or produced once scheduling is complete. The Vehicle Route is

attached to the Activity & Travel Schedule for which it has been generated (Sec-

tion 4.6.3. It identifies the vehicle with its start and end location and access

points. The detail about the route is provided as a delimited string of Road Link

and Road Node URIs. This provides a compact form of expressing an ordered list

105

that can be split when required and used for searching additional details. This

removes the need to create and search the additional triples of the Ordered List

for information that may only be required by certain modules and simplifies the

process of passing the list of information between modules.

Figure 4.20: Schema for Vehicle Route.

4.5.5 Transit Line

The Vehicle concept encompasses a wide range of purposes and uses. A distinct

purpose is the provision of public transit, also know as public transport, to trans-

port passengers according to a published route and timetable. These transit lines

are fulfilled by individual vehicles travelling along the route utilising the road

network or dedicated infrastructure, e.g. bus lanes or railway lines. The route

consists of a series of planned transfer locations, which may be on road, dedicated

waiting areas or within stations, for passengers to board or alight. Adherence to

the timings of the timetable, to compensate for traffic and other delays, will in-

crease and decrease the period of waiting at each transfer point to ensure that

the vehicle departs each transfer at the correct time.

Each transit line provides a specific mode of public transit and one or more

transit lines may exist for a mode. This positions Transit Line within the Network

Infrastructure domain in Figure 4.7 as it does not relate to the actual vehicles

but the infrastructure provided. Availability of transit lines can vary by time

periods and days with some services not being available in evenings or weekends.

Variation in frequency according to time and day can be captured by multiple

transit lines. The transit lines are provided by transit operators, which provide

one or more transit lines potentially across multiple modes of transport, and

106

can be private or public sector organisations. Therefore, there is close linkages

between Transit Line and the Vehicles and Organisations domains.

Figure 4.21 shows the schema developed for Transit Lines grouped by Transit

Operators. Each Transit Line is described in more detail by a Transit Line

Timetable and Transit Line Route with each being ordered lists to preserve their

organisation. The Transit Line Timetable captures the timetabling information

published for the public to plan their journeys by describing the transfer points

by their spatial Location and departure time. The Transit Line Route contains

the information required during travel demand generation and traffic simulation

by using the stage between transfers to estimate route and travel time. This

information is derived by applying the general timetable to specific road network

infrastructure. The simulation of these transit lines with vehicles can be abstract

or instantiated. Therefore, the transit vehicle property to create a relation to

specific vehicles is optional.

Figure 4.21: Schema for Transit Line.

107

In an abstract approach the point of access offers an entry and exit point

into the environment without consideration of the vehicle, i.e. the vehicle always

arrives as timetabled at the airport, light rail, train or ferry terminal. Persons

arriving at the point of access no longer travel in the simulation and have con-

cluded their travel while those departing from the point of access can only do so

at the timings permitted by the timetable.

Alternatively, the instantiated approach has individual vehicles fulfilling the

transit line by moving through the simulation and interacting with other vehicles

and persons, e.g. a bus driving on the road or a train travelling through railway

crossings. This can be applied to all the modes described previously and is a

feature of the traffic simulator. Therefore, the detail associated with a transit line

varies between the travel demand stage (concerned with the transit line timetable)

and the traffic simulation stage (concerned with vehicle’s physical interactions)

which can be reliant upon mode, network infrastructure and simulation design.

4.5.6 Activity

Every activity undertaken by a person is a unique occurrence that is described by

temporal and geospatial characteristics. These characteristics give the activity

a time, place and duration. Here the term for an Activity has been applied

to the more general notion of the potential to perform an activity at a specific

location and during specific time periods. All activities cannot be performed

at all locations and at all times and therefore differentiation is required. Each

Activity belongs to an aggregating Activity Type.

The unique planned event of a Person is expressed in the Activity Interval

of the Activity & Travel Schedule discussed later in Section 4.6.3. The Activity,

Activity Type and Activity Priority are positioned within the Activities domain

in Figure 4.7.

In Figure 4.22 each Activity is defined by one or more effective time periods

and effective days. These could define narrow or wide ranging time periods, such

as opening hours when a shopper can shop in a store; a student can attend a

library to study; or the daylight hours when a jogger can exercise in a park. The

effective times can be split into morning and afternoon time periods, or any other

108

Figure 4.22: Schema of Activity, Activity Type and Activity Priority.

arbitrary division, to reflect the availability as required e.g. lunchtime closures.

In the case of variation between days in effective times, e.g. weekend and weekday

opening hours, then different activities would need to be created.

This allows scenarios to variate temporally and select alternative Activities

for different outcomes. Exploration of seasonal factors, e.g. months or holiday

periods, would require extension with additional properties. The spatial location

of an Activity is defined by its relationship to Locations and is discussed later

(Section 4.5.7).

The effectiveness of an Activity can also vary spatially. Attendance of children

at a school may be limited by its catchment area. Large retail shopping centres

have an influence on a greater area than small shops. This can be modelled in

the knowledge-base by an optional relation with an abstract Geographic Area,

discussed later in Section 4.5.8.

It has previously been discussed (Section 1.2.3) that human activity covers a

wide range of undertakings that require broad classification. The specification of

the entire classification is impractical for the core schema. Instead it is anticipated

that users will be able to define their own categories and related characteristics

through parameters and relations in the knowledge-base. However, the activities

still have general groupings that need to be recognised.

The application of a class hierarchy when those classes may themselves have

additional properties or used objects in triple statements can be incompatible with

certain schema languages (Section 4.2.4). Therefore, the composition approach

is applied to the Activity concept, in keeping with other concepts, where each

instance has a property to an Activity Type that allows identification of related

109

instances.

This Activity Type is used as a generic reference to identify Activities as part

of Activity Patterns discussed later (Section 4.6.2). Otherwise Activity Patterns

would have to identify all the relevant Activity instances, which would be burden-

some to create and manage. An extending schema could apply a class hierarchy

to assist in organisation but it would not be generally suitable. Figure 4.23 pro-

vides illustrative examples of Activity Types that a user or model may use to

extend the core schema.

Figure 4.23: Diagram of example Activity Types.

The process of constructing a schedule reflects a series of trade off decisions.

The intended activity start time, end time or both could be impacted by pre-

vious and following activities, longer travel times between activities or delays

during travel. When scheduling within a household, or other travel group, the

co-ordination of activities has to reconcile satisfying the activities and travel of

other members. This has been modelled in travel demand models through as-

signing priorities to activities [9].

Those activities with high priorities may be considered inviolate while lower

priority activities can be abandoned or curtailed. Activities with high priority

may be placed in the schedule first with lower priority activities fitted into avail-

able gaps. The approach adopted depends upon the scheduling strategy with

parameters being specified for minimum duration or tolerance for changes. This

110

general concept of activity priority is reflected in the Figure 4.22 schema by each

Activity Type having an Activity Priority.

This places the modelling assumption that all activities of the same type have

the same priority, e.g. all education is mandatory. Variation of this assumption

could be achieved on an individual activity or person basis within a knowledge-

base and would reflect greater individualisation in choices, but it represents a

level of modelling complexity beyond current examples. The specific parameters

for a particular investigative scenario or model are captured as part of the Travel

Scenario discussed in Section 4.6.1. Therefore, data about priority parameters

would also be modelled there to allow comparison between different values. Figure

4.24 shows example instances of the Activity Priority found in existing models

[9].

Figure 4.24: Diagram of example Activity Priorities.

The three associated classes of Activity, Activity Type and Activity Priority are

designed to allow multiple instances to be present at the same physical Location.

Figure 4.25 shows an example of the data within a knowledge-base for a shopping

location that provides both retail and employment activities. These activities

have different types and effective time periods. The scheduling of two Persons

with interest in the different Activity Types would draw upon the different sets

of data relating to the location to produce differing scheduling outcomes.

111

Figure 4.25: Diagram of example data model for a shop providing retail and
employment activities.

4.5.7 Location

The activities undertaken by people take place at different physical locations.

The necessity to travel between these locations is the source of travel demand.

These locations can be where services are provided to undertake the types of

activity, e.g. education or retail, or where an type of activity is executed by the

person, e.g. employment or exercise. Therefore, locations represent any point

of interest in the physical environment. This can include buildings, transport

infrastructure, e.g. bus stops and motorway links, and outdoor spaces. This is

represented by the Location concept being positioned within the Spatial domain

in Figure 4.7.

112

These Locations can provide multiple activities and type of activities, e.g. a

school provides education and employment. Figure 4.26 shows the schema for

Location classes and their relationship to Activity and Activity Type. The rela-

tionship to Activity Type provides a direct relationship for convenience in retriev-

ing data based on what can be inferred by following the relation to the Activity

taking place at the Location. Therefore, the Spatial and Activities domains are

connected in Figure 4.7.

Figure 4.26: Schema for Location.

Further usage of the Location concept can be seen through the term reference

location used in travel demand models and which has been defined previously

(Section 1.2.2) as the location from which a person starts and ends their journey

[10]. The Location concept is also necessary for indicating where a Vehicle is

located at the start, during and end of the travel demand process to ensure

consistency such as returning a vehicle for future use, e.g. at the reference location

or hire facility, or picking-up a vehicle after performing a sub-tour by a different

mode, e.g. driving to work, walking to shopping and driving home. Figure

4.27 shows an example of how a user can sub-class the general Location class to

organise the buildings and places in the knowledge-base.

The physical dimensions of a location can vary depending upon the application

context, e.g. property house prices can be referenced using Global Positioning

System (GPS) coordinates, but land ownership requires highly detailed survey of

the boundary. Therefore, there can be multiple descriptions of a location, which

are accurate and precise in the appropriate context. This means that there is

113

Figure 4.27: Diagram of example Location class hierarchy.

close, but distinct relationship between the Spatial and Geospatial domains in

Figure 4.7.

To represent the varying application contexts, geospatial standards [37, 121]

have developed the concept of a Feature which can be represented by multiple

Geometry. These Geometry can vary in level of detail, coordinate reference sys-

tem or serialisation etc. The modelling of geospatial concepts were discussed in

further detail previously (Section 4.4.1).

Different stages of the modelling process may require different levels of detail

about a Location, e.g. when constructing a schedule the general proximity of a

location is required using straight line distance, but determining routing between

locations needs consideration of the relative positioning of a Location to the

transport infrastructure. It should also be noted that only during the traffic

simulator stage, when the physical interaction of persons and vehicles is being

simulated, is it required to have high fidelity tracking of spatial coordinates, e.g.

second or sub-second detail.

114

In the general context of travel demand the focus is upon the points of access

between a location and the transport network. Fine grained representation of

the internal layout of a building and an individual’s movements inside during an

activity are not required to be modelled. The Person is simply deemed to be at

or within the Location for the period of the Activity. However, the representation

of the building’s external shape may be useful for visualisation purposes.

Figure 4.28: Schema for Access Point.

The points of access to enter the location, termed Access Point in the schema,

provide a restriction on the general shape for identifying when the Person has

arrived at the Location, see Figure 4.28. This permits more specific determination

about the closest street or pathway when generating routes than provided by the

general polygon boundary of a location. This also allows some consideration of

physical barriers, e.g. fencing and walls, without having to explicitly model them.

Figure 4.29 shows an example residential area of houses. Each house is defined

by an external boundary with road access. A person (black circle) travelling along

the road is seeking to reach the farthest house via the shortest possible path.

When only the boundary of the target location is considered (dotted line) then

the path follows the shortest distance possible along the road before exiting to

travel through the boundary of another house.

When an access point is provided the path follows the road to the entrance

115

Figure 4.29: Diagram of alternative routes to reach a house location following
roads with (dashed line) and without (dotted line) considering an access point
(black square).

of the house and only travels a short distance outside of the road network and

without crossing any other boundaries. In both cases the travel time upon exiting

the road network is likely not to be modelled by a traffic simulator, but the latter

case provides a more faithful representation of the desired behaviour and reduces

errors.

There may be multiple access points to a location at different coordinates

around, within or near its exterior boundary, e.g. shopping centres can have

multiple entrances or points of access. These access points may vary in the

accessibility available for different modes of transport. This variation could be

one way streets for cars, which are bidirectional for pedestrians, or pedestrian

only zones in city centres or residential pathways between houses. There may

also be issues related to the presence of stairs or steep inclines which render the

entrance inaccessible to wheelchair users. Further properties or sub-classing of

the Access Point would allow differentiating between public and private access

points to restrict the Person or Vehicle based on its characteristics, e.g. residents

of a local area or employees of an organisation.

Figure 4.30 shows an example residential area of houses which have road access

and are separated by a footpath between the houses. An entrance is present at the

116

front (black square) of the house for cars and pedestrians but the rear entrance

(grey square) is pedestrian only. A person (black circle) travelling along the road

is seeking to reach the farthest house via the shortest possible path.

Figure 4.30: Diagram of alternative routes to reach a house location following
roads and pathways using car (dashed line) and pedestrian (dotted line) modes
via general (black square) and pedestrian only (grey square) access points.

When travelling by car the route must follow the road to the front of the house

(dashed line), but when travelling as a pedestrian there is a shorter route along

the pathway to reach the rear of the house (dotted line). The accessibility of

an access point can therefore influence the selected route and mode of transport

chosen by the person. The presence of multiple access points can also increase

the number of potential routes to reach a destination.

This incorporation of the mode of transport also permits transfer points to be

defined and identified where facilities, e.g. car parking or on-street parking, are

provided for changing between modes. In urban scenarios, stopping at a location

can be restricted, due to narrow streets or to prevent congestion, resulting in

the unavailability of parking for vehicles even though the road network outside

the location is accessible. Not explicitly modelling this access can result in cars

being routed directly to the location, making the car a favourable choice, when

in reality a person would have to park a distance away and travel back to the

location, potentially making a nearby bus stop more favourable.

117

The final concept of access is the specific public transit lines that can be

accessed by any person through the access point. Since mode of transport in-

corporates the general concept of public transit, e.g. bus, train etc., there is a

need to give an indication of the specific transit service accessible at the location.

Otherwise all locations accessed by a bus mode would provide a service to all

other locations with a bus mode.

The physical dimensions and accessibility are not the only characteristics re-

lated to locations in the real-world, but are among the most relevant to travel

demand modelling. Additional characteristics applied by a user or model could

include the capacity, opening times or postal address as described by public vo-

cabularies [122] or detailed physical building descriptions [64].

The capacity of a location to provide an activity to an individual and its

attractiveness or popularity in providing those activities have also been considered

in location choice models [32]. The popularity and utilisation of a location vary

temporally by day and time during the day while the capacity would typically be

a global value that is consistent. Figure 4.31 shows the schema for representing

these factors as ordered lists for the different time slots through a day or days

with an arbitrary frequency or number of slots.

Figure 4.31: Schema for Location Popularity.

118

4.5.8 Geographic Area

A distinction has been made between Locations, which are physically manifest in

the environment, and abstract geographic areas that are used to group locations

or define geographic concepts. These Geographic Areas, see Figure 4.32, can

include administrative concepts, e.g. local government areas, neighbourhoods,

postal delivery areas, electoral wards, school catchment areas and census zones,

or modelling concepts, e.g. retail attraction area, travel time boundaries, fare

pricing zones.

In all cases these are polygon areas that encompass an area of geography

rather than Locations which can be defined by points and polygons depending

upon the context. These areas of geography can also vary in level of detail,

coordinate reference systems and serialisation, so multiple cases may be defined.

The Geographic Area concept is positioned within the Spatial domain in Figure

4.7.

Figure 4.32: Schema for Geographic Area.

4.5.9 Network Infrastructure

A vitally important aspect of traffic and travel demand modelling is the network

infrastructure. This defines the roadways, public transport routes and other in-

119

frastructure, e.g. traffic lights, that people can use to travel between activities.

This is represented in Figure 4.7 by the domain of Network Infrastructure. Road

network topology has typically been represented following a node (junction) and

edge (road/link) graph structure [32, 46, 63, 83, 123]. This graph structure forms

the basis for the RDF representation in Figure 4.33 based upon INSPIRE con-

cepts [63], SUMO [46] and MATSim [32] simulator formats and the GeoSPARQL

standard [37].

Figure 4.33: Schema for road network described as a graph structure of
links/edges and nodes.

The nodes are given spatial coordinates for their placement, while the edges

specify the connections between these nodes. The spatial structure is simplified

with nodes only being placed when features exist, e.g. edges joining at a junction

or changes in road condition. Therefore, the edge/node graph structure is an

abstract representation formed from Road Nodes and Road Links.

Detailed curvature of roads used for visualisation are represented as addi-

tional geometry properties through series of segments in line strings. Further

detail about the actual physical dimensions of a Road Link can be included, but

modelling and simulation is more focused upon the number of lanes to indicate

capacity than actual physical dimensions, with visualisations often applying fixed

lane widths.

To support this abstract representation the length of a Road Link is stated

120

rather than being calculated as the straight line distance between nodes. The

edges themselves represent the centre line of a road way, but can vary in format

between being unidirectional or bidirectional. In unidirectional formats, the road

extends to one side of the centre line depending upon which side of the road

vehicles travel, i.e. left-hand or right-hand drive.

This means that a two-way road would be represented by two edges with

reversed start and end nodes. In bidirectional formats, the road extends on both

side of the centre line with a special property used to state that a road is one-

way. The unidirectional approach has been adopted here as it provides a directed

graph utilised in routing algorithms, e.g. Dijkstra, A-star.

Additional properties of the road link are the modes that are permitted or

not permitted from travelling along the road. General characteristics applicable

across Road Links are described in Road Link Types, following the design points

discussed in Section 4.2.4. This can include national speed limits and other

parameters, e.g. simulator specific values, that are invariant across scenarios.

Values that are varying between scenarios would be placed as Scenario Definitions

4.6.1 and selected for the required modules (Chapter 5). Further definition, not

shown here, would be lane mode restrictions, e.g. bus, cycle or pedestrian only.

The connectivity through the network can also vary with turning restric-

tions from certain lanes not being permitted, e.g. no left turns or bus only left

turns. These are captured through explicit road connections between the lanes

of roads as Road Connections. These Road Node, Road Link and Road Con-

nection form the collection described by the Road Network. This Road Network

also describes the meta-data of the geospatial coordinate reference system, the

geographic bounds and the side of the road vehicles drive upon, i.e. left or right

hand drive.

Further detail is also available in source datasets to describe restrictions on

height, width, resident access, time period access and payload etc. However, the

utilised micro-simulators, where routing functionality currently typically reside,

do not incorporate this level of detail in their route planning (Section 3.3.3.4).

Therefore, there are additional concepts and detail that could be considered in

traffic modelling and micro-simulation, but are not currently being utilised.

Although the source datasets are highly detailed in describing the roadways

121

there are certain gaps. The positioning of traffic lights are not publicly avail-

able and instead modellers have relied upon partnering local transport network

managers to provide this data. The corresponding phasing of these traffic lights

is also not widely published for public use. Therefore, micro-simulators, such as

SUMO, have provided heuristic algorithms to guess the location and phasing of

traffic lights. This represents a noticeable source of error and disconnect between

the simulated environment and real world conditions.

Traffic light phasing between and along priority and non-priority routes are

designed to have an impact on travel times and traffic congestion, which would not

be accurately represented. It would be straight forward to extend the schema to

incorporate the physical traffic light systems and phasing as part of the knowledge-

base using spatial concepts and the approach described for location popularity

(Section 4.5.7).

Similarly, road signage for directing road users to key routes and locations is

not described in the datasets or included in routing algorithms. Instead metrics

for minimising cost, whether distance or travel time, are utilised. These signs can

influence the routing decisions of individuals during route planning and driving.

An additional gap in the datasets is the lack of local speed limits for specific

roads. Instead national speed limits must be applied based upon the type of road.

However, there can be substantial variation between the type of roads and the

permitted speed limits as determined by local authorities. Large multi-lane roads

in urban areas can have lower speed limits than small single-lane roads in rural

areas.

This again is a noticeable source of error as speed limits can double or triple in

value, with consequent reduction in travel times, depending upon road conditions

and local policies. Manual identification and correction of these anomalies be-

comes impractical in large scale scenarios; wastes user resources; and risks error.

Therefore, the proposed schema has potential to be expanded with more detailed

concepts, but there are practical issues in obtaining data to support the concepts.

122

4.5.10 Goods

The demand for travel does not solely originate from the need to transport people,

but also the movement of goods (Section 1.2) and is included in Figure 4.7 by

the Goods domain. These goods are moved through complex supply chains from

point of manufacture or imported to commercial and retail customers. These

supply chains consist of multiple participants seeking to optimise the logistics of

transportation to ensure that deliveries and stock levels satisfy consumer demand.

The Artificial Societies class of travel demand modelling (Chapter 2) seeks to

achieve highly detailed modelling of the real-world, which could incorporate these

demand and supply characteristics.

This level of detail is out of the scope for this work and therefore goods are not

specifically captured by the schema. Instead the approach has been to treat the

freight vehicles with their drivers and the freight companies at an abstract level

of being Persons and Travel Groups, which have their own behaviour character-

istics, but still seek to generate and follow schedules and routes like any other

transport user. The extensible nature of the knowledge-base (Section 4.2.1) and

the proposed flexibility for selecting modules (Chapter 5) means that the more

detailed description of goods and their modelling could be developed for inclusion

in future work.

4.6 Concepts for Travel Demand Modelling

and Traffic Simulation

This section discusses those concepts that have been identified as necessary for the

transfer of data between modules and as part of the modelling process. These

are intended to be extended by modules as required by their own modelling

assumptions and design. These concepts are all placed in the Demand Modelling

& Simulation domain of Figure 4.7. The interaction of the principle concepts

between modules can be seen in Figure 4.34.

123

Figure 4.34: Diagram of main components and schema data concepts for module
interactions.

4.6.1 Travel Scenario

A key objective of adopting the proposed framework is to allow greater compari-

son between alternative implementations and the exploration of variation within

those implementations. There are a range of parameters used by each imple-

mentation, which influence the resulting outcomes, e.g. discrete-choice model

coefficients. Similarly, there are parameters that vary between scenarios being

explored, e.g. start time, end time and day.

In contrast, there are concepts in the knowledge-base that are invariant over

the typical modelling time-frame of one-day, e.g. road network infrastructure and

population demographics. Therefore, there is a distinction between the temporary

data being applied for a particular scenario and the persistent data present for all

scenarios using that knowledge-base. Handling of changes over the longer term or

significant variations to the persistent data could be represented by the creation

of multiple knowledge-bases, e.g. multi-year development of land usage.

Figure 4.35 presents the schema for the Travel Scenario, which is the central

concept for capturing the instance data of a scenario. It requires the day and

124

Figure 4.35: Schema for Travel Scenario.

time-period for the execution of the scenario as the focus is scheduling in the

short term time-frame of a day (Section 3.3). It is then expected to be extended

by additional definitions utilised by the modules of the framework for which two

types have been identified.

Firstly, the Scenario Definition concept applies to those parameters which

apply throughout the scenario. Secondly, the Scenario Event describes parame-

ters that may influence behaviour or traffic dynamics for a specific time interval

or geographic area of the scenario, e.g. inclement weather, sport and cultural

events, road closures. Examples of these additional scenario parameters is shown

in Figure 4.36 for several concepts that have been outlined previously. The main

definition of interest is modes and the parameters for maximum speed, often

utilised for routing, and costs, as part of trip choice selection. Other example

definitions include vehicle types, activity types, activity priorities and weather

events.

There is no constraint placed on the user as to the number and definition

of Modes through the Mode Definitions. These can distinguish between distinct

vehicle or travel types, but also variation within the types. For example, a user

can define multiple personal modes, e.g. walking and wheelchair, with different

characteristics to reflect varying speeds between age groups.

An example of three Travel Scenarios is shown in Figure 4.37. Each Travel

Scenario is defined with varying day and time interval properties along with three

Mode Definitions. One Travel Scenario utilises a different Mode Definition to

the other two Travel Scenarios for one Mode. This demonstrates the flexibility of

providing alternative parameters as data in the knowledge-base and then re-using

125

Figure 4.36: Diagram of extended Travel Scenario definitions.

them for multiple scenarios.

Consistency between scenarios can be maintained as parameters can be ad-

justed in a definition and then applied across multiple Travel Scenarios. SPARQL

queries can be written with reference to retrieving Travel Scenarios and their pa-

rameters are then consistently selected without needing to modify any hard-coded

values.

The Travel Scenario itself provides a convenient unique reference through

its URI to describe the scenario. This allows placing the generated data and

results of executing the framework with the knowledge-base into a named graph.

This named graph can then be stored in the knowledge-base for later extraction,

removal or re-use without interference with the persistent data or parameters.

Therefore, the Travel Scenario provides both a reference to the configuration of

the scenario and the retention of results in the knowledge-base.

However, this approach would require repeated iterations of the same param-

eters to have multiple instances of a Travel Scenario, i.e. copies of the same data.

Alternatively, a different named graph for the results of each iteration can be

126

Figure 4.37: Diagram of example Travel Scenarios with Mode Definitions.

provided for the same Travel Scenario. This latter approach has been applied

using the Framework Configuration discussed in Chapter 5.

The definition of Travel Scenarios enables multiple scenarios to be executed

upon the same knowledge-base, whether with repeating or varying parameters,

without interference. Repeated iterations, using the same Travel Scenario pa-

rameters, can also be utilised as part of learning in a feedback process.

The absence of parameters can also be used to control the scenario configura-

tion. For example, a Person may have a specified Mode in the knowledge-base,

but if the current Travel Scenario does not have the corresponding definition then

the Mode would not be utilised.

4.6.2 Activity Pattern

In an activity pattern approach, travel diary data is used to derive context-less

templates that describe a series of general activity types with non-continuous time

durations, see Figure 3.5. This is modelled by an Activity Pattern that consists

of a time ordered list of items to represent a whole day of activities, as illustrated

127

in Figure 4.38.

Figure 4.38: Schema for activity pattern templates.

The specific activity episodes of the template are described by an Activity

Pattern Item, which identifies an Activity Type, applicable time interval and min-

imum and maximum travel distance. The Activity Type provides a relation to the

Activity discussed earlier in Section 4.5.6 so that the skeleton Activity Pattern

can be aligned with the contextual data of the investigative scenario.

The minimum and maximum travel distance specifies the lower and upper

bounds that should be travelled to reach the activity. This can be used either

during knowledge-base Construction to only assert relations with Locations and

Activities that a Person visits or by a Scheduler module to identify potential

Locations based on the current context. Therefore, activities which are located

too close and too far away can be removed from the choice set. However, a

Scheduler module could relax these bounds if no candidates are present to ensure

that an activity is always selected.

The Activity Patterns are grouped into an Activity Pattern Set, so that consis-

tent planning and cooperation for joint activities or escort travel can take place

across Activity Patterns with aligned activity episodes. The Activity Pattern

Set also identifies the applicable days of the week, e.g. to distinguish between

weekday and weekend activity patterns.

128

Each Travel Group can be associated with one or more Activity Pattern Sets

according to their matching characteristics, as determined by the user in the

knowledge-base Construction stage. In turn, each Person within the Travel Group

is also matched with an Activity Pattern from the corresponding Activity Pattern

Set. Otherwise there would be incoherence in the activities assigned to each

Person, e.g. a child assigned employment activities and an adult assigned school

education.

Multiple Activity Pattern Sets for Travel Group provides the opportunity for

diversity in the daily pattern between different investigative scenarios. An op-

tional weight characteristic could be applied to control the likelihood in a stochas-

tic process for selecting one pattern over others. The characteristics of the Activity

Pattern and Activity Pattern Set provide a number of modelling assumptions that

a Scheduler module may choose to employ, ignore or enhance. This highlights an

advantage of a knowledge-based approach such that different Schedulers can be

applied to the same knowledge-base to produce different outcomes.

4.6.3 Activity and Travel Schedule

The key output of a travel demand model for use in traffic simulators is each

person’s schedule of activities and travel, see Figure 3.5. This schedule, shown in

Figure 4.39, is derived from a Person’s selected Activity Pattern based upon their

own and the scenario’s contextual information and then according to the selected

modules of the framework. These schedules are each associated with a single

Person and Travel Scenario so that they are unique for each scenario instance.

The Activity Travel Schedule is itself a time ordered list of sequential Travel

Stages and Activity Intervals. The Activity Interval describes the time interval,

the spatial Location and the type of activity taking place. The one or more Travel

Stages between each Activity Interval form a trip as discussed previously (Section

1.2.2).

These Travel Stages provide the routing detail for moving between the spatial

Locations of the scenario. Each Travel Stage uses a single Mode with multi-

mode trips consisting of separate consecutive Travel Stages. The Mode and other

routing data are described in detail by the Stage Estimate, which the Travel Stage

129

Figure 4.39: Schema for Activity & Travel Schedule.

extends with contextual information.

This re-use of the Stage Estimate, discussed in Section 4.6.4, reduces repe-

tition of data in the knowledge-base. The contextual information of the Travel

Stage is its time interval, any accompanying passengers and any private Vehi-

cle (Section 4.5.4) or public Transit Line (Section 4.5.5) selected for travel to

allow tracking of their utilisation. This tracking supports inclusion of more so-

phisticated scheduling and travel planning decisions in the travel demand model,

such as return tours on public transport or additional stages to collect a vehicle

following a sub-tour and return it to its start location [10].

There may also be zero or more associated Vehicle Routes for each schedule,

which further describes the movement of vehicles due to the schedule, see Section

4.5.4. This describes the movement of the vehicle over the whole schedule and is

130

necessary input into some simulators [46].

4.6.4 Stage Estimate

There have been several adopted processes to decision making in activity-based

models (Section 1.2.4). In constraints-based models an accurate estimate of the

time required to undertake a trip is required. Discrete-choice models rely upon

choosing from different trips based on their metrics. Computational process mod-

els use heuristic rules to make trip choices. These models vary in whether the

route itself is an output of the decision making process. The routes themselves

are split into stages as transitions are made between modes (Section 1.2.2).

In some traffic simulators the input data can consist of only the origin and

destination of a trip, or its stages, with routes determined using the simulator’s

own solution. Alternatively, a detailed route can or must be specified. The

former approach may be undesirable to the user as implementation differences

when comparing multiple traffic simulators could introduce variation into results

that would need to be considered in the analysis, i.e. variation being caused by

routing solutions rather than simulated traffic dynamics.

It also limits the opportunity to incorporate and compare new routing ap-

proaches, e.g. adapting from previous experience, additional network semantics,

or environment changing events. Therefore, the framework takes the routing

process out of the traffic simulator stage and defines the Network Routing mod-

ule (Section 3.3.3.4), which produces Stage Estimates. These Stage Estimate, as

shown in Figure 4.40, provide the detailed routing between two Locations with

additional metrics that may or may not be utilised by decision-making modules.

Each Stage Estimate is determined between an access point for a start location

to an access point of an end location utilising a specific mode. They each contain

the detailed route undertaken through the network infrastructure, typically de-

scribing roads, but can represent railway lines, footpaths or cyclepaths etc. The

reciprocal journey starting at the destination to the origin would form a different

Stage Estimate as the route may not be an exact reverse, due to one-way streets

or turning restrictions etc. Similarly, a variation in Mode would also require a

new Stage Estimate as vehicle access can be restricted along certain roads or

131

Figure 4.40: Schema for Stage Estimate.

the routing method may be distinctly different, e.g. public transit compared to

private vehicles.

The terms start location and end location have been used instead of origin

and destination to be analogous with the start point and end point and provide

clarity as to what each describes: the general location and a specific point of

access. A distinction is made between stage and trip levels of detail. At trip

level the start location is the origin and the end location is the destination and

the sub-stages within the trip use start location and end location. Therefore, the

origin and first stage start location will be identical as too will be the destination

and final stage end location.

To accompany the start and end locations are specific Access Points to enable

consistency between Travel Stages when a Location has more than one for a

specific Mode (Section 4.5.7). Otherwise a person or vehicle could enter a location

through an access point on one side and immediately reappear a distance away

on the other side. This can cause problems in traffic simulation as the positioning

of a vehicle is disrupted. However, a trip planning model could deem that it is

accurate for a person or vehicle to exit from an access point different to the one

they entered using internal pathways at the location. This fine-level detail is an

implementation detail, but both use cases of continuous and discontinuous access

points can be represented.

In general, the Stage Estimates will be the best-case information derived us-

ing the shortest path through the graph structure of the network (Section 4.5.9).

132

These have the potential to be re-used when the Mode and Access Point pa-

rameters are identical, unless consideration is being given to temporal variations,

e.g. a public transit route may not be available during the weekends or previous

experience demonstrates to avoid a junction or road at a particular time of day.

This re-use reduces computational time when executing the framework.

The impact of computational time becomes very important given that Stage

Estimates will generally need to be generated as required during execution rather

than the whole set being precomputed and stored in the knowledge-base. This

is due to the number of routes scaling by mn(n − 1), where n is the number of

Locations, m is the number of Modes and assuming a path exists between each

location for each mode (Section 6.4.3). If a scenario does not exhaust the full set

of travel between all Locations then resources have been wasted in calculating a

route and the knowledge-base unnecessarily expanded.

The route used by a Stage Estimate would typically be generated using short-

est path algorithms, e.g. A-star or Dijkstra, which can use distance or travel time

as the path metric. These algorithms produce invariant results unless conditions

in the network change. However, alternative routes can be derived with modifica-

tions to these algorithms, e.g. by preferring major roads over minor, and stored

as separate Stage Estimates which can then be drawn from based on criteria other

than shortest path. The details of the route are stored as via coordinates for map

plotting and road edges and nodes for usage by different traffic simulators (see

Section 4.5.9).

The Stage Estimate could be defined using only the Access Points and without

the Locations as it is the Access Points and Mode which uniquely define them.

However, the retention of the Locations with the Stage Estimate permits simpler

searching and cross-referencing by giving a complete definition. The impact of

this is multiple Stage Estimates for each case when multiple Locations share

an Access Point, e.g. two shops located at the same premises using the same

entrance.

The retention and re-use to avoid repeated shortest path computation can still

be applied by identifying the matching Access Point and Mode characteristics and

replicating the routing information, provided the storage also uses the Locations

as identifiers. The impact on the size of the knowledge-base is no different than

133

if the shared premises were not co-located and therefore only optimal efficiency

is being lost rather than an additional burden being created.

In addition, three metrics have been identified as being generally relevant to

traffic models, i.e. distance, cost and travel time [124]. The distance of a route

is the base metric that informs the other two and storing its value removes the

need for repeated calculation and allows comparison between Stage Estimates.

However, cost and travel time are likely more informative.

It has been highlighted that travel time provides a metric that is easily un-

derstood and communicated between travel model users, e.g. transportation en-

gineers, planners, administrators and consumers [125]. Research has found that

cost has an influence on travel policy and behaviour with travellers willing to pay

for faster and more reliable travel [2].

The Mode associated with travel is important in determining these metrics.

A Mode that is able to travel at higher speeds can cover a distance quicker than

one which is constrained to lower speeds. Similarly, the cost of a route, whether

the financial cost, e.g. bus fare, or a more general penalty measure, e.g. hilliness

when cycling, may discourage a route being selected. In cases where a public

transit Mode is being applied then the Stage Estimate will identify the specific

Transit Line that needs to be utilised.

The Stage Estimate may be suited to additional metrics. Measures of quality

for travel times have been developed, e.g. Misery Index; the distance between

the mean travel time and the mean travel time of the 20% most unfortunate

travellers; and travel time reliability at certain times of day [108, 109]. It has been

shown that people prefer routes with higher mean travel time and small variability

over a route with lower mean travel time but higher travel time variability [108,

109]. Therefore, a user schema and modules could include these metrics or other

measures of learning or feedback for routes.

These metrics can be included as properties on Stage Estimates. In addition,

alternative route choices between two locations could be generated to provide

a greater selection of choices for travel through the network. These additional

characteristics are dependant upon the modules selected for the framework rather

than the core Stage Estimate data structure defined here.

134

4.6.5 Trip Context, Stage Request and Trip Plan

The objective of the travel demand process is to generate a schedule of Activity

Intervals with connecting Travel Stages (Section 4.6.3). These Travel Stages are

composed of contextual information and routing detail. This routing detail is

provided by the re-usable Stage Estimate (Section 4.6.4).

This section describes how the data necessary to produce the Travel Stages

and Stage Estimates are passed between the three component modules of Schedul-

ing, Trip Planning and Network Routing as outlined in Figure 4.34. The schedul-

ing process operates at different levels with decisions being made over the short

term (Scheduling) and near term (Trip Planning) based on predicted routing

information (Network Routing) as discussed in Section 3.3.

It has also previously been discussed (Section 1.2.2) that a trip is composed

of one or more stages while a wide variety of options can be applied to derive a

trip: mode, route, intermediate stops, duration. Therefore, the trip generation

process must define the context of the necessary trip; decompose this into multiple

potential trips of multiple stages; determine the route, value and viability of these

stages; and select one of these trip and its constituent stages as the result. Three

concepts are defined for these different stages of the process: Trip Context, Stage

Request and Trip Plan.

These data concepts and the Stage Estimate concept (Section 4.6.4) are passed

between the modules of the framework, as shown in Figure 4.41, starting from the

high level process of Scheduling to the low level Network Routing before returning

back to the Scheduling. For each step between Scheduling and Trip Planning there

may occur multiple instances between the Trip Planning and Network Routing

modules. Multiple alternative Trip Plans may be produced before one is chosen

to be returned as the response to the original Trip Context. The whole process

may be repeated many times during schedule construction as travel takes place

between activities.

The associated properties of these data concepts vary in the scope of options

provided, as shown in Figure 4.42, and tend from the general to the specific.

The Trip Context is designed to express multiple alternative options that can

then be explored to find the optimal response, or rather the most appropriate

135

Figure 4.41: Diagram of trip generation process showing data passed between
modules.

for the applied conceptual model as human behaviour is not always optimal.

Therefore, multiple destinations, modes, access points, vehicles and transit lines

can be included with each increasing the diversity of possible trips, stages and

routes. These properties could also be asserted in the singular or excluded if a

very specific outcome is required such as needing a return journey using a specific

mode.

The Stage Request is more specific in explicitly stating the start and end of the

stage. Diversity is achieved by multiple alternative Stage Requests. There is no

Trip Vehicle information as it would be overseen by the Trip Planning module as

to whether the stage is valid to use the vehicle before creating the Stage Request.

An invalid stage could occur due to the vehicle not being able to access the end

location through an Access Point for that Mode. This would require finding a

transfer location to change Mode, discussed further in Section 6.4.2. Facilitating

this change at the transfer location would require two connecting Stage Requests.

When valid the vehicle’s Mode is used to inform the Stage Request.

Usage of a public Transit Line and corresponding time-frame is of concern

to Network Routing modules that support public transit. The generated Stage

Estimate would be dependant on the available timetable of the Transit Line (Sec-

tion 4.5.5). The time-frame could also be utilised by Network Routing modules

136

which consider changing traffic dynamics, e.g. scenario events such as road clo-

sures or weather, or utilise traffic congestion forecasts to produce varying routing

solutions for the same start and end locations.

The Trip Plan concept represents the planned travel of an individual and

therefore it is composed of an ordered list of Travel Stages which are directly

added to the Activity & Travel Schedule (Section 4.6.3), but includes the overall

origin and destination for ease of reference. These Travel Stages are formed from

a reference to the underpinning Stage Estimate and the contextual information

associated with the request, e.g. vehicle, transit line or passengers. In principle a

Trip Plan could describe two Locations that are co-located and so do not require

travel to move between with an empty list of Travel Stages.

Figure 4.42: Schema for Trip Context, Stage Request and Trip Plan.

137

These concepts represent an inter-relationship at the data level that is illus-

trated in Figure 4.43. Certain properties are not necessary for the generation pro-

cess to function, i.e. based on, requested for and determined for, but demonstrate

the inter-relationship. However, their usage and storage in the knowledge-base

does provide a mechanism for examining and auditing the generation process. In

this view the Stage Request, Stage Estimate, Trip Plan and Travel Stage can be

seen to be subordinate to the Trip Context, which triggers the process.

Figure 4.43: Schema for interactions between Trip Context, Stage Request and
Trip Plan.

4.6.6 Trip Vehicle

The purpose of vehicles is to reduce the burden and travel times of transporting

people and goods. These vehicles must be accessed at a spatial location that

may not coincide with a person’s current location over the course of the schedule

or may need to be positioned at a transfer location to access a destination or

other modes. Therefore, the Trip Context needs to provide information about

the vehicle options available to the Trip Planning process and their current state.

This is achieved using the Trip Vehicle concept as shown in Figure 4.44 which

138

consists of current location and optional access point. Households and individuals

may have access to multiple vehicles, e.g. car and bicycles at the home for the

start of the day, and therefore these vehicles are specified as an N-ary relation

(Section 4.2.2) to allow mutliple cases to be described.

Figure 4.44: Schema for Trip Vehicle.

The Mode property is included to fully describe the Trip Vehicle for the

Trip Planning process. These properties describe the current state of the vehicle

within the Scheduling process. There can be situations where the use of a vehicle

is mandated, e.g. completing a return journey with a car to the home, so that

vehicles are not positioned inconsistently when the scenario completes.

The required location is used to specify that a Trip Plan is only valid for the

Trip Context if it results in the vehicle being located in that position. This allows

for potential chaining of vehicles during travel. For example, driving a car to a

car park, walking to a cycle hire point and then cycling to the destination. This

would require the process to be reversed on the return journey rather than taking

a bus home and abandoning the bicycle and car.

4.6.7 Activity and Travel Result

It has been discussed earlier that the travel demand generation process produces

the intended activity and travel timings for a person during the scenario as con-

tained in the Activity & Travel Schedule (Section 4.6.3). The outcome of the

Traffic Simulation stage is the activity intervals and travel stages of the schedule

following experience of the simulated environment and the travel plans of the

other participants.

This information can then be used for analysis or incorporated into future

scheduling actions, such as influencing Stage Estimates, as feedback for learning.

139

These simulator outputs of activity and travel time intervals are captured in the

Activity & Travel Result, which follows a similar structure to the Activity & Travel

Schedule.

The Activity & Travel Result illustrated in Figure 4.45 identifies the resulting

activity and travel stages. It also has properties for the contextual information of

the relevant Person, Traffic Simulator, Travel Scenario and the proposed Activity

& Travel Schedule to facilitate cross-reference and analysis.

Figure 4.45: Schema for Activity & Travel Result.

4.7 Extension of the Person and Travel Group

Concepts

In this section it will be discussed how the Person and Travel Group concepts can

be extended to provide more specific modelling. These two classes are the primary

140

area of interest for activity-based travel demand models. They also have great

potential diversity in how they are extended through sub-classes, sub-properties

and additional properties. This extension approach can be applied to the other

defined classes to assist in organising and contextualising the knowledge-base.

A person forms part of a population which can be sub-divided into smaller

populations. The division of a population can be performed in a variety of man-

ners, e.g. characteristic, geography and behaviour, leading to a wide, arguably

infinite, set of possible sub-classes. In a Semantic Web approach these can in turn

be sub-classified arbitrarily with individuals able to belong to multiple classes

(Section 1.3.1).

These sub-classes were utilised in the implemented prototype (Chapter 7)

and will be discussed further to illustrate alternative perspectives as shown in

Figure 4.46. While the modelled behaviour can be differentiated based on the

sub-class, i.e. adult behaviour being different to child, the implemented modules

of the prototype instead were driven by the data characteristics of the individual

person. This was to constrain the design and tractability of the prototype scenario

rather than a limitation of the framework.

Figure 4.46: Diagram of example extension of the core concepts of Person, Travel
Group, Vehicle and Location.

141

Adult and Child

A clear distinction in society is made between adults and children. This differ-

entiation influences the behaviour, activities and resources available to each. For

example, adults are more likely to travel at any time of day and have greater mon-

etary resources for travel and activities while children will be engaged primarily

in education activities rather than employment. The legal distinction between

adult and children varies between nations, but is distinctly defined. Further sub-

class distinctions can be made based partly upon age including different stages

of education, e.g. school and university, and employment, e.g. retirement age.

Resident and Non-Resident

The defined scenario for examination in modelling and simulation must be con-

strained to a geographic area. The population in this geographic area can be

sub-divided into the residents who live within the geographic area and the non-

residents. The residents begin their normal day at home and will travel to places

of activity, e.g. work, education or leisure, or exit the area. At the end of the

day the residents will return to their homes.

In contrast the non-residents will begin outside the geographic area and will

arrive and depart over the course of the day at specific locations. These specific

locations are the road links at the edge of the geographic area, motorway junc-

tions and public transport connections, e.g. train stations, bus stops and coach

depots. In Figure 4.46 characteristic values are assigned to individual Persons and

Households. An alternative approach would be to use N-ary relations to reduce

repetition and allow easier modification (Section 4.2.2) and applied in Section

4.5.4. The approach of placing characteristics against each individual persons is

based upon two reasons.

Firstly, the potential diversity of characteristic values is much greater for

persons than vehicles, both in permutations of values and number of character-

istics. Vehicles are machines manufactured to a design and specification to fulfil

a transport purpose. People are diverse individuals whose resources, behaviours

and characteristics are influenced by society, economy and genetics etc.

Most cars have capacity for four passengers and have dimensions constrained

142

by the physical shape of road lanes, with occasional outlier ignored or tolerated

for tractability. A person’s, and potentially household’s, characteristics can be

much more diverse in the possible permutations. Therefore, applying the type-

based approach to Persons, and by extension their Household Travel Group, could

result in a large number of Person Types and a few Persons instances with each

type.

Secondly, the definition of an agent for agent-based modelling (Section 1.2.4.4)

includes each agent having their own set of characteristics. These characteristics

could potentially be modified during modelling. However, a mix of personal and

type properties could also be modelled for transient and permanent characteris-

tics.

Transformation of the data in the knowledge-based between each approach can

be performed to incorporate a new module using SPARQL queries. Also, these

approaches can coherently co-exist in a knowledge-base with the only difficulty

being potential confusion or error when selecting characteristics, e.g. selecting

the type’s characteristic rather than an instance’s.

Freight Driver

In the previous section a distinction was made between people who live in the

area of interest and those who do not. Another distinction that can be made is

those who regularly travel while fulfilling their employment as opposed to those

who travel to reach their employment. An office worker that has arrived at work

may not leave their location until the end of the working day. A freight driver will

arrive at their employment and then continuously transport goods from location

to location performing pick-up and drop-off activities.

This can be modelled as a Freight Driver class of Person to distinguish from

Resident or Non-Resident person. This classification approach is based upon

employment activity and so could be extended to include other transport services,

e.g. taxi, train and bus drivers, or those routinely moving between locations

during their employment, e.g. domestic plumbers. Therefore, the Freight Driver

could be modelled as one of several sub-classes of Employment Traveller who

undertake employment related travel.

143

A freight driver is an employment activity and so the individual will have

travelled from their residence to place of employment. Therefore, they could

also be classified as a Resident and Non-Resident with multi class membership

permitted in the Semantic Web. However, the behaviour of these two classes

could be considered quite distinctly different. Once at the place of employment

a switch in behaviour would be needed.

This would represent a close modelling of the real world in the knowledge-

base. However, the practical limits of modelling this complexity do need to be

considered and whether such fine detail is of benefit, although this would fit

the vision for Artificial Transportation systems [55, 126]. For example, it is

questionable in the general case if there is a benefit in modelling a city-wide

transport network that is reliant upon correctly simulating all its bus drivers

arriving at their workplace on-time. One delayed start would have a knock-on

impact to the rest of the model that would require close examination to identify.

There is also an assumption that data is available to reliably produce such a

fine-grained data model.

Instead a modelling simplification would be for two entities to exist in the

knowledge-base for a single person. The first entity is a person that starts and

ends their existence at their place of employment and exhibits the travel em-

ployment behaviour. The second entity represents the more conventional person

who travels to employment and other activities but does not travel during their

employment.

This approach allows the consistency of always focusing upon modelling a

person with their activities and travel behaviours. Other approaches to generating

travel demand for freight have applied an entirely separate modelling approach

to that of other travellers [8, 32].

Autonomous Vehicles

Travel demand has been defined as being satisfied by a countervailing travel

supply [32] capable of moving goods or person between locations and encompasses

public transit, taxi services, private vehicles or personal locomotion.

An emergent technology is the development of autonomous vehicles capable of

144

all driving activities [127], including communication and co-ordination with other

vehicles and perceiving and influencing their environment. The characteristics of

agency have been discussed previously (Section 1.2.4.4) and are exhibited by

both humans and appropriately designed software agents, including controllers of

autonomous vehicles.

Once accomplished it is envisioned that freight and personal transportation

by autonomous vehicle will be another service, which people can summon to

their location. This is analogous with existing taxi and courier services and

therefore from a modelling perspective would no different from these existing

supply methods.

Figure 4.47: Schema of Agent, Person and Vehicle Agent.

From a travel demand perspective autonomous vehicles would still be fulfilling

and travelling between activities, i.e. pick-up, drop-off, waiting and maintenance.

This would follow a similar behaviour to other travel employment behaviour, e.g.

freight or taxi driver, as discussed previously. Therefore, modelling of autonomous

vehicles would require a separate classification from people as they form a separate

population, but can be incorporated in modelling alongside existing concepts.

The incorporation of autonomous vehicles in the schema would be through

inclusion of an Agent base class from which would be formed the Vehicle Agent

and Person sub-classes. This follows the existing approach of the FOAF vocabu-

lary [115] with Agent and Person classes. Figure 4.47 shows the extension of the

schema to incorporate the distinction between persons and vehicle agents.

This extension to the schema can be incorporated without invalidating the

existing schema (Section 1.3.1). The Vehicle Agent would be synonymous with

the physical vehicle that provides the physical transport and could be sub-classed

into freight and personal transport etc, but would be conceptually distinct.

145

4.8 Utilisation of the Schema

In the previous section there has been detailed description of the numerous con-

cepts developed for the core schema. These have been identified with the intention

of incorporating the minimum concepts and inter-relationships. Illustrative ex-

amples have been provided, but these are not mandated concepts. Instead the

schema would be extended and enriched by the framework user’s own schema or

public vocabularies to reflect the specific models and problem under investigation.

This section provides a general summary of the schema, connections between the

separate concepts and how they can be utilised.

The core concept of traffic demand models is the Person and their relation-

ships to Locations and Activities, illustrated in Figure 4.48. A Person represents

any individual who travels in the scenario, so could be sub-classified by the user.

Each Person can be a member of a grouping for organisational and travel pur-

poses, e.g. households. Concepts can be expanded by users through sub-class

and sub-property relationships to enrich the data, but retain schema validity.

A multi-dimensional relationship can be formed between Person, Activity and

Location. In a single instance a Person could be linked to a single Location

for certain Activities, e.g. employment, education and residence, and multiple

Locations for other Activities, e.g. retail and leisure. However, it is a modelling

assumption, i.e. the user’s schema and selected modules, that all Persons have a

single Location for certain activities and not a requirement of the core schema.

Each Location can also provide zero or more Activities. For example, a school

can provide both primary and secondary education which have different effective

time periods and eligible school ages. A school is also a place of employment for

teaching and administrative staff. Similarly, homes are the residence of individu-

als but also a place to visit for social interactions between friends and relatives.

The Activity itself may be modelled as unique to a Location or shared be-

tween multiple Locations. Each Activity has an effective time and days to reflect

availability, such as morning and afternoon opening times. Therefore, a Location

can have multiple Activities with different characteristics but the same Activity

Type. The Activities can be sub-classed according to their characteristics while

retaining a grouping through the enumerating of Activity Types.

146

F
ig

u
re

4.
48

:
S
ch

em
a

fo
r

T
ra

ve
l

G
ro

u
p
,

P
er

so
n
s,

L
o
ca

ti
on

s
an

d
A

ct
iv

it
ie

s.

147

The value set of Activity Types ensures OWL 2 compliance as Object Prop-

erty relationships must be between individuals and not classes [93] as previously

discussed (Section 4.2.4). This approach means that a single Activity Type can

form a relationship that links many Activities to Activity Patterns. Each compo-

nent Activity and Activity Pattern item identifies a single Activity Type, which

together forms a multiplicitous relationship, e.g. employment would be an Activ-

ity Type while employment at a specific office would be an Activity. Otherwise

a user would have to identify and link every relevant individual Activity to an

Activity Pattern and so impose a modelling burden.

A similar approach is taken to express a Person’s travel modes as defined by

the Mode class. These are either the personal or public transport modes a Person

uses or those of their Vehicles. Locations can also identify Modes which have

access and in turn those that do not. For example, city centre locations with

no parking facilities would not be the direct destination for people using a car.

Similarly, locations without wheelchair access would not be selected as viable for

those people with that mode.

The relationships can be formed using the class, characteristics (data prop-

erties), geographic relation or arbitrarily asserted. An example SPARQL query

is shown in Listing 4.1 to both classify Persons as school age and link them to

their local school according to its geographic catchment or effective area. The

OPTIONAL clause ensures that all are classified, even when not in a school catch-

ment area. Given a Location may provide multiple Activities then effective areas

are applied according to Activity rather than Location. Extending properties for

the Locations would be to apply comparative weighting for popularity based on

the time and day of the week.

Further detail in terms of sub classes, relationships and characteristics can be

included in the knowledge-base by the user as required. For example, a highly

detailed set of land use data could distinguish between several types of build-

ings, their occupants and the types of activities they provide in a hierarchy and

structure required by the user.

148

PREFIX ex: <http://example.org/myKnowledgeBase#>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

INSERT{

?person a ex:PrimarySchoolChild .

?person ex:hasEducationAt ?school .

}WHERE{

?person a ex:Person ; ex:age ?age.

FILTER(5 <= ?age && ?age <= 11)

OPTIONAL{

?person ex:hasResidenceAt ?house .

?school a ex:PrimarySchool ; ex:providesActivity .

?education a ex:PrimaryEducation ; ex:effectiveArea

↪→ ?catchmentArea .

?house geo:sfWithin ?catchmentArea .

}

}

Listing 4.1: Example SPARQL query to classify Persons.

4.9 Organisation of the Knowledge-Base

The data of the knowledge-base can be organised into logically distinct compo-

nents, termed graphs. These graphs can be referenced in SPARQL queries either

individually by its own URI or as a composite union of graphs. The union graph

represents a merging of the triples so that different query responses would be

produced according to the graphs forming the union. Therefore, no structural

changes would be needed to a query except for the graph references to form the

union graph. This allows for the combining of different experimental data and

parameters simply by introducing a new graph and merging it with a base graph

149

or graphs.

Several domain concepts have been previously described (Section 4.3). These

domains can be applied to assist in the organisation of the knowledge-base as

distinct graphs, e.g. all person data contained in a person graph and all vehicle

data in a vehicle graph. However, the inter-relationship between these domains

can present problems to inferencing.

The boundary between concepts may not be clear cut or convenient for fre-

quent query operations. Inferences that rely on data which spread between graphs

would have to be performed on the merged graph. Retaining any inferred triples

would require extraction and asserted in an appropriate graph, if trying to retain

a purist organisational approach, which would be complicated if a schema had

been applied to numerous merged graphs or a wide range of inferences were made.

Similarly, queries that use data from multiple graphs would need to have

the references to all the constituent graphs for that query or be performed on

the merged graph. In some cases, the contents of a particular graph may be

very small, e.g. only having a single vehicle type, so provides limited benefit to

separation. In contrast having additional data in a single graph for the whole

knowledge-base does not interfere with its operations.

Operations upon a single graph knowledge-base would be simpler to apply

in all cases. However, large scale graphs may be slow to query due to size or

sub-optimal queries. Datasets that are selectively organised into small graphs

of key information would be quick to search. This can have implications if a

knowledge-base is being used in a parallel environment where a prolonged search

by one execution can block the search or writing progress of other executions.

The division of the knowledge-base does present an advantage given the vary-

ing permanence of the different data concepts. Certain data may persist across

all executions, e.g. person characteristics and road network infrastructure, while

other data may be re-used multiple times, e.g. scenario parameters and activity

templates, or only be required for the duration of execution, e.g. intermediate

data generated by modules.

The time-frame of the scheduling and planning processes are typically focused

on the short term, i.e. days, weeks or months. A longer term view across years

would incorporate changes to land use, resources and demographics and is a

150

feature of some models [9, 55]. Therefore, the notion of persistent or permanence

depends upon the context.

Finally, adopting separate graphs would allow the addition and removal of

datasets in their entirety. This would allow quick disposal of incorrectly con-

figured or no longer required executions and the inclusion of new parameters.

Also, alternative versions of parameters, data and results can reside alongside

each other in separate graphs. Therefore, the results of different scenarios or

the outcome of repeated executions could exist in the same knowledge-base as a

comparable set.

The division of the knowledge-base into graphs can provide benefits, but can

introduce complications to its usage. Figure 4.49 shows the named graphs used in

the prototype implementation (Chapter 6) and is provided for illustration. The

People, Organisation and Vehicle concepts have been brought together due to

their close inter-relationship and placed into the Travel Group graph. The Frame-

work Configuration graph provides the information for locating datasets within

the knowledge-base and modifying the execution of the framework (Chapter 5).

The Demand Modelling & Simulation concept has been split into Scenario and

Results so that the execution output can be easily modified and removed without

impacting the scenario set-up.

Figure 4.49: Diagram of named graphs applied to the prototype knowledge-base.

There is no requirement by the framework for a user to adopt this approach.

A single graph could be used for all the data in the knowledge-base and referenced

151

in the configuration of the framework. Adjustments can be made according to the

user’s choices and to meet the requirements of the selected modules. The utilisa-

tion of the separate graphs and the configuration of the framework is discussed

further in Chapter 5.

4.10 Chapter Summary

This chapter has discussed the main data concepts of the core schema for the

framework for travel demand generation. It has outlined the design principles

which have been applied to the schema to enable interoperability with Semantic

Web technologies. There has been identification and use of public vocabular-

ies to integrate fundamental concepts so that links with other datasets can be

established and to facilitate re-use.

The extendible approach of the Semantic Web enables additional connections

to vocabularies and new concepts to be incorporated into the schema by the user.

This has been discussed through alternative examples to extending the Person

and Travel Group concepts, which is applied further in Chapter 7.

The top-level concepts of the schema have been identified and then applied as

the basis for more detailed consideration of data concepts. These have generally

been identified as concepts relating to the physical world and those relating specif-

ically to travel demand generation processes. The described concepts have sought

to be a minimum representation with the user and module implementations able

to determine more specific definitions as they require.

The investigation of these concepts has led to the identification of several gaps

in road network semantics and datasets, specifically relating to traffic signalling;

implemented routing algorithms; and local speed limits, that have an influence

on the modelling behaviour and outcomes. The incorporation of these concepts

can be accommodated in the proposed knowledge-base approach, but are not

currently supported by published datasets. Further development of routing algo-

rithms can be supported by data concepts being added to the knowledge-base in

the People, Vehicles and Network Infrastructure domain. In addition, applying

the modular design for Network Routing discussed in Chapter 3 would remove

dependency on traffic simulator implementations.

152

The varying permanence of certain properties within the knowledge-base has

also been identified. The objective of comparing modules and scenarios can lead

to different versions of parameters and content that would be problematic to man-

age and retrieve if directly associated with an entity. This has been resolved by the

Travel Scenario and associated Scenario Definitions to provide N-ary relations

that describe the set of parameters to be used in an execution instance. These are

associated but distance from the permanent data concepts of the knowledge-base.

There has also been discussion of the logical organisation of the knowledge-

base around named graphs in an arrangement to suit the user and their investiga-

tive scenario. This arrangement can align with the top-level concepts, but also

take into consideration the permanence of the data so that transient data gener-

ated during execution can be easily removed from the knowledge-base. This also

provides the opportunity for users to select and switch between different datasets

and sources of data within the same knowledge-base and is one of the objectives

of the framework. The proposed mechanism to support this is discussed further

in Chapter 5.

153

i

154

Chapter 5

Framework Configuration for the

Selection of Alternative

Behaviour, Techniques and Data

5.1 Introduction

In this chapter there will be exploration of the framework’s design to deliver the

objectives of easing the burden on users in assembling, controlling and compar-

ing their investigative scenarios with multiple implementations of travel demand

generation models and traffic simulators. The previous chapters identified the

different considerations in the design of the proposed framework (Chapter 3) and

discussed the data concepts necessary for the core schema (Chapter 4). This core

schema provides a basis for modules and the knowledge-base to be aligned to

minimise data transformation. However, it may be necessary for the user to have

facility to specify modifications and transformations of data between modules.

A user may investigate multiple alternative versions of modules and datasets,

representing different modelling assumptions, parameter values, implementation

detail or scope. Therefore, investigations need to be able to compare across

multiple configurations of the travel demand modelling process. The framework

seeks to provide an environment to assist the user in managing and configuring

the differences between these alternative choices. These differences in approach

155

may be inconvenient when setting up one configuration and then become highly

burdensome or inhibitive when applied to multiple configurations.

This chapter will seek to address research question RQ3. It will discuss how

the knowledge-base can be constructed from local and remote data sources. There

is also examination of the mechanisms available and developed to specify modules;

transform data; select alternative modules based on the data; and control the

execution of the framework. There will also be inclusion of optimisation options

to reduce execution run-times through using local file system knowledge-bases

and modules caching invariant data. The facility for users to transform data

and make selections introduces potential for integration errors. Therefore, there

is discussion of validation steps to ensure that errors are identified early and

communicated to the user for correction.

5.2 Constructing the Knowledge-Base of the

Framework

The previous discussion of the proposed framework in Chapter 3 outlined that

current demand modelling is a multi-stage process. The conventional process is

reliant upon file conversion between the data sources and the main stages of the

travel demand process to present and obtain data in the correct formats. This is

illustrated in Figure 5.1 where multiple file conversion processes are required to

align the available files of data with the module interface.

Each of these conversion processes may require format conversion, e.g. CSV

to XML, or reformulation, e.g. different XML schemas. These conversion pro-

cesses may form an input or output option for a stage implementation to target

another stage implementation, i.e. activity-demand model X produces output in

traffic simulator Y’s format. However, if this is not the case then the user must

implement their own process.

These conversion processes can also require alignment of the data for later

stages, e.g. land use indicating relevant zones or population allocated to group-

ings. In this example, the activity pattern generation process is incorporated into

the demand model as it is a tightly integrated component of the overall demand

156

Figure 5.1: Diagram of construction process for conventional activity-based travel
demand process.

model. Therefore, only the implemented approach can be utilised and alternative

forms of activity patterns or methods for their generation cannot be incorporated

into the model.

The first stage of the framework process is constructing a knowledge-base.

The required datasets are prepared and added to the knowledge-base. However,

datasets are typically published by different authorities and therefore require

reconciliation to align. This section outlines the different options that are possible

with the framework to construct the knowledge-base and how misaligned data can

be transformed or utilised.

5.2.1 Constructing a Local Knowledge-Base from Local

Sources

The adoption of a knowledge based approach provides a central repository for the

data of the travel demand process. The separate input, output and configuration

files for the different stages of the process can be stored in the knowledge-base us-

157

ing a single format: RDF (Section 1.3.1). Therefore, the operation of the process

can be reconfigured as shown in Figure 5.2, which is an alternative representation

of Figure 3.3.

Figure 5.2: Diagram of construction process for knowledge based activity-based
travel demand model.

The RDF conversion process is still required to take the published datasets,

typically XML or CSV but not exclusively, and prepare them for the knowledge-

base. However, published datasets have also included several RDF serialisations

(e.g. RDF/XML, json-ld, Turtle etc.) which could be directly added to the

knowledge-base. When conversion is required the benefit is that rather than many

different file format conversions processes, as illustrated in Figure 5.1, there is the

single target format of RDF.

The Activity Pattern Generation and Population Synthesis stages shown in

the diagram take the input data and generate new data for the knowledge-base.

This new data could be a disaggregate representation or result of a statistical

process. The Activity Pattern Generation module is shown as distinct from the

Travel Demand Model to indicate its potential for replacement and to feed into

158

the Knowledge-Base Construction process.

Overall, this approach has potential to reduce the number of interfaces re-

quired between modules. Any conversion to wrap an existing implementation is

between the knowledge-base RDF and the modules desired input format on a

one-to-one basis, where previously it was directly between each module in the

process. Therefore, modules are now more interchangeable once they adhere to

the knowledge-base format. The benefit of this increases as more alternative

modules are considered at each stage.

However, conversion is still required to obtain datasets as RDF or to align

existing RDF with the knowledge-base schema. This alignment process is in-

corporated into the Knowledge-Base Construction stage where the separate data

concepts of the proceeding stages and datasets are brought together. Similar

steps were required in the previously described process (Figure 5.1), but would

take place as part of file conversion or manual adjustment.

5.2.2 Constructing a Local Knowledge-Base from Remote

Sources

The online design of the Semantic Web is intended to facilitate the sharing and re-

use of data. A mechanism for achieving this in the SPARQL protocol is Federated

Queries [43]. This allows RDF graphstores to be made accessible for SPARQL

querying by specifying a URL address. The relevant part of a query is executed on

the graphstore with results returned to the originator. The retrieved data can be

utilised within the query to interact with local or other remote data. Graphstores

made accessible in this manner are termed SPARQL endpoints.

This enables pre-prepared datasets to be made available without needing to

process local files as shown in Figure 5.3. The file and RDF cleaning and conver-

sion processes are removed as the data is already readily available in RDF. This

approach has been applied by a growing number of dataset publishers as part of

the Linked Data initiative [61, 73, 74].

The data being retrieved can be filtered and selected using standard SPARQL

syntax without needing to remove it from input files or during knowledge-base

construction, e.g. a retrieval query only selects data relating to a specific ge-

159

ographic area or time period. The data sources described can be intermixed

so that a knowledge-base is constructed from both SPARQL endpoints and file

datasets on the basis of data availability or user preference, e.g. the user has a

more detailed dataset or has generated a dataset for a specific topic of interest.

Figure 5.3: Diagram of construction process for knowledge-based activity-based
travel demand model using SPARQL endpoints.

An example process of retrieving data from a remote endpoint is shown in

Listing 5.1. The geographic area is identified using the GeoSPARQL vocabulary

(Section 4.4.1), which could be described using a geospatial shape, to find only

locations of interest. These locations are then used to find the households and

persons along with their related triples.

160

PREFIX popData: <http://example.org/populationData#>

PREFIX trav: <http://example.org/travelDemandSchema#>

PREFIX geo: <http://www.opengis.net/ont/geosparql#>

CONSTRUCT{

?household ?householdProp ?householdObj .

?person ?personProp ?personObj .

}WHERE{

#Choose an area to target.

BIND(popData:AreaA AS ?targetArea)

SERVICE popData:Service {

#Find locations in the area.

?location geo:sfWithin ?targetArea .

#Households at the locations.

?household locatedAt ?location .

?household a trav:Household .

?household ?householdProp ?householdObj .

#Person at the locations.

?person hasActivityAt ?location .

?person a trav:Person .

?person ?personProp ?personObj .

}

}

Listing 5.1: Example SPARQL query to retrieve household and person data based

on geographic area from a remote endpoint.

161

An area of technical difficulty with this approach is the retrieval of the nec-

essary graph relating to a URI. In the example listing, the related triples where

the households and persons are the subject are retrieved. However, there is no

additional data about the properties or objects of those triples. If a module later

tries to discover the property of an object, there would be no data in the local

knowledge-base. There is no inherent mechanism to record where supporting data

can be looked up. It may be that the URI of the resource contains a hostname

or domain component that refers to the service, but there is not a requirement

for this. Therefore, one of several options would be required.

Firstly, the retrieval query would need to extract the triples to the depth

required by the executing modules. This could be an arbitrary number of layers

and there is no explicit SPARQL syntax to express retrieval from all sub-branches

of the graph. A user would need to be aware of the depth of data available in

the endpoint or required by the module. This would require either publication of

information about the graph and module structure or investigative effort by the

user.

Secondly, the query could retrieve the entire graph into the local knowledge-

base. Ideally the endpoint would have an organised structure so that only relevant

data is contained in each graph, e.g. one graph per geographic area. Therefore,

this may require performing a filtering process to exclude data not of interest,

e.g. households outside of the target area, and may leave some orphaned data

in the knowledge-base that would need to be ignored during execution or risk

disrupting execution.

Finally, modules could be provided with the URL so that they can query the

remote endpoint for the supplemental data as required. The local knowledge-base

would only contain the URI to initiate the module, i.e. household URI but no

composition or member data. This would provide a versatile approach whereby

the user would only need to specify the minimum information.

The final scenario to consider in this process is when datasets have been pre-

pared that align in schema and context, i.e. structure and frame of reference. This

situation is illustrated in 5.4 by the removal of the Knowledge-Base Construction

stage, as transformation and reconciliation of the data is no longer required.

These aligned endpoints could represent national or canonical scenario datasets

162

that have been prepared for large geographic areas or across multiple time-frames.

Users would be able to select and retrieve a subset, e.g. by geography, administra-

tive area or time-frame, through the SPARQL query mechanism for local usage.

Transformation could also be applied during this retrieval process, see 5.2.3, to

satisfy any investigative or usage requirements.

Figure 5.4: Diagram of construction process for knowledge-based activity-based
travel demand model using schema and context aligned SPARQL endpoints.

Publication of aligned datasets as flat files is achievable without using Se-

mantic Web technologies. The likely lack of such publications are a reflection of

the fragmented approach to travel demand modelling as exhibited by the diverse

range of implementations, lack of a overarching schema and no authoritative or

centralising organisation. Therefore, certain barriers to this approach are not

technical in nature.

An RDF approach would allow the core concepts to be published in an accessi-

ble and structured format along with additional characteristics and relations that

may only be relevant to specific modules. The outputs of alternative modules,

e.g. population synthesis or activity generation, could also be published across

multiple endpoints with interchange between them only requiring a change in

URL address. The benefit of this approach is that data retrieval can be under-

taken quickly and accurately allowing focus to be placed upon the investigative

163

stage.

The hosting of these remote endpoints does not have to be in a full online en-

vironment but can also take place across an internal network. This would allow

large scale or computationally intensive investigations to be distributed across

multiple computers. One set of resources could host the data endpoints, while

another set undertakes the execution of different experimental scenarios. The

computers executing the scenarios can retrieve the required data to construct

new knowledge-base instances facilitating the potential for automating experi-

mentation across numerous scenarios.

5.2.3 Retrieving and Transforming Data for the Local

Knowledge-Base

The process of constructing a local knowledge-base requires the importing of

RDF datasets or their retrieval from remote online sources. These datasets may

then require transformation to align them with the user’s or module’s schema.

The testing of this alignment can be performed automatically on RDF datasets

using the schema (Section 5.3.6). The greater the alignment of the schema in

the knowledge-base(s) the less need for modification during the execution phase

as discussed later (Section 5.3.9). This section will briefly outlines the use of

SPARQL to retrieve and transform datasets.

The first identified use case was obtaining data from local file sources (Section

5.2.1). These local files may contain data that is not required or must be trans-

formed to the schema. In Listing 5.2 a source file has been loaded into a graph,

but has mislabelled properties and changing datatypes (in this case a string to

an integer). These are deleted and replaced with the correct values.

164

PREFIX sch: <http://example.org/schema#>

PREFIX src: <http://example.org/source#>

WITH <http://example/final-graph>

DELETE{

?subj src:prop ?obj .

?subj src:value "18" .

}INSERT{

?subj sch:prop ?obj .

?subj sch:value 18 .

}WHERE{

?subj src:prop ?obj .

?subj src:value "18" .

}

Listing 5.2: Example SPARQL query to select and transform data within a graph.

When the source files contain a lot of extraneous data then triples can be

selectively extracted. The files can be loaded into a graph of the knowledge-base

and then the cleaned data transferred to a new graph, which will actually be used

in the framework.

This is shown in Listing 5.3 where a temporary graph is searched for the

required data. This data is transformed, in this case using the schema’s properties

and classes, and then inserted into the final graph. Once completed the entire

temporary graph can be dropped from the knowledge-base.

165

PREFIX sch: <http://example.org/schema#>

PREFIX src: <http://example.org/source#>

INSERT{

GRAPH <http://example/final-graph>{

?subj sch:prop ?obj .

?subj a sch:CorrectClass .

}

}WHERE{

GRAPH <http://example/temp-graph>{

?subj src:prop ?obj .

?subj a src:WrongClass .

}

}

Listing 5.3: Example SPARQL query to select and transform data between

graphs.

The second use case is obtaining data from remote SPARQL endpoints (Sec-

tion 5.2.2). The endpoint services are queried over HTTP using the Federated

Query mechanism. The results can then be inserted into the local knowledge-

base. This is shown in Listing 5.4 by the inclusion of a service URI to signify the

remote SPARQL endpoint.

166

PREFIX sch: <http://example.org/schema#>

PREFIX src: <http://example.org/source#>

INSERT{

GRAPH <http://example/final-graph>{

?subj sch:prop ?obj .

?subj a sch:CorrectClass .

}

}WHERE{

SERVICE <http://example/remote-endpoint>{

GRAPH <http://example/temp-graph>{

?subj src:prop ?obj .

?subj a src:WrongClass .

}

}

}

Listing 5.4: Example SPARQL query to select and transform remotely held data

from a service.

In conclusion, datasets retrieved or loaded into the local knowledge-base can

be transformed using SPARQL queries. This allows the preparation of the dataset

in advance of execution and so enables usage of a common schema by modules

(Chapter 4). These SPARQL queries can be distributed for re-use to support the

transformation of published datasets into a schema, e.g a module developer could

publish the transformations required to prepare a well-known dataset for their

module.

It has previously been identified that a configuration of the framework is to

use only remote data sources without a local knowledge-base. Since the schema of

modules and data sources could vary there needs to be a method for transforming

or reconciling the data. The proposed solution to this is discussed in the next

section.

167

5.3 Controlling and Executing the Modules of

the Framework

An objective of the framework is to allow the platform-independent interchange of

modules. The framework has been designed to fulfil this objective without requir-

ing that the modules all adhere to a strict interface, but instead interact through

the data of the knowledge-base. Further, the modules can be implemented in

different programming languages, e.g. Java and Python, and executed on differ-

ent computing platforms or physical computers. Therefore, it is intended that a

diverse range of modules can be utilised with minimal barriers to implementation

and access.

The framework achieves these features through an RDF structure and lever-

aging the SPARQL protocol [43]. The RDF structure, termed the Framework

Configuration, provides a directory of services, graphs, modules and queries. This

structure identifies where the modules can retrieve data for their execution and

replacement queries supplied by the user. Therefore, multiple versions of the

Framework Configuration can re-use the same set-up of parameters for multiple

iterations. Alternatively, the same scenario parameters can be applied to dif-

ferent knowledge-bases of the contextual data, e.g. geography, demography and

infrastructure, as the user chooses.

The SPARQL query protocol is used to allow the user to retrieve data using

standard querying syntax or modify the execution of modules. The Federated

Query [43] component of the protocol provides access to remote and local datasets

over HTTP using standardised syntax. Therefore, the framework does not variate

the SPARQL standard, but extends it through a small set of requirements for

modules to implement.

The conceptual structure of the framework is shown in Figure 5.5. This ab-

stract view does not take into consideration the physical configurations that the

framework facilitates as discussed previously (Section 3.4). The Framework Con-

figuration interacts with the modules that provide the functionality of the travel

demand process. It provides the modules with the Service Definitions, Module

Definitions and Query Definitions that are used to locate data sources, select

data and call other modules to perform discrete functionality.

168

Figure 5.5: Diagram of the framework structure using the RDF data model of
the Framework Configuration to exchange information with modules and data
graph.

This section describes the Framework Configuration by examining the data

structures and processes required to support it. The premise of the Framework

Configuration is providing the user with control over the configuration by allow-

ing them to select modules and mediating any schema misalignments that may

occur between modules. This creates the prospect of users providing incorrect

information through badly formed queries. Therefore, there is also consideration

of the selected mechanisms for ensuring the validity of data and queries which

are passed between modules at the direction of the user.

5.3.1 Framework Configuration

The Framework Configuration schema is shown in Figure 5.6. Each instance is

described by properties to the Service Definition, Query Definition and Module

Definition. This configuration information can be stored in the knowledge-base

as a separate graph or kept in a single graph together with the other parameter

data for the Travel Scenario and the execution results (Sections 4.5 and 4.9).

In addition to controlling the configuration during execution, this information

may be of use in post-execution analysis or the reconstruction of the investigation

by other users, e.g. as part of reproduction studies. The Framework Configuration

also provides a central reference for associating any global data that a particular

module may require, e.g. additional configuration data for a traffic simulator.

An optional Framework Service property allows the URL HTTP service on which

the Framework Configuration can be retrieved. This allows the whole graph of

configuration to be passed from service to service using only two references: the

169

Framework Configuration URI and its service.

5.3.2 Service Definition

The Service Definition describes where data can be retrieved relating to a par-

ticular part of the core schema. Each Service Definition includes a Service Type

that identifies which parts of the schema are satisfied by the Service Definition.

Additional Service Types may be defined by modules if their data requirements

are broader than the core schema. The user would fulfil these requirements in

the knowledge-base and then signpost to them using the Service Definition of the

Framework Configuration.

It was discussed previously (Section 4.9) that the knowledge-base can be di-

vided into multiple logical graphs to separate concepts or alternative sets of data.

The service URI indicates the address of the SPARQL endpoint where the data

is located. The graph URI indicates which graph within the endpoint holds the

required data. This allows two Framework Configurations to point to the same

service and retrieve different versions of data, e.g. Year 1 and Year 2. Alterna-

tively, the two Framework Configurations could point to different services and

retrieve their alternative versions of the same data, e.g. Year 1 from Service A

and Year 1 from Service B.

The user may decide to organise their knowledge-base following their own

graph structure or physically separate the graphs onto different computers each

operating a different endpoint. The Service Definition permits this to take place

without restriction. The Service Type identifies which sets of data are satisfied

by each service URI and graph URI pair. The module will seek the Service Type

it requires without concern for the underlying organisation.

In the most simple configuration a single knowledge-base would have a single

graph containing configuration, scenario and results data. Similarly, while a

module may distinguish two areas of the data as being separate, e.g. person and

vehicle data, the user may decided to place them in the same graph, as they

will not interfere with each other. Therefore, the Service Definition may refer to

multiple Service Types, which are using the same service URI and graph URI.

This is shown in Figure 5.7 by the ”Data” Service Definition. In this example,

170

F
ig

u
re

5.
6:

S
ch

em
a

of
F

ra
m

ew
or

k
C

on
fi
gu

ra
ti

on
.

171

two Framework Configurations are defined, which use the same knowledge-base

for the persisting data, i.e. data that is not influenced by parameters of the sce-

nario, and then identify different ”Scenario” and ”Results” Service Definitions.

Therefore, the parameters of the scenario are being varied, but not the demo-

graphic, network infrastructure or land use data.

This separation into four parts is recommended as the minimum division,

although a single Service Definition would be a valid configuration. This recom-

mendation is based upon partitioning the scenario parameter from the persisting

data, so that multiple iterations and variations can be executed, and placing the

results of the scenario in a separate graph, so that they can be easily removed,

e.g. if an error occurred during set-up or execution.

It was previously outlined (Section 4.9) that six graphs were used to organise

the prototype knowledge-base and modules (Chapter 6). Therefore, six Service

Types were defined in the Framework Configurations. However, these were design

decisions and not a mandatory requirement. Implementing modules are able to

state the Service Types they require and the user would then satisfy them through

the knowledge-base and the Framework Configuration. The lack of mandatory

requirements relating to Travel Demand Modelling means that this approach

could be used in other contexts outside of travel demand generation.

5.3.2.1 Service and Graph Query Manipulation

The Service Definition enables the user to identify the services and graphs that

they wish to use in the framework. These definitions are utilised by applying the

parameters to template SPARQL queries. This section discusses the mechanism

developed for manipulating these template queries. This mechanism is executed

by modules but is designed to be a generic re-usable component that modules

can access as a library. Each module may perform multiple queries and retrieve

the Service Definitions it requires based on the Service Type.

The Service Definition identifies the service and graph URIs available for each

Service Type. These services and graphs contain the datasets necessary to execute

queries and obtain results. The initial use case would have all the information

contained in a single graph on a single service for the query to retrieve.

172

Figure 5.7: Diagram of two example Framework Configurations for services using
local scenario and results with remote knowledge-base.

173

A broader scenario would find data spread across multiple services and mul-

tiple graphs. The graph structure of RDF and the SPARQL protocol Federated

Query enable the drawing together of this data without needing to execute mul-

tiple separate queries. This removes the need for implementation specific pro-

gramming code to handle the multiple stages of obtaining and passing the results

between separate queries.

The need for multiple stages would increase complexity and reduce the flex-

ibility for users in specifying replacement queries to suit their knowledge-base

or configuration as discussed later (Section 5.3.3). The Framework Configuration

enables the user to specify alternative configurations so that different services and

graphs, i.e. alternative datasets, can be used for each execution of the framework.

The mechanism is based upon queries being written as text strings which are

interpreted at run-time and therefore can be manipulated prior to execution. The

Listing 5.5 shows an example query template. A target variable has data retrieved

for three properties: hasName, hasLabel and hasValue. As target is unbound the

results will be for every subject that has these three properties.

Each property is expected to be retrieved from a different remote source spec-

ified by enclosing within SERVICE and GRAPH clauses. These clauses have

an accompanying identifier, shown in this case within square brackets [...]. The

identifiers are specified by the module and are substituted with the service or

graph URI from a Service Definition according to the Service Type.

174

PREFIX sch: <http://example.org/schema#>

SELECT ?target ?name ?label ?value

WHERE{

?target sch:hasName ?name .

SERVICE [labelService]{

GRAPH [labelGraph]{

?target sch:hasLabel ?label .

}

}

SERVICE [valueService]{

GRAPH [valueGraph]{

?target sch:hasValue ?value .

}

}

}

Listing 5.5: Example SPARQL query template with identifiers for service and

graph.

Figure 5.8 shows an example Framework Configuration that could be applied

to this template query. Each definition specifies a different service URI and graph

URI and Service Type. These are applied to the template to produce the query

as shown in Listing 5.6.

175

Figure 5.8: Diagram of example Framework Configuration for use in query ma-
nipulation.

The SPARQL protocol specifies additional requirements for valid queries.

Each query is executed in the context of a base service and graph. The base service

is not included as part of the SPARQL query. The base graph is identified by the

FROM clause which specifies the default graph. Any additional named graphs

are stated by FROM NAMED clauses. These statements must be inserted be-

tween the SELECT/CONSTRUCT/ASK/DESCRIBE and the WHERE clause.

Therefore, these clauses must also be inserted when named graphs are being used.

176

PREFIX sch: <http://example.org/schema#>

SELECT ?target ?name ?label ?value

FROM <http://example.org/graph#base>

FROM NAMED <http://example.org/graph#label>

FROM NAMED <http://example.org/graph#value>

WHERE{

?target sch:hasName ?name .

SERVICE <http://example.org/service#label>{

GRAPH <http://example.org/graph#label>{

?target sch:hasLabel ?label .

}

}

SERVICE <http://example.org/service#value>{

GRAPH <http://example.org/graph#value>{

?target sch:hasValue ?value .

}

}

}

Listing 5.6: Example SPARQL query prepared for execution with substituted

service and graph URIs.

It is not a requirement that the graphs of a knowledge-base are separated over

multiple services. In a simpler configuration a single service may provide all or

the majority of the required graphs. Therefore, comparison is made between the

service URI of the base Service Type and the service URI of additional Service

Types. When the two service URIs are identical the SERVICE clause, including

surrounding braces {...}, is removed. Listing 5.7 demonstrates this scenario by

only specifying a single SERVICE clause.

177

PREFIX sch: <http://example.org/schema#>

SELECT ?target ?name ?label ?value

FROM <http://example.org/graph#base>

FROM NAMED <http://example.org/graph#label>

FROM NAMED <http://example.org/graph#value>

WHERE{

?target sch:hasName ?name .

GRAPH <http://example.org/graph#label>{

?target sch:hasLabel ?label .

}

SERVICE <http://example.org/service#value>{

GRAPH <http://example.org/graph#value>{

?target sch:hasValue ?value .

}

}

}

Listing 5.7: Example SPARQL query prepared for execution on a single service.

Another scenario is that the knowledge-base has not been separated into the

same number of graph as the module originally defined. Instead several graphs

have been merged together, i.e. a Service Defintion with multiple Service Types.

The simplest framework configuration would be a single graph on a single service.

In the case of merged graphs, the graph URI of the additional Service Type is

checked against the graph of the base Service Type. If they are identical then the

GRAPH clause, including surrounding braces {...}, is removed. This is illustrated

in Listing 5.8 where the first service and graph clauses have been removed to

retrieve the data from the base service and graph. The second service and graph

clauses have been substituted with the relevant URIs.

178

PREFIX sch: <http://example.org/schema#>

SELECT ?target ?name ?label ?value

FROM <http://example.org/graph#base>

WHERE{

?target sch:hasName ?name .

?target sch:hasLabel ?label .

SERVICE <http://example.org/service#value>{

GRAPH <http://example.org/graph#value>{

?target sch:hasValue ?value .

}

}

}

Listing 5.8: Example SPARQL query prepared for execution on single service and

graph.

The procedure for the query manipulation mechanism is described in Algo-

rithm 1. The string query is modified during the process with clauses being added

and removed. The Service Definitions are retrieved from the Framework Config-

uration and stored in an associative array termed serviceDefs. This information

may be re-used across multiple queries within each execution of a module but

also across multiple executions, as discussed later (Section 5.3.5).

The query specific information are provided by the identifiers and base type

variables. The identifiers associate specific service or graph clauses with a Service

Type. The base type identifies the contextual Service Type that the query is being

applied within.

Applying this mechanism gives the user control over the organisation and

provision of data whether from local or remote sources. The modules are able

to use the SPARQL query protocol to obtain data in a decoupled manner from

179

the underlying knowledge-base organisation. These queries can also be made

available for replacement by the user, as discussed later (Section 5.3.3), to give

further flexibility in the data retrieval and processing.

Algorithm 1 Service and Graph Query Manipulation

function Query Manipulation(query, serviceDefs, identifiers, baseType)

baseServiceDef ← serviceDefs.get(baseType)

baseService← baseServiceDef.serviceURI

baseGraph← baseServiceDef.graphURI

query ← InsertFromClause(query, baseGraph)

for identifier in identifiers do

serviceID ← identifier.serviceID

graphID ← identifier.graphID

type← identifier.serviceType

serviceDef ← serviceDefs.get(type)

service← serviceDef.service

graph← serviceDef.graph

if service equals baseService then

query ← RemoveServiceClause(query, serviceID)

else

query ← InsertFromNamedClause(query, service)

query ← ReplaceServiceClause(query, serviceID, service)

if graph equals baseGraph then

query ← RemoveGraphClause(query, graphID)

else

query ← InsertFromNamedClause(query, graph)

query ← ReplaceGraphClause(query, graphID, graph)

return query

180

5.3.2.2 File and HTTP Service URIs

A final consideration of the Service Definition is the use of file URIs. The

SPARQL Federated Query protocol is based upon using the HTTP protocol to

query a SPARQL endpoint, either located locally within a network or remotely

online. When using the framework this may present an unnecessary burden both

in configuration and processing overhead.

The URI definition permits the use of HTTP and File as schemes [128, 129].

These schemes identify the method to access the resource the URI describes. This

has been incorporated into the framework design and is shown in Figure 5.7 by

the service URI for the ”Scenario” and ”Results” Service Definitions of both

configurations.

The simplest use case of the framework is executing a programme against a

knowledge-base stored on the local file system. Requiring the use of the HTTP

protocol would mean always establishing a HTTP endpoint for the file system

knowledge-base. Semantic Web libraries can support this process, but it is an

additional configuration step.

The User Application would be required to separate execution of modules

from the knowledge-base and run the HTTP SPARQL server. This would impose

requirements upon the user and could delay the investigative stage for no benefit.

There is also a computational overhead introduced by a local HTTP route that

can be avoided using a local file system knowledge-base. An illustrative outline

of the steps needed for the local HTTP route is shown below with the equivalent

step for a local file system shown in bold:

1. SPARQL query is converted by the User Application into a HTTP request.

2. HTTP request routed through the network adapter to the SPARQL end-

point.

3. HTTP request converted back into SPARQL query.

4. SPARQL query is executed by the SPARQL endpoint.

5. SPARQL query results converted into HTTP response.

181

6. HTTP response routed through the network adapter to the User Applica-

tion.

7. HTTP response converted back into SPARQL query results.

Handling of File URI is not a feature of the SPARQL standard which is

based upon HTTP URIs for Federated Queries. Therefore, File URI cannot be

used in SPARQL queries. This is due to the interpretation of the File URI, i.e.

the contents of the indicated file or folder, being implementation dependent and

reliant upon the Semantic Web library of the User Application (Section 3.4).

The framework accepts the use of File URI by applying several restrictions.

First, that the folder or file pointed to by the File URI can be accessed by the

Semantic Web library executing the query. In the context of a local closed system

this is a reasonable assumption as most applications will use a single Semantic

Web library. Second, when the base service is a File URI then the query is not

executed as a remote request, but executed on the local knowledge-base using

the Semantic Web library. Third, that a sub-service using a File URI can only

be used when the base service is a File URI. Fourth, that a sub-service using a

File URI must align with the base service.

In more complex configurations there may be a mix of local file and remote

HTTP services. A Semantic Web library compliant with SPARQL Federated

Query can be executed on a local knowledge-base and will retrieve the data from

the remote sub-services within the query. However, any sub-services also using

a File URI must have the SERVICE clause removed as the SPARQL protocol

does not interpret the File URI. Therefore, the data for these File URI services is

retrieved from the local context, i.e. the base service File URI. This means that

all the File URIs used in a single query must match and a File URI cannot be

used for a sub-service if the base service is a HTTP remote.

When considered for compatibility with the query manipulation mechanism

discussed previously (Section 5.3.2.1), the File URI is being used as an identifier

rather than a resource locator, i.e. the data is not located on a HTTP ser-

vice. The user application would already have used the File URI to locate the

knowledge-base and access it using the Semantic Web library. This means the

approach to File URIs is compatible with the query manipulation mechanism and

182

enables the same queries to be used on different configurations of the framework

(local and remote) by only changing the configuration parameters.

The restrictions established by applying this process can be summarised as:

• File URI support is dependent upon the Semantic Web library of the user.

• Only a single File URI can feature in a single query.

• A sub-service can only use a File URI if the base service uses a File URI.

Overcoming these design restrictions to support multiple File URI would re-

quire variation to the SPARQL standard or enhanced features of Semantic Web

libraries. This kind of variation to the SPARQL standard is highly unlikely as

a Semantic Web design principle is platform independence, which file system

knowledge-bases introduces. The enhancement of Semantic Web libraries is also

unlikely as the underlying SPARQL standard has not been changed and different

libraries could adopt incompatible approaches. In both cases support of multiple

File URIs represents a move away from the benefits of using standards based

technologies of the Semantic Web for a subset of use cases.

The previously outlined query manipulation (Section 5.3.2.1) can be imple-

mented by a module without modifying the Semantic Web library it utilises. The

mechanism is applied to the text of the query and should be straightforward

for modules to implement, or use a library developed for the proposed frame-

work. Therefore, providing additional implementation details for the framework

to address the multiple File URI is undesirable.

This means that some framework configurations using multiple File URI, i.e.

multiple local knowledge bases, are not supported. However, these configurations

can be supported by all but one one of the local knowledge-bases being set-up

as a local HTTP server. Their service URIs will then be HTTP URIs and the

stated restrictions would be met.

This may have the consequence of slower execution run-times in this specific

use case. However, travel demand generation and traffic simulation are not real-

time processes and so faster execution run-times are desirable rather than critical.

The user would also still have the choice of simplifying their configuration by con-

solidating the multiple local knowledge-bases into a single instance and applying

183

named graphs to ensure data separation (Section 4.9). The benefit of re-using

the same queries across multiple configurations can therefore be fully realised in

the proposed mechanism.

5.3.3 Query Definition

The objective of the framework is to provide the user with flexibility in the

configuration of modules, retrieval of data and execution of the modules. This

section discusses how the latter two objectives can be facilitated by enabling users

to rewrite the queries executed by modules. The queries are written in SPARQL

syntax which conforms to the published standard [43]. Therefore, the semantics

and vocabulary of the queries are clearly defined. The queries are interpreted at

runtime as text strings meaning that modifications can be applied or transmitted

without requiring modification or recompilation of modules.

Users with understanding of the underlying knowledge-base can re-write the

queries to retrieve alternative pieces of data for a module. Similarly, sub-modules

can be called to perform additional or alternative processing of the data within

the module as property functions using standard SPARQL syntax. The only

requirement is that the SELECT and CONSTRUCT variables are unaltered and

bound so that the executing modules can retrieve the expected data from them.

The Query Definition provides for these replacement queries to be defined

as part of the Framework Configuration. This allows the replacement queries to

be accessed by local or remote modules; ensures the full configuration is stored

within the knowledge-base; and facilitates re-use across multiple configurations.

Figure 5.9 provides an example of two Framework Configurations which each

utilise two Query Definitions.

In this example there is one common Query Definition and one specific to each

configuration. When modules are executing a query then a look up is performed

to check if the required query type is defined in the Framework Configuration. If

present then the replacement query is used and if absent then the default query

is executed.

The modules will only need to state the query type URI to identify relevant

Query Definitions and provide an example query for users to modify, i.e. the

184

Figure 5.9: Diagram of two example Framework Configurations for query using
the same module to request stages but different calculations of utility.

default query that the module already executes. The queries used by modules can

be considered to serve the purposes of data retrieval and sub-module execution,

e.g. requesting a stage estimate during the trip planning phase. By publishing

either of these types of query a module will be providing greater control to the

user.

The former type of queries will allow a module to be adapted to a new schema

in the knowledge-base by the user rather than the alternate case of transforming

the data in the Knowledge-Base Construction phase (Section 5.2.3). Another

use case is the modification of calculations and equations, e.g. utility in discrete

choice models (Section 1.2.4.2).

Publishing these queries by the module developer would be recommended,

but not mandatory as the user can still utilise the module by complying with

the published schema. There may also be a large quantity of these queries used

by a module which are trivial in nature and a burden to publish. In addition,

design decisions and assumptions for a module could make modification of certain

queries problematic, although compliance with the core schema should assist

185

in preventing this (Chapter 4). However, by not publishing these queries, and

exposing the module’s data retrieval process, a requirement is placed on the user

to conform to the module’s expected schema.

The latter type of queries provide control over the configuration of the frame-

work. It is through these queries that modules are accessed and so how alterna-

tives can be selected, e.g. a replacement sub-module for the default sub-module.

Therefore, these types of queries should be mandatory for publication so that

users can have control over the framework configuration to select alternative

functionality.

In both cases the user may wish to redirect part of the query to one or more

services and/or graphs. The user could place SERVICE and GRAPH clauses

with explicit URIs within the query. However, this would remove the flexibility for

changes to be applied during execution according to the Framework Configuration

when different datasets or modules may be explored.

The user would have to manually edit each change in the Query Definition

for each Framework Configuration; both time consuming and prone to error.

Therefore, the Query Binding structure provides a cross-reference from the query

defined in the Query Definition to the existing Service Definitions in the Frame-

work Configuration (Section 5.3.2.1).

The user can then include additional service and graph placeholder variable

names in the query. Alternatively, they can overwrite the default bindings for ex-

isting placeholders used by a module. When the query is processed these variable

names are substituted with the corresponding service or graph from the Service

Definition with the matching service type. Any variable names can be provided

by the user allowing as many cases as they require within a query and across mul-

tiple queries. Additional Service Definitions can be included in the Framework

Configuration beyond those required by the executed modules allowing further

flexibility to the user in how data is retrieved.

The approaches described enable the externalisation of the data retrieval,

calculation and sub-module selection performed by modules. These processes

can then be adapted and modified by the user to their configuration of data and

modules as opposed to being restricted to configurations with compliant interfaces

and data structures.

186

5.3.4 Module Definition

A feature of the framework is that the user is able to provide alternative queries

using the Query Definition as described previously (Section 5.3.3). This intro-

duces the need for validating the query against the schema of the knowledge-base

as discussed later (Section 5.3.7). A scenario this introduces is the user providing

a query that replaces the URI of a sub-module in a query with another module’s

URI in order to use its alternative implementation or functionality.

A step of the query validation process is checking whether the property URIs

of a query are contained in the knowledge-base’s schema. Otherwise the defined

triple will never yield a result, if the knowledge-base schema fully describes the

contained data, and making attempts to execute the query redundant. The URI

of modules are used as properties in queries but do not have to be included in

the schema, which describes the shape of the data.

A module can know its own URI and those of the default sub-modules that it

utilises and so these can be included and recognised during the query validation

process. However, replacement module URIs included by the user as part of a

Query Definition will be unknown and cause a validation error. The Module

Definition provides a mechanism for the user to declare the module which is

having its default sub-modules replaced and the replacement sub-module URIs.

These replacement sub-module URIs will feature in the new queries defined

in the Query Definitions. When the query is validated the Module Definition can

be checked for the sub-module URI. The Module Definitions are only required

if the user changes the sub-module within a query from the default expected by

the module. Since a query could potentially include multiple sub-modules the

Module Definition can define multiple target sub-modules URIs.

5.3.5 Caching of Invariant Data

The storage and processing of large quantities of data has led to the develop-

ment of databases. The RDF graphstore, that would be expected to store any

knowledge-base of size, and other non-SQL databases have been developed to

provide this functionality as alternatives to the traditional relational database.

These databases can provide persistent storage on the file system with features

187

including querying and parallelism.

Once data has been loaded and prepared the persistent file storage allows very

large datasets to be accessed. Optimisations have been developed, e.g. indexing

and query caching, to assist in the retrieval of data. However, database retrieval

is still slower than an application retaining data in-memory.

The in-memory data is already in the required form for the application and

does not require retrieval from the file system and processing. While computer

memory capacity has continued to develop, they can still be relatively small in

size compared to the scale of datasets. This can inhibit an entire dataset being

retained in-memory by an application. Therefore, there is a compromise between

large scale, but slow access, databases versus the small scale, but quick access, of

in-memory storage.

A similar issue is found with the HTTP requests over a network used by the

proposed framework to access remote datasets. These HTTP requests themselves

are relatively slow to perform as discussed previously(Section 5.3.2.2) and their

reduction or removal would lead to improved execution run-times. The discussed

approach with supporting local file system references can remove some HTTP

requests when modules and data are set-up locally. However, the removal and

reduction of computation will enhance the efficiency of any system.

Another consideration is the manner in which SPARQL queries and property

functions, which execute and wrap the modules, are resolved by SPARQL query

engines. A property function is called for each potential solution to a query with

the parameters for each case passed for processing in isolation. The differences

between these cases may be a single parameter value. This can mean that a query

with many thousands of cases could be retrieving from the graphstore the same

or very similar data for every case.

Finally, graphstores can experience reductions in query performance as the

dataset size increases and with sub-optimal queries. The greater the number of

triples present in the dataset and the less specific the query then the greater

the cross-product of cases that could be legal query solutions. Separation of

knowledge-bases into multiple graphs can reduce the number of triples being

searched and query optimisation by ordering of steps to reduce candidate cases

early can improve response times. However, not performing redundant querying

188

will always be quicker. In each of the outlined situations the caching of invari-

ant data in-memory can provide part of the solution. The cached data can be

repeatedly accessed to remove the need to access the graphstore, process HTTP

requests and obtain data for usage between cases.

It has already been discussed (Section 4.9) that the data in the knowledge-

base belongs to a variety of contexts. These contexts include invariant data that

will not be changed by the state of the modelling process, e.g. the location

of a building, while other data may undergo change, e.g. person and vehicle

positioning. This does not mean that the state of objects in the knowledge-base

will not change over the long term, but that they will not be adjusted in the

time-frame of the modelling process, i.e. a building on a site may be demolished

between different dataset years, but not over the course of the day or week of

traffic demand generation.

Another context to consider is the data that changes between modelling exe-

cutions, e.g. framework and scenario parameters. These parameters distinguish

one execution from another. However, they are invariant within the modelling

process. Therefore, the values do not require retrieval and updating once they are

already known by a module. These types of data can be identified by modules,

extracted from the knowledge-base and retained for use from case to case during

an execution.

Overall, the user is able to construct a large knowledge-base containing con-

textual data for the concepts, while the modules are able to extract and retain

targeted data for faster execution. This means that the user does not need to

extract and format a subset of the data for the module to utilise or compromise

the richness of the knowledge-base.

The lack of variability in framework and scenario parameters means that

Framework Configuration instances can be used as a reference to allow multi-

ple sets of cached data to be retained, identified when needed and discarded

when no longer used. A number of configurations for the framework have been

discussed (Section 3.4) including local and remote execution of modules.

In both cases it would be expected that the in-memory capacity will be limited

as with any resource. In the local execution this is not a concern as modules will

likely be executed for short periods of time and on a single Framework Configu-

189

ration instance. Therefore, cached data would be discarded once the execution

has completed, i.e. the User Application exits and releases its resources.

In remotely executed modules there would be continuous availability as a

service. The service would be available for long periods of time and expected to

execute multiple Framework Configuration instances. Each instance could have

different data associated and so must be logically discreet from other instances,

e.g. scenario parameters may differ. Therefore, there is potential for accumulating

large quantities of data in the cache.

The physical limit to in-memory caching can be increased by operating sys-

tem funcationality, e.g. paging to disk, and caching to disk libraries, [130, 131].

However, retaining cached data indefinitely is a waste of resources as once the

execution has completed a Framework Configuration instance will not be used

again, or if it is can incur the initial pre-caching cost, while periodic restart of a

service is not ideal.

The proposed solution is for the cached data to expire if it has not been

utilised for a period of time. The travel demand generation typically occurs

as a continuous process with households and persons iterated through in rapid

succession. Therefore, a period of seconds or minutes would indicate that the

process is completed and the cached data is no longer required.

The framework design is based upon modules being provided with a Frame-

work Configuration instance in order to retrieve the relevant service and query

information. Each Framework Configuration instance identifies the scenario,

knowledge-bases and current results. Therefore, modules can check the cache

for the Framework Configuration instance, retrieve the data and update the most

recent request log.

Once cached data is no longer being requested it can be discarded. A service

under heavy load would be able to limit cache sizes to not exhaust in-memory

capacity, stop caching when full, but expect cache space to released as the load

is completed.

The apply caching property has been included in Figure 5.6 to enable users

to specify a choice as part of the global configuration. However, it would be

a module implementation decision whether to honour or ignore the parameter.

There may not be relevant data which is deemed invariant or there is insufficient

190

resources for caching.

This caching solution allows the execution costs of database access, HTTP

requests and redundant SPARQL querying to be mitigated without wasteful use of

resources or requiring additional data to be passed to modules. The effectiveness

of this solution is evaluated in Chapter 7.

5.3.6 Ensuring Validation and Conformance of Data to

the Schema

The effectiveness and accuracy of any model or system is heavily influenced by

the quality of the input data. The proposed framework is developed upon the

provision of data from publishers which is then acted upon by the consuming

modules. Both parties must ensure that the data conforms to the schema that

they publish or utilise. This section outlines several areas that this is particularly

important in the Semantic Web and identifies an available solution.

The technical details of this solution are not discussed here but it provides

an existing mechanism for providing assurance in data conformance. Low quality

and non-compliant data will lead to errors in the produced results and can prevent

successful completion of any computational process. This is especially true of the

Semantic Web due to several factors:

• The SPARQL query process matches triples to the template graph pat-

terns in the query. When a set of triples do not match a graph pattern

it does not result in an error but instead that the particular set of triples

should be ignored. Data which is malformed, such as incorrect property

URIs or missing properties, will not cause a warning or error, but instead

be silently ignored to return less or no results. The inverse also applies

where a SPARQL query is not correctly aligned to the underlying data

(Section 5.3.7). Therefore, minor typographical errors in either stage will

produce unexpected results. This in contrast to SQL where a mismatching

key/column during data loading or querying will produce an error.

• The open and online retrieval of data from multiple sources also presents

a problem. The user does not control these data sources or the data they

191

publish. Therefore, the quality and compliance is beyond their control.

There will inevitably be errors, omissions and variations between different

versions. The AAA principle (Section 4.2.1) also allows publishers to include

properties of their own choice, which could conflict with a user’s schema or

vary away from the standard schema a user was expecting.

• The graph structure of RDF makes human inspection and validation of

data difficult. In a tabular structure, data is held in rows and columns that

can be inspected for gaps or malformed entries. Additional columns can

easily be identified. In RDF, the triples relating to a single subject may

be dispersed throughout a file and the description of a single concept may

be spread over a chain of triples. There may be multiple occurrences of a

subject-property when only one should be present or none when at least one

is required.

A user needs to establish confidence in the knowledge-base and modules prior

to utilising them. Otherwise, there can be little confidence in the resulting out-

put until it has been thoroughly validated. Therefore, an automated solution is

necessary to ensure that a dataset complies with the intended schema. The user

will then be informed of the non-compliance and can take steps to resolve them.

The Shapes Constraint Language (SHACL) [95] is a Semantic Web standard

technology that has been developed to provide automated validation and report-

ing. The schema is composed of RDF triples that express the expected shape and

constraints of the data. This shape can be described with a variety of character-

istics, including:

• the presence of properties;

• the frequency of properties;

• the datatypes of literals;

• class membership;

• and the values and ranges of data.

192

Rules can also be expressed to apply inferences to the data to produce new

triples. The approach applies Closed World Assumption (Section 4.2.1), i.e. that

no new data exists that would invalidate the inferences or outcome, and does

not apply the Non-unique Name Assumption (Section 4.2.1), i.e. entities with

different names cannot be the same entity.

This is in contrast to RDFS [101] and OWL [93] schema languages. These

have been primarily designed to derive inferences from the data according to the

schema, rather than enforce data conformance. If the data and those inferences

are logically inconsistent then it is reported as being invalid for the schema.

However, the cause of the invalidity may not be apparent to the user.

The available terms in RDFS are very focussed and so the expressiveness is

narrow. The OWL language uses Open World Assumption (Section 4.2.1), applies

the Non-unique Name Assumption and is primarily used for classification. This

means that OWL may not produce the outcomes which a user may expect and

is not broad enough for all data validation purposes. For example, a missing

property when the schema states a minimum cardinality of one is not invalid as

the property may exist in the open world. The absence of a statement is typically

assumed to mean that the statement is false, but in OWL it is concluded that

the statement may be true or false.

The SHACL triples are encoded as RDF and therefore can be shared as part

of a schema. The schema can then be applied to the data when constructing the

knowledge-base. When the schema and data of the knowledge-base are processed

by a SHACL engine any violations can be identified for rectification. This can

also be applied to models retrieved from remote data sources using SPARQL

CONSTRUCT queries to ensure that the correct structure is being obtained.

In summary, there is a technological solution available for automated data

validation within the Semantic Web. This solution can be incorporated into User

Applications, datasets and modules to ensure that the data produced is compliant

with any required schema. This schema can be customised according to the needs

of the user and modules using a standardised set of properties, which provide both

data validation and inferencing.

193

5.3.7 Ensuring Validation and Conformance of SPARQL

Queries to the Schema

The functionality of permitting users to supply their own queries through the

Query Definition raises the issue of query validation in SPARQL. A closed system

has queries written by developers with detailed understanding of the schema and

opportunity for thorough testing. An open system can accept queries from users

who lack detailed understanding and do not have time to thoroughly test queries.

Errors originating in user input should be discovered as early as possible [132]

to prevent queries being processed that ultimately fail, after wasting resources

undertaking the processing, or can return unexpected and incorrect results.

An advantage of SPARQL querying is the flexibility in allowing the user to

structure queries and retrieve data of their own choice. Therefore, a techni-

cal solution to address a user’s lack of understanding about the schema of the

knowledge-base, i.e. predicting the user’s true intention from a malformed query,

is difficult. However, identifying typographic and logical errors within queries

would be a useful assistance and save resources for both users and developers of

the framework and implementations of SPARQL generally.

In an SQL database the schema is stipulated by the designer through the

structure of table fields/columns and no additional fields/columns can be de-

fined. This means that queries can be validated to identify those fields which are

incorrect at the outset, either through user mistyping or misunderstanding of the

schema, i.e. a column in the table must exist for it to contain any data. The

SPARQL standard is based upon the graph of data in the knowledge-base being

schema-free and does not contain such a checking mechanism, i.e. the absence of

a triple match could be an incorrect query or the lack of matching data in the

knowledge-base.

In SPARQL, the property of a triple is analogous to a field/column in SQL.

The multiple statements in the graph patterns of the query are matched to the

data. The graph structure of the data is walked along for each case until a

mismatch to the graph pattern is found. A case which completes the graph

pattern is returned as a result.

Following the AAA principle (Section 4.2.1) and no schema, a property which

194

has been mistyped in a query is considered to be different to the correctly typed

property present in the data. This can also be applied to class names. It is

instead considered that the user (Anyone) has made their own statement (About

Anything).

There will not be a binding to the statement in the graph pattern so it is

likely all cases will fail and the query will return no results. This lack of results

is interpreted that there are no matches for the query in this dataset, but there

could be in another dataset, rather than an error.

Similarly, SPARQL queries can contain named variables which are bound to

the data and re-used in later parts of the graph pattern and/or returned as results.

These variable names are only defined within the context of the query. Mistyping

a variable name will result in two variables when only one was intended.

When the data is being walked in the graph pattern these variables are bound

to all possible cases for the triple and then later rejected by other statements. A

mismatch between two variable names will result in cases not being rejected and

more of the dataset being explored than was required or intended.

It has also been identified that SPARQL implementations have focussed upon

grammatical checking of queries [133]. These grammatical checks identify when

keywords are mistyped or functional requirements cannot be fulfilled, e.g. vari-

ables named as a result, but are not included in sorting or grouping statements.

They do not pro-actively ensure that queries are valid for logical or schema con-

straints and instead reactively error and fail during query processing.

These logical and schema constraints have been categorised into syntactic

and semantic validation [133]. The identified syntactic rules cover several cases

including positioning errors, e.g. a literal being used as a subject or property,

and filter conditions using literals of different data-types. The semantic rules are

formed into an OWL ontology to use inferencing to check for logical consistency

in the query.

It has previously been discussed that the execution of SPARQL queries can

lead to the inefficient repetition of actions on invariant data (Section 5.3.5). This

situation also applies to the queries defined by a Query Definition in a Framework

Configuration.

Once a query has been validated its content will not be changing and repeated

195

validation would be a waste of resources. Instead the outcome can be cached for

re-use according to the Framework Configuration and Query Type URIs. There-

fore, a successful query can be repeatedly executed, while a previously rejected

query can signal a swift termination.

The following sections will examine the validation of the query URIs and

variable names for incorporation into the framework. This validation seeks to

ensure that the potential exists for meaningful results to be returned by a query

rather than the actual results. The inclusion of more general SPARQL validation

errors [133] has been partially implemented on internal module queries to assist

with module development, but is an area of future work.

5.3.7.1 Validation of Query Unique Resource Identifiers

The previously identified issue of mistyped property and class URI is included in

the category of syntactic errors and can be resolved by checking to ensure queries

only contain URIs explicitly contained in the schema. However, in a Federated

Query the schema of the target service would need to be known for a check to be

carried out.

This is possible if the target service, i.e. modules and knowledge-bases, are

following the same core schema (Chapter 4). However, the framework has been

developed to tolerate local variations in modules and knowledge-bases by the user

providing their own Query Definitions (Section 5.3.3). These Query Definitions

may be the source of such errors through typographical errors or misunderstand-

ing variations in schema between modules and knowledge-bases.

To manage such errors a module could execute the query and then check the

outcome of the remote service’s validation. This is undesirable as it requires

reacting to failures after the execution has taken place. A single execution of

a query could contain multiple cases which will all result in errors. Therefore,

resources are wasted in reaching an outcome that could be predicted by validating

the query.

Alternatively, the module could request the schema from the remote service

and perform local query validation before executing the query. However, SPARQL

is designed to be schema free and there is no defined mechanism to request a

196

schema. An enhancing feature of the framework could perform this request, but

it would create an extra burden on implementing the framework. Knowledge-

bases complying with the SPARQL standard, but not set-up for the framework,

would not be able to perform validation. This would either preclude them from

being used, and so not achieve the framework objective of remote data retrieval,

or limit the application of query validation.

A third option is to use the SPARQL ASK or DESCRIBE keywords to query

the remote service for the relevant graph pattern within the SERVICE clause.

The explicit class and property URIs can be extracted from the graph pattern and

then queried against the module or dataset. An ASK query provides a boolean

response to whether a solution exists to the query graph pattern. A DESCRIBE

query provides an RDF graph response about one or more resources, which in-

clude property URIs, with the precise response being implementation dependent.

Obtaining confirmation that the property URI is recognised and is an instance of

RDF property would meet the above requirement for error identification.

This is illustrated in Listing 5.9 which shows the specific targeting of a property

URI and the retrieval of all. These can be targeted at a specific graph. Therefore,

either keyword could be applied with the ASK providing the more direct check,

but potentially requiring multiple HTTP requests, while DESCRIBE allows the

checking of multiple instances or characteristics.

These checks will identify whether the explicit class or property is contained

in the remote service, either in the data or schema. It does not resolve variables

or SPARQL syntax as this requires execution of the query.

197

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

ASK{

<http://example.org/schema#propA> a rdf:Property .

}

DESCRIBE ?prop ?class

WHERE{

?prop a rdf:Property .

?class a rdfs:Class .

}

Listing 5.9: Example SPARQL query for ASK and DESCRIBE keywords to

confirm execute a remote module through its Property Function.

5.3.7.2 Validation of Query Variable Names

The matching of variable names can have a range of implications for a query.

The connection between statements in the graph pattern will not be made and

so extraneous results can be included. A newly encountered variable name will

obtain all instances that match the triple. If the variable name is mistyped then

numerous instances will be obtained when the true variable name would have

resulted in one or a few instances. This error can also affect the optimisation

of queries, performed by Semantic Web libraries, which seek to arrive at results

quicker by targeting those triples that limit the result set most effectively.

A mismatch in variable names between the CONSTRUCT template and

WHERE body will also cause those triples to not appear in the returned graph,

implying no data for those triples. There can also be a mismatch between the

variable names in the body of a query and the specific bindings of BIND and

VALUES clauses, which would result in the whole dataset being queried rather

than a targeted subset.

The incorrect naming of variables can also cause grammatical errors as key-

198

word clauses, such as GROUP BY and ORDER BY, must include all variable

names that are included in the SELECT clause. While the variable names in

these keyword clauses may align, and so pass grammatical validation, there can

still be a misalignment to the variable names in the WHERE body, which would

not be detected.

These variable names only exist in the context of the query and therefore

variations in schema are not an issue. However, there is a challenge in identifying

variable names which have some similarity, and so are potentially intended to be

the same, but not so dissimilar that every pair of variable names is reported.

The variable names themselves can be groups of characters, words, parts of

words and compounds formed from multiple words or parts of words. The variable

names are case sensitive and so mistyping using name conventions, such as Camel

Case, can result in multiple variables , e.g. ”myVar” is different to ”myvar”. The

inclusion of a numeric character is also acceptable, e.g. ”var1” and ”var2”. A

variable name is permitted to only be placed and used once in the WHERE clause

and not in other query clauses to indicate that any value is permitted, i.e. a test

of another part of the triple.

These factors mean that any candidates for correction can only be highlighted

as a warning for the user, rather than an error, as similar variable names may

be the user’s intention, e.g. an alphanumeric suffix for variable names. Since

variable names do not have to be words the application of spell checking using

an approved list is inappropriate.

The grammatical error of a variable name in the GROUP BY or ORDER BY

clause not being matched in the WHERE body would be an error. Similarly,

applying the assumption that a user would only provide in-line data in the VAL-

UES clause for use in the query means any unmatched VALUES variable names

would be an error. An exception to this is when a variable name is used in the

SELECT clause and the VALUES clause, but not the WHERE body, to directly

bind data for the results.

A number of distance metrics have been proposed for measuring the similar-

ity between character strings [134], including Levenshtein distance, Jaro-Winkler

metric, Jaccard similarity and Hamming Distance. These metrics examine the

strings from a variety of perspectives and produce varying numerical values to

199

quantify the level of similarity. The Levenshtein distance measures the edit dis-

tance, i.e. number of insertions, deletions or substitutions, required for two strings

to match with a zero being an exact match.

This metric has been used in the implemented Algorithm 2 to identify variable

names that are similar, i.e. less than three edits, but not exact, i.e. greater than

zero edits. The threshold of three was selected to permit the insertion or deletion

of up to two characters or the transposing of a single pair.

A minimum threshold is applied to ensure that only strings which are long

enough to have a greater similarity than difference are checked, i.e. four char-

acters. Otherwise short words or single character variable names, which are

commonly used in SPARQL queries, would be flagged. Similarly an edit distance

of two is only reported for strings of equal lengths, to identify transposing. The

two edit distance cases of two insertions or an insertion and a substitution are

treated as being dissimilar strings.

The query is provided as a parameter from which are obtained the variable

names in the WHERE keyword clause and candidate names from the result key-

word clauses, i.e. SELECT, CONSTRUCT or DESCRIBE. An exception to this

are any variable names that are bound in the SELECT clause due to aggrega-

tion of results, e.g. the result of a COUNT function. These specifically bound

variable names will not feature in the remainder of the query and so will never

be matched.

The variable names of the query WHERE clause are iterated through and

compared to the set of variable names. The equality of names is checked first to

provide an early exit for those strings with a distance of zero.

A check is then performed to ensure the length of both strings is sufficient for

the edit distance checking. Strings which are too short are still added to the list

of candidates as they may provide future matches for variable names. The result

of the Levenshtein Distance is checked for the one and two edit distance cases,

as illustrated in Table 5.1.

In the one edit case a further check is made into whether the initial or final

characters of equal length strings are matching. When not true the edit is in the

remainder of the strings and can be reported. An exception is made for characters

that only differ by case, e.g. ”varA” and ”vara” are reported. Otherwise the edit

200

distance is ignored as being an enumeration with a prefix or suffix.

This could potentially under report errors as there is no checking to ensure

a consistent sequence of enumeration, but it could also be considered restrictive

to enforce sequential numbering. The enumeration is also limited to a single

character, i.e 1-9, a-z and A-Z, and therefore would report two variables using

more than two characters as similar, e.g. ”var1” and ”var10”. Resolving these

reporting edge cases is an area of future work to investigate potential naming

conventions and the appropriate rules for enforcement.

In the two edit case a check is made to ensure the strings are equal in length

and whether the edits are the transposing of adjacent characters through two

substitutions. The two edit cases which result in two insertions, two deletions,

non-adjacent substitutions and non-transposing substitutions, i.e. more than two

character values, are ignored as being too dissimilar.

When an exact match is found the variable name is added to a set of matched

names. A name without an exact match is added to the set of candidate variable

names to allow comparison between variable names inside the WHERE clause.

Once all the names have been checked the other keyword clauses of the query,

i.e. VALUES, ORDER BY and GROUP BY and the original result clause, are

checked to ensure all of their names have a matching name in the WHERE clause.

Otherwise these variable names would never be bound to values. The VALUES

clause is checked for matches against the other clauses’ variable names for the

case when in-line data is being directly bound to them.

201

Algorithm 2 Check Variable Name

procedure Check Variable Name(query)

list reports← empty

editThreshold← 3

set names← query.where.varNames

set candidateNames← query.result.varNames

set matchedNames← empty

for name in names do

isMinLength← name.length > editThreshold

isMatched← false

for candidateName in candidateNames do

if name = candidateName then

isMatched← true

break loop

if isMinLength and candidateName.length > editThreshold then

dist← LevenshteinDistance(name, candidateName)

isReport← false

if dist = 1 then

pos← FindEditPosition(name, candidateName)

if pos = −1 or(pos 6= 0 and pos 6= name.length− 1) then

isReport← true

else if dist = 2 then

isReport← CheckTranspose(name, candidateName)

if isReport then

report← CreateReport(name, candidateName, dist)

reports.add(report)

if isMatched then

matchedNames.add(name)

else

candidateNames.add(name)

unusedReports← ReportUnusedNames(query,matchedNames)

reports.add(unusedReports)

return reports

202

Variable
Name

Candidate
Name

Edit
Distance

Reported Comment

x x 0 No Variable and candidate names are identical.
x y 1 No Variable and candidate names are too short.
x xx 1 No Variable and candidate names are too short.
x xxx 2 No Variable and candidate names are too short.
x xxxx 3 No Variable name is too short. Edit distance is too great.

sub subj 1 No Variable name is too short.
subj sub 1 No Candidate name is too short.
subja subjA 1 Yes Final character only varies by case.
asubj Asubj 1 Yes Initial character only varies by case.

subjarea subjArea 1 Yes Single character substitution.
subjBrea subjArea 1 Yes Single character substitution.

subjA subj 1 Yes Single character deletion.
subj subjA 1 Yes Single character insertion.

subjA subjB 1 No Only final character varies, i.e. enumeration.
subj1 subj2 1 No Only final character varies, i.e. enumeration.
aSubj bSubj 1 No Only first character varies, i.e. enumeration.
asubj bSubj 2 No Two character substitution, not transposed.
subjA subjAA 1 Yes Single character insertion.
subj1 subj10 1 Yes Single character insertion.
objA subjA 2 No Single character insertion and single character substitution.
subj sujb 2 Yes Transposed adjacent characters.
jubs subj 2 No Transposed non-adjacent characters.
suja subj 2 No Non-transposed adjacent characters.
juba subj 2 No Non-transposed non-adjacent characters.

Table 5.1: Table of edit distance and validation outcome between variable and
candidate names.

5.3.8 Reporting the Schema Data and Query Validation

The framework is developed upon Semantic Web design principles of an open

network. Information is transferred between modules and knowledge-bases of the

framework with customisation by the user. The previous sections have outlined

the mechanisms available and proposed for ensuring that the data being produced

and consumed is valid and to ensure that queries have the potential to produce

meaningful results.

Once these validation steps have been performed it is necessary to report back

to the user the outcome so that remedial action can be taken. If the validation

is performed by the User Application then this reporting could be made directly

available to the user. However, if the validation has been undertaken by a module

then it cannot be directly reported. There may be multiple levels of modules

between the validating module and the User Application.

203

The outcome of the validation process can instead be sent to an additional

Service Definition defined in the Framework Configuration with the express pur-

pose of receiving these reports. The User Application can then check for these

reports at each stage of the execution and convey them to the user.

The modules positioned between the reporting module and the User Appli-

cation can also check for errors reported by their sub-modules and abort their

execution. The inclusion of this validation reporting has more general usage as a

means for modules to also report other information that may assist the user, e.g.

policy, execution errors or additional meta-data, without it being included with

the results of executing the framework.

The data structure for capturing the data and query validation reports is

shown in Figure 5.10. The structure has properties for a text summary of the

validation results, e.g. the variable names or URI found to be invalid in a query,

and whether the result constitutes an advisory warning or a critical error.

Additional properties are defined for the identified subclasses of query and

data validation errors. Data Validation Results provide specific references to the

data source through service and graph URIs. Query Validation Results iden-

tify the URI of the invalid query used in the Framework Configuration. Each

Query Validation Result also indicates the result type so that further background

information into the cause can be found.

Examples of these types as applied in the implementation are shown in Figure

5.11. Further subclasses and properties could be included to provide greater detail

or coverage for other validation errors.

Figure 5.10: Schema for Validation Result.

204

Figure 5.11: Diagram of example schema for validation Result Types.

5.3.9 Executing the Framework in Local and Remote

Configurations

It has been discussed in the previous sections that the framework can be or-

ganised into several configurations. These configurations represent the local and

remote access of data endpoints, which form the knowledge-base, and modules.

The identity and access of these endpoints and modules is controlled through

referencing service and graph URLs stored in the Framework Configuration.

This presents an issue in how the content of the Framework Configuration is

accessed. The data endpoints are unidirectional and do not require any informa-

tion contained in the Framework Configuration. They simply respond to HTTP

requests for data. However, the modules of the framework require access both

to the Service Definitions and Query Definitions to operate. In a local configu-

ration the local knowledge-base can be searched. Yet in a remote configuration

the executing modules would not be able to locate the content of the Framework

Configuration.

The Framework Configuration URI provides a unique identifying reference

that could also be used as service reference to publish online, or on the local net-

work, the knowledge-base storing the Framework Configurations content. How-

ever, this would require setting up a different URL for each execution of the

framework and would quickly introduce an administration and technical burden.

205

An alternative is to provide each module with a service reference URL that can

be re-used across multiple Framework Configurations. Therefore, the published

knowledge-base would contain multiple Framework Configurations. This removes

the technical burden of configuring multiple URLs. This published knowledge-

base could also contain other scenario information which the Framework Con-

figurations reference and can be used as the destination for the results of the

modelling process.

The modules of the framework are defined in SPARQL queries through Prop-

erty Functions. These Property Functions accept a variable number of positional

arguments. The Framework Configuration URI is required by all modules in ei-

ther local or remote configuration. Therefore, this should be the first parameter

of each module Property Function as shown in Listing 5.10. The example query

is being executed with the module and the knowledge-base containing the Frame-

work Configuration in the same local context and so there are no service URLs

in the query.

PREFIX ex: <http://example.org/example#>

PREFIX mod: <http://example.org/module#>

SELECT ?result

WHERE{

?result mod:propFunc(ex:FrameworkConfigA ?arg1 ?arg2).

}

Listing 5.10: Example SPARQL query to execute a local module through its

Property Function.

206

The execution of modules which are not in the same context as the knowledge-

base containing the Framework Configuration requires the service URL. This is

shown in Listing 5.11. The service clause to access the remote module through a

Federated Query is specified while the service URL is passed as the final argument

of the module’s Property Function.

The local knowledge-base, containing the Framework Configuration, would

need to be accessible as an endpoint to respond to the HTTP requests that the

module will send. The other services defined in the Framework Configuration

could optionally point to other knowledge-bases set-up remotely as endpoints.

These queries could be expanded to obtain data for the module’s parameters or

to act upon the results it provides.

PREFIX ex: <http://example.org/example#>

PREFIX mod: <http://example.org/module#>

PREFIX ser: <http://example.org/service#>

SELECT ?result

WHERE{

SERVICE ser:remote-endpoint{

?result mod:propFunc(ex:FrameworkConfigA ?arg1 ?arg2 ex:

↪→ serviceURL).

}

}

Listing 5.11: Example SPARQL query to execute a remote module through its

Property Function.

5.3.10 Altering the Execution Flow of Modules

The previous sections have addressed how the user can control the modules and

knowledge-bases which are accessed by modifying the Service Definitions. The

user also has control over the data that is retrieved and its manipulation through

the Query Definitions. This section outlines how the execution flow of the frame-

work can be modified.

207

The modules of the framework can call other modules to perform sub-tasks.

The implementers of the main module may intend that only a single sub-module

is interfaced, but the user has determined that they wish to use multiple modules,

as shown in Figure 5.12. This could be due to each providing different function-

ality e.g. alternative behaviour models, or to investigate a specific sub-set of

individuals in the data.

Figure 5.12: Diagram of alternative configurations of modules during framework
execution.

In a conventional modular system, such as MATSim [32], the user would need

to rely on the main module providing a mechanism for substituting the sub-

module. The user would then need to develop, or rely on a developer to produce,

a wrapping module that integrates with the main module’s interface and then

performs the selection logic to their choice of multiple sub-modules.

Unless a developer was prepared to produce a generic and configurable wrap-

ping module then each user would have to perform this process for their own

investigation. This development would need to take place using the system’s

platform and design approach, which may vary between systems and so require

the user to develop multiple skill sets. In each case an investment of time and

resources is required from users that delays the investigation, introduces potential

error and is likely duplicating the efforts of other users.

In the framework, this re-configuration can be achieved by modification of the

SPARQL query, through the Query Definition, which is used at the boundary

208

between modules. The main module developer would publish the default query

and schema for the data that the sub-module is expected to produce in the

knowledge-base for the main module. The modified query would include a union

clause to select alternative choices based upon the data as shown in Listing 5.12.

PREFIX mod: <http://example.org/module#>

PREFIX ex: <http://example.org/local#>

SELECT ?person ?route ?value

WHERE{

{

?person a ex:Quartile4Income .

?route mod:routingMethodA (?person ?start ?end).

}UNION{

?person a ex:Employee .

?person ex:income ?income .

FILTER(?income > 50000)

?route mod:routingMethodB (?person ?start ?end).

}UNION{

?person a ?quartileIncome .

FILTER(?quartileIncome IN (ex:Quartile3Income ex:

↪→ Quartile2Income))

(?route ?value) mod:routingMethodC (?person ?start ?end).

}UNION{

?person ex:maxPrice ?maxPrice .

?route mod:routingDefault (?person ?start ?end ?maxPrice).

}

}

Listing 5.12: Example SPARQL query to select different routing modules based

on class, data property filtering, list of classes and default option.

This example shows alternative routing modules being selected according to

the income of the individual. The user can apply a variety of selection methods

such as classification, value filtering, list of values and a default option as shown.

209

Each module can be defined according to its own required parameters without

regard for the other modules in the query, as shown in the final option which has

four arguments or the third option which returns two arguments.

In this example, a URI is returned that can be used to retrieve additional

properties related to the process, either in this or a separate query. A convention

is applied here for modules using Property Functions to use the triple’s subject

as the output and the object for input, but this can be reversed as required by

the module design. The modules can apply different design paradigms and imple-

mentation choices. Data transformations can be included by the user in the query

if necessary to assist integration. The user is able to control the execution flow

using only the SPARQL language, which they used to set-up the knowledge-base

and framework, and pass data to modules implemented on different platforms.

The graph pattern in each clause are tested to ensure the statements are true

or a match is found in the data; if no match is found that pattern and clause

is closed without result. The union will only produce a single result from the

multiple clauses. Therefore, the clauses are evaluated in the order they are defined

and the first which contains true statements will be returned as the result. The

remaining clauses will not be evaluated and the user will need to determine an

order of precedence if the query statements do not select the cases on a mutually

exclusive basis.

A module that has identified multiple branches to sub-modules within its

design would be able to use the Query Type mechanism to allow the user to sup-

ply a different query to retrieve data for each branch. These alternatives would

be encoded as any other Query Definition in the Framework Configuration and

retrieved by the module during execution. Therefore, both the user and imple-

menter can explore options for alternatives and introduce more diverse modelling

of behaviour. The singular approach to behaviour modelling has been a criticism

of travel demand models as discussed previously (Chapter 1).

5.4 Requirements of the Framework

In this chapter and previously in Section 3.4 there has been detailed discussion

of the framework’s design and operation. This has included several design points

210

and requirements to facilitate and improve operation. These requirements are

summarised below:

• Modules shall define property functions that accept a Framework Configu-

ration URI as the first parameter.

• Modules shall define property functions that accept an optional final pa-

rameter as a service URL. This service URL will identify the service pro-

viding a named graph containing the Framework Configuration URI and its

properties.

• When a service URL is provided, the service URL will be queried for the

Framework Configuration and its properties using the Framework Configu-

ration URI as the graph name.

• When a service URL is not provided, the local knowledge-base shall be

queried for the Framework Configuration and its properties using the Frame-

work Configuration URI as the graph name.

• Modules shall be configured by the properties of the Framework Config-

uration URI. These properties shall define Service Definitions and Query

Definitions.

• Service Definitions will identify the service and graph properties where data

shall be retrieved by Modules according to a Service Type.

• Modules must publish the Service Type URIs it requires to function and

identify the expected schema for those Service Types.

• Service Definition service property may consist of either File or HTTP URI.

All Service Definitions for a Framework Configuration must use the same

File URI.

• Service Definition graph property must be a URI for a named graph.

• Framework Configurations shall only refer to one Service Definition of each

Service Type.

211

• Query Definitions shall provide alternative SPARQL queries to replace the

Module’s default queries according to a Query Type.

• Modules must publish the Query Type URI and SPARQL queries that

interface with other Modules.

• Modules may publish other Query Type URI and SPARQL queries that it

utilises.

• Framework Configurations shall only refer to one Query Definition for each

Query Type.

5.5 Security of the Framework

A final important consideration of the framework is its security. It has been

discussed that the framework can be utilised in a local and remote environment.

In a local environment, there are limited security concerns as the user has control

over the data being utilised, all processes are run upon the local hardware and the

framework is not accessible externally through online services. Therefore, users

can check the data and processes being applied and control the burden upon

hardware resources.

The remote environment approach can also be utilised across an internal net-

work to distribute the resource requirements across multiple computers, but again

security concerns are minimal. Accessibility to services can be constrained to only

local network addresses. Therefore, a security concern arises if the local network

is not secured and has been compromised, which represent wider issues than the

framework.

In a remote environment a number of security concerns can be identified.

Private and personal data should not be freely accessible. Hostile users may

seek to perform denial of service attacks by overburdening services through high

volumes of requests or requests designed to take excessively long to resolve. These

hostile users may also seek to corrupt the data by adding, modifying or deleting

triples.

212

The data being utilised by the framework, i.e. the travel demand generation

process, is generally derived from public or synthesised data. Therefore, there

should not be private data in the dataset, either due to it being anonymised or

engineered for public usage. However, the extendible nature of the knowledge-

base would permit a user to add a dataset that contains the core schema that is

further enriched with personal information, e.g. names, addresses, dates of birth.

Mitigating the risk of this private data accidentally being exposed online can

be achieved by placing the sensitive data in a separate graph, as discussed in

Section 4.9, as part of a separate knowledge-base instance that is not externally

accessible. The current SPARQL protocol controls access on a knowledge-base

basis rather than individual graph basis.

This approach creates a logical and physical separation while still allowing

cross referencing through the URI resource of the individuals. The user would

be able to access the additional characteristics for analysis or other uses by using

federated SPARQL queries to the private knowledge-base. When the configura-

tion uses only a local knowledge-base then all the data can be contained in the

same knowledge-base. Therefore, the user can ensure data protection without

needing to introduce new security concepts or mechanisms to the process.

The SPARQL protocol [43] utilises the Hypertext Transport Protocol (HTTP).

The HTTP protocol has access control and authentication mechanisms [135] so

that only those identified as safe parties will receive responses to their requests.

The HTTP protocol also provides secure communication through cryptography

[136] to prevent interception and modification by third parties.

These mechanisms ensure that both participants (requester and responder)

can have confidence they are communicating with the intended trusted party. The

SPARQL protocol also permits services to place restrictions upon size, number

and frequency of requests that it receives so that resources are not dominated by

a hostile or naive user, e.g. during a denial of service attack.

The integrity of a user’s data can be assured by the separation of read-only

query services from read-write update services that allow insertion and deletion

of data. Therefore, the input data of the process, e.g. population data, can be

published by a user or public data-source as a read-only SPARQL endpoint to

prevent a hostile user from modifying its contents.

213

Finally, the framework also proposes passing SPARQL queries between mod-

ules and services. These queries may have been rewritten by the user. This

presents an attack vector where malicious steps are included in the query. How-

ever, this can be prevented by reviewing the query prior to processing to ensure it

is syntactically correct and does not perform malicious behaviour, e.g. additional

insert or delete commands.

Each query is a text file interpreted at run-time rather than a piece of exe-

cutable code. Therefore, its contents can be automatically scrutinised for areas

of concern prior to processing upon the knowledge-base. The available operations

and their usage are restricted by the SPARQL protocol which limits opportunity

for abuse. The need for sanitising SPARQL queries exists for any SPARQL end-

point and is not an issue introduced by the framework. Therefore, supporting

Semantic Web libraries may already include features to prevent this attack vector.

This issue of query manipulation is also not unique to SPARQL endpoints

and needs to be addressed for any system that utilises database querying [137].

The advantage of the SPARQL protocol is that it has been designed for use in

an online open environment, rather than SQL protocols which were established

on the basis of a controlled closed environment. In conclusion, there are no

identified security concerns arising from the framework which cannot be handled

using existing mechanism of the SPARQL protocol.

5.6 Chapter Summary

This chapter has discussed the different configurations which can be achieved by

utilising the proposed framework. There has been examination of the different

methods for obtaining source data and how establishing a knowledge-base can

assist in retrieving and integrating this data. This includes direct importation

from local sources, transformation of the data and retrieval from remote sources

to reduce the need in developing data converters and module interfaces.

By developing a core schema for the travel demand model issues of misaligned

data can be reduced. Published datasets or SPARQL endpoints which orientate

themselves around an agreed schema can be more readily consumed and utilised.

However, this does not have to be enforced and the framework supports adapta-

214

tion by the user through the modification of module queries.

There has been consideration of issues arising from user and developer error

or misalignment in these queries. It is proposed that these can be resolved by

performing data and query validation. This validation can utilise existing tech-

niques but there has been the need to develop solutions to specific issues. By

applying these solutions the risk of incorrect results or wasted execution effort

can be reduced. A mechanism is also established to provide feedback to the user

when problems do occur.

The proposed framework can support local, remote and mixed configurations.

The accessing of these configurations is achieved using the HTTP support pro-

vided by SPARQL federated queries, but also allows direct access to file system

knowledge-bases to provide efficiency and simplify set-up. It has been identified

that a restriction exists in configurations with multiple local knowledge-bases,

but users have a number of options to mitigate this issue and still meet their

requirements.

There has also been consideration of the security of the framework and miti-

gating steps that can be taken if necessary. The leveraging of the SPARQL tech-

nology, which is designed for online utilisation, provides some protection from

known threats and reduces the risk of issues developing.

The use of SPARQL is applied throughout the framework to construct, trans-

form, redirect and execute scenarios. This provides a single language that is

platform independent so that users do not need to learn multiple programming

languages and can apply their developed skills repeatedly. The framework does

not introduce any variation to the SPARQL standard and is instead an extension

of its language and principles. Therefore, the barrier to using the framework is

lowered and potentially requires a narrower skill set than a conventional solution

for the travel demand generation process.

The requirements of the framework have been established with no domain

specific requirements identified. It is put forward that the framework provides a

general solution for accessing and configuring modular solutions for other prob-

lems. The further development of the framework would seek to develop, or expand

upon existing, mechanisms for the discovery and negotiation of remote services

of modules and datasets to assist the user in the configuration process.

215

It is proposed that the developed framework forms a contribution to the field.

This approach to supporting the travel demand generation process has not been

identified in conventional frameworks and differs from other examined Semantic

Web approaches for accessing remote services by providing control of the selection,

alignment and redirection of services and data through RDF data and SPARQL

query. This provides the potential for the travel demand generation process to

readily access online datasets; align and link those datasets around coherent and

consistent concepts; permit access to modules independently of their platform;

and produce platform-agnostic travel demand data.

216

Chapter 6

Implementing the Travel

Demand Generation Framework

6.1 Introduction

This chapter discusses the prototype implemented to investigate the travel de-

mand generation and traffic simulation concepts discussed in Chapter 4 and the

design of the framework for controlling the execution of modules discussed in

Chapter 3. It seeks to address research question RQ4 by examining the technical

design choices for implementing the framework modules; the configuration of the

framework and knowledge-base; and the design features of the prototype. There

is discussion of the technical details upon which the implementation is built. This

is followed by description of the organisation and configuration of the framework

and knowledge-base. Finally, there is design explanation of the implemented

modules.

6.2 Implementation of Prototype Framework

Modules

The prototype was implemented using the Apache Jena Semantic Web API [138]

in a Java environment. In the course of developing the prototype a number of

contributions were made to the Apache Jena Semantic Web API, Java API and

217

SUMO traffic simulator projects (see Appendix A).

A Semantic Web API provides a library for utilising Semantic Web tech-

nologies. Utilising a library provide a robust foundation to allow development

resources to focus upon the prototype. Several APIs are available, across sev-

eral programming languages, for module implementations to select with inter-

operability being achieved through compliance with the Semantic Web standards.

The Apache Jena project was selected due to its compliance with the Semantic

Web standards and providing extensions for persistent data storage, HTTP server

and extendible SPARQL query engine. The project also actively contributes to

the development of the Semantic Web standards.

An extension framework complying with the GeoSPARQL standard [37] was

also developed for geospatial querying (see Appendix B). This was necessary as

Apache Jena currently has limited support for spatial querying and alternative

implementations required persistent graph database with varying GeoSPARQL

compliance [139, 140]. The implemented extension allows flexible deployment of

in-memory or persistent graph databases to enable the prototype to be a pure

Java solution. Additional functionality was implemented to determine geospatial

relationships useful when interpreting road networks such as the side a point is

positioned along a directed edge and the distance a point is placed along an edge.

The usage of a Java environment provides a high performing programming

language which is supported across multiple operating system platforms. Java is

widely used in enterprise applications, is popular in Semantic Web applications

and frameworks [138, 141–143] and has also been used in the development of

traffic simulators [32]. The Gradle build tool was used to access published on-line

libraries and provides a straight-forward build process for the developed code to

be re-used by the community.

The modules of the framework are implemented as property functions which

are registered with the SPARQL query engine of the Semantic Web API. These

plug-in property functions are recognised during query execution and process-

ing is handed over to execute their functionality. A custom property function

could represent a single discrete function that processes only the arguments or

retrieves additional data from the knowledge-base. They can also be an entry

point to a cascade of multiple functions that in turn call other property functions,

218

execute additional queries and create or modify triples. The incorporation of

existing models and algorithmic implementations as framework modules requires

the wrapping of the model in the property function interface and the identification

of the data concepts necessary for its operation.

6.3 Configuration of the Framework and

Knowledge-Base

The knowledge-base provides the underpinning dataset for the execution of the

framework. In the prototype the dataset has been divided into multiple graphs

based upon identified domains, i.e. road network, spatial locations, and travel

groups, as discussed in Section 4.9 and illustrated in Figure 6.1, as previously

presented in Figure 4.49.

Figure 6.1: Diagram of named graphs applied to the prototype knowledge-base.

It has been discussed previously (Chapters 3 and 5) that the Semantic Web

is designed to allow components to be physically distributed and communicate

through HTTP requests. Access configuration is controlled through the Frame-

work Configuration RDF graph which specifies the service type, graph URI and

service URI. The service URIs can be a single local file URI or multiple HTTP

URLs. This means that the knowledge-base and modules can be physically dis-

tributed over multiple datasets accessed using SPARQL’s Federated Query stan-

219

dard. Executing the prototype can also be separated into multiple batches for

multi-thread and multi-computer execution.

The domain data has been divided according to the requirements of the three

implemented modules across four inter-related graphs. The parameters of the

Travel Scenario are stored in a single graph to allow repeated re-use of the pa-

rameters through multiple executions of the Framework Configuration. The data

generated by all the prototype modules is stored in a named graph specified by

the Framework Configuration, so that all generated data can be easily exported

or removed.

6.4 Design Features of the Prototype

This section will examine the design features of the prototype. The complete

process of travel demand generation incorporates multiple stages including the

gathering and preparation of data; generation of travel demand; and the simula-

tion of the traffic environment (Chapter 3). The prototype implementation has

focussed upon the second and third of these three phases as shown in Figure 6.2.

Figure 6.2: Diagram of the modules implemented for the prototype.

This focus has been determined based upon the second phase being the pri-

220

mary phase for the whole process. The initial phase of knowledge-base construc-

tion has been excluded as an ideal dataset can be constructed and refined as an

input for the second and third phases. The final phase was included to ensure

that integration of the third party traffic simulators could be achieved with the

framework and the proposed data concepts (Chapter 4).

The data structures passed between the three implemented modules have been

discussed previously in further detail (Section 4.6.5). It should be noted that

these data structures and implemented modules provide one approach for the

generation of travel demand. Alternative implementations, e.g. modules which

exchange different data structures, and configurations, e.g. a single travel demand

module, can be incorporated by conforming to the Activity & Travel Schedule data

structure, which are ultimately produced by the Scheduling module.

6.4.1 Scheduling Module

The implemented Scheduling module is the entry point of travel demand genera-

tion phase, i.e. the second phase. It finds an Activity Pattern Set for each Travel

Group and then builds the schedule for each Person within those Travel Groups.

The specific parameters of the scenario are provided in the Travel Scenario for

that execution. The schedule is constructed starting with the earliest Activity

Pattern item and building forwards in a single pass. Each Activity & Travel

Schedule always contains at least one activity and must start and end with an

activity.

The Activity Pattern for a Person consists of items in an ordered list. The

activities are handled in order according to their position in the list with first

and last representing special cases (Algorithm 3). The conclusion of the previous

activity is used as the basis for planning the travel of the next activity.

The first activity in an Activity Pattern is not preceded by any travel and

therefore can be placed directly on the schedule (Algorithm 4). The scheduling

process will not produce a continuous time sequence of activity and travel events.

There will be time intervals gaps caused by mismatches between travel duration

and time allowed between activities and the removal of activities. These gaps

need to be closed or filled, since conceptually a person is either performing some

221

Algorithm 3 Build Schedule Part 1

procedure Build Schedule(person, travelScenario)
maxV ar ← travelScenario.maxActivityV ariance
minDur ← travelScenario.minActivityDuration

for activity in person.activityPattern do
if activity is first then

priorActivity, priorEnd← FirstActivity(activity,
travelScenario)

else if activity is not last then
priorActivity, priorEnd← MiddleActivity(activity,

travelScenario, priorActivity, priorEnd)
else

LastActivity(activity, travelScenario, priorActivity, priorEnd)

form of activity or travelling.

Algorithm 4 Build Schedule Part 2

function FirstActivity(activity, travelScenario)
start← travelScenario.start
maxV ar ← travelScenario.maxActivityV ariance
minDur ← travelScenario.minActivityDuration

earliestEnd←ProtectTime(start, activity.end,maxV ar,minDur)
latestEnd← activity.end+maxV ar
end←VariateTime(activity.end, earliestEnd, latestEnd)

ScheduleActivity(activity, start, end)
return activity, end

There are multiple potential approaches to handling these time gaps, including

allocating additional activities and increasing the duration of existing activities

[9]. The adopted approach has been to extend the activity durations as their

definition includes any non-travel waiting periods (Section 1.2.2).

A case of these time interval gaps is caused by the mismatch between the

Travel Scenario and the Activity Pattern. The Travel Scenario defines the start

and end times of the scenario. These extend beyond or truncate the activities

defined in the Activity Pattern. The duration of the first and final activity are

222

extended so that the schedule covers the full time interval of the scenario as shown

in Figure 6.3 (Algorithm 4 and 8).

Figure 6.3: Diagram of initial and final activity duration expansion to fill the
scenario time interval.

The middle activities require travel to reach the activity which is requested

from the Trip Planning module (Algorithm 5). This module responds to the

request with a Trip Plan consisting of one or more Travel Stages. These Travel

Stages are added to the schedule and used to inform the start time of the next

activity. The start and end times are varied to apply a stochastic component to

the template Activity Patterns. The failure to obtain a Trip Plan results in a

second attempt with the activity delayed as last as possible and reduced to the

minimum duration.

The request for a Trip Plan is obtained using a Trip Context that specifies

the Modes, Vehicles, Transit Lines and destination Locations that can be used

(Section 4.6.5). Each item in the Activity Pattern has an Activity Type. This

Activity Type is intersected with a Person’s related Activities, provided by one

or more Locations in the scenario, to produce a shortlist of potential destination

Locations. Therefore, a Person with an Activity Type that only has an Activity

at a single Location, e.g. education, employment and residence, will always be

respected and the Person will return to them during a tour.

If no Locations with the current Activity Type are asserted for a Person, e.g.

leisure and retail activities, then the Scheduling module searches for potential

Locations. These Locations are selected based on the Activity Type and distance

223

Algorithm 5 Build Schedule Part 3

function MiddleActivity(activity, travelScenario,
priorActivity, priorEnd)

start← travelScenario.start
maxV ar ← travelScenario.maxActivityV ariance
minDur ← travelScenario.minActivityDuration

travelStart← priorEnd

earliestStart← activity.start−maxV ar
latestStart← activity.start+maxV ar
start←VariateTime(activity.start, earliestStart, latestStart)

earliestEnd←ProtectTime(start, activity.end,maxV ar,
minDur)

latestEnd← activity.end+maxV ar
end←VariateTime(activity.end, earliestEnd, latestEnd)

tripP lan←RequestTripPlan(travelStart, start)
if tripP lan is not success then

start← latestEnd−minDur
end← latestEnd
tripP lan←RequestTripPlan(travelStart, start)

HandleTripPlan(tripP lan, activity, priorActivity, start, end)
return activity, end

from the current Location within the minimum and maximum travel range radius

of the Activity Pattern item.

The restriction of the travel range is relaxed by iteratively expanding the

search, by a distance specified by a Travel Scenario definition (Section 4.6.1),

until at least one potential Location is found. These Locations may later be

rejected if there is insufficient travel time to reach them but an attempt to travel is

always made. Therefore, a Location can be selected based on the current context

of previous decision making as well as being asserted during Knowledge-Base

Construction (Section 3.3.2). Alternative options for identification of candidate

destination Locations could be Person being within a geographic area (Section

4.5.8) of the Location, e.g. retail attraction or service catchment area, or the

224

popularity of a Location considering its current usage (Section 4.5.7).

A second cause of time interval gaps is between proposed Travel Stages and

Activities. The scheduling of travel between activities is timed for arrival/trip end

at the next activity’s start time. The duration of the travel will either be equal

or less than the available time slot. The time interval gap between a previous

activity ending and the travel starting is closed by extending the duration of the

previous activity as shown in Figure 6.4. An alternative implementation could

have travel always fitted into the time slot and the activity duration reduced

or start time delayed to allow the journey, although this presents issues with

activities being excessively shortened or delayed.

Figure 6.4: Diagram of activity duration extended following selection of travel.

The Activity Patterns represent a template that are shared by multiple indi-

vidual Persons in a scenario. A direct replication of the Activity Pattern timing

into the schedule would result in large numbers of identical schedules. This would

cause large spikes in travel demand with waves of persons travelling at the same

time instances. To provide diversity the start and end times of activities are

randomly varied.

This random variation is specified by Scenario Definitions (Section 4.6.1)

for maximum variation and minimum duration to ensure that excessively large

or small activity durations are not proposed, e.g. entire day or instantaneous

durations. The minimum duration of the activity is protected by identifying the

earliest time the activity can end (Algorithm 6). A random variation is then

applied to increase or decrease the initial start time while still respecting the

upper and lower boundaries of the activity (Algorithm 7).

This variation to activity duration assumes that there is always sufficient time

225

Algorithm 6 Protect Time

function Protect Time(activityStart, plannedEnd,maxV ar,minDur)
minimumEnd← activityStart+minDur
proposedEnd← plannedEnd−maxV ar

if minimumEnd after proposedEnd then
return minimumEnd

else
return proposedEnd

Algorithm 7 Variate Time

function Variate Time(initialT ime, earliestT ime, latestT ime)
variation← (latestT ime− earliestT ime)∗RandomGenerate(0, 1)

if RandomGenerate(0, 1) < 0.5 then
variedT ime← initialT ime+ variation

else
variedT ime← initialT ime− variation

if variedT ime before earliestT ime then
return earliestT ime

else if variedT ime after latestT ime then
return latestT ime

else
return variedT ime

interval for travel to take place. However, this may not always be the case as the

destination locations may be too far or available modes too slow to reach in the

time interval between activities. It may also be the case that the Activity Pattern

templates have been provided with very limited durations between activities.

When travel is not possible for the proposed time period then the process

is repeated but travel time is maximised by the activity having the minimum

duration and ending as late as permitted by the scenario parameters (Algorithm

5). This may have a knock on effect to later travel time intervals when insufficient

gaps are provided between activities. However, when sufficient gap is provided

the delay may be absorbed by the next travel interval with the next activity being

varied as normal.

226

The last activity in the schedule also requires travel to reach it (Algorithm 8),

unless there is a single activity which would be expanded to fill the scenario time

period. Therefore, a request is made of the Trip Planning module to provide a

Trip Plan. The time slot for travel begins when the previous activity is finished

and concludes when the scenario ends. This provides the largest time slot for the

travel to be incorporated.

It is assumed that any minimum duration for the final activity can be fulfilled

after the scenario has ended. This assumption is based on prioritising that travel

schedules are complete with all individuals returning to their start Locations, e.g.

homes or commuting access point, if the Activity Pattern is designed to achieve

that. This behaviour of return journeys would be assumed to be typical over a

full day schedule.

Algorithm 8 Build Schedule Part 4

function LastActivity(activity, travelScenario,
priorActivity, priorEnd)

travelStart← priorEnd
end← travelScenario.end
tripP lan←RequestTripPlan(travelStart, end)
start← tripP lan.travelEnd
HandleTripPlan(tripP lan, activity, priorActivity, start, end)

The Travel Stages obtained from the Trip Plan for the final activity are placed

on the schedule but using a different approach to the middle activities. The final

activity is positioned as late as possible in the scenario. Extending the previous

activity to fill any time gap until the travel commences could create an excessively

long duration between the previous activity and short duration final activity.

Instead the Travel Stages are moved to immediately after the previous activity

and the final activity is extended as shown in Figure 6.5. Therefore, there is still

potential that the last activity will satisfy some or all of its minimum duration

once the necessary travel has been planned. However, this approach assumes

that the Travel Stages can be moved in the schedule without consideration of

time constraints, e.g. public transit or route planning using traffic forecasts or

previous experience.

In the case of public transit, a journey may take longer at an earlier time

227

of day, e.g. services are less frequent, or may not be possible, e.g. services are

discontinued late at night. This situation can be handled through an option

specifying that Trip Plans are built either from the start of the travel interval

forwards or the end of the travel interval backwards. In all cases except for travel

to the final activity the latter approach would be used, as the previous activity

duration would be extended. In the final activity the former approach would

be used and the final activity duration extended to the end of the planned trip.

Public transit has not been implemented in the prototype.

Figure 6.5: Diagram of travel moved forward and final activity duration extended.

There are several other additional actions that may be required once Activities

and Travel Stages have been added to the schedule (Algorithm 9). The final

activity is scheduled as late as possible in the scenario. Therefore, rather than

extending the previous activity the travel stage and final activity are brought

forwards. The final activity is then extended to fill the scenario as shown in

Figure 6.5. Activities earlier in the schedule are extended to fill the gap between

the activity end and the travel start as shown in Figure 6.4.

Other actions include an activity being skipped if there is insufficient time

to travel to it at a destination location, once the attempt to delay and reduce

the activity has been attempted. This can result in two activities with identical

Activity Types occurring at the current Location. When this occurs the activities

are merged into a single activity. Activities with different Activity Types can also

take place at the same Location and therefore can follow on without travel.

These processes for travel and activity adjustment are focussed upon a single

228

Algorithm 9 Handle Trip Plan

function Handle Trip Plan(tripP lan, activity, priorActivity, start,
end)

if tripP lan is success then
if activity is last then

start←MoveTravelStagesEarlier(priorActivity, tripP lan)
else

ExtendPreviousActivity(priorActivity, tripP lan)

ScheduleActivity(activity, start, end)
else

if tripP lan.location equals priorActivity.location then
if activity.type equals priorActivity.type then

MergeActivity(activity, priorActivity, end)
else

FollowOnActivity(activity, priorActivity, end)

else
SkipActivity(activity)

person and the schedule being constructed in a iterative manner based on time

order. This can mean that essential activities, e.g. employment and education,

are unfulfilled while non-essential activities are undertaken, e.g. retail and leisure.

It has also been discussed previously that individuals co-ordinate activity and

travel within household groups to share and access resources, e.g. sharing cars

and escorting children (Section 1.2.3). An area of future work is utilising activity

priority and travel group co-operation as part of the scheduling process.

Consistent vehicle usage between travel stages is ensured so that a vehicle used

for travel is returned at some point in the schedule to its start location. There-

fore, commuters do not abandon their vehicles after travelling to other locations

but also do not insist on a single mode for an entire schedule. The Trip Context

provides information on available vehicles and their current location through the

trip vehicle option property. This also specifies when the Trip Planning module

must provide a Trip Plan that places all vehicles at their required location, e.g.

when a vehicle has been moved and the last activity is being scheduled. Alterna-

tive approaches could include taxi services where a return journey is not required

and vehicles being carried by other vehicles, e.g. bicycles in cars and on public

229

transport.

The prototype Scheduling module has implemented a single approach to the

closing of time interval gaps, scheduling process, location search and vehicle usage.

It has been outlined that multiple alternatives exist for each of these choices.

These alternatives could be implemented by defining them as sub-modules and

incorporated into the framework using the query overwriting mechanism (Section

5.3.3).

The selection of these alternatives can be dependant upon contextual informa-

tion which the framework also facilitates the user selecting. Therefore, modules

can be implemented either as a wide set of completely defined alternatives or

a deep set of sub-components. Further development of the Scheduling module

would investigate these discrete pieces of functionality being formed into sub-

modules. This area of future work would enable narrowly defined modules to

be implemented which will reduce the implementation burden and provide more

variety of behaviour for investigations.

The sub-module approach has been applied in the prototype between the

Scheduling and the Trip Planning and Network Routing modules. The Trip

Planning sub-module has self-contained functionality that can be replaced with

an alternative implementation while the Scheduling module is only concerned

with the outcome, i.e. a trip plan, and not the method, e.g. Random Utility

Model, Computational Process Model or Agent Based (Section 1.2.4), of the sub-

module. The Trip Planning module applies the same approach in turn to the

Network Routing module for resolving specific functionality.

The selection of these sub-modules is controlled through SPARQL query and

can be controlled through the query overwriting mechanism. This demonstrates

the framework supporting the modular approach to constructing travel demand

models and allowing the user control over how these modules are brought together.

6.4.2 Trip Planning Module

The Trip Planning module is provided with a Trip Context by the Scheduling

module and responds with a Trip Plan consisting of multiple Travel Stages. The

Trip Planning module constructs a choice set of potential Trip Plans from which

230

a single plan is selected using a Random Utility Model (RUM).

The choice set of Trip Plans is constructed using a recursive algorithm to

produce multi-stage and multi-mode Trip Requests for each destination Location

and Mode provided in the Trip Context (Algorithm 10). A Trip Request is formed

from one or more Stage Requests while the corresponding Trip Plan is formed

from one or more Travel Stages.

The initial condition is an empty list of stages that is passed into the re-

cursing function (Algorithm 11) which adds additional stages to move from the

origin to destination locations. The resulting Trip Requests are checked to ensure

that any proposed usage of vehicles ensures the plan moves the vehicle to its

optional required location. Any Trip Requests that do not satisfy this condition

are removed.

The final set of Trip Requests, are later converted into Trip Plans using the

Network Routing module to provide contextual detail. This means an initial set

of general Trip Requests based on spatial information is produced to which the

contextual detail of the network infrastructure and scoring is applied to produce

Trip Plans.

Algorithm 10 Trip Planning Part 1

procedure BuildTripRequests(tripContext, limit)
set trips← empty
origin← tripContext.origin
for dest in tripContext.destinations do

for mode in tripContext.modes do
list stages← empty
trips addAll PlanTrip(stages, origin,mode, dest,

tripContext, limit)

if any vehicle.isRequired in tripContext.vehicles then
trips← CheckVehicleUsage(trips)

return trips

The recursing function plans a single stage of the trip using one Mode which

may or may not be able to reach the destination (Algorithm 11). Each Location

specifies the Modes for which it is accessible (Section 4.5.7). Ideally a Mode is

231

accessible at both the origin and destination. Therefore, the first check is made

for a single stage from the origin to the destination. When both are accessible

this stage is built and appended to any other prior stages from early recursions

of the function. These lists of one or more stages are then converted into Trip

Requests.

Algorithm 11 Trip Planning Part 2

function PlanTrip(priorStages, origin,mode, dest, tripContext, limit)
set trips← empty
originHasAccess← LocationAccess(origin,mode)
destHasAccess← LocationAccess(dest,mode)

if originHasAccess and destHasAccess then
list of lists stagesLists← BuildStages(priorStages, origin,

mode, dest, tripContext)
for stages in stagesList do

trips add new TripRequest(stages)

set transfers← FindTransfers(dest,mode, tripContext, limit)
for transfer in transfers do

tLoc← transfer.location
tMode← transfer.mode
list of lists transStagesList← BuildStages(priorStages,

origin,mode, tLoc, tripContext)
for stages in transStagesList do

trips add PlanTrip(stages, tLoc, tMode, dest, tripContext,
limit)

return trips

The direct access of the destination using a mode does not terminate the

recursion. However, this point is where the current progress of stages are finalised

(Algorithm 14) and added to the list of proposed Trip Requests. It is therefore the

termination condition of the recursion. Alternative trip requests containing more

stages may be more viable, e.g. the current mode provides access to locations

with alternative faster modes, and therefore the process of searching is continued.

Transfer locations that are accessible to the current mode and other modes

permitted in the Trip Context are sought to allow a Mode change (Algorithm 12).

232

Each change of Mode forms a Travel Stage of the Trip Plan and so a Stage Request

of a Trip Request. These transfer locations are chosen by closest proximity to the

overall destination to achieve the greatest progress using the current mode to

travel from the current location via the transfer location.

This assumption of maximising progress is applied to minimise the number of

mode transfers performed by an individual. The transfer stages are added to the

previous stages and these form the progress of prior stages for the next iteration

of the recursion in a depth first manner. The next iteration also progresses by

using the transfer location as the origin and the transfer mode as the mode while

the destination remains the same.

Algorithm 12 Trip Planning Part 3

1: function FindTransfers(dest,mode, tripContext, limit)
2: set transfers← empty
3: transferModes← tripContext.modes

4: for tMode in transferModes do
5: if tMode.isV ehicle then
6: vTransfers← FindVehicleTransfers(mode, tMode,

tripContext)
7: transfer addAll vTransfers
8: else if tMode.isTransit then
9: tT ransfers← FindTransitTransfers(dest, tMode,

tripContext, limit)
10: transfer addAll tT ransfers
11: else if tMode.isPersonal then
12: pTransfers← FindPersonTransfers(dest,mode,

tMode, limit)
13: transfer addAll pTransfers

14: return transfers

The identification of transfer locations is undertaken by iterating through

all potential modes permitted by the Trip Context (Algorithm 12). Therefore,

the Scheduling module can control the use of modes, and so the transfer stages,

through defined properties of the Trip Context, i.e. modes can be excluded from

trip planning. The current implementation identifies three categories of mode

(vehicle, public transit and personal) with each having different behaviours for

233

identifying transfers (Algorithm 13).

The vehicle Modes, i.e. not public transit or personal, are constrained by the

need to utilise a physical vehicle. The only possible location for a transfer to

take place is at the vehicle’s current location. A check is made to ensure that

this location can be accessed by both the transfer mode and the current mode.

Otherwise the traveller would not be able to reach the transfer location, i.e. where

the vehicle is located.

The public transit Modes are restricted to locations serviced by specific Tran-

sit Line of the mode. Public transit vehicles servicing a Transit Line travel

between the pre-determined locations of the line (Section 4.5.5). Therefore, not

all locations that are accessible by a mode are serviced by all Transit Lines , i.e.

all buses do not visit all locations accessible by buses, except for the exceptional

case of a single Transit Line in a scenario.

A Trip Request may need to use one Transit Line to travel to a transfer

location then switch to another Transit Line to reach the destination. There

may need to an intermediate walking stage to access the second Transit Line

as the same locations may not be visited by both Transit Lines, e.g. two bus

stops on different streets. Therefore, the public transit Mode may be repeated in

multiple stages of the Trip Request but each with a different Transfer Line.

The start and end location of the stage must be accessible to the public transit

Mode and be visited by the Transit Line. The available locations for a transfer

to take place are limited to those serviced by the Transit Line with the closest

to the destination being selected. The vehicles and transit lines available for

consideration are defined in the Trip Context and so can be controlled by the

Scheduling module.

234

Algorithm 13 Trip Planning Part 4

1: function FindVehicleTransfers(mode, transferMode, tripContext)

2: set transfers← empty

3: vehicles← tripContext.vehicles

4: for vehicle in vehicles do

5: if vehicle.mode equals transferMode then

6: vLoc← vehicle.location

7: if JointAccess(vLoc,mode, transferMode) then

8: transfers add new Transfer(vLoc,mode, transferMode)
return transfers

9: function FindTransitTransfers(dest, transferMode, tripContext,

limit)

10: set transfers← empty

11: transitLines← tripContext.transitLines

12: for transitLine in transitLines do

13: if transitLine.mode equals transferMode then

14: locations← transitLine.locations

15: list transferLocations← FindNearest(dest,

locations, limit)

16: for tLocation in transferLocations do

17: transfers add new Transfer(tLocation, transferMode)
return transfers

18: function FindPersonTransfers(dest,mode, transferMode, limit)

19: set transfers← empty

20: list transferLocations← FindNearest(dest,mode,

transferMode, limit)

21: for tLocation in transferLocations do

22: transfers add new Transfer(tLocation, transferMode)
return transfers

235

The personal Modes, i.e. not used by a vehicle or public transit, are only

constrained by the joint accessibility of locations to make a transfer between cur-

rent and transfer mode. It is assumed that in principle if a location is accessible

by a personal or vehicle mode then there is always a path to the location from

any other similarly accessible location. This assumption is based on personal

modes representing human mobility and road networks being continuous in traf-

fic investigations where by isolated locations are not of general interest or use.

Considering such a scenario would increase complexity for an unusual edge case,

e.g. two islands not connected by a road bridge or vehicle ferry.

A Mode is permitted to be re-used in later stages so that public transit modes

can be repeated in a Trip Request. This allows repeated switching of personal

and public transit modes by an individual, e.g. walk, bus, walk, bus, walk. There

is no constraint on the number of stages that can be added to the Trip Request.

Instead all combinations of modes are sought and no assumption is made at this

point over which will be the most optimal.

The search for transfer locations in the public transport and personal category

of Modes is based on proximity to the destination and shared access. This is to

make the most progress with the minimum number of transfer stages. However,

the proximity of locations does not always equal the shortest path between loca-

tions. The road network infrastructure, mode and geography, e.g. routing via a

river bridge, can constrain the route travelled as shown in Figure 6.6.

Figure 6.6: Diagram of showing proximity of transfer locations to destination not
providing shortest path route.

236

Travel from the origin (circle) to destination (square) can be achieved via

two transfer locations (triangle and pentagon). The pentagon transfer location is

most proximal to the destination but there is not a direct path between the two

that does not pass the alternative triangle transfer location. Similarly, the most

proximal location could be beyond the destination and so require travel past the

destination when an intermediate transfer location would be closer to both origin

and destination.

This can mean a less proximal transfer location can provide a more optimal

routing path. Therefore, the closest n transfer locations are selected for candidate

routes. The value of n transfer locations is controlled by a scenario parameter

(default value of three chosen for the prototype scenario). The accessibility of a

destination location encompasses concepts such as pedestrian access, motor vehi-

cle parking, public transit links, multiple building entrances and freight delivery

(Section 4.5.7).

The recursive function (Algorithm 11) tracks the multiple stages of the trip by

adding the current stage and the next transfer stage to the previous list of stages.

The new stages are built (Algorithm 14) according to the category of mode, i.e.

personal, vehicle and public transit. An exit condition of not revisiting Locations

in the trip is made to ensure that acyclic graphs of travel stages are produced, i.e.

it is redundant for a trip to return to a location as this implies a change of mode

and the minimal number of mode switches should be made. When a Location is

revisited the whole chain of stages is discarded as being unviable.

The current stage is then built according to the category of mode so that

further conditions for its viability can be checked (Algorithm 15). In the case

of a vehicle Mode a search is made of available vehicles which match the stage’s

mode and are located at the origin. Otherwise use of the vehicle would imply

teleportation, self-driving or driving by another individual, which the prototype

does not support.

An additional check is then made to ensure that the vehicle is not required to

reach a specific location. A vehicle will only be used once in a trip and therefore

if it is required to reach the stated location then it must do so when used. An

alternative trip may achieve reaching the required location but a candidate trip

is not viable if it moves a vehicle somewhere other than its intended destination.

237

Algorithm 14 Trip Planning Part 5

1: function BuildStages(priorStages, origin,mode, dest, tripContext)
2: list of lists stagesList← empty

3: if origin equals dest or CheckVisited(dest, priorStages) then
4: return stagesList

5: if mode.isV ehicle then
6: stagesList← BuildVehicleStages(priorStages, origin,mode,

dest, tripContext)
7: else if mode.isTransit then
8: stagesList← BuildTransitStages(priorStages, origin,mode,

dest, tripContext)
9: else if mode.isPersonal then

10: stagesList← BuildPersonalStages(priorStages, origin,mode,
dest)

11: return stagesList

In the case of the public transit Modes a check is made to ensure that the

current stage is serviced at both the origin and destination by all relevant Transit

Lines for the mode. There are no specific conditions attached in the case of a

personal category Mode as neither personal or public transit vehicle is required.

238

Algorithm 15 Trip Planning Part 6

1: function BuildVehicleStages(priorStages, origin,mode, dest,

tripContext)

2: list of lists stagesList← empty

3: vehicles← tripContext.vehicles

4: for vehicle in vehicles do

5: if vehicle.mode equals mode and vehicle.location equals origin

then

6: vReqLocation← vehicle.requiredLocation

7: if not vehicle.isRequired or dest equals vReqLocation then

8: stages copy of priorStages

9: stages add new StageRequest(origin, dest,mode, vehicle)

10: stagesList add stages
return stagesList

11: function BuildTransitStages(priorStages, origin,mode, dest,

tripContext)

12: list of lists stagesList← empty

13: transitLines← tripContext.transitLines

14: for transitLine in transitLines do

15: if transitLine.mode equals mode then

16: originIsTransitLocation← HasLocation(transitLine, origin)

17: destIsTransitLocation← HasLocation(transitLine, dest)

18: if originIsTransitLocation and destIsTransitLocation then

19: stages copy of priorStages

20: stages add new StageRequest(origin, dest,mode, transitLine)

21: stagesList add stages
return stagesList

22: function BuildPersonalStages(priorStages, origin,mode, dest)

23: list of lists stagesList← empty

24: list stages copy of priorStages

25: stages add new StageRequest(origin, dest,mode)

26: stagesList add stages return stagesList

239

The completion of the recursive algorithm produces a set of multi-stage and

multi-mode Trip Requests. These only describe the origin, destination, mode

and any vehicle or transit line usage for each of the stages in the candidate plan.

There is no detailed route in the plan to travel the network infrastructure between

the origin and destination of each stage. A contextual score is also required to

provide a weighting to select a single a plan for return to the Scheduling module.

The detailed route and information for the context scoring is provided by the

Network Routing module. The Stage Requests of the Trip Request are each passed

to the Network Routing module from which are obtained Stage Estimates. These

Stage Estimates do not have any temporal context and are converted into Travel

Stages, which have temporal context of a start and end time, by using target end

time and subtracting the Stage Estimates duration.

Multiple stages are formed by working backwards from the final stage and

using the activity start time as the initial target end time. The start time of

a stage forms the end time of the proceeding stage. These Travel Stages are

combined to form the Trip Plan. The total duration available for travel in the

schedule is used as an upper limit on the Trip Plan. Those Trip Plans that

take too long are rejected to ensure the selected choice will always fit into the

schedule. This avoids selecting a choice that will later be rejected when viable

alternatives had been found. An extension to the Trip Planning module would be

applying further contextual information, such as heavily penalising or excluding

walking during night time or cycling in the rain, which can be applied to the

Stage Estimate metrics.

A Random Utility Model has been implemented to select a Trip Plan from

the choice set based on a utility score. The utility score is calculated for each

Travel Stage and then summed for the Trip Plan. The utility score is derived

from coefficient weightings applied to metrics of the Travel Stage. The selected

metrics are the commonly used trip cost, duration and distance [124]. Each Travel

Stage has a detailed route that consists of multiple roads, i.e. edges, through the

network (Section 4.5.9).

• Distance: the physical distance travelled through the network to complete

the Travel Stage. A fixed value determined by the route a Mode can take

240

through the network from origin to destination, i.e. not straight line from

origin to destination.

• Duration: the time taken to complete the Travel Stage. Determined by the

maximum speed (metres per second) of the Mode or road (edge), whichever

value is lower. The total duration is the time taken to travel along each leg

of the Travel Stage.

• Cost: the penalty, without unit or currency, for using a mode. Proportional

to distance and formed from a fixed and variable component such that

cost = fixed cost + (distance ∗ variable cost). The values for the Mode

related metrics are defined by the Mode Definition of the Travel Scenario.

The coefficient weightings are applied to each of these metrics as defined in

Equation (3). This was derived to provide differentiation between modes based

upon varying trip distances as illustrated in Figure 6.7. The prototype’s Random

Utility Model, as used in the evaluation scenario (Chapter 7), has been tuned

using the mode parameters specified in Table 6.1 and the person weightings of

cost (-2.7), distance (0.0), and duration (-0.022).

U i
J = βicostx

i
J + βidistancex

i
J + βidurationx

i
J (3)

Mode Max Speed (m/s) Fixed Cost Variable Cost
Car 31.27 6.0 0.001
Walking 1.79 0.0 0.0
Bicycle 8.93 3.5 0.0011
Bus 26.9 6.0 0.001

Table 6.1: Table of mode definition parameters for maximum speed (m/s), fixed
cost and variable cost.

The coefficient weighting values have been tuned to give a dominating pref-

erence to walking for trips under 1.5 kilometres that then transfers to bicycles

and then car and bus at distances greater than 3.5 kilometre. The Simulated

Annealing parameter optimisation technique was applied to derive approximate

gobal optimum values for these thresholds [144].

241

Figure 6.7: Graph of probability change over distance by mode for Random Utility
Model.

The thresholds are intended to provide a mix of mode usage and were based

upon indicative distance of traveller walking [14]. The prototype does not support

public transit modes but the graph includes this mode for illustration of the choice

set that can be constructed. It should be noted that Trip Plans can be formed

of one or more Travel Stages which each have a different Mode. Therefore, the

graph shows the case of single stage Trip Plans following the same route, i.e.

equal distance. In multi-stage Trip Plans the utility contribution from each

Travel Stage will vary according to its Mode and distance.

The value of these weightings are obtained during execution from properties

of the individual Person. Therefore, each individual may have their own weight-

ings to determine their own choice behaviour. These weightings could also be

positioned on a Person Type to provide consistency across groups or as global

parameters through a definition in the Travel Scenario. Definition in the Travel

Scenario would also allow easier comparison between alternative sets of values if

that was a user’s investigative focus.

The utilities are calculated through query of the knowledge-base (Listing 6.1)

and not a hard coded equation in the Trip Planning module. Therefore, the

242

values can be directly modified within the knowledge-base to produce alternative

probabilities. The prototype also permits the overwriting of the query, and so

the equation and data utilised, using the query overwriting mechanism of the

framework (Section 5.3.3). The only requirement is satisfying the result variables

of the SELECT query, i.e. duration, utility and destination.

The use of the query overwriting mechanism allows alternative utility equa-

tions and weightings to be investigated without modifying the Trip Planning

module. The values can also be repositioned, as the previous examples outlined,

by the user to suit their needs. The user has control over both the data and

the use of the data to explore the impact of alternative utility calculations. This

demonstrates the functionality of the framework in enabling greater variety of

behaviour within the modelling process and giving control over that behaviour

directly to the user.

243

PREFIX rou: <http://example.org/tom/schema/route#>

PREFIX util: <http://example.org/tom/schema/utility#>

PREFIX fn: <http://www.w3.org/2005/xpath-functions#>

SELECT ?duration ?utility ?destination

WHERE{

BIND(?stageEstimateVar AS ?stageEstimate) .

BIND(?personVar AS ?person) .

#Retrieve required data.

?stageEstimate rou:cost ?cost; rou:distance ?distance; rou:

↪→ duration ?duration; rou:endLocation ?destination .

#Retrieve utility values from the Travel Group domain graph.

SERVICE ?travelGroupService{

GRAPH ?travelGroupGraph{

?person util:tripCostWeight ?costWeight; util:

↪→ tripDistanceWeight ?distanceWeight; util:

↪→ tripDurationWeight ?durationWeight .

}

}

#Duration converted to seconds for multiplication.

BIND(((fn:hours-from-duration(?duration)* 3600) + (fn:minutes-

↪→ from-duration(?duration)*60) + fn:seconds-from-duration

↪→ (?duration)) AS ?durationSecs)

#Calculate the utility for the stage estimate.

BIND(((?cost * ?costWeight) + (?distance * ?distanceWeight) +

↪→ (?durationSecs * ?durationWeight)) AS ?utility) .

}

Listing 6.1: SPARQL query implemented for calculation of trip utility.

244

6.4.3 Network Routing Module

The Network Routing module provides the detailed route through the network

infrastructure. The module accepts a Stage Request and responds with a Stage

Estimate of the route and corresponding metrics of cost, distance and duration.

These metrics are widely used in travel forecasting and measuring location acces-

sibility [124] and represent the best case estimate for travel time between the two

locations. The route is determined using the A* shortest path algorithm [145]

between an origin and destination location. The shortest path metric used is the

travel time, i.e. duration, rather than distance as this has been found to be more

important to travellers [108].

The output of the module serves two purposes. First, the metrics form the

basis for scoring the different route choices so that a single route can be selected.

Second, the Travel Stages explicitly state the route to be followed so that all

traffic simulators are simulating the same set of journeys, rather than substituting

their own routing implementation which may introduce minor or major changes,

to give consistency of results. This would also allow the analysis of differences

between planned and simulated travel, if dynamic re-routing is being applied

during simulation.

The module provides a best case scenario of travel, i.e. travelling at maximum

speed and by the shortest path. It does not take into account dynamic factors,

such as traffic congestion, road closures, weather, traffic signalling or service

restrictions for public transport, as previously highlighted (Section 3.3.3.4) which

could form alternative module implementations. These features have not been

identified in existing routing components of traffic simulators and forms an area

of future work to improve modelling realism. The implementation of network

routing for public transit is more concerned with the temporal context than the

routing between locations as the Transit Line restricts the available Locations

(section 4.5.5).

The exclusion of dynamic factors and temporal context ensures that separate

requests for an origin-destination pair using the same mode will receive the same

response. The cost and maximum speed values defined for each mode can result

in different routes and metrics. This means that the Stage Estimate responses,

245

between two Locations for a single Mode, can be stored and retrieved for re-use in

the knowledge-base to reduce computational processing. However, the potential

characteristics of the network infrastructure do not guarantee that the reverse

route will be the shortest path, e.g. one-way streets and turning restrictions, and

so reciprocal routes must be calculated.

These Stage Estimates can be calculated dynamically on-demand or pre-

computed for every origin-destination-mode tuple. However, the pre-computation

approach can require calculating a large number of routes that will not be used.

Each route is formed between two locations for a specific mode and so the number

of routes required can be calculated based upon the k-permutations of n equation

[146, 147] as shown in Equation (4), where x is the number of routes, n is the

number of locations, m is the number of modes, and k is number of locations

selected, i.e. 2. This ignores the trivial routing case of the same location for

origin and destination.

x =
n!

(n− k)!
×m

= n(n− k + 1)×m
= n(n− 1)×m, when k = 2

(4)

It can be seen in Table 6.2 that the number of routes generated increases

dramatically as the number of locations increases. In scenarios with thousands

of buildings and thousands of people the number of routing requests is still likely

to fall short of the millions of routes produced by pre-computation.

As an illustrative example, a typical individual may be expected to perform

a few trips during a day long schedule. Each trip may have as many stages as

there are modes with each stage having a few possible destinations. An estimate

of the routes required is shown in Equation (5) where r is the number of routes,

t is the number of trips, s is the number of stages per trip, and d is the number

of destinations per stage.

246

Locations Modes Routes
100 1 9,900
100 2 19,800
100 3 29,700

1,000 1 999,000
1,000 2 1,998,000
1,000 3 2,997,000
10,000 1 99,990,000
10,000 2 199,980,000
10,000 3 299,970,000

Table 6.2: Table of number of routes generated in an exhaustive set of origin and
destination locations for each mode.

r = t× s× d (5)

= 5× 2× 5

= 50

Considering a two mode scenario and defining a few as 5, each individual in

the scenario would need up to 50 routes. Therefore, when 1,000 locations are in

the scenario there would need to be a minimum of 39,960 individuals to request

every calculated route. A typical household could be estimated to average 3

individuals. Therefore, if every location in the scenario was a dwelling, and so

no locations for employment, eduction or retail activities etc., then 92.49% of the

individuals would need to be commuters from outside the scenario geography.

The individuals of the scenario would also need to not visit any locations al-

ready visited by other individuals or more individuals would be required. Assum-

ing each route took 100ms to calculate then it would take 55.5 hours to calculate

the full set of routes for this set, although parallel or distributed computing can

be applied. In conclusion, the pre-computation approach very quickly generates

large numbers of routes that it is improbable will be utilised unless a scenario is

repeatedly executed and even then certain combinations of locations are likely to

be improbable. The number of routes generated also assumes a routing algorithm

247

only generates a single optimal shortest path and does not propose alternative

routes, e.g. branching at key junctions.

The storage and searching of this large quantity of data will also have im-

plications for the execution times and resource usage when performing demand

modelling. The exhaustive set of routes is also very vulnerable to changes in the

knowledge-base. The set will become invalid or incomplete when any locations

are added or removed; any changes are made to the road network, e.g. maximum

speeds or turning restrictions; any modes were added or removed; or if any of the

scenario parameters were adjusted in the Mode Definition. Therefore, the pre-

computation approach produces a lot of data that is unlikely to be used; takes a

long period of time to generate at scale; is vulnerable to changes; and can have

an implications for execution times. In most use cases a dynamic approach dur-

ing execution will produce the required data in the most efficient manner. The

use case where pre-computation may be appropriate is the provision of exemplar

remote datasets which could be re-used repeatedly by a large number of users

(Section 3.2 and 3.4.2).

The road network data structure is defined as a directed graph of nodes and

edges (Section 4.5.9). A modelling simplification used in traffic simulators, such

as SUMO, for vehicles is that changes of direction, i.e. turning around, can only

occur at nodes, i.e. start and end of edges, and not mid-edge. The directed graph

represents the flow direction of vehicles along roads, i.e. bidirectional on two-way

roads and unidirectional on one-way roads. However, this distinction does not

apply to pedestrian, or similar, modes of transport which always treat footpaths

as bidirectional and may cross edges at designated crossings. Consideration of

unidirectional and bidirectional routing has an impact on the shortest path as

illustrated in Figure 6.8.

The origin (circle) is positioned on an adjacent edge to the destination (square).

However, the edge direction for the road/edge is away from the destination. A

vehicle following the road must travel (dashed line) away from the destination

(edge A) before turning around and heading back in the intended direction (edge

B). The vehicle must then travel beyond the destination (edge C) in order to

turn around and reach its closest edge (edge D). The pedestrian using the foot-

way, running alongside the roadway, is able to travel in the reverse edge direction

248

Figure 6.8: Diagram of unidirectional (dashed line) and bidirectional (dotted line)
routing through directed graph of edges.

(edge A) and directly to the nearest edge (edge D). Non-consecutive travel by a

vehicle or person, e.g. arriving at edge A and departing on edge B, and turning

mid-edge is not permitted by traffic simulators, such as SUMO and MATSim.

The creation of virtual vehicles which start on the alternative edge would com-

plicate the analysis of vehicle data. Therefore, the module applies unidirectional

routing for vehicle Modes and bidirectional routing for personal Modes.

The module does not assume or enforce any specific distance units so can

be applied to any road network with consistent units. During routing a check

is made between the current edge’s maximum speed and the modes maximum

speed, defined by the Mode Definition of the Travel Scenario (Section 4.6.1).

The lower value is selected to determine the travel time, i.e. duration, of the

edge. It is assumed that the maximum speed is honoured and applied universally

as physical acceleration/deceleration and human behaviour of exceeding speed

limits are traffic simulator concepts. The parameters from the Mode Definition

are also used to calculate a non-denominational cost for the stage based upon an

upfront fixed cost and distance based variable cost.

6.4.4 Traffic Simulator Interfaces

The third stage of the travel demand modelling process is the execution of the

schedules using a traffic simulator. The traffic simulator seeks to simulate the

physical environment and the interactions between road users and network in-

frastructure. There are multiple approaches and implementations of the physical

249

behaviour just as has been found with the human behaviour and decision making

of the second stage. Therefore, simulation should ideally take place across mul-

tiple simulators with comparison of results to assist verification and validation.

The incorporation of traffic simulators into the framework is achieved by con-

sidering them as Modules. Ideally simulator interfaces would be developed to

accept RDF input and produce RDF output but existing implementations have

been designed as standalone tools with their own interfaces and represent com-

plex software artefacts. Therefore, a Module wrapper was developed to provide

conversion between the simulator input and output formats and enabling them to

be used in the framework. This approach can also be applied to other existing im-

plementations from earlier stages, e.g. population synthesis, activity generation,

travel demand generation, to convert the input and output between RDF.

The development of a wrapper interface presents a problem when consider-

ing the framework objective of incorporating a flexible schema that the user and

other modules can extend. In a fixed schema the interface can be designed to

the specific data items and conversion can be performed using a specific pro-

gramming language. However, changes or additions to the schema, e.g. new

properties or alternative property names, would require the interface to be re-

developed and published. Alternatively, the user, or developer of the module

changing the schema, would need to understand, modify and re-compile the in-

terface. This requires an investment of resources and reduces the flexibility for

modules to inter-operate. The further development of a traffic simulator may

also make an interface obsolete and prevent a user from accessing new features.

Therefore, there would be a need for interface developers to continually update

revised interfaces.

The proposed solution to these issues is for wrapper Modules to be developed

using Extensible Stylesheet Language Transformations (XLST) templates and

processors [67]. This standards based technology provides for the conversion

between different dialects and schema of Extensible Markup Language (XML)

documents and also supports other formats, e.g. Comma Separated Values (CSV)

and JavaScript Object Notation (JSON). The XML format is a widely used format

and is the format adopted by both traffic simulators utilised in the prototype, i.e.

MATSim and SUMO.

250

The file based XLST templates are read by the XSLT processor alongside an

input file/s to produce an output file/s. The template content describes the source

and target structure and changes to the template are reflected in each execution of

the processor. Therefore, modifications can be performed at runtime by a user.

The templates are agnostic to the underlying platform, unlike a programmed

interface, and so can be transferred and executed by any compliant processor.

There is also full access to the contents of the knowledge-base so that additional

data can be incorporated as it is available for a particular simulator, which a

programmed interface may not have been designed to include.

The Module wrapper has to perform two stages of conversion. The initial

stage is conversion from the framework’s schema in XML to simulator input

schema in XML. The simulator would be executed and the output produced.

The conversion process is then reversed to convert the simulator output schema

in XML to framework schema in XML.

Obtaining the initial data of the framework schema in XML can be achieved

using SPARQL CONSTRUCT query and then outputting the resulting graph as

an RDF/XML serialisation. The CONSTRUCT query permits transformation of

data, e.g. property name changes, and so certain schema changes can be managed

by only modifying the query. The standardised RDF/XML serialisation [100] is

the original format for writing RDF graphs to file and so is widely supported by

Semantic Web libraries. The use of SPARQL queries again enables the user to

adapt the data extraction process at runtime so that changes to the schema from

the core schema (Chapter 4) can be incorporated.

The process for conversion is illustrated in Figure 6.9. The output of the

second stage travel demand model is the Activity & Travel Schedules. These are

utilised along with network infrastructure, and other simulator relevant data in

the knowledge-base, as input to the traffic simulator. The traffic simulator in-

terface extracts one or more graph files using SPARQL queries. The resulting

RDF/XML is then converted into the required format and schema of the sim-

ulator. The traffic simulator is executed and then the output converted into

RDF/XML and directly added back into the knowledge-base following the con-

figuration provided by the Framework Configuration (Chapter 5). Provided the

number of input and output files of the simulator does not change between ver-

251

sions then adaptations can be made to the schema and simulator input without

modification to the wrapper Module. However, this restriction could be accom-

modated through a more sophisticated wrapper module.

Figure 6.9: Diagram of SPARQL query and XSLT template process for Traffic
Simulator Interface.

Interfaces were implemented in the prototype for MATSim and SUMO sim-

ulators. The Activity & Travel Schedules and Road Network data, along with

other relevant information, e.g. locations as points of interest, were extracted

from the knowledge-base. These were then converted into the multiple input files

for execution. SUMO is a micro-simulator that simulates individual vehicle inter-

actions while MATSim is a meso-simulator which takes a higher level approach

with a more abstract queuing system. The parameters for this queuing system

are not clearly specified in the MATSim documentation [32] and were selected

from alternative research [148].

The data requirements between simulators were very similar with some differ-

ences in emphasis. For example, SUMO uses road edges for routes while MATSim

uses nodes but both are based on a graph structure. SUMO, with its original

emphasis on vehicle only simulation, requires complete and consistent vehicle

routing as a separate input to person plans while MATSim obtains vehicle rout-

ing from the person plans. The proposed core schema was able to satisfy the

252

data requirements of both simulators to execute the Activity & Travel Schedules.

In both cases the wrapper Modules interfaces were implemented to reformulate

the knowledge-base data in the required formats using only XSLT and SPARQL

query, invoke the simulator and then convert the output into Activity & Travel

Results.

During the development of these interfaces it was found that the multiple

queries and serialisation of very narrowly defined sets of data were noticeably

quicker than the more general approach of a single query that retrieved all re-

quired data. Therefore, a one-to-many relationship may be necessary between

a simulator input file and the knowledge-base queries required to construct it.

Multiple simple queries are generally easier to maintain and more accessible for

users to modify but require orchestration by the Module wrapper interface.

The proposed approach does not remove the need to develop a wrapper Mod-

ule interface, unless traffic simulators are adapted to directly utilise RDF, but

it does reduce the burden and increase the flexibility and longevity in providing

them. It does require the user, or module developers, having skills in SPARQL

and XSLT languages. These are non-trivial requirements but not excessive and

only apply when changes are needed from the core schema.

Ideally modules and datasets would conform to the core schema and no ad-

justments would be needed. However, it should be considered that integration

between components in current travel demand processes may require multiple

interfaces in multiple programming languages with requirements changing be-

tween different configurations. In this approach the requirement is consistent

and therefore developed skills will be re-used across configurations. In addition,

the SPARQL language is the primary language for operation of the framework.

SPARQL is widely used for Semantic Web applications and so is a core skill for

users in the domain.

6.5 Chapter Summary

The prototype provides the user with control over the activity patterns, schema,

module parameters, module selection and discrete choice calculation. These can

be applied based on the class and properties present in the data with minimal

253

design assumptions, e.g. modes are defined in the data and not an imposed

hierarchy beyond personal, vehicle and public transit.

The approach allows the user to include their own schema of concepts; select

alternative modules based on those concepts; access and modify both local and

remote datasets; and apply the generated demand to multiple traffic simulators.

The implemented modules are intended to be generic representations with min-

imal design assumptions that cannot be modified through query. However, the

overall modular architecture is intended to allow the substitution and selection of

modules for the user’s modelling approach. These can help address the current

shortcomings of singular behavioural models and burden of comparing between

travel demand frameworks.

The implemented scheduler produces full day schedules and is discrete from

the trip planning and network routing stages. The scheduler builds the schedule

in a single forward pass and there have been identified opportunities for vari-

ation, including potential sub-modules to enable variation within this module.

Additional features that have not been implemented include co-operation within

travel groups and the prioritisation of activities in the scheduling process.

The trip planning module can produce trips where the number of stages is

dependent on the modes and available transport resources, rather than those

pre-defined by the design. The construction of trips considers spatial access

constraints to locations and satisfy any requirement to return vehicles to a starting

location at the end of the schedule. The destination for trips can be formed from

asserted options in the knowledge-base or searched from viable options according

to the activity pattern.

The selection of trips uses a discrete choice calculation which is performed

through a query of the knowledge-base. This query can be substituted for al-

ternative formulations or expanded to select formulations according to traveller

class or other characteristics present in the knowledge-base by using the proposed

framework. Therefore, the user is not limited to the implemented calculation but

can adapt and explore according to their investigation.

The routing module produces best estimates for travel between locations

through the network infrastructure for personal and vehicle modes using the A*

algorithm. Areas of future work includes the consideration of temporality in

254

public transport timetables, learning from past travel experience and alternative

routing, e.g. trunk road preference. It has also been identified that some road

network datasets contain semantic information that could be used to influence

routing choices, but are not currently considered in routing tools provided by the

examined simulators.

The integration of two third-party simulators has been achieved through in-

terfaces that combine SPARQL querying of the knowledge-base with the XLST

language for XML transformations. This allows change, variation or expansion

of concepts in the knowledge-base or traffic simulators to be compensated for

by the user without requiring re-development of the interface. Both of these

techniques use platform independent and text based templates which facilitates

their inspection and distribution. The use of a unifying knowledge-base also pro-

vides potential for users to develop new interfaces for alternative simulators using

the same techniques. Chapter 7 considers the implementation of the prototype

when utilised with a knowledge-base of scenario data and the performance of the

framework in alternative configurations.

255

Chapter 7

Evaluation of Prototype Travel

Demand Generation Framework

7.1 Introduction

The previous chapters have established the design of the framework and the op-

erational modules; the schema of the knowledge-base on which the modules will

function; the design of the framework to control the module selection and oper-

ation; and the implementation of the prototype to demonstrate the framework

design and function. This chapter will seek to address research question RQ4

of whether a Semantic Web framework can be implemented for the generation

of travel demand by examining the prototype developed based on the concepts

covered in the previous chapters.

The discussion is formed into four parts. The first part discusses the sce-

nario constructed as the basis of the evaluation. The second part considers the

prototype developed using the framework schema and the organisation of the

implemented modules to produce travel demand for traffic simulation with two

third-party traffic simulators. The third part uses the prototype to consider the

alternative configurations of the framework and their performance. The final

part will outline the challenges encountered during the development of the proto-

type and applying the described Semantic Web based approach to travel demand

generation.

256

The objective of this chapter is to consider the progress and issues encountered

in applying these approaches rather than seeking to establish their effectiveness

in replicating traffic and transport behaviour. Performing an analysis into their

effectiveness would require a dataset to provide a ground truth, with no published

dataset identified and is acknowledged as a challenge in the validation of traffic

models and microsimulation [46, 113].

Investigation was undertaken into identifying supporting data for the evalua-

tion of real-world scenarios. National traffic flow data is routinely published [149],

but sensor locations are sparsely distributed along major national roads and are

predominantly situated between or around urban environments. The use of local

traffic flow data from the Nottingham SCOOT system was also investigated, but

encountered issues with fragile data collection, inactive sensors and the need for

extensive manual data preparation to assign geographic coordinates to sensors.

Performing primary research to gather a traffic flow dataset for a target area

would have significantly expanded the scope and resource requirements of the

project.

Investigation was also undertaken into the population synthesis process to use

aggregate census data as the basis for constructing a scenario and utilising travel

surveys for generating activity patterns. These datasets were successfully con-

verted into RDF algining with the core schema for the knowledge-base (Chapter

4). However, the available published spatial datasets contained either limited

detail [123] or suffered from data completeness issues [123]. Therefore, further

datasets were required along with additional research into techniques to align

the population, activities and spatial locations to complete the Knowledge-Base

Construction process, which is also acknowledged as an area of ongoing research

[84].

An additional approach for evaluation would be comparison to existing im-

plementations, but the resource requirements and model availability made this

impractical in the project timescale. Conversely, both of these issues form part

of the overall objective that this work is seeking to address by improving the ac-

cessibility of both models and datasets. Therefore, the evaluation considers the

prototype and framework implementation in the context of a constructed scenario

to consider the schema, prototype and framework rather than the efficacy of the

257

generated travel demand.

7.2 Construction of Travel Demand Generation

Prototype Scenario

The outcome of travel demand generation is influenced by the modelling and

implementation choices of its components and the scenario data to which the

process is applied. This section will describe the scenario produced of five thou-

sand individuals that is utilised in the following sections. These individuals were

assigned activities and locations to visit during the course of the scenario period

of one day.

The scenario was generated using a developed application rather than being

derived from published data. The application applied random processes to pro-

duce consistent RDF datasets that follow the previously discussed schema. The

properties of the generated dataset and schema were derived from data fields

present in published census [114], road network [123], travel diary [14] and travel

survey [2] sources.

This approach was selected to allow the scenario data to be quickly modified

and developed as the project progressed. The utilisation of real-world datasets

would have required further investigation into additional techniques for retriev-

ing and reconciling across datasets. This would have expanded the scope of the

project and potentially introduced issues in aligning the various data sources. An

area of future work is the investigation of these processes and their incorpora-

tion into the framework as part of the overall travel demand generation process

discussed previously (Chapter 3).

An implication of this approach is that there is no contextual influence of land

usage. Locations, people and activities are distributed around the road network

in random positions. Therefore, there is no clustering that may be expected in

typical land-use, such as housing estates, industrial zones and retail districts.

The scenario knowledge-base was constructed using a randomly generated

road network of 14km by 8km produced by SUMO simulator’s NETGENERATE

application [46] and converted into RDF road network schema using an XSLT

258

template (see Fig. 4.33). This road network can then be used by the travel

demand generation and both traffic simulators. The generated roads are all single

lane with pedestrian pavements running alongside. Pedestrian crossings were

situated at road junctions, when required by the simulator, i.e. SUMO.

This means that there is a high level of pedestrian access throughout the

network rather than pedestrians incurring additional travel durations they may

experience due to accessing foot bridges and crossings or the lack of pavements

along busy roads. The pedestrian model of SUMO gives pedestrians priority

at crossings with no delay waiting for traffic light phasing to control vehicles.

MATSim does not currently simulate this level of detail for pedestrian modes.

Therefore, pedestrian modes are highly favoured in terms of access and delaying

factors through the road network at simulation.

The phasing of traffic signals has also not been incorporated into the knowledge-

base. There are no identified datasets providing this data and only SUMO utilises

the data in its simulation. This again highlights the limited benefit of trying to

utilise a road network from a public data-source. Although the topology of the

road network will reflect a real-world location the behaviour of traffic signals at

junctions will not and so weaken the simulation outcomes. Instead the default

SUMO approach to traffic signalling has been applied. The quality and appro-

priateness of published road networks for traffic simulation also limits their use

without substantial reconciliation due to a lack of data on the number of lanes,

presence of traffic lights, maximum speeds and presence of footpaths.

All roads in the network were allocated the same maximum speed. This

means that although routes are based on travel time they will also be the shortest

distance. Therefore, there are no routing effects from higher speed trunk roads,

which often have multiple lanes and so higher capacity. The load on specific

roads will be dependent upon the generated people and locations rather than

also incorporating factors from the road network topology.

RDFS inferencing was applied to the knowledge-base following the RDF schema

and published public schemas described previously in Chapter 4. This provided

automatic inferencing and data validation, e.g. datatype checking, cardinali-

ties and inferred sub-class membership and sub-property relationships. Apply-

ing OWL2 inferencing and additional property relationships would enable more

259

diverse inferencing, e.g. relationships between locations and persons based on

common activity types and person mode usage based upon vehicle usage.

A dataset was produced based on a road network containing one thousand

residence locations, five education locations, one hundred employment locations,

five freight depot locations and thirty locations each for retail, leisure, personal

business, and freight delivery. Each location was assigned geospatial coordinates

randomly selected from a set of evenly spaced points running alongside road links.

Vehicles were permitted to access all locations except for leisure, while pedes-

trians had access to all locations. Therefore, no differentiation is made in the

scenario between large delivery vehicles, car sized vehicles and bicycles. This was

a simplification of the scenario data generation and would be supported by the

travel demand modelling.

Locations were also selected at the road links near to the cardinal points and a

central train station to provide starting points for external non-resident travellers

using transport link activities. The road network and locations are shown in

Figure 7.1.

Each residence location contains a single household Travel Group consisting

of four persons to simulate four thousand resident individuals. Households were

assigned one of the ten Activity Pattern Sets with each person in the group being

allocated a single Activity Pattern. Ten Activity Pattern Sets were manually

created with each consisting of four Activity Patterns. The Activity Patterns

started and ended with home activities and consist of one or more activity blocks

ranging from half an hour to nine and a half hours. The start and end activi-

ties could be any Location or Activity Type but all were assigned to residence

Locations.

The activity pattern’s start and end times were chosen from the four quarters

of the hour, with later random variation of plus or minus fifteen minutes. Lunch

time and evening activities were included around core day time education and

employment activities, but interrupted by lunch time, with a home activity prior

to evening activities.

Each resident Person was randomly allocated activities at locations according

to activity types with one employment and education location and ten each for

retail, leisure and personal business locations. Locations were assigned multiple

260

Figure 7.1: Map of road network and locations.

261

activity types. House residences provide home and leisure activity types due to

leisure activities also including socialising with friends and family. Other loca-

tions provide employment and other related Activity Types. This demonstrates

the potential for multiple activities and alternative activity types to take place

at a single geographic location.

Non-resident persons were similarly assigned locations for activities but were

not assigned residences. Instead these were allocated to transport link activities

at edge of network Gateway Links and Train Station locations. Two hundred

Travel Groups were split evenly between the five transport link locations with

four Persons per group. Activity Pattern Sets following those of the resident

persons were produced but with residence activities replaced by transport link.

Freight driver persons were allocated an activity at a freight depot location to

start and end the schedule. Each freight depot was allocated a Travel Group con-

sisting of ten freight drivers. All freight drivers were assigned the same Activity

Pattern of deliveries every thirty minutes throughout the day but with varying

travel range.

No freight delivery locations were asserted for the freight drivers. Instead po-

tential locations were searched dynamically according to proximity of the current

location and travel range of the Activity Pattern item demonstrating contextual

selection. Destination selection was equalised through the freight driver utility

coefficients and freight vehicle mode parameters. All the described Locations

and Activity Types could be intermixed so that residents and freight drivers

may travel out to gateway links and freight delivery activities can take place at

residences.

The described person-types, activities and locations were applied in the user

schema, rather than prototype design, and can therefore be modified by the user.

These have been selected to illustrate typical domain concepts a user may wish

to model. The implemented prototype is able to operate upon these in a generic

manner while the user can still apply selection to use alternative modules, e.g.

trip planning for freight. This is in contrast to some travel demand models, e.g.

CEMDAP which divides the population into workers and non-workers with fixed

activity travel patterns [47].

The resident group were split into adult and child groupings. Each adult

262

resident was allocated a single private Vehicle from a distribution covering car

(1:2), motorcycle (1:6) and bicycle (1:6) or no vehicle (1:6) with children only

allocated bicycles (1:4). All non-residents arriving via gateway link were assigned

either car (3:4) or motorcycle (1:4) Vehicles. Those non-residents arriving at

the train station were not assigned vehicles. All freight drivers were assigned

Heavy Goods Vehicles. All residents and non-residents were assigned personal

walking Modes, while freight drivers were not assigned a personal Mode to enforce

continuous usage of their vehicles.

Personal utility coefficient weightings for the Random Utility Model (RUM)

were specified according to the three person-types as a model simplification rather

than technical requirement. Each Mode was assigned max speed, fixed cost and

variable cost definition for the Travel Scenario. The RUM was tuned, except

freight drivers, to provide a walking preference for stages shorter than 1.4km and

using vehicles for longer trips as can be noticed in Figure 6.7. This threshold is

intended to provide a mix of mode usage and was based upon indicative traveller

walking distances [14].

It can be seen from the description in this section that the data requirements

of the travel demand generation process are not trivial. Several items of data

have a strong influence over the behaviour of the travellers including the activity

patterns, assigned locations and accessible modes. An area of future work is the

generation of public transport data for the usage in the scenario as this would

broaden the mode choices available to all travellers.

7.3 Evaluation of Travel Demand Generation

Prototype

This section examines the generated results from executing the previously de-

scribed scenario. It considers the schedules generated by the travel demand stage

of the process. There is then examination of the outcome from simulating the

generated schedules with two integrated traffic simulators. Finally, there is iden-

tification of issues in varying the number of participants in the prototype scenario

and summary of the evaluation.

263

7.3.1 Activity Intervals and Travel Stages of Generated

Schedules

The travel demand generation process was executed over the period of one day

for all five thousand individuals. These five thousand individuals were split across

three person-types of 4,000 Residents in 1,000 Travel Groups, 800 Non-Resident

in 200 Travel Groups and 200 Freight in 20 Travel Groups. The number of activity

intervals and travel stages produced varied across the person-types according to

the activity patterns for each as shown in Table 7.1. The Freight group followed

the same regular activity pattern while the other two groups picked from a choice

of ten prepared patterns.

Person Type Mean Std. Dev. Min Max

Activity Interval
Freight Driver 18 0 18 18
Non-Resident 4.703 1.418 3 8

Resident 4.611 1.395 3 8

Travel Stage
Freight Driver 17 0 17 17
Non-Resident 5.295 2.697 2 14

Resident 4.782 2.632 2 19

Table 7.1: Table of scenario activity intervals and travel stages by person type.

The distribution of activity intervals in progress across the entire scenario day

is shown in Figure 7.2. The scheduling process retained 25,806 out of 26,280

(98.2%) activity pattern items as activity intervals with 26,765 travel stages

planned. The figure shows the switch from home, delivery and transport link

activities at night to day time activities. The structure and hierarchy of these

activities is determined by the schema and data, so the user is able to expand

and modify as required.

The inverse of the activity intervals is the scheduled travel stages as individuals

who are not performing activities would be travelling. The travel stages can be

identified by the declining number of activities corresponding with the peaks seen

in Figure 7.3. There is a clear domination by walking as shown by Table 7.2 where

over half of the travel stages do not use a vehicle. This is not surprising as this

mode is always an option for travellers to utilise and is also used by them to reach

vehicular modes if the vehicle has been positioned at another location.

264

Figure 7.2: Number of activities by activity type per one-minute interval.

Mode Count Share
Bicycle 2,484 9.28%

Car 4,341 16.21%
Heavy Goods Vehicle 3,400 12.70%

Motorcycle 1,291 4.82%
Walk 15,249 56.97%

Table 7.2: Table of mode share for travel stages.

The prevalence of walking travel is influenced by the positioning of locations,

activity patterns, mode access, vehicle availability and the trip selection process,

in this case a Random Utility Model. The trip selection process only favours

walking in trips less than 1.5 kilometres in a road network covering 112km2 with

only a single type of location inaccessible to vehicles. Yet, the modelling of

pedestrians in SUMO simulator has only recently developed a pedestrian model

that influences vehicle travel and MATSim handles vehicle and pedestrian modes

separately with no interaction.

The aggregated values of the travel stages by mode for distance travelled

and duration are shown in Table 7.3 and Table 7.4 respectively. It can be seen

265

Figure 7.3: Number of travel stages by simulator per one-minute interval.

Mode Mean Std. Dev. Median Min Max
Bicycle 6,279.18 3,555.556 5,300.227 12.435 18,922.75

Car 6,530.543 3,468.799 5,693.75 16.073 19,057.45
Heavy Goods Vehicle 7,084.732 1,990.131 6,750.848 2,149.135 15,110.62

Motorcycle 6,762.546 3,632.69 5,798.207 20.883 17,053.04
Walk 2,597.206 3,376.757 1,225.354 0.115 16,421.44

Table 7.3: Table of travel stage distance (metres) by mode.

that the walk mode is used for shorter stages despite taking longer to complete.

The distribution in distance travelled is wide as indicated by the large standard

deviation and range between minimum and maximum distances. The trading off

between modes, other than vehicles to walking, is not taking place due to the

single allocation of vehicles and lack of public transport.

The maximum walking distances, and corresponding durations, reflect that 3

in 4 of the child and 1 in 6 of the adult Residents were not allocated any vehicle

and therefore were forced to walk, so contributing to the walking prevalence in

Figure 7.3. Therefore, long walking journeys up to 2.5 hours are produced due to

the demographic data that has been used, and the absence of public transport,

266

Mode Mean Std. Dev. Median Min Max
Bicycle 702.884 397.998 593 1 2,118

Car 469.862 249.460 410 1 1,370
Heavy Goods Vehicle 509.664 143.108 486 154 1,084

Motorcycle 486.511 261.168 418 2 1,227
Walk 1,451.057 1,886.587 684 1 9,174

Table 7.4: Table of travel stage duration (seconds) by mode.

rather than the activity-based model.

The Heavy Goods Vehicle mode can also be seen to be searching for locations

above the minimum threshold for each trip. This threshold was not enforced for

other modes and so very short trips are demonstrated. Enforcing a minimum

travel distance would produce a greater volume of travelling, but does not fit

with the utilitarian view that humans select the most efficient option available.

Therefore, other factors, such as location preference or popularity, should be

considered to design out, or give greater substance, to choices than proximity.

These mode choices for short trips can also reflect the mandatory requirement

to return a vehicle to the starting location at the end of the day and walking

transfer stages to collect or drop-off a vehicle to access a location. Therefore,

enforcing one type of behaviour can introduce complexities in reflecting other

desirable behaviours. Overall, a diversity of trip distances and durations have

been produced across the modelled modes.

The distribution of travel stages being completed consecutively can be seen in

Table 7.5 with the majority of trips only requiring a single stage. The overall ratio

of travel stages per trip was 1.286 (26, 765 travel stages/(25, 806 activity intervals−
5, 000 initial activity intervals)). The low number of three stage trips can be

attributable to only a single location type not providing vehicle access and there

being no provision of public transport. Therefore, these trips will be of a walk-

vehicle-walk pattern. However, this does demonstrate the implemented multi-

stage, multi-mode trip planning algorithm being applied (Section 6.4.2).

A final consideration of the travel demand generation is the distribution of

travel around the road network. This is visualised in Figure 7.4 which shows the

travel along the road network as planned by the schedules. The frequency of link

267

Stages Count Share
0 0 0%
1 15,422 57.62%
2 4,809 17.97%
3 575 2.15%

Table 7.5: Table of travel stages between activity intervals.

usage, in either direction, has been split into five groups across the range from

dark green for low usage to dark red for high usage, with black for no usage. It

can be seen that a wide area of the road network has routes planned along it

and travel throughout. It can be seen that the many roads have low usage by

the prevalence of dark and light green. The distribution of road links in trips is

illustrated in Figure 7.5 and is left skewed with many links being used a small

number of times and a long tail of low number but high frequency cases.

As discussed in the previous section, the positioning of locations was applied

using random distribution methods and so there is no spatial context to land-use

from historic, social and economic developments which may be found in a real

world scenario. All roads in the road network have the same lane capacity and

speed so travel is determined by shortest path rather than variation in infrastruc-

ture. These are characteristics of the data supplied to the travel demand process,

and not an implementation constraint. However, Figures 7.4 and 7.5 do illustrate

that travel is not isolated to a small section of the road network and that certain

areas are more frequently travelled.

268

Figure 7.4: Map of road network link usage density across five groupings.

269

Figure 7.5: Distribution of trip frequency for road links from schedules.

7.3.2 Variation of Traffic Simulation Results to

Generated Schedules

The generated schedules of the travel demand process represent the ideal planned

activities and travel of the individuals. The traffic simulation stage of the process

models the interaction of these individuals with each other and the network in-

frastructure environment. Therefore, it is expected that the generated schedules

and simulation results will not exactly align while variations in modelling, design

and implementation choices introduce the potential for differences in outcomes

between simulators.

The trips in progress for the schedules by mode have shown the general M-

shaped curve of weekday commuting in the morning and afternoons [2, 16] in

Figure 7.3. There are additional lunch time and evening travel periods with the

general pattern directly influenced by the activity pattern templates. Figure 7.6

shows the difference between the planned schedule for travel and the trips in

270

progress during traffic simulation.

Figure 7.6: Number of travel stages by simulator per one-minute interval.

A greater number of trips in progress would be expected and both simulators

can be seen to have higher numbers. This is an indication of modelling factors, e.g.

vehicle acceleration and deceleration, and interactions, e.g. traffic queuing, which

delay the travellers in their journeys. This is shown in Table 7.6 by the higher

mean and median values for the simulators compared to the schedule. The high

standard deviations shown that the data is widely distributed indicating trips

are being undertaken with a range of durations. The MATSim simulator has the

same maximum value as the schedule while SUMO has some form of delay.

Simulator Mean SD Median Max Min Count
Schedule 1056.37 1506.058 511 9174 1 26765
MATSim 1347.628 1487.298 911 9174 0 26765
SUMO 1327.307 1765.498 743 10744 1 26765

Table 7.6: Table of simulator and schedule duration for travel stages.

The graph illustrates that in the peak morning period the SUMO simula-

271

tor has a higher volume, but during the midday period MATSim is consistently

greater. This illustrates the need for comparison to be made between simulators

as although the same travel demand input is provided there is a difference in the

simulated output. There is also a general indication of SUMO tracking the under-

lying schedule pattern more closely, although not exactly, than MATSim through

less smoothing of the peaks and troughs. A closer examination of the difference

between schedule and simulation is illustrated in Figure 7.7. This graph shows

the mean delay between the ideal schedule and the simulated travel of the traffic

simulators.

Figure 7.7: Mean error of travel stages by simulator per one-minute interval.

In SUMO, extreme values can be seen at both ends of the day when travel

volumes are lowest, indicating severe disruption for a few travellers. The large

spike prior to 06:00 in particular raises further questions as the volume of travellers

is very low and it is not until about 09:00 that peak volume is reached. In a

low volume situation, the delay, or error, should be minimal as queuing and

vehicle interactions should be minimal. Examining MATSim, the mean delay

peak occurs during the lower volume midday period, excluding an end scenario

272

spike, suggesting more generalised delays are being experienced.

The importance of a delay can be considered in both relative and absolute

terms. Figure 7.8 illustrates the mean delay as a percentage of the scheduled

duration. In the case of SUMO the large errors at the start of the travel period

are relatively less than encountered in the rest of the period. There is a substan-

tial difference in the scale between the relative percentage delays in SUMO and

MATSim, while SUMO peaks at 40% it can be seen that MATSim reaches 100%

delays.

Figure 7.8: Mean percentage error of travel stages by simulator per one-minute
interval.

These are aggregated mean values and so the worst case will be higher with

outliers being hidden in high volume situations. Figure 7.9 shows the maximum

error experienced for each minute segment by an individual for the whole trip,

i.e. not the delay at that point in the trip. The same individual will report

the maximum value from segment to segment until they complete their trip or

are exceeded by another individual. The graph illustrates that while SUMO has

a high initial error at the beginning of the travel period the maximum error is

273

typically simulated in MATSim. This maximum error is at a much higher level

and peaks at 5,041 seconds, or 83 minutes, delay as shown in Table 7.7.

Figure 7.9: Maximum error of travel stages by simulator per one-minute interval.

Simulator Mean SD Median Max Min Count Negative
MATSim 291.2577 372.8335 165 5041 -2559 26765 707
SUMO 270.937 293.4432 191 2209 -37 26765 186

Table 7.7: Table of difference between simulator and schedule duration for travel
stages.

In both simulators the means are at similar levels of a 4 to 5 minute delay

compared to the schedule, but have lower median values showing lower centre

to the distribution. MATSim has a much greater spread than SUMO between

the maximum and minimum values. The schedule duration represents the best

case scenario for travel of maximum road or mode speed and no interactions

for queuing or crossings. However, both simulators report travel stages that are

quicker than this best case scenario, as indicated by the Min and Negative count

columns.

274

In SUMO the values are relatively small and occur for a small percentage of

travel stages (0.69%). All the values occur for the walking mode and are less

than 8 seconds. The one exception is a heavy goods vehicle which is responsible

for the 37 second minimum difference. In all cases the individual’s difference to

the schedule is smaller than the duration. The individuals are being simulated as

travelling and the difference could be due to a simulator error or misalignment

between travel demand and simulator road networks. The internal representation

of road networks used by SUMO applies areas for junctions that are not included

in edge and node representations, even that used by SUMO as an input. These

areas truncate the lengths of edges and so may modify the distances travelled.

However, the exact cause has not been identified.

In MATSim the values occur more frequently, but still represent a relatively

small percentage of travel stages (2.64%). However, the difference values are

much larger and frequently exceed the simulated travel stage duration, i.e. the

MATSim duration is less than half the best-case duration of the schedule. The

majority of cases apply to the walking mode but cases of all other modes are

found.

In these non-walking modes the duration is often 0 to 2 seconds indicating

that the simulator is teleporting the individual. Teleportation is a feature of both

simulators to overcome issues with gridlock or individuals expecting vehicles that

are out of position. However, the former only applies after a minimum waiting

duration and neither situation was reported by the simulator.

In the walking modes a large range of values are found in MATSim’s simulator

results, and all have non-zero durations. This suggests that the simulator is not

teleporting the individuals, but instead simulating shorter travel durations. How-

ever, an overestimation in the duration of the schedule’s travel stages for walking

by the travel demand generation process should also be reflected in the SUMO

simulator results. However, there is not the volume or duration of mismatches in

the SUMO simulator results to suggest this is the case.

The difference in duration for the first 186 cases reaches upto 41 seconds

compared to SUMO’s 8 seconds. The spread of MATSim duration differences

continues until 849 seconds. There is then a jump to a single outlier with the

maximum value of 2,559 seconds. This individual is reported in the logs as

275

being teleported due to being stuck without a vehicle. However, the vehicle

was positioned in this location and so the cause of the individual being stuck is

unknown and an anomaly.

These negative differences are illustrated in Figure 7.10 which shows the min-

imum error experienced for each minute segment by an individual for the whole

trip, i.e. not the delay at that point in the trip. The same individual will be

shown until their value is exceeded or the trip is completed. The SUMO simula-

tor spike can again be seen at the start and end of the simulation when volumes

are at their lowest. The minimum and maximum of these trips are both high

resulting in a high mean value.

This supports the suggestion from Figure 7.8 that these are long duration trips

that are taking longer in the simulated environment rather than an unexpected

delay. There can then be seen the persistent occurrences of shorter durations than

the schedule which occur even during the peak morning and afternoon periods.

The MATSim outlier mentioned previously can also be seen around 22:00 where

the individual becomes stuck without a vehicle rather than due to travel.

Figure 7.10: Minimum error of travel stages by simulator per one-minute interval.

276

7.3.3 Issues and Summary of the Prototype Scenario

The construction of the prototype scenario encountered several issues that have

been discussed in the previous section. However, there were several issues en-

countered in varying the number of participants in the scenario.

The examined scenario schedules the travel for 5,000 individuals in a road

network contained in 112km2. This represents a population density of 44.64

people per km2 compared to a United Kingdom density of 272.28 people per

km2 [150]. A further experimental scenario was performed for 12,500 individuals

and simulated for a density of 111.61 people per km2. There were no issues

encountered in the travel demand generation process or MATSim simulation.

However, the execution of the SUMO simulator did introduce two points that

halted further investigation with larger populations.

Firstly, the output of the simulation, i.e. the simulation completed success-

fully, caused an error when being parsed by the Java XML library. Initial inves-

tigation did not identify an immediate cause of this error or whether the issue

resided in the SUMO simulator XML output or the XML parsing library and

there was not opportunity to resolve the matter.

Secondly, the SUMO simulator logging reported large numbers of vehicles

being stuck and requiring teleportation through the road network. This is a

known issue in the design, for which teleportation is the solution, caused by

the non-reactive design of entities in the SUMO simulation. In high volume

situations the entities can become stuck crossing junctions. This causes tailbacks

along their edges that impacts on other edges and can trigger gridlock. While

gridlock occurs in real-world traffic scenarios the situation ultimately alleviates

but in the simulator will continue until termination with no further travel.

The entities are not designed as agents to consider re-planning their route to

continue their onwards journey and there is no strategy of swapping positions

of different modes, e.g. bicycles past larger vehicles, or allowing vehicles in the

queue but travelling to a none grid-locked edge to make progress.

The first vehicle in the queue waits a set amount of time and then is teleported

to the next free edge on their route at a cost of the average speed of the edges

it would have driven along. The vehicle behind then begins their waiting period

277

and so an increasing amount of delay is experienced. This has implications for the

results of the simulation as a low waiting time will see these high traffic conditions

being quickly resolved through teleportation and so affecting what would have

been normal traffic dynamics. A high waiting time will introduce an arbitrary

amount of delay that varies according to the waiting time rather than the ability

of the road network to manage traffic volumes and ease congestion.

The proposed solution to these grid-lock conditions is modification of the

travel demand, junction priorities and traffic light timings. However, modifica-

tion of this input data could have unintended consequences that undermine the

veracity and reliability of the results obtained. Particularly when the scenario’s

travel demand and road network environment has been configured to model the

real-world as closely as possible.

In summary, the travel demand process is able to generate travel demand

across for a variety of persons, modes and activities provided by the user through

the knowledge-base. The activity patterns provided give a structure to the tim-

ings of travel that are undertaken across trips of varying stages and destinations.

The produced schedules can then be simulated through multiple simulators with

the results captured for further analysis.

There are identifiable issues when comparing the simulation results with each

other and the original schedule. The cause of these issues may originate in the

integration between travel demand generation and traffic simulator. However,

there are indications that they are a consequence of design and implementation

choices of the simulator. Overall, this highlights the importance of reliable inte-

gration between travel demand models and multiple simulations that the proposed

framework provides so that the results can be analysed and compared.

7.4 Evaluation of Framework Configuration

This section considers the framework configuration design from Chapter 5 to

support the selection of data and redirection to alternative modules. Several of

the benefits of the framework configuration approach are qualitative or difficult

to consistently measure, such as the use of RDF and SPARQL for configuration

and control. This provides a control method that does require some technical

278

knowledge but with appropriate tools would be comparable to that of passing

parameters to a command line interface for a traditional application.

This RDF and SPARQL approach provides greater flexibility in the retrieval

of data and execution through the provision of replacement queries and key pa-

rameters. However, it risks introducing user error to the process, which the design

of query validation and feedback processes described previously (Chapter 5) and

implemented in the prototype seeks to address. These processes can assist in

identifying error but are not a definitive solution for the reasons previously dis-

cussed. However, they have proven to be useful in quickly identifying the cause of

issues in the configuration of modules and execution of queries. The specific iden-

tification of the query, variable name or URI assists in focussing upon the likely

cause of queries not providing any results or taking excessively long to execute.

Another area of importance in the proposed approach, but difficult to quan-

titatively assess, is the construction of the knowledge-base. An approach that

reduces the time spent gathering datasets, preparing a scenario, assembling tools

and interfacing the tools allows more time for investigating alternative scenar-

ios or tool-sets. Therefore, any approach that can complete this set-up process

quickly would be at an advantage even if the travel demand generation process

was slower. This is a task that varies in duration depending upon complexity,

user skill and available tools and datasets for both the proposed framework and

traditional approaches. Therefore, measuring the total time required to under-

take this task would be difficult, while producing generalisable results that could

be compared to traditional approaches would be very problematic.

A quantitative element of the process that can be reviewed is the variation

in execution duration from the different configurations of the framework. These

include the alternative search patterns of the person type; persistent storage

of data versus in-memory data during execution; caching versus non-caching of

data and comparison between local and remote configurations of modules and

knowledge-bases.

The previous sections discussed the evaluation of a scenario with 5,000 in-

dividuals and considered both the generated travel demand and the results of

traffic simulation. In this section the same scenario set-up is considered but with

1,000 individuals. The change in the number of individuals was made to balance

279

between scenarios of a reasonable size against the execution duration period so

that repeated cases could be performed.

The evaluation focuses on comparing different configurations of the travel

demand generation stage and without executing the traffic simulators of the final

stage. The execution of traffic simulators forms a discrete task rather than the

iterative retrieval between modules and knowledge-base of the travel demand

generation process. Therefore, changing from a local to remote configuration

would incur a one time overhead for transmission and receipt.

All experiments were performed on the same desktop computer which was

a x64 Windows 10 operating system with Intel Core i7-4820K with 16GB and

Samsung 850 EVO 500GB. Each configuration was executed ten times to provide

consistency in the range of durations. The knowledge-base used in each iteration

was copied from an archetype version of the knowledge-base to ensure there was

no influence between one iteration and the next. Each iteration was executed

in its own Java virtual machine through scripting rather than within the appli-

cation. Investigation was made into using a Java benchmarking harness [151],

but configuration and initialisation issues were found with Apache Jena and the

execution throughput could not be gathered without influencing the benchmarks.

This step was necessary due to an identified issue with how the Semantic Web

library, Apache Jena, handled the deletion of data for its persistent storage. In

testing, instructions to remove previous graphs were issued at the start of each

iteration. However, the file size of the knowledge-base did not reduce even when

the knowledge-base was no longer being used, i.e. the expectation of a clean-up

process at shut-down or start-up.

Further testing found that a knowledge-base repeatedly loaded with exactly

the same data that was then deleted continued to grow in size, i.e. a large file size

but empty content dataset. The deleted statements were no longer present in the

dataset, but it is unclear if the increasing size has any influence on performance.

Therefore, each iteration commences with a fresh version of the knowledge-base.

The initial area of analysis is considering the three types of person included

in the scenario: resident, non-resident and freight. These groups varied in the

number of travel stages as shown previously in Table 7.1. The resident and non-

resident utilise the same set of activity patterns while the freight type use a more

280

frequent pattern and search for their next destination rather than choosing from

an asserted list.

A configuration choice available is the use of in-memory and persistent file

storage. The in-memory option would be expected to be quicker, but not suitable

for very large datasets. The results for both of these choices across three scenarios

each containing only one person type of 1,000 individuals across 10 iterations is

shown in Table 7.8. The in-memory option shows itself as expected to be faster

for all three scenarios, but the advantage varies depending upon the person type.

Storage Person Type Mean Std. Dev. Min Max

Memory
Freight 372.693 4.848 364.924 378.955

Non-Residents 180.517 1.800 177.892 183.391
Residents 270.469 4.587 264.932 278.806

Persistent
Freight 3,192.122 24.358 3,164.94 3,239.36

Non-Residents 850.388 9.569 836.810 864.182
Residents 1,491.176 122.815 1,142.696 1,543.365

Table 7.8: Table of mean completion durations (seconds) across person-types and
storage options (10 iterations).

The Freight scenario is 8.5 times faster in-memory versus persistent storage

compared to 4.7 for Non-Residents and 5.5 for Residents. The Freight scenario

has a greater workload of approximately 3.4 times the number of travel stages

than Residents and Non-Residents. In addition, there is the additional search and

routing for potential destination locations when the other person-types may only

have a single or few destinations to consider. Therefore, it would be expected

that the Freight scenario would be slower to complete. However, the consistent

difference between Residents and Non-Resident completions is surprising given

the similarities in their configuration.

These figures do not show any additional time spent writing the in-memory

generated data to file once the execution has completed, which the persistent

option has already achieved. This could be into persistent storage or a file on disk.

Serialisation of RDF to file has been found to be very slow during development of

the traffic simulator interfaces (Section 6.4.4) with only portions of the knowledge-

base taking several minutes to output.

Examination of the pace of progress in generating schedules as shown in Figure

281

7.11 shows the initial caching period of the first batch is slow to undertake.

This first batch also includes query and dataset optimisation by the Semantic

Web library that can cause delays in initial query usage. The graph shows the

duration required to complete each batch of 20 schedules and shows the minimum

and maximum iterations as error bars.

Figure 7.11: Mean duration for completion of person type scenarios (10 itera-
tions).

The in-memory scenarios show some variation between batches, but are gen-

erally stable throughout. In contrast, the persistent storage scenarios of Freight

and Non-Residents show an upwards trend as the batches of schedules are pro-

cessed. This suggests that data being written to the knowledge-base is slowing

the progress or some form of consumption of resources. The Freight scenario

produces approximately 3.4 times the number of travel stages to complete and

so more data is written to the knowledge-base. However, the slowing of comple-

tions begins immediately for the Freight scenario, but is not reflected in a similar

pattern and shallower gradient for the other two persistent storage scenarios.

The Residents scenario is much more erratic in the mean completion duration

and the variation as shown by the wide error bars and the range of 400 seconds

282

shown in Table 7.8. The scenarios were executed in consistent conditions with

no other applications to cause interference, but further iterations, hardware set-

ups and alternative Semantic Web libraries are likely required to investigate the

precise cause.

The exact cause of this upward trend as schedules are completed is difficult

to identify without detailed examination of the Semantic Web library, but it in-

dicates that although the persistent storage can hold large knowledge-bases there

will be a non-linear increase in completion durations. The in-memory approach

should be preferred with potentially writing the generated data to file upon com-

pletion or as progress is made.

Another option that has been included in the Framework Configuration is the

use of caching to store invariant data rather than retrieve it from the knowledge-

base. All results reported are with this option switched on. Testing of a single

iteration of the Resident scenario with in-memory storage saw performance drop

from 4 minutes 30 seconds to 5 hours 25 minutes 27 seconds, an increase of

72.3 times. Therefore, the application of caching is not really an optional imple-

mentation decision. There cannot be a reliance upon retrieving data from the

knowledge-base on-demand and instead opportunities to retain data for future

use must be identified. These performance figures can be expected to become

worse for persistent storage and remote configurations.

The use of caching does not necessarily require large quantities of in-memory

data, but can be effective by storing small amounts of information that no longer

have to be retrieved from the knowledge-base, whether in-memory or persistent

storage. For example, the Travel Scenario information does not change between

schedules and caching saves 999 retrieval operations in these person-type scenar-

ios. If each retrieval took 50ms then approximately 49.95 seconds are saved for

an object with about a dozen variables. The retrieval of this data can require ex-

ecution and resolution of SPARQL queries and so can incur additional processing

than a look-up of a specific value.

Another implementation choice that can improve performance is execution

in parallel across multiple threads. In the implemented Scheduler module each

Travel Group does not interact or are influenced by any other group. The sched-

ules generated for that group therefore form a discrete batch. This means that

283

the generation process should be suitable for spreading across execution threads.

The outcome of applying this approach can be seen in Figure 7.12 and Table

7.9 where the same Resident scenario is re-used, but with a varying number of

threads available. These threads each process a single Travel Group from a queue

before proceeding to the next group. Only a single knowledge-base instance is

used in an in-memory configuration.

Figure 7.12: Mean duration for completion of in-memory Resident scenario with
varying execution threads (10 iterations).

It can be seen that increasing the thread count does improve the completion

duration by 3.3 times, but there is a not continuous progression as more threads

are used. The use of a single knowledge-base means that write operations can

block other write and read operations from taking place. Therefore, an upper

limit of improvement is reached as threads must interact with the knowledge-

base and are blocked in their progress.

Replication of the knowledge-base so that each thread has their own copy

would alleviate this issue. The graphs containing the generated data could then

be consolidated back together. This would also allow the potential for the whole

problem to be distributed over multiple computers which are then coordinated

284

Threads Mean Std. Dev. Min Max
1 270.469 4.587 264.932 278.806
10 81.097 2.291 77.479 83.321
20 81.732 1.629 78.494 83.806
30 83.872 2.971 79.635 88.462

Table 7.9: Table of mean completion durations (seconds) of in-memory Resident
scenario with varying execution threads (10 iterations).

by the users application to overcome the issue of increasing computational com-

plexity as models and datasets develop, but this represents an area of future

work.

This graph also shows the variability in performance of the Resident scenario

in the single thread configuration, as shown in Figure 7.11. Several batches have

a wide spread of several seconds between minimum and maximum results. These

variations could be caused by changes in the order that groups are processed,

although there is no obvious reason for this to occur.

These multi-thread scenarios were all performed with the in-memory storage

option. The use of the persistent storage should be seamlessly possible with

the Semantic Web library by only changing the dataset upon which the travel

demand generation is performed. However, issues were encountered when more

than one thread was used. These issues revolved around checksum errors for read

operations with the dataset being modified.

This is despite the library having a transactional model, which was followed in

the prototype implementation, for read and write operations across multi-thread

applications to prevent data loss and corruption. These issues were encountered

intermittently and so only became apparent when multiple iterations were per-

formed.

The large scenario of 5,000 individuals was successfully executed multiple

times with 20 threads over several hours with no issues. However, performing

repeated iterations of the different person-types in the 1,000 individual scenarios

caused these errors to occur several times. Therefore, results for the persistent

storage with multi-threading could not be obtained.

The final area for consideration is the alternative configurations that can be

285

achieved using the Framework Configuration as described previously (Section

3.4). These configurations would allow the user to directly access remote end-

points for data that forms part of the knowledge-base and to execute implemen-

tations of modules. The coordination of these different remote services has been

developed and implemented in the prototype (Chapter 5). However, there is

network communication cost associated with accessing these remote services.

The previous scenarios have all utilised the local configuration shown in Figure

3.9. In this configuration the file system can be directly accessed and there is

no overhead from the HTTP communication (Section 5.3.2.2). Three additional

configurations have been explored as described below:

• Local: local configuration with knowledge-base, modules and results all

local to the user application.

• Data: remote data configuration with the entire knowledge-base on a remote

server while modules and results are local to the user application (Figure

3.10).

• Joined: remote data and module configuration with both on the same re-

mote server and results are returned to the user application.

• Split: remote data and module configuration with each on a separate remote

server and results returned to the user application (Figure 3.12).

These configuration scenarios have been executed as in-memory storage and

using local services on the same computer, i.e. http://localhost addresses through

the loop-back of the network adapter. Therefore, there is no consideration of net-

work latency, configuration, throughput or capacity. These results are intended

to be indicative of the impact of applying these alternative configurations and

represent best-case scenarios. Establishing a complete benchmarking process to

evaluate a real-world networking environment was deemed beyond the resources

and scope of this project.

The results of these different scenarios can be seen in Figure 7.13 and Table

7.10. The Local configuration is quickest to complete as would be expected. This

configuration does not incur the HTTP overhead as it can directly access the

286

Figure 7.13: Mean duration for completion of alternative in-memory configura-
tions (10 iterations).

knowledge-base and results for all operations. The Joined configuration is next

quickest as network communication only incurs when commencing the genera-

tion of each Travel Group and when returning the generated results back to the

user application. The Data configuration is then closely followed by the Split

configuration. These incur the most communication as the modules have to re-

trieve data about the Travel Group being processed. The advantage of the Data

configuration is that it has local access for the storage of results once generated.

Configuration Mean Std. Dev. Min Max
Data 1,820.389 12.741 1,802.013 1,838.979

Joined 1,407.687 10.102 1,392.702 1,421.278
Local 270.469 4.587 264.932 278.806
Split 1,952.167 16.220 1,931.723 1,981.499

Table 7.10: Table of mean completion durations (seconds) of alternative in-
memory configurations (10 iterations).

The Split configuration represents the idealised scenario where the user only

287

needs to set-up the configuration before all the required data of the knowledge-

base is retrieved and processed by remote module. It is found to take 7.2 times

longer to execute on the same scenario data as the Local configuration even in

this best-case scenario of local HTTP connection. However, there would be the

potential for these remote services to employ greater computational resources or

distributed computing as mentioned earlier to offset the communication costs.

It can also be seen that each of three alternative configurations follows the

same general pattern with peaking and troughs in the same schedule batches.

However, these do not follow the fluctuations shown in the Local configuration

suggesting that the difference between the remote and local configurations can

be attributable to the cost of HTTP communication.

The same issue with using persistent storage and multi-thread execution was

encountered in these separated configurations. This included the configurations

where knowledge-base and generated data were completely separate from the ap-

plication logic developed for the prototype. In these configurations the knowledge-

base and generated data were placed behind HTTP server applications provided

by the Semantic Web library. These server applications would therefore handle

the transactional operations of reading and writing, but issues were still encoun-

tered suggesting there may be an underlying issue with the Semantic Web library.

In summary, the prototype can be seen to have successfully implemented the

Framework Configuration to allow the selection of alternative data and services.

This has been done in a generalised manner so that the functionality of query

validation and service selection can be applied in other use cases by using the

developed library. The prototype implements the three travel demand generation

modules using the functionality of this library to manage the retrieval of data

and select services through the described Semantic Web based mechanisms.

The impact of utilising these remote configurations has been shown to be

noticeable, but not prohibitive. The travel demand generation process does not

require real-time responses and so once in progress can proceed without user in-

volvement over a prolonged period, while preparing data and creating integrating

interfaces requires a direct investment of resources and time by the user. The pro-

cesses of caching and multi-threading have also been found to improve execution

and an online approach creates the potential for accessing greater computational

288

resources. In principle, continued progress in network communication technology

and speeds should also reduce the difference between local and remote configu-

rations, but would be offset by computational performance improvements and a

difference will always exist in some form.

The retrieval of all necessary data to construct a local knowledge-base as the

initial process would still be considered the most efficient approach. This also

presents the opportunity for customisation and adaptation by users. These are

still activities that the Semantic Web can support in achieving by simplifying

and standardising the process, whether for local, remote or hybrid execution, as

has been discussed in previous chapters. The proposed Framework Configuration

represents a further development to try and minimise the burden for users and

improve investigations.

7.5 Challenges in utilising Semantic Web

Technologies for Implementing Travel

Demand Generation

The previous sections discussed the results from using the implemented prototype.

This section discusses the challenges encountered and how they were addressed

in the development of the prototype. There is consideration of the usage of Se-

mantic Web technologies, application of the framework approach and the process

of integration with two third-party traffic simulators.

7.5.1 SPARQL Language Expressivity and

Query Optimisation

The SPARQL query language is a powerful tool for searching, extracting and

transforming the data contained in the knowledge-base. The language supports

numerous built-in functions and the potential for performing complex operations

solely within SPARQL queries. However, its execution approach does not support

iteration over a set of data with actions dependent upon earlier iterations, e.g.

scheduling of later activities and travel cannot be based on earlier scheduling

289

decisions in a single query. Instead multiple queries would need to be executed,

requiring management of this process, or a property function implemented, as in

the prototype.

This also presents issues when performing calculations that require the total

value of the set, e.g. mean or normalisation. The total is re-calculated for each

individual case in the set and not re-used for the next case. For example, in

SPARQL the calculation of the cumulative probability of a choice set requires:

1. determining the utility of a case;

2. taking the exponential of the case utility;

3. determining the utility of all cases;

4. taking the exponential of all case utilities;

5. summing the exponentials of all case utilities;

6. dividing the case exponential by the sum of exponentials;

7. and then repeating the whole process for next case.

Therefore, considerably more work is required than performing steps 1. and

2. for each case; then finding the total; and finally normalising each case by the

total. This can be achieved through a separate query, or sub-query, but this still

requires calculating the utility and exponential twice for each case. Instead, a

property function, that is called in the SPARQL query, can achieve this more

efficiently using imperative programming.

Another area of inconvenience is the inability to express SPARQL queries as

re-usable functions. The retrieval and transformation of data may repeatedly

require several steps. SPARQL supports sub-queries, written out in full so in-

creasing query complexity, or extending the query engine with filter and property

functions requiring additional configuration. The SPIN and SHACL technologies

use SPARQL syntax to describe queries encoded into the schema and executed

by their engines. However, these are extensions and not standard SPARQL. Ex-

pressing re-usable SPARQL queries as functions within a core schema would make

distribution easier, reduce repetition and improve maintenance.

290

Further, the SPARQL language enables the writing of sophisticated queries

which can perform calculations and generate new values and triples. However,

the complexity of expressing these operations and the query optimisations cur-

rently possible can make performing these queries computationally expensive.

Operations may be performed on data that is later discarded or the same val-

ues calculated repeatedly for alternative results in the dataset. Therefore, while

sophisticated functionality, e.g. calculating Discrete Choice probabilities and con-

structing Travel Stages from Stage Estimates, can be achieved within SPARQL

queries the use of property functions to access an imperative programming lan-

guage can improve maintenance and performance.

In addition, the optimisation of SPARQL queries through subtle changes can

have a dramatic effect upon execution duration. In several cases, the reordering

of statements or the replacement of binding data was found to improve query

execution from 30 to 45 minutes down to 10 to 15 seconds. This can be due

to the earlier binding of variables, so reducing the number of attempts to store

potential variable bindings, and query optimisation by the underlying Semantic

Web library.

The implications of this are that complex queries provided by users could

have a dramatic impact on the performance of the travel demand generation

process. Inadvertent replacement of triples or sub-optimal ordering could make

the execution of a configuration intractable. The issue of query optimisation is

not unique to graphstores, but the RDF graph structure does introduce additional

considerations with the algebraic and semantic optimisation of SPARQL queries

being an area of active research [152].

Another approach to improving query performance is the separation of queries

into their constituent parts. Therefore, rather than a single query retrieving sev-

eral pieces of related data a faster result can potentially be achieved by extracting

each component as a separate query. The outcome of one query is then fed into the

next query. This targeted approach requires more complex programming outside

of the queries to handle the extraction and handover between queries. This re-

duces the flexibility for users in adjusting the content of the queries and increases

the likelihood of maintenance and adaptation being required of the programmed

code.

291

Finally, SPARQL queries are checked for syntactic correctness but not consis-

tency between variable names or the existence of predicates in the dataset. This

can result in minor typographic errors or schema changes causing unexpected and

unnoticed outputs as discussed previously (Section 5.3.7). These errors can be

easily made by users with the consequences of zero results, additional unnecessary

computation or the inclusion of extraneous values.

The identification of such minor mistakes can be a time consuming process

in a large and complex system, although the modular approach and the use of

discrete queries can help alleviate this. This process can be more challenging

in the absence of feedback on the specific issue, since a SPARQL query engine

do not have to identify these mistakes as errors. This issue has sought to be

addressed in the design of the Framework Configuration (Section 5.3.8). Users

can directly access the knowledge-base using a SPARQL endpoint to test, explore

and revise their queries prior to their inclusion in the Framework Configuration.

An impediment to this is if queries contain property functions, i.e. modules, that

have not been registered with the SPARQL endpoint, although this can also can

be worked around when testing queries.

7.5.2 SPARQL Extension Property Function Arguments

The processing of arguments passed into filter and property functions in SPARQL

queries follows the Functional Programming paradigm. A function is called for

each combination of parameter values without visibility of previous or following

calls. Therefore, processing of encoded, invariant or externally retrieved data

would happen repeatedly leading to an avoidable increase in execution time. This

can be overcome by using a caching strategy within the property function to retain

re-usable data (Section 5.3.5). A caching strategy was applied in the prototype

for invariant data, e.g. location coordinates, to reduce execution duration by 72.3

times.

The caching of arguments was also applied in the implementation of the

GeoSPARQL standard, discussed in Appendix B, where geospatial geometry lit-

erals were repeatedly deserialised. The deserialisation of these geometry literals

was a relatively expensive computational task with invariant result. It was also

292

found that each instance of a property function resulted in seven deserialisations

of the literal during processing by the SPARQL engine of the Semantic Web

library. Applying caching of the deserialised geometry literal improved perfor-

mance by up to 20%. Therefore, consideration always needs to be given to both

the computational weight of literals as well as the frequency of retrieval opera-

tions.

The Functional paradigm also affects related items that might expected to be

treated as a collected list and are instead separated into multiple discrete function

calls. These repeated function calls can be performing the same processing steps

with only a minor variation for one list variable. In some cases, the processing

could be performed once and then the list variable applied to the outcome.

This issue can be mitigated by using the SPARQL GROUP CONCAT aggre-

gation term to produce a delimited string. The delimited string can be passed as a

single argument to the property function which can then iteratively work through

the items it contains. Alternatively, an N-ary relationship (Section 4.2.2) group-

ing structure or more formal collection structure must be utilised. The root URI

is passed into the function, which then retrieves the collection of related items.

7.5.3 RDF/XML Serialisation for Traffic Simulator

Interfaces

The Traffic Simulator Interface stage involves the conversion of the Activity &

Travel Schedules to the simulator input format, XML for both SUMO and MAT-

Sim simulators, and return of the results to the knowledge-base. The XSLT

technology is proposed as a means to convert between XML schemas. The out-

put of the knowledge-base can be serialised into several RDF formats including

RDF/XML [100].

There are several versions of RDF/XML, but it is necessary to use the plain

serialisation with XSLT due to template complexity and efficiency. The plain

serialisation forces the use of a consistent rdf:Description label for all resources

and places all classes as rdf:type properties. In other serialisations an arbitrary

class name is selected for the initial label with the remaining classes identified

through the rdf:type property.

293

In RDF, it is common for individuals to belong to multiple classes. These

classes may be shared across multiple sub-classes. In non-plain serialisation ap-

proaches, two individuals with identical class names can be described by different

initial labels while two individuals with only one common class name could have

the same initial label. Handling this structure in XSLT templates would require

checking both the initial label and the rdf:type property for a class name, which

increases template complexity. Forcing the use of rdf:Description alleviates this

requirement and removes the risk of error when changes are made.

A second issue that the plain serialisation alleviates is applying a flattened

structure. Every element is described by its properties at the top level with cross-

referencing from other elements through an identifier. In other RDF serialisations

an element can be described as a nested child element of another element. Later

occurrences of the element use a cross-reference to the nested child element.

This use of nested child elements complicates the XSLT template structure

as a check is required of whether a nested child element has been encountered

or is a cross-reference. In a flattened structure a cross-reference can only be

encountered in the first level. Therefore, the RDF/XML plain format provides

several advantages over other RDF/XML formats for use with XSLT templates.

A drawback of the plain format is it being relatively slow to produce the serialised

output. Both XSLT and RDF support alternative serialisation formats that offer

flattened structures, e.g. JSON, which may be quicker to output and is an area

for future work.

7.5.4 Traffic Simulator Integration

An area of significant challenge in the development of the prototype was the in-

tegration of the traffic simulators MATSim and SUMO. This challenge does not

come from the selected technical approach (Section 6.4.4), but rather the im-

plementation and documentation of the simulators. Both simulators have been

utilised in multiple pieces of research, but are in active development of new fea-

tures with SUMO only recently achieving its first official release.

The development and testing of the prototype with these simulators encoun-

tered numerous issues. These issues included features not actually being im-

294

plemented; behaviour not being as stated; data parameters being incorrectly

stated; suggested data parameters not being stated; configuration syntax not be-

ing stated; input data not being validated; software errors not being gracefully

managed and exhaustive debug logging in normal operation rather providing in-

formation to assist the user.

These issues are not unique among software applications, but the impact is

wasted resources, effort and potential error that could be avoided for frustrated

users. These problems were particularly acute for MATSim where the published

620 page documentation [32] is not in sync with the application development and

so provides little assistance for users in using the application and resolving issues.

The MATSim simulator also does not include a readily accessible visualisation

tool preventing the review and tracking of entities during simulation to assist

in identifying errors, unlike SUMO. These issues may be contributory factors to

the points identified with MATSim’s results in the previous section, but substan-

tial effort, technical knowledge and skill is required in determining where they

originate.

This experience highlights the need for the proposed framework in reducing

the technical burden and resource demands of integrating multiple traffic simula-

tors. The investigation, development, and deployment tasks of the travel demand

generation process are cumbersome and draw on expertise in a number of scientific

and software engineering disciplines. Moreover, there has not been a determined

effort to think-through and document efforts to develop similar systems with a

view of facilitating their exploitation in various simulation domains.

There is collectively wasted effort and error introduced by researchers and

users trying to gain an understanding of individual traffic simulator interfaces to

utilise them. The proposed approach seeks to provide more than a convenient

way to access multiple simulators and instead remove this troublesome phase from

investigations. Instead, traffic simulator developers would be able to provide the

necessary interfaces for integration of the knowledge-base and schema based on

their own detailed understanding of the simulator. Users would then have a

starting point for identifying extensions or making adjustments.

295

7.6 Chapter Summary

This chapter has examined the implemented prototype and considered its effec-

tiveness in the generation of travel demand and in the alternative configurations

offered by the developed Semantic Web-based framework. There has been discus-

sion of the developed scenario and the limitations of the data it provides. There

has also been consideration of the challenges encountered during this process and

where possible overcome.

The prototype has produced travel demand that varies by mode, destination

and time according to local and global concepts and parameters. The generated

travel demand is platform agnostic and can be transformed and configured accord-

ing to the target application, e.g. traffic simulators, or analysis, e.g. aggregation

by type or geographic area.

The instances of concepts, e.g. activities, modes and travel users, and mod-

ification of parameters can be controlled and expanded through changes to the

knowledge-base rather than being explicitly designed into the modules. More

generally it is the quality of the constructed knowledge-base from collected road

network, population, land-use and activity patterns that is the limiting factor to

further investigation.

The absence of public transport as a mode choice is noticeable in the preva-

lence of long distance and duration walking stages in the generated schedules.

This area of future work would require the development of an additional module

to account for the temporal variation of public transport timetables, but could

be incorporated as an alternative to the existing prototype module. This alter-

native can then be selected in query or through development of the trip planning

module based on the properties of modes described in the core schema, rather

than explicitly stated mode instances.

The design of the travel demand process as three discrete sub-modules has

been successful with them each fulfilling a clearly defined role. There is a need

to expand these modules with support for public transport as a transport mode

or further sub-modules so that greater comparison can be made between them.

The framework for supporting these variations to the modules and sub-modules

has also been successfully developed. It allows the modification of queries to ob-

296

tain alternative data, execute alternative modules and redirect to other sources.

There has been consideration of several of these configurations and their impli-

cations in producing travel demand.

It was found that the remote configurations introduced a noticeable increase

in execution duration compared to the local configuration. However, the travel

demand process does not require real-time responses and the remote configu-

ration offers the most opportunity for minimising the preparation and setup of

investigations through the deployment of SPARQL endpoint data-sources to ac-

celerate the knowledge-base construction. The utilisation of caching and multi-

threading was found to be beneficial to execution performance, while the remote

configuration presents the opportunity for accessing additional computational re-

sources through distributed computing. Further work is needed on applying the

framework in a local and wide area network context to more fully examine the

implications of remote execution.

Another area for further investigation is the variations in simulation outcomes

based on the same travel demand. The selected simulators do follow different

design principles and so some variations would be expected, but some of the

analysed results introduce questions as to their validity. The developed interfaces

demonstrate that these alternative traffic simulators can be integrated with a sin-

gle knowledge-base. Every care has been taken in their development, but further

investigation is needed to ensure the interfaces fulfil the input requirements or

whether issues are present in the implementation of the specific traffic simulators.

297

Chapter 8

Conclusions and Future Work

This chapter provides an overview of the work contained in this thesis and iden-

tifies its contributions, research limitations and areas for future research.

8.1 Overview of the Work

The research conducted in this thesis has investigated the process of activity-

based travel demand generation and traffic simulation. The closer modelling

of human behaviour, the emergence of new technologies and the availability of

more detailed datasets is leading to greater complexity for users in preparing

and undertaking investigations, while the adoption of activity-based models has

been limited despite their potential advantages. The robustness of conclusions

in these investigations is supported by consideration and comparison of multi-

ple techniques and models yet the variations in the platform, data requirements

and dataset availability present further barriers to the breadth of modelling in

investigations.

It has been proposed that the development of a core data schema to model

the fundamental concepts of travel demand generation and traffic simulation will

assist in the alignment of models in the different stages of the process. These

fundamental concepts can be extended with additional concepts of the user and

selected models to form a knowledge-base on which the modelling process is per-

formed. It is further proposed that this modelling process can then be supported

298

by a framework to allow the configuration and selection of alternative models

and datasets, which can be deployed in local or remote contexts. It is intended

that these improvements will reduce the time and resources required to assemble

travel scenarios and facilitate greater comparison and validation between models

and implementations.

The technology of choice in this investigation has been the Semantic Web.

This technology has been selected due to its extendible data modelling, platform

independence and established technical standards. These technical standards

have been implemented in a range of software libraries across multiple platforms

and so assist the application of the investigated approaches. A fundamental de-

sign feature of the Semantic Web is the open access and transformation of data

and there has been increasing availability in the provision of online datasets, in-

cluding examples utilised in travel demand generation. This section will consider

the findings of investigating the four research questions explored in this work.

RQ1 How can a loosely coupled modular Semantic Web

knowledge-base be applied to travel demand modelling and

traffic simulation?

The initial stage of the investigation focused on considering how a loosely coupled

modular Semantic Web knowledge-base can be applied to travel demand mod-

elling and traffic simulation. This considered the existing three-stage process of

Population Synthesis, Travel Demand Generation and Traffic Simulation found in

the literature and discussed in Chapter 3. The need for a Knowledge-Base Con-

struction stage was identified to align and reconcile the initial input datasets to

the schema. This schema would be formed from the core schema and additional

concepts introduced by the user or modules being orchestrated by the framework.

A set of major components for an activity-based model were also proposed

with a sub-set forming the basis of the implemented prototype. These components

were identified through their discrete functionality and potential for alternative

implementations to produce modified outcomes to scenarios by reviewing the

literature and existing implementations for activity-based models, datasets and

traffic simulators.

299

The configuration of the framework was also considered and identified the

potential for constructing and executing the framework on knowledge-bases and

modules in local, remote or hybrid configurations. Remote execution of modules

introduces the potential for users to only supply the scenario data without the

hardware and setup considerations of a local execution. The remote retrieval of

data for the knowledge-base presents two opportunities for users.

The current trend in publishing datasets online with Semantic Web technolo-

gies will support the objective of enabling the faster construction of local knowl-

edge bases. These online datasets can be directly retrieved and transformed to

the required schema removing the need to develop ad hoc processes of extraction,

transformation and loading for users. However, these datasets will still require the

Knowledge-Base Construction stage to align datasets for use in the later stages.

A further development is the curation of datasets containing the outputs of

the Knowledge-Base Construction stage and aligned with the schema. The data

contained in the remote knowledge-bases can be directly accessed by modules with

orchestration provided by the user to select those of interest. These datasets can

then provide benchmark scenarios upon which new techniques can be developed

and compared. Policy-makers can then use these comparisons to inform their

selections during the construction of their own customised scenarios.

RQ2 What data concepts are required to construct a

knowledge-base for travel demand modelling and traffic

simulation?

The next stage of the investigation considered the data concepts of the core

schema that are required to construct a knowledge-base for travel demand mod-

elling and traffic simulation as described in Chapter 4. This was undertaken

through a review of the literature, published vocabularies, related datasets and

implementation parameters. The schema was further reviewed and refined during

the iterative development of the prototype described in Chapter 6. The develop-

ment of the schema sought to distinguish between the core concepts and those

formed from model assumption or user context to seek the minimal ontological

commitment.

300

The design principles of Semantic Web support an extendible approach so

that new concepts can be introduced. These concepts can sit alongside each other

in the knowledge-base without interference. This facilitates multiple alternative

models to operate on the same knowledge-base to re-use common data and exploit

the additional data they require.

The extendible approach also includes the utilisation of published vocabu-

laries which have been considered to address fundamental concepts of modelling

geospatial and temporal domains. These have been selected to provide general

representations so that diverse datasets can be included without introducing a

language or encoding bias. The schema has been divided into those concepts

related to the real-world and those abstract concepts derived from travel demand

modelling and traffic simulation.

The grounded real world concepts are focussed around describing the people,

activities, locations, vehicles and network infrastructure of the scenario. There

has been a discussion of the interactions between these concepts and examples

of the user or module extensions that can be applied within the user’s schema.

Modules can operate on the base concepts or introduce their own specific concepts

as their modelling requires. It is only necessary for the schema to describe the

base concepts and not enumerate instances or sub-classes.

The set of abstract concepts identify the data necessary for interactions be-

tween modules. These include the approaches to activity-based modelling imple-

mented in the prototype but ultimately only requires the production of activity

and travel schedules used by the traffic simulators. Therefore, only a small subset

of concepts are required to be output by alternative travel demand models while

input concepts are fundamental concepts commonly expressed in datasets.

The identification of abstract concepts also include the management of the

varying permanence of some parameters in the knowledge-base. A user may wish

to modify these parameters in different investigations to explore the impact on a

model or scenario. These parameters can be associated with a specific instance

of a Travel Scenario concept for consistent, and if necessary repeated, retrieval

without altering the permanent data of the knowledge-base.

The logical organisation of the knowledge-base can also be configured and

permits transient or results data generated during execution to be easily removed

301

from the knowledge-base. The division of data into graph also enables the se-

lection and switching between different datasets and sources of data within the

same knowledge-base.

RQ3 How can alternative techniques and data be selected

using a Semantic Web knowledge-base?

The third stage of investigation considered how alternative techniques and data

can be selected using a Semantic Web knowledge-base. It was discussed in Chap-

ter 5 that the process of orchestrating modules and datasets can be managed

through an RDF definition of services and graphs and the use of SPARQL Feder-

ated Queries. The RDF definition allows the user to redirect the target of queries,

or sub-queries, so that alternative data is retrieved or modules triggered.

It is identified that use-cases exist for both local and remote configurations,

with local configurations requiring less setup and communication overhead, and

there has been a discussion into how this can be supported while maintaining

compliance with the SPARQL standard. A drawback to the proposed approach

is the access of two local knowledge-bases in the same query, but this can be

resolved through several mitigating choices that do not compromise the data or

concept of the approach.

The SPARQL query mechanism design was also considered and the conse-

quences for data retrieval and re-use by modules. Each set of parameters passed

to a module from a SPARQL query is a discrete case rather than a batch of cases

for iteration through. This can mean that data repeatedly used and unchanged

across all the cases must be retrieved from the knowledge base for each case and is

then discarded. This wastes resources in performing repeated retrieval activities

for the same result. Therefore, it recommended that modules identify and tem-

porarily store invariant data from the knowledge-base so that it can be re-used

in later cases of the query.

The development of a core schema can reduce issues of misaligned data.

Datasets and modules which are aligned to the schema can be more readily con-

sumed and utilised. However, the enforced requirement of the core schema would

limit the set of modules and datasets that can inter-operate even if they concep-

302

tually align or have minor schema differences. Users can mediate and adapt the

data between datasets and modules by supplying replacement SPARQL queries to

the framework for use by modules. These queries are substituted for the default

query of the module and can transform the data in query or retrieve alternative

available data to satisfy the requirements of the module.

The specification of these queries by users introduces a risk of error through

misunderstanding the schema of modules and datasets being targeted. This is

particularly an issue when modules are hosted on computer resources not pro-

vided by the user and the resolution of incorrect or misaligned SPARQL queries

can dramatically increase computation. It is proposed that these issues can be

mitigated by performing data and query validation prior to executing the queries.

This validation can partially be undertaken utilising existing techniques found

in the SPARQL standards and literature but there has been the need to develop

solutions to specific issues relating to variables in SPARQL queries. Applying

these techniques reduces the risk of incorrect results or wasted resources. A

mechanism is also established to provide feedback to the user when problems do

occur to assist in their resolution.

The proposed framework uses SPARQL to construct, transform, redirect and

execute scenarios. The re-use of this platform-independent language means that

users do not need to learn multiple programming languages and can apply their

developed skills repeatedly. The framework does not introduce any variation to

the SPARQL standard and is instead an extension of its language and principles.

Therefore, the barrier to using the framework is lowered and requires a narrower

skill set than a conventional solution.

The requirements of the framework have been established with no domain-

specific requirements identified. Therefore, it is proposed that the framework

provides a general solution for accessing and configuring modular solutions for

other similar problems. Implementation of the framework can be achieved for

a platform by extending an existing Semantic Web library to meet the require-

ments of the framework. This extension can then utilised by modules for the

management of their operational queries while datasets only need to be pub-

lished as SPARQL endpoints or local knowledge-bases using a standard Semantic

Web library.

303

RQ4 Can a Semantic Web framework be implemented for

the generation of travel demand?

The final stage of the investigation considered whether a Semantic Web frame-

work could be implemented to generate travel demand. This was undertaken by

implementing the framework and modular design of the activity-based model with

traffic interfaces for two third-party traffic simulators as described in Chapter 6.

This resulted in three discrete modules for the activity-based model proposed

in Chapter 3 that exchanged information following the core schema described

in Chapter 4 and were orchestrated by the framework proposed in Chapter 5.

The implementation of the prototype and framework were then evaluated using

a constructed scenario in Chapter 7.

The developed prototype provides the user with control over the activity pat-

terns, schema, module parameters, module selection and discrete choice calcula-

tion. The implemented modules are intended to be generic representations with

minimal design assumptions that cannot be modified through query. The core

schema can be further enriched by the user defining instances or extending prop-

erties and classes to reflect their own additional modelling of the knowledge-base.

The approach allows the user to select alternative modules based on those con-

cepts; access and modify both local and remote datasets; and apply the generated

demand to multiple traffic simulators.

The evaluation of the prototype in Chapter 7 considered the utilisation of a

constructed scenario and the performance of the framework in alternative config-

urations. The construction of a scenario was necessary due to issues identified in

locating datasets with spatial information to support a real-world scenario and

techniques for aligning the demographic, activity and spatial data. These issues

are referred to in research for existing travel demand generation processes and

have yet to be resolved to the best of our knowledge.

The constructed scenario demonstrated travel demand generation across a

range of activities and travel modes for different travel groups that were all speci-

fied by the user schema, which extended the core schema, and were not mandated

by the prototype. The different travel groups were each configured by activ-

ity patterns that influenced their travel behaviour. The travel was distributed

304

throughout the road network with a wide range of trip distances and durations

scheduled.

The lack of public transport routing and distribution of personal vehicles in

the scenario resulted in a high prevalence of walking. The inclusion of public

transport is an area of future work that can be resolved by the development of an

alternative routing module and inclusion of relevant data in the knowledge-base.

Consideration of public transport has been made in the development of the core

schema and implemented prototype, but there was not opportunity to take this

further.

The overall travel demand reflected the typical weekday travel pattern and was

reflected in the results of the two traffic simulators. These simulators produced

varying outcomes as would be expected from their different modelling approaches.

However, closer inspection of the simulator output, particularly for one simula-

tor, identified cases of unexpectedly large positive and negative differences to the

generated schedules. These differences were not apparent in the aggregate sim-

ulation results, but emerge under further scrutiny and comparison between each

simulator and the schedules. A pattern has not been identified in both simulator

outputs to suggest an issue with the travel demand generation process and so

may reside in the interface or simulator themselves.

An evaluation was undertaken into the performance of alternative configura-

tions using the framework. This demonstrated that the framework was able to

modify the execution based on the RDF configuration data provided to orches-

trate several arrangements of local and remote modules and knowledge-bases. In

a loop-back only network environment, it was found that remote configurations

over HTTP took at least 7.2 times longer than the local configuration without

HTTP. Further investigation is required into benchmarking in a local or wide area

network environment which will likely increase this ratio. However, these timings

do not take into consideration the set-up and configuration savings provided to

users from not developing ad hoc interfaces between components; cleaning and

reconciling datasets; and potentially directly accessing established knowledge-

bases and modules through only the configuration.

Further investigation is also needed into using the framework to distribute the

generation process across multiple computers. The application of multi-threading

305

to the implemented prototype batch scheduling of travel groups improved execu-

tion speed by 3.3 times. The convenient access to greater computational resources

may offset or mitigate the likely networking cost. The SPARQL query execution

mechanism was also identified as an area for improving execution performance.

The caching of re-used and invariant data was found to increase execution dura-

tion by 72.3 times, while SPARQL query optimisations, ordering and narrowness

were found to cause substantial variations in retrieval speed.

The proposed approach of a Semantic Web framework for the generation of

travel demand was successfully implemented. There are areas of development

to produce and validate a complete travel demand modelling process. However,

these developments are not constrained by this approach and their resolution has

in-part been limited by available datasets and established reference techniques.

The travel demand was generated using a core schema that identifies the

main required concepts and can be extended by the user to meet their modelling

requirements. This includes satisfying the varying data requirements of modules

without interference within the same knowledge-base.

The framework for orchestration of different configurations has also been suc-

cessfully evaluated in a loop-back network environment and found that this in-

curred a noticeable increase in execution times, although travel demand genera-

tion is not a process with real-time response requirements. These developments

provide the potential for reducing the burden on users in setting up travel de-

mand scenarios and comparing between alternative configurations of models and

techniques. This is, in turn, should lead to greater focus upon the investigation

and the production of more robust outcomes.

8.2 Thesis Contributions to Knowledge

This section discusses the contributions of this thesis and project. It is divided

into the principal contributions derived from this thesis and the additional con-

tributions from related work undertaken during the project.

306

Principal Contributions of the Thesis

The principal contributions of this work are:

Applying a knowledge-based approach to the process of Travel Demand

Generation

An RDFS schema has been developed using knowledge-modelling to describe the

fundamental structure of a knowledge-base for the generation of travel demand.

This structure can then be extended by additional concepts that the user wishes

to model or to describe concepts required by a module chosen for use in the frame-

work. This contributes to the body of knowledge by comprehensively examining

the travel demand generation process using a knowledge-modelling approach and

represents a broader effort to consider the whole process than found in the liter-

ature.

The schema identifies the grounded concepts related to demography, activi-

ties, land use and network infrastructure that are found in datasets and research

to form the input to activity-based travel demand models and traffic simulators.

This includes RDF vocabulary that has more general use in other areas of the

transport domain but has not been found in the literature, e.g. the road network

vocabulary developed to satisfy geospatial datasets and multiple traffic simula-

tors. Existing published vocabularies and design patterns have been utilised to

express concepts, such as geospatial representations and N-ary relations, in a

consistent and re-usable manner.

There has also been the identification of travel demand modelling specific

structures that can be utilised to express the data passed between key modules of

the framework. Alternative travel demand model implementations must only fulfil

the activity and travel schedule structure at the boundary to the traffic simulator

interfaces and so enabling the incorporation of alternative module arrangements

or existing implementations.

A further concept was the encapsulating of scenario and experimental pa-

rameters separately from permanent and semi-permanent data so that multiple

experimental investigations can be explored with configuration and results for

each retained in the knowledge-base. The RDF graph structure permits alterna-

307

tive representations and data to reside coherently in the knowledge-base so that

multiple configurations can be assembled and orchestrated around the same core

of data.

Development of a Semantic-based Framework for Travel Demand

Generation

A framework has been developed to assist in the retrieval of data and orchestration

of task modules. The premise of the framework is to provide the user with control

over the configuration of their investigations by allowing them to select modules

and mediating any schema misalignments that may occur between modules. This

introduces the prospect of users providing incorrect information through badly

formed queries. Therefore, there is also a consideration of the selected mechanisms

for ensuring the validity of data and queries which are passed between modules

at the direction of the user.

This framework forms an extension to the platform-independent SPARQL

standard and can be implemented using any standards-compliant Semantic Web

library. The configuration of the framework is expressed in an RDF structure

that describes the location of data and modules as services. This configuration

is utilised by modules to query for data or invoke other modules, which can

exist in a local or remote context. The user is able to also describe replacement

queries in the configuration to allow the re-alignment of data concepts, retrieval

of additional data or the redirection to alternative modules.

This configuration and control of the travel demand generation process utilises

the same RDF data structure and SPARQL language that is used in the knowledge-

base. The user is alleviated of the burden of preparing and transforming data

between module formats and across platforms. It has been shown that this ap-

proach can be seamless applied to a single local knowledge-base or extended to

online access of remote datasets hosted as SPARQL endpoints or modules com-

plying with the framework.

This presents the potential for an online infrastructure of datasets and mod-

ules that a user can pick and choose services before reconciling the schema through

modified queries leading to accelerated investigative outcomes across a broader

308

range of techniques. The adoption of this infrastructure would represent a funda-

mental change in how investigations are constructed and executed so that users

can produce investigative outcomes quicker and developers can focus more closely

upon specific task models.

The characteristics of SPARQL queries have been explored with potential

issues identified in users submitting modified queries with grammatical correct-

ness, but not semantic or syntactic correctness, resulting in absent, improper or

computationally expensive results. These issues are mitigated through identifying

methods to assure SPARQL query validity prior to execution, particularly in vari-

able name binding, and a feedback reporting mechanism to the user. The general

challenge of SPARQL query optimisation for the language’s complete expressivity

still remains.

It has also been identified that modules would benefit from temporary caching

of invariant and re-used data during query execution, leading in one case to a 72.3

times improvement in execution duration. The requirements of the framework

have been established without travel demand generation specific elements pre-

senting the opportunity for this approach to be applied to similar problems in

other domains.

Design and Demonstration of a Semantic-based Travel Demand

Generation Framework

An implementation of the travel demand generation process was successfully con-

structed as loosely coupled modules using Semantic Web technologies. These

modules were designed around specific stages of the scheduling process and inter-

faces with two third-party traffic simulators. The process utilised the data struc-

tures of the RDFS core schema and was orchestrated by the developed framework.

This demonstrated that the travel demand process could be decomposed into

discrete components and that platform-agnostic travel demand data could be pro-

duced and integrated with multiple traffic simulators. Further, it represents the

practical realisation of Semantic Web methodologies and technologies through-

out the process, which have not been identified in the literature. Consideration

was given to all stages of the travel demand process to inform and structure the

309

investigation and development, while also providing direction for future work.

A constructed scenario formed the knowledge-base on which the travel de-

mand generation and traffic simulation processes were performed. The process

produced temporally and spatially distributed travel demand across a variety of

modes, routes and number of travel stages. The implemented approach provided

the user with control over the demography organisation, vehicle definitions, choice

parameters and module selection rather than these being model design assump-

tions as found in some implementations.

The interface between travel demand generation and traffic simulation was

achieved through SPARQL query to produce RDF/XML which was transformed

by XSLT templates. This provides a flexible mechanism that is open for users to

inspect and modify for variations in their knowledge-base or traffic simulator input

requirements. However, further investigation is needed as sub-optimal or broad

SPARQL query and the selected RDF/XML serialisation made this a relatively

slow process. The platform-agnostic RDF schema and these flexible interfaces

provide the opportunity to develop travel demand models and traffic simulators

integrations on a many-to-many basis, rather than the one-to-one basis as found

in the literature. This, in turn, can lead to greater comparison in travel demand

and simulator outcomes.

An investigation was undertaken into the performance of the implementation

across multiple configurations. This included the performance cost of network

communication over HTTP to remote modules and datasets compared to a lo-

cal configuration. It was found that even in a loop-back only environment the

execution duration increased by 7.2 times. While the process of travel demand

generation is not subject to real-time response requirements this does represent

a substantial increase in duration. However, further optimisation and alternative

design choices of the prototype could potentially reduce this overhead.

The implemented modular design was found to be suitable to multi-threaded

execution resulting in 3.3 times improvement in execution duration and indicating

a distributed computing approach may be applicable to access greater computa-

tional resources. This may assist in mitigating the network communication costs

that an online network infrastructure for the travel demand process may incur.

The combination of a distributed network infrastructure, the expanding range of

310

published online Semantic Web datasets and the orchestration provided by the

developed framework provides a basis for travel demand generation models and

traffic simulators to increase in complexity and diversity to meet current and

future sociological and technological needs.

Additional Contributions of the Thesis

The additional contributions of this work are:

Implementation and Benchmarking of the OGC GeoSPARQL Standard

The geospatial nature of travel means that a supporting framework for handling

geospatial data is an underpinning component of delivering a Semantic-based

Travel Demand Generation framework. The positioning and spatial relationship

between entities have an influence throughout the travel demand generation pro-

cess.

The GeoSPARQL standard has been developed to provide an RDF vocabulary

and functionality for a Semantic Web geospatial framework. The sophistication

of the full implementation of the geospatial framework in permitting multiple

coordinates reference system, spatial shapes, and data serialisations make it more

suited to Semantic Web principles than alternative simpler approaches.

Investigation of available implementations found there were no full implemen-

tations of the standard. Instead, implementations were limited in functionality

and in some cases did not adhere to wider Semantic Web standards. In addition,

these systems were developed using relational databases that required lengthy

configuration procedures and were not developed specifically for RDF data, un-

like graphstores.

Apache Jena is a popular Java library for Semantic Web applications and is

compliant with the W3C Semantic Web standards. Therefore, it was selected

for the implementation of the prototype. However, it has limited spatial support

through a custom module and no support for the GeoSPARQL standard.

An investigation was made into the development of a full implementation of

the GeoSPARQL standard using the Apache Jena library, including supporting

automatic switching between coordinate reference systems and units of measure.

311

An additionally developed novel feature was the caching of invariant geospatial

literals and other data that was repeatedly re-used in spatial queries and produced

a performance improvement up to 20%.

A benchmarking framework was developed to compare the implementation

with Parliament and Strabon, two existing partial GeoSPARQL implementa-

tions, using the published Geographica macro and micro benchmarking queries.

This framework permits the submission of any SPARQL query for benchmarking;

provides Java interfaces to incorporate additional test systems; resolved certain

implementation inconsistencies in the Geographica framework; and forms the ba-

sis for developing a conformance framework for GeoSPARQL and other SPARQL

related standards.

Details and results of the implementation and benchmarking framework are

provided in Appendix B, which forms a journal article that has been submitted

for publication. The source code for this GeoSPARQL-Jena implementation and

benchmarking has been released as a contribution to the Semantic Web com-

munity. The Apache Jena project has since invited that the GeoSPARQL-Jena

project is incorporated as a module of their framework to replace the existing

spatial module.

8.3 PhD Research Limitation and Plans for

Further Work

This section will discuss the identified limitations to this study and areas of future

work that has resulted from its undertaking.

Implementation of Knowledge-Base Construction Modules

The scope of the project has been focussed upon the second and third stages

of the three-part travel demand modelling process. These stages were selected

due to their bearing upon the proposed approach as the core process of activity-

based travel demand generation and the output process of traffic simulation. This

focus enabled the project to explore and evaluate the development of the schema,

prototype and framework.

312

The initial stage of gathering, processing and aligning datasets has been partly

explored during the project and with the limited discussion in this thesis for

brevity. Instead, the focus has been on identifying the fundamental and boundary

data concepts that interface between the first and second stage. Implementations

of Population Synthesis and Activity Generation modules successfully produced

RDF output adhering to the schema using public data sources. However, there

was not opportunity to explore the breadth of techniques for these modules and

those techniques necessary for Knowledge-Base Construction to enable the gen-

erated data to be incorporated into the evaluation scenario. This would then

enable the evaluation of modules in real-world scenarios.

There is already an identified need in the literature for research into techniques

for aligning these datasets which is of critical importance to the Knowledge-

Base Construction stage. The development of these techniques as modules of the

framework would enable the end to end process using the framework and present

users with another area of choice in their investigations for the interchange of

modules. In parallel, there is a need for the publication of detailed spatial datasets

on which these techniques can be applied.

Expanded Features of Activity-Based Modules and

Integration of Existing Techniques

The modelling of human behaviour through activity-based travel demand models

provides a broad range of design and implementation details. The implemented

prototype consists of three modules in the travel demand stage that fulfil a number

of features. In the discussion, it has been identified that certain features, such

as activity priority, vehicle usage and time management, could be defined as

sub-modules so that alternative techniques can be explored.

There is also the potential to expand these modules to include additional fea-

tures that are required from current travel demand models, such as multi-day

and long-term planning; intra-household trip planning; public transport routing;

location popularity; further handling of road network semantics; weather events;

and learning from trip feedback for future routing. A further area of develop-

ment are tools to assist in the composing of the framework configuration and the

313

construction of the knowledge-base, including the incorporation of datasets and

application of dataset aligning techniques. The exploration of alternative RDF

serialisations may assist in reducing the time required to prepare the generated

schedules for simulation.

It has also been identified that there is potential for existing techniques to

be integrated either through re-implementation as collections of sub-modules

or converting and aligning their input and output to the RDFS schema of the

knowledge-base. Therefore, an area of future work is expanding the prototype

modules to fulfil more features of travel demand modelling and incorporating

existing techniques to operate within the framework.

Investigation of Network Performance and Distributed

Computing in Remote Configurations

The evaluation explored several alternative configurations of the framework. These

included examining the effect on the performance of remote HTTP server com-

munication. This communication was carried out on a single machine through

the network adapter loopback, rather than a local or wide area network. There-

fore, further work is necessary to determine the full effectiveness of the remote

execution configurations or whether the current performance of network commu-

nications means that remote datasets should only be used for retrieval of data

that is acted upon by modules locally.

In addition, there is the potential for the execution of the scheduling process

to be distributed over multiple computers. The evaluation considered parallel

execution across multiple threads and found an improvement in performance. The

orchestration and consolidation of these distributed machines could be applied by

expanding the framework configuration to include new concepts and descriptions.

Application of Additional Semantic Web Technologies

The investigation and developed prototype have utilised several of the Semantic

Web technologies, specifically RDF, RDFS and SPARQL. An area of future work

is applying other technologies, such as OWL reasoning, SHACL data validation

314

and SPIN rules, as part of knowledge inferencing and implementing alternative

travel demand models. These technologies may have particular application in

the Knowledge-Base Construction stage to infer new data and determine logical

consistency in the schema. These technologies are expressed in platform-agnostic

format and can be shared as part of the schema to aid their dissemination. The

further development of the framework could examine the incorporation of Seman-

tic Web Services standards, such as SAWSDL, for discovery and composition of

modules and data sources.

The interface between travel demand generation and traffic simulators was

developed to extract RDF/XML from the knowledge-base and transform it into

XML for simulator input. The RDF/XML format chosen provided a structure

which simplified the design of XSLT templates but was relatively slow to output.

Further work is needed into identifying an alternative RDF serialisation which

provides the required structure and is quick to produce.

315

References

[1] Richard G. Wilkinson and M. G. Marmot. Social determinants of health

electronic resource] YBMB]. 2nd ed.. ID: dedupmrg830770; Includes bibli-

ographical references and index. Oxford: Oxford : Oxford University Press,

2006.

[2] P. Wockatz and P. Schartau. IM Traveller Needs and UK Capability Study.

2015. url: https://ts.catapult.org.uk/traveller-needs-and-uk-

capability-study.

[3] Edward Beimborn and Rob Kennedy. “Inside the blackbox: Making trans-

portation models work for livable communities”. In: (1996).

[4] G. Tamminga, P. Knoppers, and JWC Van Lint. “Open traffic: A toolbox

for traffic research”. In: Procedia Computer Science 32 (2014), pp. 788–

795.

[5] Andreas Tolk. “Interoperability, composability, and their implications for

distributed simulation: Towards mathematical foundations of simulation

interoperability”. In: Distributed Simulation and Real Time Applications

(DS-RT), 2013 IEEE/ACM 17th International Symposium on. IEEE. 2013,

pp. 3–9.

[6] Bruce Edmonds and Ruth Meyer. Simulating Social Complexity. Springer,

2013.

[7] Juan de Dios Ortúzar and Luis G. Willumsen. Modelling transport. John

Wiley & Sons, 2011.

316

https://ts.catapult.org.uk/traveller-needs-and-uk-capability-study
https://ts.catapult.org.uk/traveller-needs-and-uk-capability-study

[8] Soora Rasouli and Harry Timmermans. “Activity-based models of travel

demand: promises, progress and prospects”. In: International Journal of

Urban Sciences 18.1 (2014), pp. 31–60.

[9] Joe Castiglione, Mark Bradley, and John Gliebe. Activity-Based Travel

Demand Models: A Primer. Tech. rep. Transportation Research Board of

National Academies, 2014.

[10] Kay W. Axhausen. Definition of movement and activity for transport mod-

elling. 2nd Edition. Emerald Group Publishing Limited, 2007, pp. 329–343.

[11] Linda Ramstedt, Johanna Törnquist Krasemann, and Paul Davidsson.

“Movement of people and goods”. In: Simulating Social Complexity. Springer,

2013, pp. 651–665.

[12] D. A. Hensher and K. J. Button. Handbook of Transport Modelling. 01371524.

Elsevier, 2008. isbn: 9780080453767. url: https://books.google.co.

uk/books?id=oYMgAQAAMAAJ.

[13] 2011 Census Analysis - Method of Travel to Work in England and Wales

Report. Tech. rep. Office for National Statistics, Feb. 2013. url: http:

//www.ons.gov.uk/ons/rel/census/2011-census-analysis/method-

of-travel-to-work-in-england-and-wales/art-method-of-travel-

to-work.html#tab-England-and-Wales-picture-of-methods-of-

travel-to-work-in-2011.

[14] Darren Stillwell et al. England National Travel Survey: 2016. Tech. rep.

Contains public sector information licensed under the Open Government

Licence v3.0. Department for Transport, July 2017. url: https://www.

gov.uk/government/statistics/national-travel-survey-2016.

[15] M. Tranter, D. Robineau, and G. Goodman. England National Travel Sur-

vey 2014. Tech. rep. Contains public sector information licensed under the

Open Government Licence v3.0. Department for Transport, 2015. url:

https://www.gov.uk/government/statistics/national- travel-

survey-2014.

317

https://books.google.co.uk/books?id=oYMgAQAAMAAJ
https://books.google.co.uk/books?id=oYMgAQAAMAAJ
http://www.ons.gov.uk/ons/rel/census/2011-census-analysis/method-of-travel-to-work-in-england-and-wales/art-method-of-travel-to-work.html#tab-England-and-Wales-picture-of-methods-of-travel-to-work-in-2011
http://www.ons.gov.uk/ons/rel/census/2011-census-analysis/method-of-travel-to-work-in-england-and-wales/art-method-of-travel-to-work.html#tab-England-and-Wales-picture-of-methods-of-travel-to-work-in-2011
http://www.ons.gov.uk/ons/rel/census/2011-census-analysis/method-of-travel-to-work-in-england-and-wales/art-method-of-travel-to-work.html#tab-England-and-Wales-picture-of-methods-of-travel-to-work-in-2011
http://www.ons.gov.uk/ons/rel/census/2011-census-analysis/method-of-travel-to-work-in-england-and-wales/art-method-of-travel-to-work.html#tab-England-and-Wales-picture-of-methods-of-travel-to-work-in-2011
http://www.ons.gov.uk/ons/rel/census/2011-census-analysis/method-of-travel-to-work-in-england-and-wales/art-method-of-travel-to-work.html#tab-England-and-Wales-picture-of-methods-of-travel-to-work-in-2011
https://www.gov.uk/government/statistics/national-travel-survey-2016
https://www.gov.uk/government/statistics/national-travel-survey-2016
https://www.gov.uk/government/statistics/national-travel-survey-2014
https://www.gov.uk/government/statistics/national-travel-survey-2014

[16] Chenyi Chen et al. “The retrieval of intra-day trend and its influence on

traffic prediction”. In: Transportation research part C: emerging technolo-

gies 22 (2012), pp. 103–118.

[17] Guus Tamminga et al. “Toward GIS-Compliant Data Structures for Traf-

fic and Transportation Models”. In: Transportation Research Board 92nd

Annual Meeting. 2013. Chap. 13-2455.

[18] Joachim Wahle et al. “Decision dynamics in a traffic scenario”. In: Physica

A: Statistical Mechanics and its Applications 287.3 (2000), pp. 669–681.

[19] Hong Zheng et al. A Primer for Agent-Based Simulation and Modeling in

Transportation Applications. Tech. rep. United States. Federal Highway

Administration, 2013.

[20] Theo Arentze and Harry Timmermans. Albatross: a learning based trans-

portation oriented simulation system. Citeseer, 2000.

[21] Farhana Yasmin, Catherine Morency, and Matthew J. Roorda. “Assess-

ment of spatial transferability of an activity-based model, TASHA”. In:

Transportation Research Part A: Policy and Practice 78 (2015), pp. 200–

213.

[22] Ryuichi Kitamura and Satoshi Fujii. “Two computational process models

of activity-travel behavior”. In: Theoretical foundations of travel choice

modeling (1998), pp. 251–279.

[23] Wilfred W. Recker, Michael G. McNally, and Gregory S. Root. “A model

of complex travel behavior: Part II—An operational model”. In: Trans-

portation Research Part A: General 20.4 (1986), pp. 319–330.

[24] Dick Ettema, Aloys Borgers, and Harry Timmermans. “SMASH (Sim-

ulation model of activity scheduling heuristics): Some simulations”. In:

Transportation Research Record: Journal of the Transportation Research

Board 1551 (1996), pp. 88–94.

[25] Reginald G. Golledge, Mei-Po Kwan, and Tommy Gärling. “Computa-

tional process modeling of household travel decisions using a geographical

information system”. In: Papers in regional science 73.2 (1994), pp. 99–

117.

318

[26] Mei-Po Kwan. “GISICAS: AN ACTIVITY-BASED TRAVEL DECISION

SUPPORT SYSTEM USING A GIS-INTERFACED COMPUTATIONAL-

PROCESS MODEL.” In: Activity-based approaches to travel analysis (1997).

[27] Joshua Auld and Abolfazl Kouros Mohammadian. “Activity planning pro-

cesses in the Agent-based Dynamic Activity Planning and Travel Schedul-

ing (ADAPTS) model”. In: Transportation Research Part A: Policy and

Practice 46.8 (2012), pp. 1386–1403.

[28] Matthew J. Roorda, Eric J. Miller, and Khandker MN Habib. “Validation

of TASHA: A 24-h activity scheduling microsimulation model”. In: Trans-

portation Research Part A: Policy and Practice 42.2 (2008), pp. 360–375.

[29] Franziska Klügl and Paul Davidsson. “AMASON: Abstract Meta-model

for Agent-Based SimulatiON”. In: Multiagent System Technologies. Springer,

2013, pp. 101–114.

[30] Massimo Cossentino et al. “A holonic metamodel for agent-oriented anal-

ysis and design”. In: Holonic and Multi-Agent Systems for Manufacturing.

Springer, 2007, pp. 237–246.

[31] G. Fabio et al. “JADE White Paper”. In: Telecom Italia Lab 3 (2003),

pp. 6–19.

[32] Andreas Horni, Kai Nagel, and Kay W. Axhausen. The multi-agent trans-

port simulation MATSim. Ubiquity Press London, 2016.

[33] Guilherme Soares et al. “Agent-Based Traffic Simulation Using SUMO and

JADE: An Integrated Platform for Artificial Transportation Systems”. In:

Simulation of Urban Mobility. Springer, 2014, pp. 44–61.

[34] Semantic Web. Tech. rep. World Wide Web Consortium (W3C), 2018.

url: https://www.w3.org/standards/semanticweb/.

[35] W3C DATA ACTIVITY Building the Web of Data. Tech. rep. World Wide

Web Consortium (W3C), 2016. url: https://www.w3.org/2013/data/.

[36] Dean Allemang and James Hendler. Semantic web for the working ontol-

ogist: effective modeling in RDFS and OWL. Elsevier, 2011.

319

https://www.w3.org/standards/semanticweb/
https://www.w3.org/2013/data/

[37] Matthew Perry and John Herring. GeoSPARQL - A Geographic Query

Language for RDF Data. Tech. rep. Open Geospatial Consortium (OGC),

Sept. 2012. url: http://www.opengeospatial.org/standards/geosparql.

[38] S. Cox and C. Little. Time Ontology in OWL. June 2017. url: https:

//www.w3.org/TR/owl-time/.

[39] David Corsar et al. “The Transport Disruption Ontology”. In: Interna-

tional Semantic Web Conference. Springer, 2015, pp. 329–336.

[40] Martin Hepp and Mirek Sopek. Automotive Ontology Community Group.

Sept. 2018. url: https://www.w3.org/community/gao/.

[41] J. Echterhoff. INSPIRE as Linked Data. July 2017. url: https://github.

com/inspire-eu-rdf.

[42] C. Mtral, G. Falquet, and A. F. Cutting-Decelle. “Towards semantically

enriched 3D city models: an ontology-based approach”. In: Academic track

of geoweb (2009).

[43] S. Harris and A. Seaborne. SPARQL 1.1 Query Language. Tech. rep. World

Wide Web Consortium (W3C), Mar. 2013. url: https://www.w3.org/

TR/sparql11-query/.

[44] Yoram Shiftan and Moshe Ben-Akiva. “A practical policy-sensitive, activity-

based, travel-demand model”. In: The Annals of Regional Science 47.3

(2011), pp. 517–541.

[45] Paul Davidsson and Harko Verhagen. “Types of simulation”. In: Simulat-

ing Social Complexity. Springer, 2013, pp. 23–36.

[46] Daniel Krajzewicz et al. “Recent development and applications of SUMO

simulation of urban mobility”. In: International Journal On Advances in

Systems and Measurements 5.3 and 4 (2012), pp. 128–138.

[47] Dominik Ziemke, Kai Nagel, and Chandra Bhat. “Integrating CEMDAP

and MATSim to increase the transferability of transport demand mod-

els”. In: Transportation Research Record: Journal of the Transportation

Research Board 2493 (2015), pp. 117–125.

320

http://www.opengeospatial.org/standards/geosparql
https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/owl-time/
https://www.w3.org/community/gao/
https://github.com/inspire-eu-rdf
https://github.com/inspire-eu-rdf
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/

[48] Jessica Guo and Chandra Bhat. “Population synthesis for microsimulat-

ing travel behavior”. In: Transportation Research Record: Journal of the

Transportation Research Board (2008).

[49] Wenli Gao, Michael Balmer, and Eric Miller. “Comparison of MATSim and

EMME/2 on greater Toronto and Hamilton area network, Canada”. In:

Transportation Research Record: Journal of the Transportation Research

Board 2197 (2010), pp. 118–128.

[50] Konstadinos G. Goulias et al. “Simulator of activities, greenhouse emis-

sions, networks, and travel (SimAGENT) in Southern California”. In: 91st

annual meeting of the Transportation Research Board, Washington, DC.

2012.

[51] Mahmoud Javanmardi, Joshua Auld, and Abolfazl Kouros Mohammadian.

“Integration of TRANSIMS with the ADAPTS Activity-Based Model”.

In: Fourth TRB Conference on Innovations in Travel Modeling (ITM),

Tampa, FL. 2011.

[52] Dung-Ying Lin et al. “Integration of activity-based modeling and dynamic

traffic assignment”. In: Transportation Research Record: Journal of the

Transportation Research Board 2076 (2008), pp. 52–61.

[53] Nuno David. “Validating simulations”. In: Simulating Social Complexity.

Springer, 2013, pp. 135–171.

[54] Ana LC Bazzan and Franziska Klügl. “A review on agent-based technology

for traffic and transportation”. In: The Knowledge Engineering Review

29.03 (2014), pp. 375–403.

[55] Fenghua Zhu, Ding Wen, and Songhang Chen. “Computational traffic ex-

periments based on artificial transportation systems: An application of

ACP approach”. In: Intelligent Transportation Systems, IEEE Transac-

tions on 14.1 (2013), pp. 189–198.

[56] Daniel Kahneman and Amos Tversky. “Choices, values, and frames.” In:

American psychologist 39.4 (1984), p. 341.

321

[57] C. Black et al. Where is 2+ car sharing headed? A review of the journey

sharing sector and opportunities for future development. Tech. rep. Carplus

Ride Share Working Group by Carplus, 2013.

[58] Arvind Thiagarajan et al. “VTrack: accurate, energy-aware road traffic

delay estimation using mobile phones”. In: Proceedings of the 7th ACM

Conference on Embedded Networked Sensor Systems. ACM, 2009, pp. 85–

98.

[59] Juan C. Herrera et al. “Evaluation of traffic data obtained via GPS-enabled

mobile phones: The Mobile Century field experiment”. In: Transportation

Research Part C: Emerging Technologies 18.4 (2010), pp. 568–583.

[60] Xuegang Jeff Ban and Marco Gruteser. “Towards fine-grained urban traf-

fic knowledge extraction using mobile sensing”. In: Proceedings of the

ACM SIGKDD International Workshop on Urban Computing. ACM, 2012,

pp. 111–117.

[61] Claus Stadler et al. “Linkedgeodata: A core for a web of spatial open

data”. In: Semantic Web 3.4 (2012), pp. 333–354.

[62] Bernhard Lorenz, Hans Jrgen Ohlbach, and Laibing Yang. “Ontology of

transportation networks”. In: (2005).

[63] INSPIRE Directive. “Directive 2007/2/EC of the European Parliament

and of the Council of 14 March 2007 establishing an Infrastructure for

Spatial Information in the European Community (INSPIRE)”. In: Pub-

lished in the official Journal on the 25th April (2007).

[64] Linda van den Brink et al. “Linking spatial data: automated conversion of

geo-information models and GML data to RDF”. In: International Journal

of Spatial Data Infrastructures Research 9,(2014) (2014).

[65] Tim Berners-Lee, James Hendler, and Ora Lassila. “The Semantic Web”.

In: Scientific American 284.5 (2001), pp. 28–37.

[66] Apache Any23. Apache Any23 - Extract structured data in RDF format.

2013. url: https://any23.apache.org/.

322

https://any23.apache.org/

[67] M. Kay. XSL Transformations (XSLT) Version 3.0. Tech. rep. Jul, 14.

World Wide Web Consortium (W3C), June 2017. url: https://www.w3.

org/TR/xslt-30/.

[68] Franck Michel, Johan Montagnat, and Catherine Faron-Zucker. “A survey

of RDB to RDF translation approaches and tools”. In: (2013).

[69] Thomas R. Gruber. “Toward Principles for the Design of Ontologies Used

for Knowledge Sharing”. In: International Journal of Human-Computer

Studies 43.5-6 (1995), pp. 907–928.

[70] Markus Lanthaler, Michael Granitzer, and Christian Gütl. “Semantic Web

services: state of the art”. In: Proceedings of the IADIS international

conference-Internet technologies and society 2010. IADIS Press. 2010, pp. 107–

114.

[71] Mark D Wilkinson, Benjamin Vandervalk, and Luke McCarthy. “The Se-

mantic Automated Discovery and Integration (SADI) web service design-

pattern, API and reference implementation”. In: Journal of biomedical

semantics 2.1 (2011), p. 8.

[72] Ben Vandervalk. “A Semantic Web Based Approach for Evaluating Queries

Across Distributed Bioinformatics Databases and Software”. MA thesis.

The University of British Columbia, 2011.

[73] Ahmad C. Bukhari and C. Baker. “The Canadian health census as Linked

Open Data: towards policy making in public health”. In: 9th International

Conference on Data Integration in the Life Sciences; July 11-12, 2013;

Montreal, PQ URL: http://www2. unb. ca/csas/data/ws/dils2013/papers/DILS-

SYS-EC-paper3. pdf. 2013.

[74] Raffaella Aracri et al. “Publishing the 15th Italian Population and Housing

Census in Linked Open Data”. In: (2011).

[75] Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked data-the story

so far”. In: Semantic Services, Interoperability and Web Applications: Emerg-

ing Concepts (2009), pp. 205–227.

323

https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xslt-30/

[76] Freddy Lécué et al. “Star-city: semantic traffic analytics and reasoning for

city”. In: Proceedings of the 19th international conference on Intelligent

User Interfaces. ACM. 2014, pp. 179–188.

[77] Spyros Kotoulas et al. “Spud—semantic processing of urban data”. In:

Web Semantics: Science, Services and Agents on the World Wide Web 24

(2014), pp. 11–17.

[78] Emanuele Della Valle et al. “Semantic traffic-aware routing using the larkc

platform”. In: Internet Computing, IEEE 15.6 (2011), pp. 15–23.

[79] Susel Fernandez et al. “Ontology-Based Architecture for Intelligent Trans-

portation Systems Using a Traffic Sensor Network”. In: Sensors 16.8 (2016),

p. 1287.

[80] Abolghasem Sadeghi Niaraki and Kyehyun Kim. “Ontology based per-

sonalized route planning system using a multi-criteria decision making

approach”. In: Expert Systems with Applications 36.2 (2009), pp. 2250–

2259.

[81] data.gov.uk. Tech. rep. Cabinet Office, 2016. url: https://data.gov.

uk/.

[82] J. G. Kim and M. Hausenblas. 5 Star OPEN DATA. 2015. url: http:

//5stardata.info/en/.

[83] Open Street Map. Open Street Map. July 2014. url: https://wiki.

openstreetmap.org/wiki/Main_Page.

[84] Müller Kirill and Kay W Axhausen. “Population Synthesis for Microsim-

ulation: State of the Art”. In: Transportation Research Board 90th Annual

Meeting. 2011.

[85] H. Knublauch et al. A Semantic Web Primer for Object-Oriented Software

Developers. Tech. rep. World Wide Web Consortium (W3C), Mar. 2006.

url: https://www.w3.org/TR/sw-oosd-primer/.

[86] Laron Smith, Richard Beckman, and Keith Baggerly. TRANSIMS: Trans-

portation analysis and simulation system. Tech. rep. Los Alamos National

Lab., NM (United States), Apr. 1995.

324

https://data.gov.uk/
https://data.gov.uk/
http://5stardata.info/en/
http://5stardata.info/en/
https://wiki.openstreetmap.org/wiki/Main_Page
https://wiki.openstreetmap.org/wiki/Main_Page
https://www.w3.org/TR/sw-oosd-primer/

[87] Andreas Horni, Kai Nagel, and K. Axhausen. “High-resolution destination

choice in agent-based demand models”. In: Annual Meeting Preprint. 2012,

pp. 12–1989.

[88] Oliver Horeni. “Measuring Mental Representations Underlying Activity-

Travel Choices”. PhD thesis. Eindhoven University of Technology, 2012.

[89] Ittai Abraham et al. “A hub-based labeling algorithm for shortest paths in

road networks”. In: International Symposium on Experimental Algorithms.

Springer, 2011, pp. 230–241.

[90] Reinhard Bauer and Daniel Delling. “SHARC: Fast and robust unidirec-

tional routing”. In: 2008 Proceedings of the Tenth Workshop on Algorithm

Engineering and Experiments (ALENEX). SIAM. 2008, pp. 13–26.

[91] Liping Fu. “An adaptive routing algorithm for in-vehicle route guidance

systems with real-time information”. In: Transportation Research Part B:

Methodological 35.8 (2001), pp. 749–765.

[92] Axel Wegener et al. “TraCI: an interface for coupling road traffic and

network simulators”. In: Proceedings of the 11th communications and net-

working simulation symposium. ACM, 2008, pp. 155–163.

[93] W3C OWL Working Group. OWL 2 Web Ontology Language Document

Overview (Second Edition). Tech. rep. World Wide Web Consortium (W3C),

Dec. 2012. url: https://www.w3.org/TR/owl2-overview/.

[94] Michael Schneider, Sebastian Rudolph, and Geoff Sutcliffe. “Modeling in

OWL 2 without Restrictions”. In: arXiv preprint arXiv:1212.2902 (2012).

[95] Holger Knublauch and Dimitris Kontokostas. Shapes Constraint Language

(SHACL). July 2017. url: https://www.w3.org/TR/shacl/.

[96] H. Knublauch, J. A. Hendler, and K. Idehen. SPIN - Overview and Mo-

tivation. Feb. 2011. url: https://www.w3.org/Submission/spin-

overview/.

[97] G. Schreiber and Y. Raymond. RDF 1.1 Primer. June 2014. url: https:

//www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/.

325

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/shacl/
https://www.w3.org/Submission/spin-overview/
https://www.w3.org/Submission/spin-overview/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/

[98] N. Noy and A. Rector. Defining N-ary Relations on the Semantic Web.

Tech. rep. World Wide Web Consortium (W3C), Apr. 2006. url: https:

//www.w3.org/TR/swbp-n-aryRelations/.

[99] PV Vinu et al. “Pattern Representation Model For N-ary Relations In

Ontology”. In: Journal of Theoretical & Applied Information Technology

60.2 (2014).

[100] Fabien Gandon and A. Th Schreiber. RDF 1.1 XML Syntax. Tech. rep.

World-Wide Web Consortium, Feb. 2014. url: https://www.w3.org/TR/

rdf-syntax-grammar/.

[101] D. Brickley and R. V. Guha. RDF Schema 1.1. Feb. 2014. url: https:

//www.w3.org/TR/2014/REC-rdf-schema-20140225/.

[102] S. A. Abdallah and B. Ferris. The Ordered List Ontology. July 2010. url:

http://purl.org/ontology/olo/core#.

[103] Sean Bechhofer et al. OWL Web Ontology Language Reference. Feb. 2004.

url: https://www.w3.org/TR/owl-ref/.

[104] Natasha Noy, Michael Uschold, and Chris Welty. Representing Classes

As Property Values on the Semantic Web. Tech. rep. World Wide Web

Consortium (W3C), Apr. 2005. url: https://www.w3.org/TR/swbp-

classes-as-values/.

[105] Alan Rector. Representing Specified Values in OWL: ”value partitions”

and ”value sets”. Tech. rep. World Wide Web Consortium (W3C), May

2005. url: https://www.w3.org/TR/swbp-specified-values/.

[106] Open Geospatial Consortium. Simple Feature Access - Part 1: Common

Architecture. 2016. url: http://www.opengeospatial.org/standards/

sfa.

[107] Basic Geo (WGS84 lat/long) Vocabulary. Tech. rep. W3C, 2003. url:

https://www.w3.org/2003/01/geo/.

[108] Jwe Van Lint and H. Van Zuylen. “Monitoring and predicting freeway

travel time reliability: using width and skew of day-to-day travel time

distribution”. In: Transportation Research Record: Journal of the Trans-

portation Research Board 1917 (2005), pp. 54–62.

326

https://www.w3.org/TR/swbp-n-aryRelations/
https://www.w3.org/TR/swbp-n-aryRelations/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
https://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://purl.org/ontology/olo/core#
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/swbp-classes-as-values/
https://www.w3.org/TR/swbp-classes-as-values/
https://www.w3.org/TR/swbp-specified-values/
http://www.opengeospatial.org/standards/sfa
http://www.opengeospatial.org/standards/sfa
https://www.w3.org/2003/01/geo/

[109] JWC Van Lint, Henk J. Van Zuylen, and H. Tu. “Travel time unreliability

on freeways: why measures based on variance tell only half the story”. In:

Transportation Research Part A: Policy and Practice 42.1 (2008), pp. 258–

277.

[110] David Peterson et al. W3C XML Schema Definition Language (XSD) 1.1

Part 2: Datatypes. Tech. rep. W3C, Apr. 2012. url: https://www.w3.

org/TR/xmlschema11-2/.

[111] Lijun Sun and Alexander Erath. “A Bayesian network approach for pop-

ulation synthesis”. In: Transportation Research Part C: Emerging Tech-

nologies 61 (2015), pp. 49–62.

[112] Kirill Müller and Kay W. Axhausen. Hierarchical IPF: Generating a syn-

thetic population for Switzerland. Eidgenssische Technische Hochschule

Zurich, IVT, 2011.

[113] Robin Lovelace, Dimitris Ballas, and Matt Watson. “A spatial microsimu-

lation approach for the analysis of commuter patterns: from individual to

regional levels”. In: Journal of Transport Geography 34 (2014), pp. 282–

296.

[114] Census Microdata. Tech. rep. Office for National Statistics, 2016. url:

https://www.ons.gov.uk/census/2011census/2011censusdata/

censusmicrodata.

[115] Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.99, Names-

pace Document 14 January 2014-Paddington Edition. Tech. rep. 2014.

url: http://xmlns.com/foaf/spec.

[116] Ian Davis. RELATIONSHIP: A vocabulary for describing relationships be-

tween people. Apr. 2010. url: http://vocab.org/relationship/.

[117] Families and households QMI. Tech. rep. Office for National Statistics,

Nov. 2018. url: https://www.ons.gov.uk/peoplepopulationandcommunity/

birthsdeathsandmarriages/families/qmis/familiesandhouseholdsqmi.

[118] Dave Reynolds. The Organization Ontology. Jan. 2014. url: https://

www.w3.org/TR/vocab-org/.

327

https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/
https://www.ons.gov.uk/census/2011census/2011censusdata/censusmicrodata
https://www.ons.gov.uk/census/2011census/2011censusdata/censusmicrodata
http://xmlns.com/foaf/spec
http://vocab.org/relationship/
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/families/qmis/familiesandhouseholdsqmi
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/families/qmis/familiesandhouseholdsqmi
https://www.w3.org/TR/vocab-org/
https://www.w3.org/TR/vocab-org/

[119] EU ISA Programme Core Vocabularies Working Group (Business Task

Force). ISA Programme Core Business Vocabulary. May 2012. url: https:

//joinup.ec.europa.eu/release/core-business-vocabulary/100.

[120] ISO 3833:1977 Road vehicles – Types – Terms and definitions. Tech. rep.

International Organization for Standardization, Dec. 1977. url: https:

//www.iso.org/standard/9389.html.

[121] David S. Burggraf. “Geography Markup Language”. In: Data Science

Journal 5 (2006), pp. 178–204.

[122] EU ISA Programme Core Vocabularies Working Group (Location Task

Force). ISA Programme Location Core Vocabulary. May 2012. url: https:

//www.w3.org/ns/locn.

[123] Ordnance Survey. OS MasterMap Topography Layer upgrade 2016. 2016.

url: https://www.ordnancesurvey.co.uk/business-and-government/

help - and - support / products/ os - mastermap - topography - layer-

upgrade-2015.html.

[124] Yi-Chang Chiu et al. “Dynamic traffic assignment: A primer”. In: Trans-

portation Research E-Circular E-C153 (2011).

[125] Eleni I. Vlahogianni, John C. Golias, and Matthew G. Karlaftis. “Short-

term traffic forecasting: Overview of objectives and methods”. In: Trans-

port reviews 24.5 (2004), pp. 533–557.

[126] Jinyuan Li et al. “A software architecture for artificial transportation

systems-principles and framework”. In: Intelligent Transportation Systems

Conference, 2007. ITSC 2007. IEEE. IEEE, 2007, pp. 229–234.

[127] Todd Litman. Autonomous vehicle implementation predictions. Victoria

Transport Policy Institute Victoria, Canada, 2017.

[128] Larry Masinter, Tim Berners-Lee, and Roy T. Fielding. Uniform Resource

Identifier (URI): Generic Syntax. en. Tech. rep. Internet Engineering Task

Force (IETF), Jan. 2005. url: https://tools.ietf.org/html/rfc3986.

[129] Matthew Kerwin. The ”file” URI Scheme. en. Tech. rep. Internet Engi-

neering Task Force (IETF), Feb. 2017. url: https://tools.ietf.org/

html/rfc8089.

328

https://joinup.ec.europa.eu/release/core-business-vocabulary/100
https://joinup.ec.europa.eu/release/core-business-vocabulary/100
https://www.iso.org/standard/9389.html
https://www.iso.org/standard/9389.html
https://www.w3.org/ns/locn
https://www.w3.org/ns/locn
https://www.ordnancesurvey.co.uk/business-and-government/help-and-support/products/os-mastermap-topography-layer-upgrade-2015.html
https://www.ordnancesurvey.co.uk/business-and-government/help-and-support/products/os-mastermap-topography-layer-upgrade-2015.html
https://www.ordnancesurvey.co.uk/business-and-government/help-and-support/products/os-mastermap-topography-layer-upgrade-2015.html
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc8089
https://tools.ietf.org/html/rfc8089

[130] Apache Commons JCS - Java Caching System. Tech. rep. Apache Founda-

tion, Aug. 2018. url: https://commons.apache.org/proper/commons-

jcs/.

[131] EH Cache. Tech. rep. Software AG USA, Sept. 2018. url: http://www.

ehcache.org/.

[132] SOA Source Book. Tech. rep. The Open Group. url: http : / / www .

opengroup.org/soa/source-book/intro/index.htm.

[133] Jesús M. Almendros-Jiménez, Antonio Becerra-Terón, and Alfredo Cuz-

zocrea. “Detecting and Diagnosing Syntactic and Semantic Errors in SPARQL

Queries”. In: 7th ACM International Workshop on Linked Web Data Man-

agement. CEUR-WS, 2017.

[134] William Cohen, Pradeep Ravikumar, and Stephen Fienberg. “A compari-

son of string metrics for matching names and records”. In: Kdd workshop

on data cleaning and object consolidation. Vol. 3. 2003, pp. 73–78.

[135] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Au-

thentication. Tech. rep. June 2014. url: https://tools.ietf.org/html/

rfc7235.

[136] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.

Tech. rep. Aug. 2018. url: https://tools.ietf.org/html/rfc8446.

[137] William G. Halfond, Jeremy Viegas, and Alessandro Orso. “A classifica-

tion of SQL-injection attacks and countermeasures”. In: Proceedings of the

IEEE International Symposium on Secure Software Engineering. Vol. 1.

IEEE, 2006, pp. 13–15.

[138] Apache Software Foundation. Apache Jena. 2018. url: http://jena.

apache.org.

[139] Robert Battle and Dave Kolas. “Enabling the geospatial semantic web

with Parliament and GeoSPARQL”. In: Semantic Web 3.4 (2012), pp. 355–

370.

[140] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. “Stra-

bon: a semantic geospatial DBMS”. In: The Semantic Web–ISWC 2012

(2012), pp. 295–311.

329

https://commons.apache.org/proper/commons-jcs/
https://commons.apache.org/proper/commons-jcs/
http://www.ehcache.org/
http://www.ehcache.org/
http://www.opengroup.org/soa/source-book/intro/index.htm
http://www.opengroup.org/soa/source-book/intro/index.htm
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc7235
https://tools.ietf.org/html/rfc8446
http://jena.apache.org
http://jena.apache.org

[141] Various. OWL API. Tech. rep. owl.cs, 2018. url: http://owlcs.github.

io/owlapi/.

[142] Various. RDF4J. Tech. rep. Eclipse Foundation, 2018. url: http : / /

rdf4j.org/.

[143] Various. Protégé. Tech. rep. Stanford Center for Biomedical Informatics

Research, 2018. url: https://protege.stanford.edu/.

[144] Moshe Ben-Akiva and Michel Bierlaire. “Discrete choice models with appli-

cations to departure time and route choice”. In: Handbook of transportation

science. Springer, 2003, pp. 7–37.

[145] Wei Zeng and Richard L. Church. “Finding shortest paths on real road

networks: the case for A*”. In: International Journal of Geographical In-

formation Science 23.4 (2009), pp. 531–543.

[146] Peter J. Cameron. Combinatorics: topics, techniques, algorithms. Cam-

bridge University Press, 1994.

[147] Charalambos A Charalambides. Enumerative combinatorics. Chapman and

Hall/CRC, 2002.

[148] Michael Zilske, Andreas Neumann, and Kai Nagel. “OpenStreetMap for

traffic simulation”. In: (2011).

[149] Highways England Network Journey Time and Traffic Flow Data. Tech.

rep. Highways England, 2018. url: http://tris.highwaysengland.co.

uk/.

[150] Neil Park. Estimates of the population for the UK, England and Wales,

Scotland and Northern Ireland. Tech. rep. June 2018. url: https://www.

ons.gov.uk/peoplepopulationandcommunity/populationandmigration/

populationestimates.

[151] Java Measurement Harness. Tech. rep. OpenJDK, 2018. url: http://

openjdk.java.net/projects/code-tools/jmh/.

[152] Michael Schmidt, Michael Meier, and Georg Lausen. “Foundations of SPARQL

query optimization”. In: Proceedings of the 13th International Conference

on Database Theory. ACM. 2010, pp. 4–33.

330

http://owlcs.github.io/owlapi/
http://owlcs.github.io/owlapi/
http://rdf4j.org/
http://rdf4j.org/
https://protege.stanford.edu/
http://tris.highwaysengland.co.uk/
http://tris.highwaysengland.co.uk/
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/

Appendix A: Contributions to

Open Source Projects and

Standards

The following list outlines the contributions made to public projects during the

course of this thesis. These range from identification of errors to the submission

of patches.

Apache Jena: Semantic Web Java Framework

• Provided patch to allow variable assignment in ParameterizedSparqlString

for SPARQL keyword VALUES. (Issue ID: JENA-1578 FIXED)

• Provided patch to include list/list Property Function signature. (Issue ID:

JENA-1339 FIXED)

• Reported issue with closing and reopening TDB2 Datasets. (Issue ID:

JENA-1521 FIXED)

• Reported issue with xsd:duration subtraction in XML Datatypes.

• Revised documentation to more fully describe process for TDB resource

releasing.

• Revised documentation to more fully describe process for wrapping Dataset

Inference Models.

331

• Revised documentation to more fully describe PropertyFunctions graph op-

erations.

Java Standard Edition JDK

• Reported issue with subtraction of java.xml.datatype.Duration in the Java

API library. (Issue ID: JDK-8190835 FIXED)

SUMO: Traffic Simulator

• Reported issue with DUAROUTER not utilising Traffic Assignment Zones.

• Reported issue with missing attributes in output TripInfo.xml files.

• Reported issue with ArrivalPos attribute being ignored in input route files.

• Reported issue with looping pedestrian paths resulting in infinite sub-lane

switching.

• Revised documentation to correct person pathing only requiring only single

edge ”x” is required rather than from-to edges ”x x”.

• Revised documentation to correct that pedestrian walk stage vType value

is ignored and only Person vType is supported.

• Reported issue with pedestrians occasionally performing walk stages at

faster speed than maxSpeed (i.e. negative time loss). (Issue ID: 4385

FIXED)

• Highlighted the lack of impaired mobility class in abstract vehicle classes for

people using mobility scooters and wheelchairs. This prevents the modelling

of different non-vehicle modes as all are treated as pedestrians. Accepted

as future enhancement to the simulator. (Issue ID: 4411 OPEN)

332

OGC GeoSPARQL Standard Schema

• Reported that the GeoSPARQL standard (11-052r4) defines ”hadDefault-

Geometry” but the published schema v1.0.1 uses ”defaultGeometery”. This

discrepancy interferes with RDFS and OWL inferencing. (Issue ID: 548

OPEN).

Ordnance Survey MasterMap Highways Network

Schema

• Reported discrepancy between proposed schema and the INSPIRE project

Road Transport Network schema to which it is aligned. Properties for local

speed limits and number of lanes used in traffic simulations were absent.

333

Appendix B: GeoSPARQL-Jena:

Implementation and

Benchmarking of a GeoSPARQL

Graphstore - Submitted Journal

Article

This appendix contains the journal article submitted for publication in the Se-

mantic Web Journal of work undertaken in relation to this thesis in investigating

the implementation of the OGC GeoSPARQL standard. The GeoSPARQL stan-

dard was published in 2012 [37], but a full implementation has not been delivered.

Existing implementations have partially implemented the standard; relied upon

using relational databases for persistent storage; and have demonstrated lengthy

data preparation and query execution durations.

The geospatial nature of travel means that a supporting framework for han-

dling geospatial data is an underpinning component of delivering a Semantic-

based Travel Demand Generation framework. The Apache Jena Semantic Web

framework is a popular API for Semantic Web applications that is compliant

with the W3C Semantic Web standards, but has limited support for spatial op-

erations and does not follow the GeoSPARQL standard. Therefore, investigation

and benchmarking was undertaken into implementing GeoSPARQL within the

Apache Jena framework.

Initial investigation was undertaken into this by Haozhe Chen as part of the

334

Masters thesis ”Implementing GeoSPARQL in Apache Jena” supervised by Dr.

Taha Osman and supported by Gregory Albiston, the originator of the idea. This

Masters thesis scoped the requirements of the work and implemented an initial

set of spatial relation and geometry functions. These functions were then bench-

marked against an existing partial implementation of the GeoSPARQL standard,

Parliament. The benchmarking process was performed manually using a cus-

tomised set of queries and required using the Parliament user interface via HTTP,

introducing issues of comparability.

The implementation and benchmarking were then expanded by Gregory Al-

biston as a complete implementation of the GeoSPARQL standard. This included

supporting automatic switching between coordinate reference systems and units

of measure, caching of invariant data, and resolving incomplete features of the

earlier collaborative effort. The inclusion of caching of invariant geospatial literals

and other data repeatedly re-used in spatial queries represents a novel feature,

and produced a performance improvement up to 20%.

A benchmarking framework was also developed to compare the implementa-

tion with Parliament and Strabon, another partial GeoSPARQL implementation,

using the published Geographica macro and micro benchmarking queries. This

automated benchmarking framework performs queries at the API level and re-

moved certain inconsistencies found in the existing Geographica benchmarking

framework and the initial investigation. The details and outcome of this effort

are described in the enclosed journal article.

The source code for this GeoSPARQL-Jena implementation and benchmark-

ing has been released online. The Apache Jena project has since invited that

the GeoSPARQL-Jena project is incorporated as a module of their framework to

replace the existing spatial module.

335

GeoSPARQL-Jena: Implementation and

Benchmarking of a GeoSPARQL

Graphstore

Gregory L. Albiston, Taha Osman and Haozhe Chen

School of Computing and Technology,
Nottingham Trent University,
Nottingham, United Kingdom

e-mail:
gregory.albiston@ntu.ac.uk; taha.osamn@ntu.ac.uk; haozhe.chen2014@my.ntu.ac.uk

Abstract: This work presents a RDF graphstore implementation for all
six modules of the GeoSPARQL standard using the Apache Jena Semantic
Web library. Previous implementations have provided only partial cover-
age of the GeoSPARQL standard. There is discussion of the design and
development of on-demand indexes to improve query performance with-
out incurring lengthy data preparation delays. A supporting benchmarking
framework is also discussed for the evaluation of any SPARQL compli-
ant queries with interfaces provided for integrating additional test systems.
This benchmarking framework is utilised to examine the performance of
the implementation against two existing GeoSPARQL systems using the
Geographica benchmark. It is found that the implementation achieves com-
parable or faster query responses than the alternative systems while also
providing much faster dataset loading and initialisation durations.

Keywords and phrases: GeoSPARQL, SPARQL, RDF, Apache Jena,
geospatial, geospatial data, geospatial query language, geospatial index.

1. Introduction

This work discusses the implementation of a geospatial graphstore complying
with the OGC GeoSPARQL standard [11]. Previous works have partially im-
plemented the GeoSPARQL standard and have generally extended relational
databases rather than utilising a RDF graphstore. This work describes the de-
sign features of the implementation, investigation of parameter tuning and the
development of a benchmarking framework for comparison with other GeoSPARQL
implementations.

The increasing usage of location-aware devices, e.g. smartphones, Internet-
of-Things devices and in-vehicle navigation, has led to an increasing range of
applications and datasets reliant upon geospatial data. The interpretation of
geospatial data and relations is an established field of study upon which the
GeoSPARQL incorporates Semantic Web concepts and principles. The Seman-
tic Web is intended to increase the access and sharing of data through the
internet and presents the opportunity to enrich data through knowledge mod-
elling, automated inferencing and interconnection of datasets to provide deeper
insights and experiences.

1

G. L. Albiston et al./GeoSPARQL-Jena 2

A key technology of the Semantic Web is the Resource Description Frame-
work (RDF) [13] which is a data structure standard based upon a directed
labelled graph of subject-predicate-object triples. It is intended that any data
can be represented using RDF’s design principles and extended by vocabular-
ies, e.g. GeoSPARQL, to allow consistent interpretation across datasets. The
SPARQL query language [9] provides a query mechanism to explore, retrieve
and modify RDF data. It also includes many operations commonly found in
the Server Query Language (SQL) used in traditional relational databases. The
GeoSPARQL standard enhances SPARQL’s query mechanisms to allow users to
conveniently access geospatial data.

1.1. Challenges

There are several challenges relating to geospatial graphstores. There is no im-
plementation of the GeoSPARQL standard stating full compliance across all
six components. In addition, there is no benchmarking framework to investigate
GeoSPARQL compliance and consider user quality of life aspects, such as mixed
coordinate reference system datasets, inferring geometry metadata and convert-
ing datasets between geospatial datatypes and coordinate reference systems.

Each of the reviewed implementations uses modified relational databases for
persistent storage rather than an RDF graphstore. These relational databases
have been adapted for RDF usage rather than developed specifically for the
purpose. Therefore, there is potential for graphstore implementations to have
design optimisations which improve performance. The extension of relational
databases can also present a set-up and environment configuration burden that
is justifiable in production scenarios but limiting for prototype development and
research.

There is also a design challenge between the SPARQL query execution pro-
cess and the dimensionality of the problem space defined by the GeoSPARQL
standard. In SPARQL, query execution is performed on discrete cases of pa-
rameters which are represented in string literal form. In the case of geospatial
calculations, information is extracted from the string literals, processed and then
discarded for the next iteration of query execution. However, the next iteration
step may contain one or more parameters used in the previous iteration. Later
query iterations may also use the same parameters as a previous iteration after
following a different route through the data graph. Therefore, computation is
wasted repeatedly extracting information across multiple iterations.

Potential solutions to this are storing the results of previous computations
or pre-computation of all potential values. The GeoSPARQL standard defines
many functions but a central component is the three sets of relation families.
These relation families each describe eight spatial relationships between geome-
try pairs. The relationship between two geometries is invariant and so suitable to
computation and storing during data loading. This would change the extraction
and processing described previously to a retrieval process. However, the dimen-
sionality of these calculations is excessive. Calculating all the relationships of a
very modest 10,000 geometry dataset would require 2.4 billion triples.

G. L. Albiston et al./GeoSPARQL-Jena 3

This represents an exceedingly large supporting set of data for a small geospa-
tial dataset and introduces issues of pre-computation cost, storage and search
durations. Particularly when only a small subset of geometries and relations may
be utilised by a user at any time and the new or modified geometries will require
re-computation. Graphstores have been developed to handle trillions of triples
[8, 15] and so geometry datasets could be much larger than the scale described.
Therefore, a compromise is required between pre-computing or retaining related
information versus the potential scale and dimensionality of datasets.

1.2. Contributions

The principle contributions of this work can be summarised as:

1. Full GeoSPARQL implementation of all six components, including auto-
matic inferring geometry properties and query re-writing, using an RDF
graphstore.

2. Benchmarking framework for GeoSPARQL and SPARQL queries with re-
sults and comparison of three GeoSPARQL systems.

3. Discussion and implementation of novel on-demand indexes to improve
GeoSPARQL query performance.

4. Identification of areas for review and revision in future versions of the
GeoSPARQL standard.

1.3. Related Work

This section some of the work already undertaken in the development and im-
plementation of GeoSPARQL. The GeoSPARQL standard is influenced by the
Simple Features standard. This outlines spatial functions for use in SQL rela-
tional databases with geometry shapes represented in Well Known Text (WKT)
and Well Known Binary (WKB) formats. Simple Features defines a set of ge-
ometry relations which are included in the GeoSPARQL standard as one of
three relation families. Other functions from Simple Features have also been
incorporated but with broader usage in the SPARQL context. Therefore, there
is a straightforward route for SQL dependent implementations to achieve some
GeoSPARQL compliance by adapting existing Simple Features functionality,
but additional aspects need to be taken into consideration.

There are numerous implementations of RDF frameworks with many fea-
turing geospatial and sometimes more specifically GeoSPARQL support. These
RDF frameworks provide persistent storage through RDF graphstores or re-
lational databases adapted for RDF with a geospatial extension, e.g. Post-
greSQL with PostGIS. While these frameworks refer to supporting GeoSPARQL
it has not been possible to find any explicit statements of the implemented
GeoSPARQL extensions and requirements compliance. As far as we are aware,
there has not been any systematic research or compliance testing of the various
RDF frameworks in their support for GeoSPARQL.

G. L. Albiston et al./GeoSPARQL-Jena 4

The following gives a brief overview to these frameworks to illustrate the
fragmented nature of GeoSPARQL support and different implementation ap-
proaches. AllegroGraph is a graph database that supports geospatial operations
but takes a more generalised approach than the Simple Features or GeoSPARQL
standards, with a set of functions focused upon points within a radius or poly-
gons. Apache Jena is a Java based Semantic Web and Linked Data framework
that provides various tools for developing applications including persistent stor-
age, SPARQL query engine, and inferencing. It has a spatial module that sup-
ports a small set of functions which are unrelated to the Simple Features or
GeoSPARQL standards. Apache Marmotta [16] is a Linked Data platform which
uses PostgreSQL with PostGIS backend and provides functions from the Geom-
etry Extension and Geometry Topology Extension, but geospatial support has
not been included in any public release due to ”portability issues”.

Stardog is an RDF data unification platform that supports a subset of non-
topological GeoSPARQL functions along with their own geospatial functions.
Virtuoso is SQL database with RDF and SPARQL extensions that includes
some geospatial support related to the Simple Features standard but not explic-
itly supporting GeoSPARQL. Parliament integrates the Apache Jena framework
with a Berkley DB persistent storage to provide temporal and GeoSPARQL
compliant spatial support. However, the Parliament is dependent on obsolete
components of Apache Jena and has not been updated to the latest major ver-
sion. Strabon [10] is a spatiotemporal store that uses the RDF4J framework
backed by PostgreSQL with PostGIS to support the Core, Geometry Extension
and Geometry Topology Extension components of the GeoSPARQL and its own
stSPARQL syntax.

Parliament, Strabon and uSeekM (now unavailable) were examined in the
Geographica benchmark [7], which was developed by the same project team as
Strabon. In this work, the three systems were benchmarked for data loading
durations, 28 individual queries and three sets of linked queries. Strabon gener-
ally outperformed Parliament and uSeekM. The query syntax used predated the
finalisation of the GeoSPARQL standard and in some cases was for stSPARQL
functionality. The datasets and queries have been published with some updates
made to comply with GeoSPARQL.

The remainder of this work is organised as follows. In Section 2 is an overview
of Spatial Analysis and key topics in the area along with a motivational scenario
for its usage. Section 3 discusses the GeoSPARQL standard and the six exten-
sion modules. Section 4 describes the implementation design of the GeoSPARQL
extension to the Semantic Web library Apache Jena and features to improve
query performance. It also details the design and development of the Bench-
marking Framework used to evaluate the implementation. Section 5 discusses
the challenges encountered during the implementation process. In Section 6 is
an evaluation of results obtained when comparing the implementation described
in Section 4 with two existing GeoSPARQL systems, Parliament and Strabon,
using the developed benchmarking framework. The final section provides a sum-
mary of the findings of this work and identifies areas for future work.

G. L. Albiston et al./GeoSPARQL-Jena 5

2. Overview of Spatial Analysis

This section provides an overview of key components and concepts for spatial
analysis. These components provide the theoretical and practical foundations
upon which the Simple Features and GeoSPARQL standards have been devel-
oped. A supporting illustrative use case is also provided to highlight the practical
need for geospatial queries and support.

2.1. Topological models for spatial analysis

A key feature of Geographic Information Systems (GIS) is spatial analysis and
querying using topological models of the relationships between spatial objects
[6]. Several models have been developed to interpret these relationships between
different geometry shapes, including Egenhofer, Region Connection Calculus
(RCC) and the Simple Features which are utilised by the GeoSPARQL standard.

Research has been undertaken into different interpretations of spatial infor-
mation. These have included relationships based on direction and distance using
logical operators and comparing spatial data using algebraic point sets. The ap-
proach of the Egenhofer Topological Model [6] seeks to overcome limitations of
these two approaches by establishing relationships based on the intersection of
two spatial objects in their interior and boundary. In this topological model the
relationships are invariant to topological transformations, e.g. translation, scal-
ing and rotation, of the spatial objects, focused upon two-dimensional spatial
objects and produces a Boolean result. The Egenhofer relation family consists
of eight relationships.

The RCC model is a boundary-free theory that seeks to provide a qualitative
representation for reasoning based upon axioms that every spatial object is a
region, i.e. has an interior, a region connects with itself and if a region connects
with another region then the other region also connected to the region. The
RCC-8 relation family based upon the assumption of jointly exhaustive and
pairwise disjoint (JEPD) relations derives eight relationships [4]. The Simple
Features relation family is established by the Simple Features standard [5] to
describe a set of spatial objects and their relations which satisfy most real-world
geospatial data use cases and re-uses relations defined by the previous relation
families to form eight relationships.

The Simple Features relation family is represented by the Dimensionally Ex-
tended Nine-Intersection Model (DE-9IM). The DE-9IM notation [3] extends the
concepts introduced by Egenhofer to describe relations through the intersections
of the interior, boundary and exterior of spatial objects. The nine pair-wise in-
tersections produce a matrix where the maximum permitted spatial dimension
for the intersection is indicated. The spatial dimension of geometric objects is
point 0, line string 1 and polygon 2. The boundary of a geometric object is
formed from a set of geometric objects of the next lower dimension. The inte-
rior is those points remaining when the boundary is removed, and the exterior
is those points not in the interior or boundary. This notation can represent all

G. L. Albiston et al./GeoSPARQL-Jena 6

the relations of the relation families while also allowing for alternative relations
to be described.

2.2. Spatial Reference Systems (SRS)

The consistent interpretation of spatial coordinate information is managed by
Spatial Reference Systems (SRS), also known as Coordinate Reference Systems
(CRS) with the terms being used interchangeably here. A wide range of SRS
types have been developed for different applications and only key points will be
summarised. SRSs can be categorized into several different types with projected
and geographic being two widely encountered. Each SRS contains a coordinate
system that describes the relationship between the coordinates and the earth’s
surface according to a unit of measurement. Coordinate systems can range in
dimension or axis number but two or three are common. Two SRS may use
the same coordinate system but order the axis differently, e.g. the widely used
WGS84 and the GeoSPARQL defined CRS84. Mathematical transformations
between SRS have been published as part of SRS definition catalogues, such as
EPSG [17].

A geographic SRS, e.g. WGS84, places the coordinates on an ellipsoid approxi-
mating the earth’s shape. This allows the entire earth’s surface to be represented
using latitude and longitude coordinates in degree or radian units. Accurate dis-
tances between points requires consideration of the ellipsoid curvature through
great-circle or orthodromic distance. A projected SRS, e.g. Universal Transverse
Mercator or UTM, places easting/westing/x and northing/southing/y coordi-
nates on a planar surface. The distortion of representing the earth’s curvature
on a plane is controlled and compensated with the SRS only being applicable
to a small surface area. This area is often enough to represent a whole nation,
e.g. United Kingdom has a single projected SRS OSGB36/BNG, while the global
UTM system divides the earth into sixty SRS zones. This approach allows quick
calculation of accurate distances using Euclidean distance in linear units, such
as metres.

The importance of SRS support can be highlighted by considering the use case
of a public SPARQL endpoint. In this case an endpoint is providing access to a
dataset of geospatial data encoded in the widely used global geographic WGS84.
A user is querying the endpoint with a local geospatial dataset encoded in their
national projected SRS, as is typically the case. A geospatial system that does
not support SRS transformations would require the user, or the data publisher,
to transform the dataset or all queries into WGS84. This places the technical
burden upon on the user and creates the potential for incorrect transformation.
It also assumes that the user is aware that such transformation is required or is
not supported.

2.3. Spatial Geometry Serialisations

The representation of geospatial data can be achieved using a variety of spatial
serialisations, e.g. WKT, GML, GeoJSON and KML. These identify the geom-

G. L. Albiston et al./GeoSPARQL-Jena 7

etry shape, coordinates and, in some cases, the SRS of the geospatial data. The
standards and scope of serialisations vary through application context, defining
additional geospatial concepts, such as Features and Geometry, or following the
design conventions of a parent serialisation, such as XML and JSON. These
serialisations therefore encode equivalent geospatial information, but some vari-
ations occur, such as in geometry shapes and their semantics. Typical geometry
shapes are Point, LineString and Polygon along with collections of these shapes.

2.4. Generating travel demand data for traffic simulation: a
motivating scenario

An example use case for geospatial data can be found from the domain of Traffic
and Transport demand modelling and simulation [1]. This domain investigates
the interaction of people, vehicles, locations and transport infrastructure. These
interactions can be tangible between physical entities, such as a person’s loca-
tion being upon a pavement area, or abstract, such as a property being in an
administrative area.

The undertaking of demand modelling and simulation is multi-stage process
with spatial analysis being of use in preparing scenario data, modelling the
behaviour of individuals in the scenario’s context and analysing the outcomes
of simulation. The type of interactions between the three main geometry shapes
can be found across each of the stages. The following list provides some example
spatial analysis applications that may be encountered:

• Distance between a person (point) and a bus stop (point), road (line
string), access/entrance (point) or building (polygon).

• Identifying all the houses (polygon) within a local authority, retail shop-
ping or school enrolment area (polygon).

• Determining the common routes (line string) and stopping locations (point)
of individuals during their journeys.

• Identifying access permissions into resident (point) only areas (polygon)
during route planning.

• Aligning national demography and transport data (projected SRS) with
road and building infrastructure (geocentric SRS).

By applying spatial analysis, the results of these interactions can be consis-
tently and accurately determined allowing greater comparison between models.

3. Extensions and Requirements of the GeoSPARQL Standard

The GeoSPARQL standard was developed to enable querying of geospatial data
in RDF format and is structured around six modules supported by thirty confor-
mance requirement clauses. The standard is developed from the Simple Feature
standard, which is widely used in SQL databases, but provides a wider definition
of spatial relations and incorporates RDF concepts, such as Unique Resource
Identifiers (URIs), namespaces and RDFS inferencing.

G. L. Albiston et al./GeoSPARQL-Jena 8

The Simple Features standard is based upon a simplified spatial model where
all coordinates are on a planar surface regardless of SRS. This simplification
reduces calculation complexity but introduces potential error when using geo-
graphic SRS which is tolerated by the standard. Comparison between geometries
with different SRS requires accounting for both numerical and positional differ-
ences.

3.1. Core

This extension defines the fundamental vocabulary of the standard, which is the
Spatial Object and Feature classes. A Spatial Object is the superclass of Feature
and Geometry. A Feature, e.g. a building or lake, is defined separately from the
Geometry that defines its spatial shape. Therefore, a Feature may have multiple
Geometry for different purposes, timestamps or serialisations.

3.2. Geometry Extension

In this module is the definition of the Geometry class, the Geometry Literal
datatype and the Non-topological Query Functions. The relationship between
Feature and multiple Geometry is defined using two properties, the one-to-one
hasDefaultGeometry and the one-to-many hasGeometry. The hasDefaultGeome-
try is used in later extensions to select a consistent Geometry when determining
inferred results.

The spatial coordinates of a Geometry are defined between it and a Geometry
Literal through the one-to-one hasSerialization property. The hasSerialization
property can be sub-classed to a specific serialisation, e.g. asWKT or asGML,
to allow finer control during querying. Additional Geometry properties describe
information that can be gained by interpreting the serialisation of the Geometry
but are made available for direct use in SPARQL querying.

The Geometry Literal datatype provides the string representation of the
geospatial geometry shape and defines two specific serialisations, WKT and
GML, with specific conformance requirements for each. The Non-topological
Query Functions are applied to one or more Geometry Literals to return a re-
sult and include distance, intersection and boundary. Calculations are performed
in the SRS of the first Geometry Literal.

3.3. Topology Vocabulary Extension

This module defines the vocabulary for property relationships, such as contains,
equals and disjoint, between two Spatial Objects for assertion in a dataset. These
relations are defined in three relation family of Simple Features, Egenhofer and
Region Connection Calculus 8 (RCC8) with eight spatial relations in each fam-
ily. Each spatial relation is defined using a DE-9IM intersection matrix which
shows the maximum number of dimensions of the intersection between interior,
boundary and exterior of the two geometries.

G. L. Albiston et al./GeoSPARQL-Jena 9

3.4. Geometry Topology Extension

In this extension the Topology Vocabulary is re-formulated as filter functions
which accept Geometry Literals and return a Boolean result. This allows the
calculation of spatial relations which have not been explicitly asserted in the
dataset. Functions are defined for the same three relation family contained in
the Topology Vocabulary. Calculations are performed in the SRS of the first
Geometry Literal.

3.5. RDFS Entailment

This extension outlines the application of RDFS and OWL reasoners and geom-
etry hierarchies to produce inferred statements in a dataset. This means that
classes and properties, such as Spatial Object or hasSerialization, can be ob-
tained from a schema applied to the dataset or the stated relationships rather
than needing the dataset to consistently state their existence. This reduces the
burden upon dataset publishers and allows the automated identification of in-
consistencies.

3.6. Query Rewrite Extension

This extension builds upon the vocabulary, functions, and inferencing of the
previous extensions to provide the most wide-reaching support to the user. The
available usage of a vocabulary for relations between Spatial Objects in SPARQL
queries, provided by the Topology Vocabulary, still requires the dataset to be
populated with triples using the vocabulary. This requires the dataset publisher
or user to determine and assert the relations. Determining these relations is the
functionality of the Geometry Topology Extension described previously but is
based upon retrieving the Geometry Literal of Spatial Objects.

This complicates query writing and requires the user to have detailed knowl-
edge of the vocabulary. The Query Rewrite Extension allows the user to use
the higher level Spatial Objects in their queries through syntactic sugar to ob-
tain results regardless of their assertion in the dataset. The geospatial system
expands the query as required to find either asserted triples or calculates the
relations when absent using the hasDefaultGeometry property between Feature
and Geometry to find Geometry Literals. This leads to four potential cases of
Feature-Feature, Feature-Geometry, Geometry-Feature and Feature-Feature and
any asserted triples for each Geometry Literal pair.

4. Implementation of the GeoSPARQL Jena and Benchmarking
Framework

This section describes the design and implementation considerations of the
GeoSPARQL Jena system and the supporting benchmarking framework. In the

G. L. Albiston et al./GeoSPARQL-Jena 10

first part is the GeoSPARQL Jena system, which implements the GeoSPARQL
standard and extends the Semantic Web library Apache Jena. In the second
part is the benchmarking framework, which has been currently been developed
for testing three query sets across three target systems and provides facility for
interfacing additional target systems and user defined queries.

4.1. Implementing the GeoSPARQL Standard as an extension of
Apache Jena

The primary focus of implementing the GeoSPARQL standard is to extend the
query execution mechanism of Apache Jena to support all the extension mod-
ules. Filter and Property functions are registered with the ARQ query engine
for use when matching function or property names are encountered within a
SPARQL query. The key implementation difference between Filter and Prop-
erty functions is that Filter functions only operate upon the parameters passed
into the function while Property functions can access the underlying graph to
retrieve or create additional triples.

Two design principles were to minimise user configuration requirements and
minimise pre-computation through on-demand processing of queried data. This
on-demand processing means that initialisation periods are short, only calcula-
tions relevant to utilised functionality are performed and new datasets can be
incorporated quickly and with consistent query durations.

The extension approach allows all the existing functionality of Apache Jena,
which closely complies with Semantic Web standards, to be utilised, e.g. RDF
file handling, RDFS inferencing, HTTP endpoint and persistent storage. The
GeoSPARQL class and property hierarchy are achieved by loading the published
GeoSPARQL RDF schema into an RDFS inferencing model and applying to any
dataset. This allows user and version modifications to the schema to be made
without requiring alteration to the implementation source code. The deployment
only requires an application developer to write a single configuration line of
Java code. Various configuration options for the use of the GeoSPARQL Jena
extension have been made available to the developer, such as index sizing and
in-memory or persistent storage options. Additional utility methods have also
been implemented using the available functionality, such as converting RDF files
between spatial reference systems and geometry serialisations.

The implementation workflow, shown in Figure 1, is activated when the ARQ
query engine reaches a registered Filter or Property function name. The follow-
ing describes the workflow with relevant diagram points indicated by paren-
thesis. The ARQ engine processes query by checking triples in the dataset and
passing values to the corresponding function (1). A key concept of SPARQL
querying is the reduction of the full dataset graph down to a subset which are
true for the graph described by the query. The ARQ engine seeks to optimise
execution for the quickest resolution. Therefore, a set of partial results for the
wider query may have been obtained prior to passing to the function. Although
the function may only be defined once in a query it is called multiple times,

G. L. Albiston et al./GeoSPARQL-Jena 11

Fig 1. The GeoSPARQL Jena query execution workflow from SPARQL query to result
with key points from the description indicated by parenthesis. Workflow activated when a
GeoSPARQL function or property is encountered. Implementation stages shown along with
interfacing Apache Jena (dashed) and external library (dotted) stages.

once for each potential result, passing in different arguments. There may also
be additional parsing of literal values during query execution that is hidden
during query writing.

GeoSPARQL Property Functions may retrieve additional values from the
dataset (2). Many Property Functions in GeoSPARQL are syntactic sugar for
a Filter Function which is used to perform the actual processing. The distinct
Property Functions follow the same process as Filter Functions. The Query
Re-Write Property Functions also checks for asserted Feature and Geometry re-
lationships in the dataset to shortcut resolution, as required by the GeoSPARQL
standard, followed by an additional check of the Query Re-Write Index (2a).

This index contains up to a maximum number of recently found relations
between Geometry Literals. Each Geometry Literal pair could be involved in
up-to four Feature and Geometry relationships for each spatial relation, with-
out considering that a single Geometry Literal could be used by multiple Fea-
tures or Geometries. Therefore, retaining recent results has been designed into

G. L. Albiston et al./GeoSPARQL-Jena 12

the workflow to address the re-working behaviour of SPARQL query execution
highlighted previously but still respecting the large dimensionality that could
quickly result from retaining every result.

Geometry Literals are unparsed into Geometry Wrappers via relevant parsers
(3). The Geometry Literal Index is checked for recently unparsed Geometry Lit-
erals to allow re-use between iterations through on-demand caching. Geometry
Literals are immutable and so later extraction yields the same Geometry Wrap-
per. The Geometry Literal Index contains two indexes that relate to positions
of function arguments which is likely to be consistent between query iterations
and allows prioritising the index search. If the Geometry Literal is not present in
the initial index, then the alternative index is checked before a new Geometry
Wrapper is extracted from the Geometry Literal and added to the initial in-
dex. The CRS Registry similarly retains recently used CRS data for any future
Geometry Literals with the same CRS.

The Geometry Wrapper handles all processing to resolve the request, e.g.
spatial relations and functions, with one instance for each Geometry Literal (4).
The spatial relations and functions leverage the JTS library [18], which is an
implementation of the Simple Features standard, and has been extended to in-
corporate the additional concepts of the GeoSPARQL standard. Mathematical
conversions between CRSs are obtained as they are required and stored in a
Math Transform Registry for re-use, as the same transformation converts any
geometry between two CRSs. The geometry resulting from a CRS conversion
is retained by the Geometry Transform Index for future re-use, up-to a config-
urable maximum number. Here again the design approach has been to retain
information that may be useful in later query iterations. The functionality for
CRS conversion is provided by the GeoTools library [14] which accesses coordi-
nate transformations definitions provided by defining authorities. The outcome
of the function is returned to the ARQ Engine (5) via the calling function to
continue processing the query, potentially returning to step (1) for another func-
tion.

The retention of data in-memory can present issues when processing large
datasets. To manage the sizes of the indexes and registries several strategies
have been implemented. Firstly, the data retained within registries is common
across multiple geometries and highly re-usable. Therefore, these have been not
constrained in size or persistence and are intended to persist for the duration of
the application. Secondly, to manage size the index contents expire after a fixed
time-period (default: 5 seconds) which is refreshed whenever an item is retrieved.
Checking for removals occurs in 1 second intervals. Therefore, memory usage will
increase during periods of geospatial querying and then fall back during other
activities.

The maximum number of items can also be limited to avoid excessive amounts
of memory being used and exceeding available resources. When the index is full,
query execution continues unblocked but there are no additions to index until
items have expired. Investigation was undertaken into memory caching with
overflow to disk storage [19, 20], but the Geometry Wrapper serialisation was
too burdensome for on-demand caching to disk.

G. L. Albiston et al./GeoSPARQL-Jena 13

Obtaining CRSs, including units of measure, and math transformations can
require internet connectivity for lookups from authoritative sources and has been
used as justification for only permitting a single CRS in certain contexts [2]. In
the context of the Semantic Web, internet connectivity is an underlying principle
and typically expected to enable open systems; demonstrated by the SPARQL
standard supporting federated querying through HTTP and a typical use case
being the publication of data through an HTTP endpoint. Consideration has
been made in the implementation for closed systems by allowing users to define
the CRSs they require and adding them to the registry.

A practical issue for users of a geospatial system is the conversion of a het-
erogenous dataset or datasets, with varying CRS or serialisations, to become
homogenous. Methods have been included to leverage the interoperability im-
plemented for GeoSPARQL so that users can use GeoSPARQL Jena as an API
to undertake these conversions and complement Apache Jena’s existing support
for serialising triples.

An additional use case is converting existing geospatial data to RDF formats
as highlighted for future work in the GeoSPARQL standard. Many platforms and
libraries are available for data conversion but are often intended for large scale
or diverse formats. A common format for database export or manually prepared
data is tabular separated value files, e.g. CSV and TSV etc. Therefore, a tabular
file converter has been developed to facilitate the conversion of user geospatial
data to RDF. This converter is provided as a pure Java application or API, does
not require an external schema or configuration and does not create additional
column and row index properties as found in some other conversion libraries.
Configuration is through column headings with URIs able to be explicitly stated,
formed from a base URI for the file, looked up from common URIs or defined
by the user in a separate file.

Datatypes can also be referred in shorthand to standard XSD types [12] or
be user defined in file or external prefix file. In RDF the number of properties
can vary between individuals of the same class and therefore repeated proper-
ties, blank fields, and ragged rows are supported. Apache Jena inferencing and
serialisation has been leveraged so that the user can output files for a dataset
that incorporates, or separates, inferred triples in a wide range of standards-
compliant formats.

4.2. Implementing the Benchmarking Framework

The benchmarking framework was developed in Java and built as a Gradle
multi-project. Java was selected due to all three systems providing a Java API
and its prevalence in enterprise production systems. A common deployment use
case for SPARQL enabled graphstores and databases is as an HTTP endpoint
for public querying. All three target systems can be configured as an HTTP
endpoint, but Java APIs have been used so that HTTP or network overhead
are not factors in the results. An area of future work for the framework is the
development of querying over HTTP allowing non-Java systems to be compared.

G. L. Albiston et al./GeoSPARQL-Jena 14

Fig 2. Class diagram of the main Benchmarking Framework classes and interfaces. The
Benchmark Execution requests instances of the Test System from the Test System Factory.
The Test System executes Query Tasks for each Query Case that the Benchmark Execution
has been set to iterate over and according to the Benchmark Type.

The Gradle build tool was selected to assist in dependency management,
distribution, and separation of each system into its own project to avoid depen-
dency conflicts. The Parliament test system uses a legacy version of Apache Jena
which conflicts with the more recent version used in the implementation. A core
project contains the benchmarking framework for the loading and execution of
queries and output of results.

In common with Geographica’s approach, a Test System interface is defined
which is implemented by the target system to integrate with the framework,
see Figure 2. However, in our approach new instances of the Test System are
produced using a Test System Factory interface to create separate instances.
The initialisation period of these instances is recorded as a separate duration
from dataset loading and query execution, again varying from Geographica, and
is incurred when a system is initially accessed via the Java API, which may be
once, e.g. during start-up for production usage, or multiple times, e.g. during
application execution or development.

G. L. Albiston et al./GeoSPARQL-Jena 15

The execution of queries is performed through a separate Query Task class,
varying from Geographica, that is extended by each Test System to standardise
the three stages of query execution, i.e. preparation, processing and closure, and
recording of durations. This execution standardisation means that all target
systems perform the same work and are monitored consistently. The Query
Task is executed on a separate thread and is monitored for its duration to limit
excessively long query executions.

Investigation was made into incorporating the Java Measurement Harness
(JMH) [21] for the benchmarking framework and index size experiments dis-
cussed later. JMH is designed to provide consistent and accurate micro-benchmarking
by protecting against JVM optimisations and other benchmarking factors. How-
ever, the initialization process of Apache Jena conflicted with the benchmark-
ing process of JMH. Therefore, an approach consistent with that adopted by
Geographica was followed. This did allow finer reporting of sub-benchmark du-
rations and output results to be developed but an area of future work is the
incorporation of JMH.

The results of a query are unpacked in the processing stage as String maps
and so decoupled from the SPARQL query engine implementation. The query
performance in speed and number of results are summarised to file for com-
parison across queries and iterations. The executed query is also written to file
for cross-comparison and the detailed values returned by the query can be op-
tionally output. The query design in Geographica places filter functions in the
SELECT part of the query rather than the WHERE body. This means that
even if a function fails due to an exception, a null result is returned for every
binding in the WHERE body and can be interpreted as false positives, i.e. a
result with no actual data. The framework reports both the number of results
returned and the number which contain data, so that comparison can be made
and failing queries identified.

The execution of the framework can be performed in four modes: Cold, Warm,
Both and Dataload. In Cold mode, each iteration is a new instance of the Test
System. The Warm mode, an initialising query is performed on a single Test
System which is then re-used for the target iterations. The Both mode allows
the Cold and Warm modes to be run consecutively. In the Dataload mode,
a specified dataset is loading into the Test System’s persistent storage for the
target iterations with the storage being cleared after each iteration. These modes
follow the principles described in the Geographica benchmarking paper [7].

Two default query sets have been defined in the framework, i.e. Geographica
Microbenchmark and Geographica Macrobenchmark which are each discussed
in more detail later. These query sets are all loaded from external SPARQL
query files and are not programmed into the framework, unlike the design of
Geographica. This means that additional query files can be read into the frame-
work for user benchmarking and allows visibility and customisation of the ex-
isting queries as standards evolve. The queries relating to a results set are also
generated for user inspection.

The Macrobenchmark set utilises additional data which is substituted into
queries to provide variation between iterations. This additional data is again

G. L. Albiston et al./GeoSPARQL-Jena 16

provided from external files to allow visibility and customisation. Development
of support for using additional data in user-defined benchmarking and confor-
mance testing is an area of future work in the framework. Each usage of the
Macrobenchmark produces a set of consistent queries for each iteration across
the set but which vary between generation and so between target Test Sys-
tems. Reproducibility is achieved by using the output of queries generated for
one target system as user-defined queries for testing on subsequent target Test
Systems.

The described framework can be extended to provide automated testing of
GeoSPARQL standard conformance and other SPARQL standards. This can be
achieved by developing a conformance query set and dataset for comparison with
the results of the test system. Below is a comparison of the Geographica bench-
mark query sets with the standard to highlight the areas where conformance
testing can be applied:

• Only WKT serialisation is used with no GML serialisation testing.
• Not all Geometry extension non-topological functions are utilised and

there is inclusion of Strabon specific functions.
• The RCC8 and Egenhofer relation families are not included and only Sim-

ple Feature relations used.
• There is no conversion between different SRS, either geographic or pro-

jected, and the datasets all use the default WKT SRS URI.
• There is no testing of the Geometry properties, Topological Vocabulary,

Query Rewrite or RDFS Entailment extensions.

Inclusion of these requirements and use cases in a conformance query set
allows demonstration of compliance and functionality between test systems and
are not covered by the Geographica benchmarking queries. The defining and
automated testing of conformance queries is an area of future work for the
framework.

5. Implementation Challenges

This section outlines the notable challenges that have been encountered when
developing the GeoSPARQLJena library.

5.1. Well Known text (WKT)

The WKT serialisation is a widely used serialisation for geospatial data and
referenced in the GeoSPARQL standard. Parsers are available to extract the
geometry data from the serialisation for processing. However, the GeoSPARQL
standard allows the encoding of Coordinate Reference System URIs as part
of the WKT string, which is non-standard and so not compliant with exist-
ing parsers. In addition, support of the Geometry Property Extension in the
GeoSPARQL standard requires additional metadata for the geometry to be
gathered that was not produced by the parsers.

G. L. Albiston et al./GeoSPARQL-Jena 17

A final issue is the support for more than two coordinate dimensions. The
WKT definition permits between 2 and 4 coordinates (XYZM) to be defined but
the available parsers only supported two dimensions (XY). The GeoSPARQL
standard only considers the X and Y dimensions for spatial operations but it
does not explicitly preclude the geometries containing 3 or 4 dimensions from
being present in a dataset. Therefore, a WKT parser was implemented to over-
come these issues and produce a geometry for the JTS library.

5.2. Geographic Markup Language (GML)

The GML serialisation is an XML based geospatial serialisation that is widely
used and referenced in the GeoSPARQL standard. There are several versions
with varying cross compatibility and GeoSPARQL implementations are required
to state their GML version support. The current implementation of GeoSPAR-
QLJena supports the GML Simple Features Profile 2.0, which is a simplified
profile of GML 3.2. This profile is intended for compliance with the Simple
Features standard and therefore aligns with the GeoSPARQL standard.

GML parsers are available to extract the geometry data but present several
issues. The examined parsers are designed to parse GML on a document basis
using XML preamble and schema. The GeoSPARQL usage of GML is small
isolated fragments of GML geometries that have been encoded within RDF. It
was also not possible to locate a GML Simple Feature schema to inform the
parser and a comprehensive set of example serialisations for the profile were
not available. The extraction of geometry metadata and supporting a range of
coordinate dimensions, as described in the previous section, was an additional
issue affecting the parsing process. Therefore, a specific parser was implemented
to overcome the identified issues. While compliance has been sought the devel-
opment of this parser and support for other GML versions is an area of future
work.

5.3. Units of Measure/Buffer and Distance Conversion

It has been outlined previously that each SRS can use one of several unit sys-
tems. These can be dependent upon the type of SRS, e.g. projected uses linear
metres and geographic uses non-linear degrees. While a standard international
system of units has been established there is still a variety of distance units and
sub-units in local usage, such as the standard mile in the United States and
United Kingdom. URI definitions have been added for degrees and standard
miles, along with their sub-units, for user convenience. Additional units can be
registered using the Java Measure API. Conversion between this non-standard
and standard units can then be performed consistently.

The GeoSPARQL standard supports distance and buffer functions which
accept arguments in different unit systems, e.g. a geometry in degrees and an
expected result in metres. Conversion directly between these units is problematic
when considering that a degree in metres for coordinates near the north pole

G. L. Albiston et al./GeoSPARQL-Jena 18

is different to that of coordinates near the equator. The buffer function, which
expands an enclosing area around a geometry, presents similar difficulties.

These issues are addressed by converting the geometry’s SRS to an appropri-
ate SRS for the units, if necessary, upon which the function is applied. For the
buffer function the resulting geometry is converted back to the original SRS,
while the distance function ensures the correct units are returned. When the
functions are performed on a projected SRS but requiring non-linear units a
conversion is made to the WGS84 SRS and then the Euclidean distance is still
found, following the acceptance of error found in the Simple Features [5] and
GeoSPARQL [11] standards.

5.4. Relation Families Intersection Patterns

The GeoSPARQL standard describes three Relation Families for identifying
spatial relationship between geometries. This includes definitions of the DE-
9IM intersection patterns. The Simple Features and GeoSPARQL standards
are consistent in stating that the DE-9IM intersection pattern for the equals
relation, as used by the Simple Features, Egenhofer and RCC8 relation families,
is “TFFFTFFFT”. However, this does not yield a true result when comparing a
pair of point geometries, which are equal. The Simple Features standard states
that the boundary of a point is empty. Therefore, the boundary intersection of
two points would also be empty.

An alternative intersection pattern of “T*F**FFF*” is used in several spatial
libraries [18, 14] and has been applied in the GeoSPARQL-Jena library. This
intersection pattern is the combination of the within and contains relations and
yields the expected results for all geometry types.

5.5. getSRID Function

A source of contradiction between the GeoSPARQL and Simple Feature stan-
dards is the use of a Spatial Reference System Identifier or SRID. In Simple
Features, this provides an integer value for look up against a local catalogue
of spatial reference systems and reflecting an internet disconnected design. In
GeoSPARQL, the same term is used in the getSRID function, Requirement 5.,
for the URI string of the geometry literal, which uniquely identifies the spatial
reference system and reflects an internet connected design. In seeking cross-
compatibility these two different pieces of information, an integer and a URI,
are being related together when they are conceptually different. Any future re-
vision to the GeoSPARQL standard would benefit from the two concepts being
separated into two functions or renaming the getSRID function.

5.6. GeoSPARQL Schema

The OGC have published the GeoSPARQL v1.0 standard as an RDF/XML
schema v1.0.1. This can be imported to provide RDFS and OWL inferencing

G. L. Albiston et al./GeoSPARQL-Jena 19

on a conforming dataset. However, the published schema does not conform with
the standard. The property hasDefaultGeometry is missing from the schema and
instead the defaultGeometry property is stated. This prevents RDFS inferencing
being performed correctly and has been reported to the OGC Standards Tracker.
A corrected version of the schema has been used in the remainder of this work.

5.7. Conformance Dataset & Queries

The GeoSPARQL standard provides several specific query examples with a small
dataset. However, these examples are not exhaustive for the general statements
of the requirements and in some cases refer to other standard documents, e.g.
Simple Features. These standards are highly technical and lengthy making iden-
tifying and extracting the required information for an implementation problem-
atic.

Semantic Web technologies are designed to be platform independent. This
means that there is opportunity for a compliance dataset and queries to be
published to accompany the GeoSPARQL standard. These can then be used or
re-purposed by any Semantic Web system on a wide variety of platforms. This
would allow GeoSPARQL implementations, and the automated conformance
and benchmarking framework discussed previously, to test functionality and
evidence compliance more clearly and consistently.

6. Experimental Results and Discussion

This section outlines the evaluation, results, and analysis of the GeoSPARQL
Jena implementation against two existing GeoSPARQL systems, Parliament and
Strabon. The first set of experiments analyses the effect of varying the size of
indexes implemented in GeoSPARQL Jena. This is followed by an overview of
the methodology and configuration of the benchmarking framework. The final
sections discuss the results obtained for the three systems using the framework.

6.1. GeoSPARQL Jena Index Size

The implementation design described in Section 4 utilises several indexes and
registries for the on-demand caching of data. The term index has been applied
for data that is retained for short-term re-use, e.g. extraction of Geometry Lit-
erals for queries, while registry is applied to data that has potential long-term
re-use, e.g. transformations between Spatial Reference Systems. The registries
are expected to be small and persist for the duration of the application while
indexes vary in size as data is added and removed through expiry.

The performance benefit and sizing of the indexes are investigated in this
section as the size of the indexes presents a compromise between the data ex-
traction process, in-memory storage requirements and retrieval time for existing
entries. A test dataset of 100,000 Feature/Geometry and Geometry/LineString

G. L. Albiston et al./GeoSPARQL-Jena 20

Fig 3. Mean Query Duration by Index: Mean durations over 10 iterations. Graph shows means
normalised by the mean duration of the no/zero size: Geometry Literal: 13.728s, Geometry
Transform: 16.839s, Query Re-Write: 41.814s. Error bars show min and max durations.

triples were randomly generated with GeoSPARQL schema and RDFS inferenc-
ing. This dataset was then tested against three queries using the geof:intersection
and geo:sfIntersects functionality and four fixed test values. Each query was de-
signed to test one of the three indexes: Geometry Literal, Geometry Transform,
and Query Re-Write.

The queries were performed with a warm up execution followed by ten recorded
iterations. Indexes were emptied between each iteration. A range of maximum
index sizes were executed from zero, or no indexing, to no maximum size. The
expiry time was set to 5 seconds with cleaning occurring at 1 second intervals
and was selected based upon experimentation that indicated sufficient dura-
tion for data re-use but allowing cleaning to take place during the queries and
therefore not retain all generated data.

The results of these experiments are shown in Figure 3. The overall trend in
query duration can be seen to fall as the maximum index size is increased. The
benefits to each index vary and range between 21.95% improvement for Geom-
etry Literal, 15.13% for Query Re-Write and 5.03% for Geometry Transform.
However, the improvement is not continuous as some maximum sizes decline
the performance. These are likely caused by retention of values that are gener-
ated and not re-used later in the query but preventing more useful values being
stored. Therefore, the overall benefit of using the indexes can be seen but the
identification of specific maximum sizes is problematic.

It should be noted that identifying the maximum size for the indexes is com-
plicated by background requests using the Geometry Literals during query pro-
cessing. The test query applied an intersection function that produced 400,000

G. L. Albiston et al./GeoSPARQL-Jena 21

new Geometry Literal results, although many of these would be empty points,
in addition to the 100,000 in the dataset and the 4 test values. During resolving
a single query, the Geometry Literal Index received just over 1.7 million requests
and peaked in size at 250,348. The peak sizes for the other indexes were Geom-
etry Transform 100,004 and Query Re-Write 200,000, which can be predicted
from the dataset and query structure. The queries for these two indexes still
required large number of requests to the Geometry Literal Index, which was
switched off, and so a balance across all three indexes is required depending
upon the functionality utilised.

Any repetition of Geometry Literals in a dataset will also have an impact on
the ratio of index max size to unique triples. The test dataset had no repeating
Geometry Literals, but a dataset can contain non-unique literals yet still consist
entirely of unique triples. There would also be variations in query structure and
functionality that would affect the number and throughput of items processed
and indexed before considering available memory and processing capability.

The benchmarking experiments in the following section were all performed
using no max index size and an expiry time of 5 seconds. All benchmarks were
executed with limitation to RAM and no memory issues were encountered with
this approach. Further work is needed to investigate the effect on performance
of dataset size and expiry time in conjunction with the max index size.

6.2. Experimentation configuration and methodology

All benchmarking experiments were performed on the same desktop computer
which was a x64 Windows 10 operating system with Intel Core i7-4820K with
16GB and Samsung 850 EVO 500GB. Previously outlined is that all three test
systems provide a Java API. Identical Java JVM settings were used for each
target system with a maximum heap size of 3GB and parallel garbage collection
enabled.

In setting up the different systems there are several configuration points of
note. Optimisation of database and graphstore performance can be achieve
through tuning various parameters. A general principle has been followed of
not optimising to the dataset available with each target system setup out of the
box following only generally provided guidelines.

In the case of Parliament this meant that tuning parameters were not altered,
spatial indexes were created during data loading and RDFS inferencing rules
were enabled. GeoSPARQL Jena applied RDFS inferencing during data loading
with an automated script applied upon completion. The script is provided by
Apache Jena and counts the occurrences of properties and classes in the dataset
to provide weightings during query execution.

The Strabon documentation provides several suggested PostgreSQL param-
eter values for use with different levels of RAM availability. These suggestions
were applied but resulted in crashes during execution or exceeded the permitted
range of PostgreSQL. Therefore, the default values have been used meaning a
different approach to that used in the Geographica benchmark. Inferencing was
activated during query execution.

G. L. Albiston et al./GeoSPARQL-Jena 22

Table 1
Dataset loading and initialisation durations

Loading Initialisation

Test System mean (s) sd mean (s) sd

GeoSPARQL Jena 90.694 7.401 0.047 0.003

Parliament 337.976 4.217 0.539 0.041

Strabon 374.439 6.194 80.317 1.882

The framework measures the duration of each query execution with three
values: query preparation, query processing and their sum for the total du-
ration. For brevity the total durations are reported here, unless specified. A
general observation is that the Apache Jena based test systems, Parliament
and GeoSPARQLJena, perform more work during iteration over the results in
the query processing stage while Strabon spent relatively longer periods in the
query preparation stage. This highlights the different strategies deployed by the
target systems and the importance of considering the whole execution duration
of queries.

In all cases a maximum of one hour was permitted for each iteration. Those
cases which timed out are indicated in the text with any non-visible values in
graphs being relatively small rather than missing. Each scenario was performed
for five iterations.

6.3. Dataset Loading & Initialisation

The six datasets published by Geographica have been used for the Microbench-
mark and Macrobenchmark. These datasets use a pre-version 1.0 GeoSPARQL
spatial reference system URI which was converted to the version 1.0 URI. This
did not change the coordinate values but simply removed a legacy reference
from the benchmarking.

The target system each use their own persistent storage method with all sup-
porting multiple graphs. Each dataset was loaded into their own graph within
the storage. In the implementation the Apache Jena Java API loading mecha-
nism was used and not the Bulk Loader for large datasets, which may provide
faster results. Table 1. shows the data loading and initialisation durations for
the target systems.

The loading durations include both the import of triples and any associated
one-time spatial indexing setup. The initialisation duration is the duration re-
quired to initially access the dataset through the Java API. Therefore, in a
production environment this may occur once but in an iterative development
environment will be incurred at every execution. In all cases the operations were
performed five times with arithmetic mean and standard deviations shown.

The table demonstrates that the implementation, GeoSPARQL Jena, is no-
ticeably quicker at both loading, 1.5 minutes compared to over 5 minutes, and

G. L. Albiston et al./GeoSPARQL-Jena 23

Table 2
Microbenchmark test system rankings for Cold and Warm runs

1st 2nd 3rd
Test System Cold Warm Cold Warm Cold Warm

GeoSPARQL Jena 8 16 18 10 0 0
Parliament 0 0 0 0 26 26
Strabon 18 10 8 16 0 0

initialising the datasets. This makes it very suited to a development environ-
ment when coupled with its minimal setup requirements. Parliament has a more
prolonged setting up period when it is building its spatial indexes but is then
quick to access prior to querying. Strabon is the slowest to load the datasets
and requires a lengthy initialisation period of 80 seconds. This is incurred prior
to any query execution and regardless of its data requirements. Therefore, Stra-
bon would be unsuited to a developmental or exploratory environment where
an application is being frequently restarted. The following sections discuss the
query performance excluding the identified initialization periods.

6.4. Geographica Microbenchmark

The queries executed in this benchmark are those published by the Geographica
project and follow the same numbering system. These utilise the non-topological
query functions of the Geometry Extension and the filter functions of the Ge-
ometry Topology Extension for the Simple Feature relation family and therefore
are a subset of potential queries for the GeoSPARQL standard. It was necessary
to fix several namespaces in the published queries, but the body of the queries
were unchanged. The queries Q6, Q28 and Q29 have been excluded as they
contained spatial functions which are not defined in the GeoSPARQL standard
and therefore only Strabon could execute.

The results of the microbenchmark are shown for Cold runs (Figure 4), Warm
runs (Figure 5) and combined rankings (Table 2). Parliament did not complete
any of the queries in the Spatial Joins section within the one-hour time limit.
Results are shown in all cases for GeoSPARQL Jena and Strabon but in several
cases results were achieved in less than a second. In all cases, except Q15, the
number of results returned by all three systems were identical. Q15 uses the
distance function to identify geometries within a radius of a fixed point. The
difference in results may be attributable to precision of calculations and different
approaches to handling the conversion of distance units in query. GeoSPARQL
Jena is using the JTS library for calculations which does not reduce precision
when other geospatial libraries may do so.

The query uses linear metre units for distance between two geometries. All
geometries in the datasets are in CRS84, which is a geocentric SRS using non-
linear degree units. In GeoSPARQL Jena, the handling of linear units with non-
linear SRS geometries is achieved by temporarily transforming the geometries
to a linear SRS. This is necessary as the ratio of metres to degrees is not fixed

G. L. Albiston et al./GeoSPARQL-Jena 24

Fig 4. Mean Query Duration (seconds) by test system microbenchmark in Cold run. Error
bars show min/max. Parliament timed out in Q18-Q27.

Fig 5. Mean Query Duration (seconds) by test system microbenchmark in Warm run. Error
bars show min/max. Parliament timed out in Q18-Q27.

and varies according to the latitude of the coordinates. Alternative approaches
may use a fixed ratio and tolerate the error as latitude varies.

Another query of note is Q18 which tests for the Simple Features equals

G. L. Albiston et al./GeoSPARQL-Jena 25

relation. Strabon is noticeably quicker and completes this in less than 1 second
when GeoSPARQL Jena requires just under 4.5 minutes and Parliament times
out. This query checks the spatial equality between two graphs numbering 7,551
and 21,993 geometry literals to produce 166 million combinations. Therefore, the
speed of processing this scale of combinations by Strabon is noticeable. Further
investigation suggests that Strabon is not checking for spatial equality but only
lexical equality by matching strings. Spatial equality, but not lexical equality,
can exist when two geometries have the same coordinates but use different
SRS that reverse the axis order or when one geometry shape has additional
coordinates that do not alter the shape, e.g. two straight lines that start and
end at the same coordinates, but one has intermediate coordinates. Therefore,
the results of Strabon in this query may be accurate but may not fully comply.

A final query of note is Q26 where GeoSPARQL Jena completes in less than 4
seconds while Strabon requires approximately 11 minutes and Parliament times
out. This query tests for the Simple Feature touches relation, where the bound-
aries of two geometries align but do not cross into each’s interior. The two graphs
used are the same graph which contains 325 complex multi-polygon geometries
for 105 thousand combinations. GeoSPARQL Jena on-demand indexing will
mean that these geometries are readily available while optimisations for this
relation, e.g. bounding boxes around the complex shapes, mean that cases can
be rejected quickly. Similar optimisations can be applied in Q25 and Q27 and
could explain why GeoSPARQL Jena is noticeably quicker than Strabon.

Table 2 shows that Strabon achieves the most frequent fastest completion
times in the Cold runs but GeoSPARQL Jena is more often fastest in the Warm
runs. This reflects the on-demand indexing implemented in GeoSPARQL Jena.
Parliament is consistently the slowest performer and did not complete one set
of queries in the time limit. Strabon is generally quicker in the Non-Topological
Functions and Spatial Selections queries. These queries utilise a single graph
dataset while the Spatial Joins require geometries from two separate graph
datasets. This indicates that Strabon is performing optimisations for intra-graph
operations, e.g. during the lengthy initialization period, that may not be possible
or tractable inter-graph, i.e. the Curse of Dimensionality.

Although it would be expected that the Warm runs complete quicker than
the Cold runs a comparison between the mean completion times finds this is
not always the case with GeoSPARQL Jena 6 cases, Parliament 5 cases and
Strabon 10 cases. In many cases the differences are fractional or less than a
couple of seconds but the largest are exhibited by Strabon in Q19 and Q27 and
GeoSPARQL Jena in Q19. It should also be noted that GeoSPARQL Jena is
only marginally slower than Strabon in many queries, expect Q10 and Q11 and
Q18 discussed earlier, while there is a noticeably lengthy difference in many
queries in the Spatial Joins section for Strabon.

6.5. Geographica Macrobenchmark

The queries executed in this benchmark are those published by the Geographica
project and follow the same numbering system. In keeping with the Geograph-

G. L. Albiston et al./GeoSPARQL-Jena 26

Fig 6. Mean Query Duration (seconds) by test system for both macrobenchmark runs. Error
bars show min/max. Incomplete iterations for Parliament in RM5 and Strabon in MS2, RG1
and RM3. RM5 not shown due to mean completion by GeoSPARQL Jena in 30 mins compared
to Strabon in 3.4 seconds (see main text).

ica approach there is variation between query iterations. Each block of queries
within a set uses related data but the data selected varies between iterations,
e.g. MS0, MS1 and MS2 have consistent data in the first iteration but a different
set of data is used in the second iteration. The same resulting queries has been
used across each of the test systems to allow direct comparison. This variation
between iterations can be seen in Figure 6 where there is more noticeable varia-
tion in maximum to mean completion durations. This can partly be attributed
to many iterations returning zero results and resolving very quickly.

There is consistency in the number of results returned in all but two queries.
Strabon returns zero results in four iterations of MS0 when Parliament and
GeoSPARQL Jena both return a single result. The second case is MS2 where
there is a difference in result count for the only non-zero iteration between
Parliament and GeoSPARQL Jena. Strabon did not complete, repeatedly, this
iteration and so no completion duration is reported. Strabon also did not com-
plete all the iterations for RM3 and RG1. In all cases where Strabon did not
produce results the other test systems had non-zero result counts and Strabon
produced an error rather than timing out, suggesting an issue with the process-
ing of results within Strabon.

Parliament timed out after one hour in the RM5 query. This was also the
most intensive query for GeoSPARQL Jena and required approximately 30 min-
utes in each iteration. The RM5 query uses two intersection filter functions and
a geometry difference function with data from two graph datasets. In all iter-

G. L. Albiston et al./GeoSPARQL-Jena 27

Table 3
Macrobenchmark test system rankings for Cold and Warm runs

1st 2nd 3rd

Test System Cold Warm Cold Warm Cold Warm

GeoSPARQL Jena 6 7 5 4 0 0

Parliament 1 1 3 3 7 7

Strabon 4 3 3 4 4 4

ations GeoSPARQL Jena required a similar duration to complete, even when
no results were returned. Strabon was able to resolve the zero results in less
than 1 second and only took 15 seconds for the non-zero result iteration. The
intersection filter function is also used in microbenchmark Q19 and both test
systems achieved similar results. This suggests that Strabon’s query optimi-
sation selected a resolution strategy which reduced the problem space much
quicker than GeoSPARQL Jena.

Further examination of GeoSPARQL Jena finds that the first intersection,
requiring a cross product of 231.8 million cases, was resolved before the second
intersection that only required 6,285 cases. If order of resolution is reversed then
the former is only 592 thousand cases. SPARQL query optimisation for resolu-
tion is controlled by the underlying Apache Jena query engine and persistent
storage. Simple manipulation of the query, without changing content, dramati-
cally reduces execution time to approximately 8 seconds, which is quicker than
Strabon’s result with the original query.

The manipulations required are: 1) moving a intersection filter function into
the relevant graph clause and 2) reversing the order of the graph clauses. This
allows the Apache Jena query optimisation to apply the more efficient resolution
strategy. In Strabon, applying the manipulated query returns no results despite
it being valid SPARQL 1.1 query. This highlights the different optimisations but
also potential non-compliance of the examined query engines.

The rankings across the three test systems in Table 3 show that GeoSPARQL
Jena achieves the fastest results in the majority of queries. These rankings do not
consider the discussed query manipulation for RM5 so Strabon is still ranked as
faster than GeoSPARQL Jena in that case. Strabon achieves very quick results
in certain cases but did not complete all iterations for three queries. Parliament
did not resolve one query and is generally the slowest to complete.

7. Conclusion

This work sets out the design of a fully compliant implementation of the GeoSPARQL
standard utilising an RDF graphstore. Previous implementations have achieved
partial compliance of a sub-set of extensions. The examined implementations
have generally provided geospatial and RDF functionality by extending rela-
tional databases requiring additional configuration and setup. Additional de-
sign points that have been achieved were Semantic Web standards compliance,

G. L. Albiston et al./GeoSPARQL-Jena 28

minimal configuration and a short initialisation period. This means that the
implementation would be suited to both development and production environ-
ments.

An on-demand indexing approach was designed and implemented to retain
geospatial and supporting data for improved performance. Experimentation was
performed to consider the impact of controlling index size and retention periods
on query duration. This innovative approach of short and long term caching
of key data has been demonstrated to reduce query completion times by up to
20% without incurring initialisation delays. This on-demand indexing also has
general utility for other SPARQL applications that require repeated processing
of datatypes that are computationally expensive to de-serialise.

To understand the implementation’s performance capabilities, a benchmark-
ing framework has also been designed and implemented to perform a comparison
with two existing GeoSPARQL systems: Strabon and Parliament. This frame-
work can be expanded for additional test systems through Java interfaces to
ensure consistent querying and minimal integration effort.

The design of this framework is based upon importing, processing and report-
ing on SPARQL queries, rather than a hardcoded queries as developed in the
Geographica benchmarking framework for GeoSPARQL. Therefore, it has utility
for benchmarking SPARQL queries broader than GeoSPARQL. This approach
also provides transparency in the query content and data being benchmarked
while variant queries can be easily written and processed. Queries can also be
benchmarked on alternative datasets.

An area of future work is extending the benchmarking framework with queries
to test GeoSPARQL module conformance and report results. Several areas for
conformance testing have been identified and feedback is welcome on further
additions. Additional areas include incorporating additional GeoSPARQL sys-
tems for testing and allowing user data to be incorporated into SPARQL query
templates. Finally, the incorporation of the Java Measurement Harness would
provide more robust benchmarking timings. Its usage was investigated but is-
sues with the detail of benchmarking results and conflicts with Apache Jena’s
initialisation process were not able to be resolved.

The reported benchmarking results show several advantages of the GeoSPARQL
Jena implementation over the two benchmarked systems. The dataset loading
and initialisation of the implementation are noticeably quicker. In the alter-
native systems, pre-query spatial index preparation is undertaken that is not
incurred by the GeoSPARQL Jena implementation. Despite this, the bench-
marking process has demonstrated that the GeoSPARQL Jena implementation
has query times comparable or better than the alternative systems in all but
one query case (RM5). The GeoSPARQL Jena implementation also completed
all the GeoSPARQL benchmarking queries of the Geographica query set.

It has also been identified that minor manipulations to the benchmarking
queries can trigger dramatic improvements in query resolution. This was found
in the single query case (RM5) where GeoSPARQL Jena was dramatically slower
than the Strabon test system. The application of two structural changes to the
query, without altering content, reduced query time from 30 minutes to 8 seconds

G. L. Albiston et al./GeoSPARQL-Jena 29

and overtook Strabon’s performance.
This demonstrates that SPARQL query writing and optimisation can be

very specific to the query engine being utilised. This highlights the challenge in
preparing benchmarking queries which do not over accentuate the performance
of a specific test system. It further emphasises the need for benchmarking frame-
works to be adaptable in processing alternative versions of queries supplied by
the user; as designed and implemented in the benchmarking framework.

The GeoSPARQL-Jena 1 implementation, which has been invited for integra-
tion as a module by the Apache Jena project, and GeoSPARQL Benchmarking
framework 2 have both been published as open source projects.

References

[1] Albiston, G. L. and Osman, T. (2018). Semantic Model Assembly
Framework for the Generation of Travel Demand. Manuscript in prepa-
ration.

[2] Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S. and
Schaub, T. (2016). The GeoJSON Format Technical Report, Internet En-
gineering Task Force.

[3] Clementini, E., Felice, P. D. and Oosterom, P. V. (1993). A small
set of formal topological relationships suitable for end-user interaction. In
International Symposium on Spatial Databases 277-295. Springer.

[4] Cohn, A. G. and Renz, J. (2008). Qualitative spatial representation and
reasoning. Foundations of Artificial Intelligence 3 551-596.

[5] Consortium, O. G. (2016). Simple Feature Access - Part 1: Common
Architecture.

[6] Egenhofer, M. J. and Franzosa, R. D. (1991). Point-set topological
spatial relations. International Journal of Geographical Information System
5 161-174.

[7] Garbis, G., Kyzirakos, K. and Koubarakis, M. (2013). Geograph-
ica: A benchmark for geospatial rdf stores (long version). In International
Semantic Web Conference 343-359. Springer.

[8] Guo, Y., Pan, Z. and Heflin, J. (2005). LUBM: A benchmark for OWL
knowledge base systems. Web Semantics: Science, Services and Agents on
the World Wide Web 3 158-182.

[9] Harris, S. and Seaborne, A. (2013). SPARQL 1.1 Query Language Tech-
nical Report, World Wide Web Consortium (W3C).

[10] Kyzirakos, K., Karpathiotakis, M. and Koubarakis, M. (2012).
Strabon: a semantic geospatial DBMS. The Semantic Web–ISWC 2012
295-311.

[11] Perry, M. and Herring, J. (2012). GeoSPARQL - A Geographic Query
Language for RDF Data Technical Report, Open Geospatial Consortium
(OGC).

1https://github.com/galbiston/geosparql-jena
2https://github.com/galbiston/geosparql-benchmarking

G. L. Albiston et al./GeoSPARQL-Jena 30

[12] Peterson, D., Gao, S., Malhotra, A., Sperberg-McQueen, C. M.
and Thompson, H. S. (2012). W3C XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes Technical Report, W3C.

[13] Schreiber, G. and Raymond, Y. (2014). RDF 1.1 Primer.
[14] GeoTools - The Open Source Java GIS Toolkit.
[15] (2016). Oracle Spatial and Graph: Benchmarking a Trillion Edges RDF

Graph Technical Report, Oracle Corporation.
[16] (2018). Apache Marmotta Technical Report, Apache Foundation.
[17] (2018). EPSG Geodetic Parameter Dataset Technical Report, International

Association of Oil and Gas Producers (IOGP).
[18] (2018). Locationtech Java Topology Suite Technical Report, Eclipse Foun-

dation.
[19] (2018). Apache Commons JCS - Java Caching System Technical Report,

Apache Foundation.
[20] (2018). EH Cache Technical Report, Software AG USA.
[21] (2018). Java Measurement Harness Technical Report, OpenJDK.

Appendix C: Semantic-based

Assembly Framework for the

Generation of Travel Demand -

Prepared Journal Article

This appendix contains the journal article prepared for publication of the work

undertaken during this thesis. It focuses on the application of Semantic Web to

the travel demand generation process from Chapter 3; the concepts and structures

of the travel demand process in Chapter 4; and the evaluation of generated travel

demand in Chapter 7.

366

Semantic-based Assembly Framework

for the Generation of Travel Demand

Gregory L. Albiston, Taha Osman and Evtim Peytchev

School of Computing and Technology,
Nottingham Trent University,
Nottingham, United Kingdom

e-mail: gregory.albiston@ntu.ac.uk; taha.osamn@ntu.ac.uk; evtim.peytchev@ntu.ac.uk

Abstract: This work applies a knowledge modelling approach in the de-
sign of a framework for the generation of travel demand for traffic simu-
lation. The proposed framework is based on interchangeable modules to
integrate the main stages of travel demand modelling supported by an en-
gineered knowledge base. This approach is intended to promote greater
behavioural diversity, incorporation of more diverse contextual data, facili-
tate access to online datasets, and support users to undertake and validate
investigations across a range of models and implementations. The frame-
work provides the user with direct control to modify the schema, control
the selection of data, select alternative modules to execute, and the poten-
tial to remotely retrieve data and execute modules. There is a discussion of
the travel demand modelling process, identification of the primary stages
and the proposal of a core schema to describe fundamental concepts for the
construction of the knowledge base and integrate between modules. The
framework is investigated through a prototype, which generated travel de-
mand across a full day and performed simulation utilising two third-party
traffic simulators based upon the configuration by the user schema. The
problem of travel demand generation was separated into discrete task mod-
ules with identification of features for alternative design or further mod-
ularisation. The prototype evaluation identified no significant barriers to
the proposed approach using Semantic Web technologies with only minor
technical details providing challenges and illustrated the diverse results of
traffic simulation. It is proposed that the framework provides a basis to de-
velop new and existing approaches to travel demand generation to improve
modelling outcomes and adoption.

Keywords and phrases: Activity-Based Models, Travel Demand, Traffic
Simulation, Knowledge-Based Systems, Semantic Web.

1. Introduction

Traffic and transport planning is a wide ranging field that impacts on the daily
lives of most members of society through transport congestion, infrastructure
investment, safety, pollution etc. The generation of travel demand is one stage in
the process of constructing traffic simulations to investigate transport planning
problems by modelling the movement of residents, non-residents and freight [28].
Travel demand models have evolved from initial aggregate four-step demand
models (trip generation, trip distribution, mode choice and route assignment)
to disaggregate activity-based travel demand models [8].

1

G. L. Albiston et al./Semantic-based Assembly Framework 2

The transition to activity-based models has been limited, partly due to per-
ceptions of additional data requirements and implementation burden [8]. The
advantages of activity-based models include developing behavioural realism, in-
tegrity between components, greater spatial and temporal resolutions, and sup-
porting disaggregate micro traffic simulators. However, these objectives have
been met to varying degrees through a wide variety of implementations [28],[8].

In this work, we propose a Semantic Web based framework that identifies data
structures for fundamental components of activity-based travel demand models.
It is proposed that the semantic modelling of these concepts into a structured
knowledge base will allow the development of modular components that can be
more easily interchanged, while still allowing users control over the organisation
of their experimental scenarios. Further, it is proposed that a Semantic Web
basis will enable the assembly of models and simulations from both local and
online sources enabling quicker modelling and improved comparability of results.

1.1. Current Challenges in Travel Demand Modelling

Several challenges are presented to users when selecting and utilising travel de-
mand models and traffic simulators. These frameworks are generally developed
as collections of tools and models that fulfil the distinct functions of the mod-
elling process [8]. Due to development focus, one tool in the collection may
provide advanced features or design while another is more limited, such as the
supported transport modes, activity model, routing algorithms or human be-
haviour model. Therefore, a user must evaluate between frameworks and com-
promise on certain features to utilise others.

The file formats supported by a framework may also force its selection.
Geospatial and road network data are provided in a wide range of standard
file formats with each framework supporting a subset and potentially its own
bespoke format. A user may not have the technical skills or resources to con-
vert their own data file format into one of the supported formats. Other input
data will rely on the framework’s generation tools or need conversion to each
framework’s schema as no common standard exists.

Given that all models and simulations are incomplete representations of the
physical world, it is good practice for results to be compared across multi-
ple implementations [11]. This is particularly the case in activity-based models
that are often reliant upon population sampling to reduce data gathering and
computational complexity but introduces greater uncertainty [28]. A range of
model designs are also employed for determining variables such as mode, des-
tination and scheduling time period [8]. Therefore, users should expect to be
able to perform investigations into multiple parameter values and across mul-
tiple frameworks with minimum investment of time and resources. Setting up
multiple frameworks can require repeated dataset conversion with a thorough
understanding of each implementation. The analysis of framework output also
requires conversion of each result set to the desired analytical format.

There is potential to convert the output of one framework’s tool for reuse
in another framework. However, the user would again need to have a thorough

G. L. Albiston et al./Semantic-based Assembly Framework 3

understanding of both tools’ configurations to avoid error and integration gaps.
Frameworks are also developed in a variety of programming languages and plat-
forms, therefore transferring data between tools or utilising domain libraries
may require the user performing a manual process unsuitable for large numbers
of investigative cases and risking user error.

The process of selecting, obtaining and preparing input data for these frame-
works also places a burden upon the user. Neither MatSIM [18] or SUMO traffic
simulators [23] provide tools for the generation of activity-based travel demand.
Geographic, road network, activity pattern and population data are inputs to
the framework and their tools. Each dataset is typically published by a different
agency or organisation. A user will need to identify the required data for their
target area, source from the multiple providers, clean, combine and reformu-
late for use in their model and the selected framework. The data requirements
between users are likely to be very similar with only relatively specific enhance-
ments for their interest area. Yet no unified datasets or combining mechanisms
have been identified.

Each of these identified challenges requires investing additional resources and
potentially developing ad hoc solutions which could compromise the investiga-
tion by not accurately integrating the appropriate travel demand models and
traffic simulators. Users also face the barrier that the outcome of these activ-
ities are not necessarily portable to another framework. They will need to be
repeated to include the additional framework in an investigation.

The development of travel demand models also requires several further fea-
tures. There has been a primary focus upon week day commuter car and freight
transportation to evaluate the impact of traffic control [28]; however commuting
represents 15% of trips and 20% of distance travelled [33] with flexible work-
ing patterns and business hours becoming more common [16]. Technological
developments also present alternatives for co-ordination and planning, e.g. car-
pooling, car-sharing, automated vehicles and vehicle communication [34], [6].
There is an identified need to model multiple days, improve co-operation be-
tween household members, incorporate social network relationships and develop
non-utilitarian human behaviour and decision making [8]. Human behaviour
modelling tends to apply a single or a few approaches to all individuals and not
consider all the contextual information that could be utilised [28]. These design
goals further increase the breadth and depth of data requiring management.

The recent trends of Big Data, Open Linked Data and volunteer initiatives,
such as Open Street Map, has seen the increased gathering, processing and
availability of large detailed datasets. This presents an opportunity for traffic
demand models to incorporate a greater range of information and modelling pro-
cesses. Travel demand models have also been identified as having contributions
to domains outside of transportation, e.g. environment and health [8]. This in-
troduces greater complexity in the breadth and depth of data, which knowledge
modelling can assist.

A knowledge base can be constructed that uses a common data schema,
which describes the relationships between fundamental concepts, applied to the
investigative data. The framework functionality can then be defined as loosely

G. L. Albiston et al./Semantic-based Assembly Framework 4

coupled inter-operable modules, which are configured through external module
parameters in the knowledge base. These modules can implement innovative ap-
proaches or wrap existing tools to incorporate state of the art research. Semantic
Web technologies are well placed to support inter-operability and a knowledge
modelling approach with their design principles of structured data, machine to
machine processing and open data exchange between applications [5]. Technolo-
gies have also been developed to convert existing data sources in flat files, struc-
tured files [19] and relational databases [25] into Semantic Web formats, while
Semantic Web standards support data retrieval from remote online sources.

The development of a knowledge model for the travel demand requires the
identification and expression of the problem domain’s common concepts and
their relationships. Research has been undertaken to develop standardised and
consistent definitions for transport modelling of movement and activity [4]. The
integration of separate travel demand models and simulators or the transference
to new geographic areas has been investigated, but on a case-by-case basis [38],
[13] with constructing interfaces highlighted as a time-consuming process.

Research has been taking place into transferring existing data sources to the
Semantic Web, including demographic census and similar data that form inputs
to traffic demand modelling [7]. Relevant to these efforts, semantic ontology
based traffic forecasting management solutions have also been successfully de-
veloped [24], [26] and transportation and land use related ontologies have also
been published [32], [10].

The EC INSPIRE project [12] seeks to provide a standardised spatial in-
frastructure data format across the EU, including transport networks. Other
research efforts have investigated the additional data requirements to incor-
porate transport models into the CityGML format [35] and the conversion of
the GML format to RDF [36] but to the best of our knowledge, there are no
published works focusing on traffic demand modelling.

1.2. Contributions

This paper presents a novel semantically-modelled assembly framework for travel
demand generation. We claim that the paper has made the following contribu-
tions to the field:

1. The developed framework integrates the multiple stages of travel demand
modelling by providing for the development of interchangeable modules;
resource online datasets; and assisting in the modelling process. The user
has direct control of module and data selection enabling execution control
between modules and extension of the schema to their use case.

2. The work identifies the key stages of travel demand modelling and proposes
RDF schemas for the development of travel demand knowledge bases to
integrate between stages and describe road networks.

3. The mechanisms are described to locally and remotely assembly and exe-
cute travel demand models across multiple data and service providers.

G. L. Albiston et al./Semantic-based Assembly Framework 5

4. The framework has been implemented as an activity-based travel demand
model, integrated with third-party traffic simulators, using Semantic Web
technologies and we discuss its design, results and challenges.

The remainder of this work is divided into the following sections. The first
section provides an outline of the key technologies of the Semantic Web and
their relevance in this work. The second section describes the key components
of the framework for traffic demand models. The third section outlines the core
schema developed for the framework. The fourth and fifth sections discuss the
implemented prototype and features for the configuration and remote execution
of the framework. The sixth and seventh sections describe the experimental
scenario results and implementation challenges. The closing section provides
our conclusions and future work in this area.

2. Semantic Approach to Travel Demand Modelling

This section provides an overview of both Semantic Web technologies and traf-
fic demand modelling. Current travel demand models cover a broad range of
design decisions and concepts that it is impractical to exhaustively explore and
discuss. Therefore, general components are identified with specific reference to
aspects of activity-based models, but potential exists to apply the framework
more generally. Future developments to these models will likely increase data
complexity that an extendable knowledge base can assist in managing.

The many tools in the travel demand and traffic simulator frameworks would
each form a module of the framework. These modules would then interact
through a core extendable schema. The purpose of the framework is to enable
users to retrieve, transform and re-use their data across multiple travel demand,
traffic simulator and supporting modules for their investigations, while also in-
corporating their own modules and data schema. The Semantic Web is the
technology of choice for building the framework.

2.1. Overview of Semantic Web Technologies

The Semantic Web is not a single technology but a hierarchical collection of
formal standards and recommendations with supporting tool implementations.
Its objective is to enable the structuring of data for automated interpretation
and facilitate exchange between applications.

The basis of Semantic Web technologies is the modelling of data to develop
a knowledge model, i.e. a domain ontology, of common concepts and their rela-
tionships. Contextual facts relevant to the ontology can be asserted to construct
a knowledge base. Semantic modelling upon a knowledge base using the rela-
tions, and their defined meanings, enables the inferencing of additional implied
facts or the identification of inconsistencies.

knowledge bases can then be shared and utilised as the basis for applica-
tions and task solving models. Sharing and re-use of commonly defined relations

G. L. Albiston et al./Semantic-based Assembly Framework 6

through ontologies allows the incorporation of facts from multiple knowledge
bases to extend a dataset. The Semantic Web uses these modelling benefits to
retrieve, join and transform data.

A mechanism for interoperability between knowledge bases is the sharing and
extension of vocabularies and ontologies. These concepts and relations can be
applied to provide consistent understanding and structure. Numerous vocabu-
laries have been developed including spatial (GeoSPARQL), temporal (OWL
Time) and domain specific (transport domain topics of traffic disruption, auto-
motive, infrastructure).

The main components of the Semantic Web are:

1. Resource Description Framework (RDF): the fundamental data structure
using a directed labelled graph approach based upon subject-predicate-
object triples.

2. SPARQL Protocol and RDF Query Language (SPARQL): query language
to explore, retrieve and modify RDF data from local and remote graph-
stores.

3. Schema Languages: standardised vocabularies to describe relationships
and inferences that can be derived when applied to a compliant dataset
using an inference reasoner, e.g. RDFS and OWL.

4. Rule Languages: express additional relationships within the schema using
if-then structured statement and can include functions to produce new
data, e.g. SWRL and SPIN.

The primary objectives of this work is to provide a data focused, modular
approach that can be explored and adapted by the user. Therefore, the focus
is upon investigating SPARQL based querying with RDFS inferencing as the
combination provides flexibility and control without certain complexities intro-
duced by OWL schemas or rules-based extensions, e.g. modelling restrictions
[29], Open World Assumption, computational complexity. However, overlap ex-
ists such that certain outcomes could be achieved using several approaches, each
with their own advantages.

2.2. Architecture of the Travel Demand Generation Framework

The core stages for activity-based traffic simulation in sequence are population
synthesis, travel demand generation and traffic simulation [8]. Data is passed
from each discrete stage with iterative feedback sometimes occurring from traffic
simulation into travel demand generation. Each stage is also reliant upon a
variety of input datasets, such as demographics, network supply, travel diaries
and land use, see Fig. 1. The knowledge base provides a common repository
for data that modules, e.g. Scheduling, Trip Planning or Network Routing, can
access through SPARQL queries.

An immediate benefit of a Semantic Web approach is the storage of all this
data in the extensible graph structure of a graph database to form, with an en-
gineered schema, the knowledge base. This knowledge base provides the struc-
ture for interactions between different modules and data concepts, e.g. the Trip

G. L. Albiston et al./Semantic-based Assembly Framework 7

Planning module requesting an estimated travel time from the Network Routing
module.

The input and output data from each stage, scenario or execution can be par-
titioned into different graphs within the graph database for reuse or extraction
through SPARQL queries. Users can convert existing datasets or the output
from tools into RDF for import into the graph database. Additional data, e.g.
vehicle characteristics or social network relationships, can be linked and stored
without interference with the core data in the same graph database.

This means that implementations can extend the core knowledge base but still
operate on the same graph database. Therefore, modules with alternative design
principles or providing new functionality, e.g. environmental or communication
models for vehicles, can be applied to the same set of underlying data. The
structure of input data can be transformed or linked to existing concepts by
extending the core schema using SPARQL queries.

Execution of modules is achieved in SPARQL queries using property functions
for each module. Therefore, the SPARQL query can control the data selected
and its processing. This allows the user to change between modules by sim-
ply modifying the query. Modules can also be selected according to the data’s
characteristics through class membership, data properties or inter-relationships.

This is illustrated by the example in Fig. 2 where two sets of persons are
selected from the population, one based on their membership of an income
quartile class and the other based upon being an employee with an income
greater than the stated threshold. The modules are property functions and can
be identified here by the rou namespace prefix. Each set of persons has a different
routing approach selected to generate travel demand based on their contextual
data, which has been a criticism of many travel demand models. Therefore,
different behaviours can be described for subsets within a population but as
part of the same query. Modules can interact based on the data provided rather
than how that data is generated.

Another advantage of SPARQL are federated queries that can retrieve data

Fig 1. Main stages for travel demand modelling.

G. L. Albiston et al./Semantic-based Assembly Framework 8

from local and online graphstores. These graphstores can be queried to retrieve
relevant RDF triples and accelerate knowledge base construction, e.g. Linked-
GeoData for land use and network infrastructure data [32]. A step further is
remote services providing property function modules to perform functionality
of travel demand modelling based on input parameters. A user can focus upon
obtaining the simulation stage output using queries, containing configuration
parameters and data selection patterns, to target remote services for data and
functionality.

These queries can be separated into multiple stages to allow retrieval and
manipulation of partial data in the local knowledge base or to redirect to al-
ternative module implementations. Parameters are supplied as URI references
accompanied by the URL reference of the remote service. Modules can query
against the service URL to retrieve the data associated with the parameter URI
and then perform their task. Named graph URI can also be used to partition and
manage data within each graph database, which can assist with data disposal
and dataset alternatives, e.g. time periods, geographies, schema compliance and
user requests.

National, or international, knowledge bases would allow re-use of quality and
consistent datasets while remote modules can provide best-practice implemen-
tations. Currently users construct a local dataset and model for their specific
problem or geographic area by establishing their own infrastructure and sourc-
ing, processing and transforming data files for the selected tools. The proposed
approach would reduce these requirements as the data and interfaces are already
designed around the same modelling paradigm.

To conclude, the knowledge-based approach to integrating the population
synthesis, travel demand and traffic simulation processes results in a novel frame-

Fig 2. Example SPARQL query to select different routing modules.

G. L. Albiston et al./Semantic-based Assembly Framework 9

work that improves the integration between independently developed implemen-
tations, assist users to manage and structure local data, allows users flexibility
to compare alternative implementations and provide the basis for accessing stan-
dardised datasets, scenarios and tools as internet services.

3. Constructing the Travel Demand knowledge base

The purpose of this stage is to bring together the synthetic population, activity
patterns, land use, network infrastructure and local modelling design as illus-
trated in Fig. 1. The user can develop a formal schema using inference languages
and apply a reasoner to the data to perform inferencing of virtual triples, i.e.
triples not present in the knowledge base without a reasoner.

The inferencing process can automatically allocate instances to classes, cre-
ate data properties, infer relationships and identify contradictory data in the
knowledge base, e.g. a child who possesses a driving licence. Class membership
can be assigned based upon relationships and data e.g. vehicle ownership, age or
income. Alternatively, SPARQL queries, or a rules language engine, can perform
these tasks with varying flexibility and restrictions.

SPARQL queries can also permanently transform, remove or add data to the
knowledge base. These queries are stored as text files and so can be distributed
to share best practice with users able to make local modifications before applying
to the knowledge base.

Traffic and transport, particularly in microsimulation, heavily utilise spatial
relationships between objects. Graph databases can be extended to natively
support these spatial relationships, as in some relational databases. Extensions
complying with the GeoSPARQL standard [27] enable SPARQL queries to per-
form spatial searches without the need for external processing. Four general
stages of knowledge base construction have been identified:

3.1. Population Synthesis

This stage converts aggregate demographic data into a dis-aggregated set of per-
sons grouped into households. Each person and household are described by a set
of characteristic variables. In some existing travel demand models, an integrated
synthesiser is available, but the user is then limited to the chosen algorithm and
implementation choices in this active field of research. In the proposed approach,
any population synthesiser can be utilised once its output is serialised into RDF
and published locally into the knowledge base. The population’s characteristic
variables can be reformulated to a user’s chosen schema as part of the knowledge
base construction.

3.2. Spatial Allocation

The synthesised population must be aligned with the land use data for the zones
and regions of interest. The generated households are produced for an entire

G. L. Albiston et al./Semantic-based Assembly Framework 10

zone but must be allocated to the individual sub-zone locations of homes. The
linking process between households and homes can be achieved through user
defined SPARQL queries, a library of best practice approaches or implemented
modules for more sophisticated techniques. This step is described in literature as
part of the population synthesis step but there is limited reporting of techniques
and theoretical results [21].

By considering it as separate to population synthesis, the user can adapt the
allocation process to their chosen schema, available data and selected approach,
rather than the implementation of the selected tool. For example, an allocation
based upon house prices and number of bedrooms would produce a different
knowledge base instance to an allocation based upon aligning household char-
acteristics of a property with a generated household. Numerous alternatives can
be explored with consideration of the varying impact on the traffic simulation
outcome.

3.3. Individual Classification & Linking

In existing activity-based models, the functionality is typically based upon hard-
coded characteristic values, such as specific household compositions or types of
locations, or a fixed set of configurable parameters, e.g. school and retirement
age. This functionality includes decision making processes with a criticism that
existing models apply a single or a few approaches to all individuals [28], i.e.
all employees make travels decisions in an identical manner or commuter and
tourist decision making is identical.

It is proposed that these shortcomings can be overcome through local user
control and generic module design. The user’s control, over the local schema and
in manipulating the knowledge base data, provides choice in the characteristic
values and their inter-relationships that are present in the user’s scenarios. For
instance, a core schema would define location and activity concepts, but it is the
user’s local schema that extends these to define the specific types of locations
and activities. Therefore, it is the user that determines the design of the local
schema and data rather than fitting the data to a module’s design assumptions.

Modules should be designed against generic concepts, rather than specific
instances, so that the user has as much flexibility as possible. For example, a
routing module would not specify the modes of transport supported but instead
the data parameters required to perform routing for any mode. Certain cases
may require a module to extend the breadth of the core schema, but should
be minimised, e.g. vehicle routing module that considers road conditions, e.g.
low bridges, requires additional vehicle characteristics not required by a generic
router.

In the Semantic Web, classes are sets of individuals and can be sub-classed
to any hierarchical depth [14]. A person, household or activity are all examples
of individuals in this context. An individual can belong to multiple classes that
can be asserted or inferred. Classification can be based on context using the
individual’s existing class membership and the values, cardinality and inter-
connection of properties. Illustrative examples are:

G. L. Albiston et al./Semantic-based Assembly Framework 11

1. A person with access to a car and possessing a driving licence belongs to
the Car Driver class.

2. A person aged between 5 and 11 belongs to the Primary School Student
class.

3. Leisure activities sub-classed into Exercise, Sport or Culture classes but
also Indoor or Outdoor.

4. People working at the same location are inferred to be colleagues of each
other.

The hierarchy depth of classification and properties becomes a user choice to
an arbitrary level of detail based on data sources, design assumptions and imple-
mentation context. e.g. the core schema triple ”Person hasActivityAt Location”
can be sub-typed as ”Employee hasEmplyomentAt Workplace” and ”Student
hasEducationAt School”. The user asserts the data according to the sub-types,
but generic modules can still operate upon the core concepts through the in-
ferred memberships.

Filtering according to temporal, spatial or any other characteristic, e.g. open-
ing hours or activity location, allows different contexts to exist within the same
knowledge base. Locations modelled with an area of effect, e.g. school catch-
ment or retail operational area, enable partitioning and selection rather than
assuming a pervasive effect as in many existing models.

The allocation of an individual to a class, or their existing relationships to
other individuals, can be used to apply default values or create new relation-
ships, e.g. a person belonging to a household is inferred to be resident at the
household’s location. The creation of new relationships can also be constrained
by applying filtering. Persons could be associated or limited to activities in a
certain geographic area or specific types. Different derived schema and data will
produce alternative knowledge bases that function with generic modules. Mod-
ules that extend the core schema would operate without interference to core
schema modules when applied to the same knowledge base.

3.4. Network Conversion & Land Use Relations

This stage consists of two parts: the conversion of road network, and other trans-
port infrastructure, data into RDF format and the linking of land use data to
the road network. Formats for road network information typically follow a node
(junction) and edge (road) graph structure but there is a need for a standardised
RDF vocabulary for transport networks and supporting infrastructure.

The INSPIRE project [12] includes a transport infrastructure theme. Work is
in progress to develop RDF vocabularies but no vocabulary yet encompasses the
whole transport domain for simulation purposes. Other research has investigated
additional data requirements of transport models for CityGML [35] and the
conversion of GML to RDF [36]. A standardised schema and tools would allow
routing operations and interpreting of road semantics to be performed at the
data level without the current dependency on traffic simulator or GIS systems.

G. L. Albiston et al./Semantic-based Assembly Framework 12

Fig 3. Time-line representation of Travel Survey as basis for Activity Pattern template and
contextual Activity & Travel Schedule.

Once the network infrastructure has been stored in the knowledge base then
geospatial relationships are identified between infrastructure and land use lo-
cations. This primarily consists of identifying the proximity of roads, buildings
and public transport access points to each other.

4. Travel Demand Generation

A variety of travel demand models have been developed based upon different
techniques, e.g the Four Step Model, Activity-Based and Agent-Based. The
focus in this work is upon constructing activity and travel schedules based on
template activity patterns as part of a modular design as illustrated in Fig. 1.
The generation of activity pattern templates takes place prior to the knowledge
base construction as they serve as an input to that stage. However, since travel
demand models exist that do not require activity patterns it is discussed at this
stage.

4.1. Activity Pattern Generation

The activity pattern is a typical data structure of activity-based and agent-
based models and provide a template, or skeleton [37], [3], from which a person’s
activity and travel schedule are assembled according to the context, see Fig. 3.
The generic templates are populated with instance data to form an individual’s
schedule. The initial and final activities are extended to fill the entire scenario
time-period. The locations and travel choices will create varying travel durations
between activities. Waiting times are included in the activity or travel stage [4] to
remove empty periods, but time gap filling approaches vary, e.g. extend activity
duration; travel time contingency or plan extra activities.

The patterns available may be fixed [28] or derived from travel diaries of
a sample population using classification algorithms [3], [30]. The travel diaries
may be used to derive the activity choices, durations, indicative start and end
times, journey mode and household co-operation. Sets of activity patterns can
be associated with households and individuals in the synthetic population based
upon the corresponding characteristics. Any activity generator could be utilised
once its output is serialised to RDF.

G. L. Albiston et al./Semantic-based Assembly Framework 13

4.2. Scheduling

The activity pattern templates are applied to a context, i.e. population, ge-
ography and scenario, to form a schedule. Adapting to an alternative context
requires consideration of preserving minimum activity duration; tolerance for
timing slippage; and extending or including additional activities to fill time
gaps. The scheduling process typically covers a single day, but with develop-
ment needed for multi-day schedules; improved co-operation between household
members; and incorporation of social network data [28]. Schedulers also need to
ensure that consistent travel occurs with tours returning to the start location
and journeys returning to an individual’s reference location [4].

Activity prioritisation is used in some scheduling approaches to allow co-
operation between household members. Mandatory activities, e.g. education and
employment, are determined first with invariant start and finish timings. Main-
tenance, e.g. food shopping, and discretionary, e.g. leisure, activities are then
assigned with strategies for duration and inclusion [8]. Schedule coordination,
e.g. adults escorting school children and shared vehicle usage, is modelled by
mandatory activities being scheduled on an individual basis and then reviewed
for co-operative travel across the household before allocating lower priority ac-
tivities.

4.3. Trip Planning

This stage is a key distinction between travel demand models with travel deci-
sions typically consisting of activity location; trip mode and activity time frame
[17]. Design decisions are influenced by choice type and resolution order due to
their interdependence and impact on later decisions [8], [3], [17]. Route choice
is a further development in activity-based models [28], [8], but already a feature
in some agent-based models [37]. These processes represent a range of design
approaches which some implementations combine. Below we briefly outline four
predominant approaches for activity-based travel demand models [28], [37] but
other techniques can be built upon the proposed knowledge base:

• Constraints Based: All combinations of route, mode and locations between
the activities are found as a sequence of travel. A schedule is checked for
its feasibility according to travel and time constraints.

• Discrete Choice/Econometric: A person is assumed to be an entirely ra-
tional entity that chooses from a finite set of weighted probability choices.
Typically, the probabilities are calculated to maximise utility using at-
tributes related to the choice and person.

• Computational Process Model: Designed as heuristic responses so that
behaviour is considered more habitual than self-optimising. Behaviour is
modelled through if. . . then. . . rules activated by contextual variables.

• Agent Based: A system that defines discrete, self-contained agents that
possess a set of characteristics and operate within an environment. These
agents react to external events, exhibit control over their actions, learn

G. L. Albiston et al./Semantic-based Assembly Framework 14

from past experience and communicate with other agents to pursue their
goals.

4.4. Feedback & Learning

The process of feedback and learning is based upon the relative success of the
proposed travel plan. The outcome of the simulation process is fed back into the
traffic demand model to inform the decision-making process. Generally learn-
ing is performed following a batch simulation of a schedule. However, iterative
schedule adjustment due to travel delays during simulation are being developed
[28].

In the proposed framework the whole knowledge base can be made available
for interface with simulator APIs or as part of an artificial transport framework
[31]. Therefore, the simulation stage can be performed as an iterative stepwise
process with travel demand being adapted as simulation conditions change. This
would facilitate both the current inter-simulation scheduling and rescheduling
intra-simulation and make available all contextual information for learning.

4.5. Network Routing

The topology of the transport network has an influence on the travel decisions
taken by persons and the connectivity between locations, infrastructure and
services. Many transport simulators provide tools to perform routing using a
variety of algorithms, e.g. A* and Dijkstra. This module interprets the network
supply information in the knowledge base to inform the travel demand models
and removes dependency on transport simulator tools. This module can be exe-
cuted either prior or during demand modelling, with generated routes stored in
the knowledge base for re-use or reference. However, the prior option produces
an exhaustive set of all route combinations which quickly becomes very large as
the number of locations increases.

An area for future work is consideration of semantics present in road network
datasets, e.g. temporal context, trip purpose and physical characteristics. These
features are lacking in the examined routing tools such that routes ignore private
or resident only access, road closures at specific time periods and tall vehicles
under low height bridges etc. These are characteristics that affect routing and
can be accommodated as additional contextual data in the proposed knowledge
base framework. Alternative services can also be modelled as distinct modules,
e.g. taxi services, car sharing, lift sharing and autonomous vehicles.

4.6. Travel Simulator Interface

The outcome of a travel demand model is a person’s activity and travel schedule.
Simulator interface, or aggregation into Origin/Destination matrices, can be
achieved through knowledge base query and data conversion into the required

G. L. Albiston et al./Semantic-based Assembly Framework 15

format. The information required by a specific traffic simulator may not require
the complete schedule with requirements varying. For example, MATSim [18]
as a minimum requires people to be identified with a plan of activity type,
end time, travel mode and location in XML format. SUMO [23] requires both
person schedules and vehicle routing with start and stop locations and departure
times in XML format. TRANSIMS [30] requires person and vehicle information
including the household, person, purpose, mode, vehicle, start and end locations
with departure and arrival times in CSV format.

Network infrastructure information is an additional input that is already
needed in the knowledge base for travel demand generation. Simulators typically
support their own bespoke file format for configuration parameters and network
supply, but some standard network topology formats are supported. Therefore,
interfacing to a simulator will require specific interfacing modules but some
topology serialisations would be re-usable.

5. Assembling the Travel Demand Generation Framework

The previous section discussed the components for travel demand generation
with focus on activity-based models and the advantages of applying a Semantic
Web approach. This section discusses the knowledge modelling of the framework
(Fig. 1) as schemas of the main concepts and their interaction. These have been
implemented in a modular prototype discussed in the next section.

The core schema design diagram notation in this section has classes linked
by key object property or sub-class relations, including cardinalities. Additional
object and data properties are shown beneath class names. Example non-core
extension properties and classes are shown by dashed lines.

5.1. Person, Travel Group, Activity and Location

The core concept of traffic demand models is the Person and their relationships
to Locations and Activities, illustrated in Fig. 4. A Person represents any indi-
vidual who travels in the scenario, so could be sub-classified by the user. Each
Person can be a member of a grouping for organisational and travel purposes,
e.g. households. The use of sub-class and sub-property relationships enrich the
knowledgebase’s data but still retain the validity of the schema. A Location
represents a spatial point of interest, including building and open spaces. Ac-
cessibility to these locations can vary for different modes, e.g. pedestrian access,
motor vehicle parking, public transit links and freight delivery.

A multi-dimensional relationship can be formed between Person, Activity
and Location. In a single model a Person could be linked to a single Location
for certain Activities, e.g. employment, education and residence, and multiple
Locations for other Activities, e.g. retail and leisure. However, it is a modelling
assumption, i.e. determined by the user’s schema and selected modules, if all
Persons have a single Location for certain activities and not a requirement of
the core schema.

G. L. Albiston et al./Semantic-based Assembly Framework 16

Each Location can also provide zero or more Activities. For example, a school
can provide both primary and secondary education which have different effective
time periods and eligible school ages. A school is also a place of employment
for teaching and administrative staff. Similarly, homes are the residence of in-
dividuals but also a place to visit for social interactions between friends and
relatives.

The Activity itself may be modelled as unique to a Location or shared be-
tween multiple Locations. Each Activity has an effective time and days to reflect
availability, such as morning and afternoon opening times. Therefore, a Location
can have multiple Activities with different characteristics but the same Activity
Type. The Activities can be sub-classed according to their characteristics while
retaining a grouping through the enumerating of Activity Types.

The enumeration of the Activity Types forms a Value Set and ensures OWL
2 compliance as Object Property relationships must be between individuals and
not classes [14]. This approach means that a single Activity Type can form a
relationship that links many Activities to Activity Patterns. Each component
(Activity and Activity Pattern) identifies a single Activity Type, which together
forms a multiplicitous relationship, e.g. employment would be an Activity Type
while employment at a specific office would be an Activity. Otherwise a user
would have to identify and link every relevant individual Activity to an Activity
Pattern and so impose a modelling burden.

A similar approach is taken to express a Person’s travel modes as defined
by the Mode class. These are either the personal or public transport modes a
Person uses or those of their Vehicles. Locations can also identify Modes which
have access and in turn those that do not. For example, city centre locations
with no parking facilities would not be the direct destination for people using
a car. Similarly, locations without wheelchair access would not be selected as

Fig 4. Schema for Travel Group, Persons, Locations and Activities.

G. L. Albiston et al./Semantic-based Assembly Framework 17

viable for those people using that mode.
The relationships can be formed using the class, characteristics (data prop-

erties), geographic relation or arbitrarily asserted. An example SPARQL query
is shown in Fig. 5 to both classify Persons as school age and link them to their
local school according to its geographic ”catchment” or effective area. The OP-
TIONAL clause ensures that all are classified, even when not in a school catch-
ment area. Given a Location may provide multiple Activities then effective areas
are applied according to Activity rather than Location. Extending properties for
the Locations would be to apply comparative weighting for popularity based on
the time and day of the week.

Further detail in terms of sub classes, relationships and characteristics can
be included in the knowledge base by the user as required. For example, a
highly detailed set of land use data could distinguish between several types of
buildings, their occupants and the types of activities they provide in a hierarchy
and structure specified by the user.

5.2. Activity Pattern and Activity Pattern Sets

In an activity pattern approach, travel diary data is used to derive contextless
templates that describe a series of general activity types with non-continuous
time durations, see Fig. 3. This is modelled by an Activity Pattern that consists
of a day of the week identifier and a time ordered list of items. Each item
identifies an Activity Type, applicable time-period and travel distance range.
The travel distance range specifies the minimum and maximum distance that
should be travelled to reach the activity, whether asserted during knowledge
base Construction or used to search for locations by the Scheduler module.

These Activity Patterns are grouped into Activity Pattern Sets, so that con-

Fig 5. Example SPARQL query to classify Persons aged 5 to 11 as Primary School Children
and link them to a local Primary School location.

G. L. Albiston et al./Semantic-based Assembly Framework 18

sistent planning and cooperation for joint activities, e.g. escort travel, can take
place across Activity Patterns. Travel Groups can be linked with one or more
Activity Pattern Sets according to their matching characteristics or directly
asserted.

5.3. Travel Scenario and Activity & Travel Schedule

The key output of a travel demand model is each person’s schedule of activities
and travel, see Fig. 3. This schedule is derived from a Person’s selected Activ-
ity Pattern based upon their own and the scenario’s contextual information.
The Travel Scenario structure specifies the scenario information, e.g. start time,
end time and day, along with execution parameters used by the modules, e.g.
mode and scheduling characteristics, as illustrated in Fig. 6. Additional scenario
parameters could include activity priorities or weather events. The Travel Sce-
nario’s URI reference can also be used as a graph URI so that all data generated
for a scenario can be stored, exported and removed.

This allows multiple scenarios, with shared or varying parameters, to be
executed upon the same knowledge base without interference. The absence of
parameters can also control the scenario configuration. For example, a Person
may have a specified Mode in the knowledge base but if the current Travel
Scenario does not have those parameters then the Mode would be excluded.

There is no constraint placed on the user as to the number and definition
of Modes. These can distinguish between distinct vehicle or travel types but

Fig 6. Schema for Travel Scenario and Activity & Travel Schedule.

G. L. Albiston et al./Semantic-based Assembly Framework 19

also variation within the types. For example, a user can define multiple personal
modes, e.g. walking and wheelchair, with different characteristics to reflect vary-
ing speeds between age groups.

The Activity & Travel Schedule is itself a time ordered list of continuous
Travel Stages and Activity Intervals. The multiple Travel Stages, which form
a trip between activities [4], provides the routing detail for moving between
Locations using a single Mode. Multi-mode trips consist of consecutive Travel
Stages. The routing detail are described as geospatial coordinates (Points), road
segments (Road Links) and road junctions (Road Nodes) to support varying
application and simulator requirements. The specific optional Vehicle or public
Transit Line selected for travel is also identified in each Travel Stage so that
their locations can be tracked or to influence later decisions, e.g. a return tour
using public transport or a vehicle [4].

5.4. Trip Context, Stage Request and Trip Plan

The travel stages of the schedule are determined by several factors. These include
the person’s characteristics, potential destinations, possible modes and the travel
time-frame. These are described as a Trip Context which is passed from the
Scheduling stage to the Trip Planning stage. The Trip Planning stage then
determines the set of Travel Stages that will be selected to satisfy the Trip
Context, see Fig. 7.

The Trip Context is split into multiple Stage Requests depending upon the
number of modes and destination locations. Intermediate Stage Requests may
be produced if multi-modal routing is taking place, e.g. walking to a bus stop or
parking before walking. Information on available vehicles and their current loca-
tion is specified and whether any resulting Trip Plan must position all vehicles
at their requiredLocation, e.g. returning a vehicle home.

The Stage Request identifies a single origin, destination and mode that is sent
to the Network Routing module. Other parameters may be supported by the
Network Routing module, e.g. time-frame for multi-modal travel or interpreting
road semantics. Travel by personal means, e.g. car, cycling or walking, is not
temporally dependent, unless considering road semantics or traffic forecasting.
Public transport is time dependent due to service availability.

The response to each Stage Request is a Stage Estimate. The Stage Estimate
includes the routing information between origin and destination along with the
stage’s calculated values of duration, distance and cost based upon the scenario’s
mode definition. These values can be used for decision-making, e.g. utility in a
Discrete Choice model, and considering the viability of a stage, or series of
stages, in the trip’s context, e.g. rejecting long duration stages. Further contex-
tual information, such as heavily penalising or excluding walking during night
time or cycling in the rain, can also be applied to the Stage Estimates. These
discrete stages are chained by their origins and destinations to form multi-stage
trips.

The generated ordered lists of Stage Estimates are narrowed to a single list by
the Trip Planning modules decision-making process. The contextual information

G. L. Albiston et al./Semantic-based Assembly Framework 20

is used to convert the selected list into Travel Stages within a Trip Plan, as the
outcome of the Trip Planning stage.

5.5. Road Network

Road network topology file formats utilised in traffic simulators typically follow
a node (junction) and edge (road/link) graph structure. This structure forms the
basis for the RDF representation in Fig. 8 based upon INSPIRE concepts [12],
SUMO [23] and MATSim [18] simulator formats and the GeoSPARQL standard
[27].

The Road Network provides metadata and contains a collection of unidi-
rectional Road Links that begin and end with Road Nodes. The Road Nodes
provide the geospatial coordinates while the Road Links include local contextual
data with global context provided by Road Link Types. Lane turning restric-
tions between Road Links at junctions is provided by Road Connections.

5.6. Activity & Travel Result

The Activity & Travel Schedule produced by the Travel Demand Model pro-
vides the intended activity and travel timings for a person during the scenario.
The outcome of the Traffic Simulation stage is the activity intervals and travel
stages of the schedule after experiencing the simulated environment and the
travel plans of other participants. This information can then be used for analy-
sis or incorporated into future scheduling actions, e.g. weighting Stage Estimate
values, as feedback for learning.

Fig 7. Schema for Trip Context, Stage Request and Trip Plan.

G. L. Albiston et al./Semantic-based Assembly Framework 21

These activity and travel time intervals are captured in the Activity & Travel
Result, which follows a similar structure to the Activity & Travel Schedule,
see Fig. 6. It identifies the stages and links to the contextual information of
the relevant Person, Traffic Simulator, Travel Scenario and Activity & Travel
Schedule.

6. Implementation of Framework Prototype

The prototype was implemented using the Apache Jena Semantic Web API in a
Java environment. Extension property functions are used to implement modules
based upon SPARQL queries for data retrieval and execution. The use of queries
allows user modification so that connectivity between modules can be re-routed
to alternative choices. For example, additional modes or routing algorithms can
be selected by modifying the SPARQL query to utilise alternative Network
Routing modules according to the user’s own criteria, e.g. person characteristic
or class.

The knowledge base has been divided into multiple graphs based upon do-
main, e.g. road network, spatial locations and travel groups. Access configuration
is controlled through an RDF graph which specifies the domain, graph URI and
service URI. The service URIs can be a single local file URI or multiple HTTP
URLs. This means that the knowledge base can be physically distributed over
multiple datasets accessed using SPARQL’s Federated Query standard. Execu-
tion can also be separated into multiple batches for multi-thread and multi-
computer execution.

An extension framework complying with the
GeoSPARQL standard [27] was also developed for geospatial querying [1]. This
was necessary as Apache Jena currently has limited support for geospatial query-
ing and alternatives required persistent graph database with varying GeoSPARQL

Fig 8. Schema for road network described as edge and node graph.

G. L. Albiston et al./Semantic-based Assembly Framework 22

compliance, while the implemented extension provides full compliance with
GeoSPARQL and allows flexible deployment of in-memory or persistent graph
database.

Data generated by all modules is stored in a named graph, so that it can
be easily exported or removed. The implemented Scheduler module takes an
Activity Pattern Set for each Travel Group and then builds the schedule for
each Person forwards in a single pass. Each schedule always contains at least
one activity and must start and end with an activity.

The Activity Pattern for a Person consists of an ordered list. The items are
processed with a Trip Context being sent to the Trip Planning module to request
a Trip Plan of one or more Travel Stages. These Travel Stages are added to the
schedule and used to inform the start time of the next activity. Each item in the
Activity Pattern has an Activity Type. This Activity Type is intersected with
a Person’s related Activities, provided by one or more Locations, to produce a
short-list of potential destination Locations. Therefore, Activities with a single
Location, e.g. education, employment and residence, will always be respected
and the Person will return to them during a tour.

If no Locations with the current Activity Type are asserted for a Person, e.g.
leisure and retail activities, then the Scheduler searches for potential Locations.
These Locations are selected based on the Activity Type and distance from
the current Location within the minimum and maximum travel range radius of
the Activity Pattern item. The travel range is iteratively expanded, according
to a Travel Scenario parameter, until at least one potential Location is found.
These Locations may later be rejected due to insufficient travel time but a travel
attempt is made. Therefore, a Location can be selected based on the current
context or the assertions in the knowledge base Construction stage.

All time in the scenario period prior to the first activity and beyond the last
activity are expanded so that a full schedule is produced for the scenario. Trips
between activities are scheduled for arrival by the next activity start time, with
the earlier activity being extended to fill any gap prior to travel. The start and
end times of activities are randomly varied using Travel Scenario parameters for
maximum variation and minimum duration.

Should no trip be found in the available time period then a second attempt is
made with travel time maximised with the activity as late and brief as permitted
by Travel Scenario parameters. Activities may be merged when two identical
activity types occur at the current Location; followed on without travel for
activities at the same Location; or skipped due to insufficient travel time for a
destination. Consistent vehicle usage between travel stages is ensured so that
used vehicles are returned to the start location. Therefore, commuters do not
abandon their vehicles after travelling to other locations but also do not insist on
a single mode for an entire schedule. An area of future work is utilising activity
priority and travel group co-operation in scheduling.

The Trip Planning module constructs a choice set of feasible Trip Plans and
selects a single plan using a Random Utility Model (RUM) [8]. Taking the case
of a single choice as in (1), an individual (J) has multiple influencing attributes
(x). The fitted model’s observed coefficients (βτ) are multiplied by the attributes

G. L. Albiston et al./Semantic-based Assembly Framework 23

and summed to derive the observed value (V). Negative coefficients are applied
when a smaller attribute value is preferred e.g. cost, time or distance.

UJ = βτJxJ + εJ = VJ + εJ (1)

The observed value (V) and the unknown error term of unobserved variables
(ε) form the choice utility (U). The probability of selecting a choice is found
from the choice set for an individual as in (2),by taking the exponential of the
observed value and normalising it against the exponential observed values for
all choices in the set.

Pi =
eVi

∑
j e
Vj

(2)

The Trip Plan utilities are calculated by summing the utility of each Stage
Estimate using coefficient weightings for trip cost, duration and distance as in
(3) of the individual Person (Fig. 9). This calculation was derived to provide
differentiation between modes based upon varying trip distances. The utilities
are calculated through query of the knowledge base and therefore can be directly
modified by a user to retrieve alternative individual or global weights and utility
equations without modifying the Trip Planning module.

U iJ = βicostx
i
J + βidistancex

i
J + βidurationx

i
J (3)

Fig 9. Probability distribution over distance by mode.

G. L. Albiston et al./Semantic-based Assembly Framework 24

The utility of the whole choice set can be derived by firing semantic queries
(SPARQL) against the knowledge base to retrieve the required contextual data
and calculating the results. However, the final step of forming the probability
set as in (2) and selecting a choice are not suited to standard SPARQL syntax
due to repeated recalculation and increased query complexity. Instead, a generic
property function module can achieve this more efficiently using imperative pro-
gramming.

The choice set assembly algorithm utilises the provided modes, vehicles and
transit lines to recursively build multi-stage, multi-mode trip permutations for
each destination. Transfer Locations are identified to change between the cur-
rent and next mode, meaning a new stage. The transfer locations are sorted
by proximity to the overall destination to achieve the greatest progress in the
current mode. As proximity does not always equal the shortest path between
locations, e.g. routing via a river bridge, several locations are selected for each
transfer, using a scenario parameter.

Those modes which are utilised by vehicles or public transit lines are required
to satisfy additional conditions. These include the vehicle being already located
at the transfer location for stage start and the stage ending at any required
location. Similarly, public transit modes must use locations utilised by a specific
Transit Line at both the stage start and end.

These potential stages of a trip are given routing detail by the Network
Routing module. The routes between origin and destination with the selected
mode are found using A* shortest path algorithm. Bidirectional routing along
edges is applied when the Person’s personal mode is being used.

The Network Routing module does not assume any specific distance units so
can be applied to any road network with consistent units. The maximum mode
speed, defined in the Travel Scenario’s Mode Definition in Fig. 6, is compared to
the current link’s maximum speed with the lower value selected. It is assumed
that the maximum speed is achieved instantaneously as physical acceleration
and human behaviour exceeding speed limits are traffic simulator concepts. The
parameters are also used to calculate a non-denominational cost for the stage
based upon an upfront fixed cost and distance based variable cost.

Traffic Simulator interfaces were implemented for MATSim and SUMO sim-
ulators. The Activity & Travel Schedules, Road Network data and other infor-
mation were extracted and converted to the simulators’s XML input formats.
Simulator outputs were then converted back into RDF for the knowledge base.
The RDF to XML conversion was undertaken using SPARQL queries to extract
triples into RDF/XML followed by conversion using XLST templates [19] into
the traffic simulators’ XML schema, see Fig. 10. This approach exposes the en-
tire data extraction and transformation process to the user using standardised
technologies. The user can modify the interface to adapt to local variations in
the schema and knowledge base; focus upon a specific scenario; or to adapt for
changes in simulator functionality.

In summary the prototype provides the user with control over the activity
patterns, schema, module parameters, module selection and discrete choice cal-
culation. These can be applied based on the class and properties present in the

G. L. Albiston et al./Semantic-based Assembly Framework 25

data with minimal design assumptions, e.g. modes are defined in the data and
not a fixed hierarchy. The implemented Scheduler produces full day schedules
and is discrete from the Trip Planning and Network Routing stages. The Trip
Planning module produces trips with the number of stages dependent on the
modes and transport resources, rather than a fixed number, and considers spa-
tial access constraints. The Transport Interfaces allow data to be extracted in
the user’s chosen schema and adapted for used with alternative simulators.

7. Implementation of Access Configuration Framework

This section discusses the access configuration framework to retrieve and pro-
cess data with alternative datasets and modules. These datasets describe the
parameters and scenario data under investigation, e.g. household, transport in-
frastructure, and land usage, which modules consume to produce elements of
the travel modelling process, e.g. personal travel schedules, travel choices, and
route cost estimates. It is intended to ease the burden on users in assembling,
controlling and comparing their investigative scenarios across multiple imple-
mentations of travel demand generation models and traffic simulators.

The Semantic Web is based upon an open network of linked datasets acces-
sible through the HTTP protocol. Therefore, the knowledge-base and modules
of the framework do not have to be on a single computer but can be remotely
located and split across multiple HTTP services. Experimental investigations
into travel demand, traffic congestion, policy making etc. can be constructed by
directing to HTTP services publishing datasets or hosting modules. The user
would specify the URL address to access their chosen datasets and modules.
This removes the necessity to retrieve, clean and format convert datasets or
install and configure modules. The results of this process would be gathered

Fig 10. Traffic Simulator Interface process utilising SPARQL and XSLT.

G. L. Albiston et al./Semantic-based Assembly Framework 26

by the user hosting their own online service, which provides the configuration
information of the investigation and any of the user’s own datasets or modules.

The core schema discussed in Section 5 provides a basis for modules and
the knowledge-base to align, as a commitment to the vocabulary means it will
be used coherently and consistently [15]. This removes data transformations,
either prior or during execution, enabling datasets and models to interoperate
without user intervention. However, the breadth of the travel domain means
that establishing and maintaining a single all-encompassing schema for all mod-
ules to adhere to is problematic. Therefore, users need the flexibility to specify
modifications and transformations as variations and developments emerge.

A specific module may vary from the core schema, or establish their own,
and the user would mediate between that module and the other modules being
targeted. This mediation is necessary in existing approaches through data format
transformations between each component. This is inconvenient when setting up
one configuration and becomes highly burdensome or inhibitive when applied
to multiple configurations.

The proposed approach would allow the user to undertake this knowledge
base construction, travel demand generation and traffic simulation process through
the SPARQL query mechanism. The same skills and environment are used to
select datasets, target modules and mediate between modules for all the vari-
ous module configurations they choose to investigate. Compliant modules would
follow the processing steps described using an API to achieve the extended func-
tionality. The following sections describe the general features for configuring the
framework and the specific data structures and functionality to achieve the out-
lined behaviour.

7.1. Features for Configuring the Framework

Accessing data from remote uncontrolled sources introduces several issues that
can waste resources or unnecessarily increase execution times. These issues can
also be encountered in local controlled environments, but the transmission of
data across networks should be minimised if possible. Errors originating in user
input should be discovered as early as possible to prevent actions being processed
that ultimately fail, after wasting resources undertaking the processing, or can
return unexpected and incorrect results [39]. The following features have been
identified to assist the process:

• Invariant Data Caching: Certain data items do not vary in the time-frame
of a scenario, e.g. building coordinates, vehicle characteristics, road net-
work topology, and therefore are consistent for the scenario’s duration.
SPARQL queries iterate through matching graph patterns which typically
produce multiple parameter sets that consecutively vary by a single value
and so a value may be required multiple times before no longer being re-
quired. Modules should retain data objects locally to avoid unnecessary
retrieval and processing of repeated data, with possible time-based reten-
tion policies applied to manage resource usage.

G. L. Albiston et al./Semantic-based Assembly Framework 27

• Data Schema Conformance: The effectiveness and accuracy of any model
or system is heavily influenced by the quality of the input data. Publishers
produce data that is acted upon by consuming modules, which in turn
produce output data. Both parties must ensure that input and output
data conforms to the schema that they publish or utilise. The Shapes
Constraint Language (SHACL) [22] uses RDF triples to describe the shape
and constraints of a dataset. These triples can be encoded as part of
a published schema for automated validation and reporting to assist in
designing transformation queries or identifying errors.

• SPARQL Query Validation: An open system can accept queries from users
who lack understanding and resources to thoroughly test queries. The
graph pattern matching of SPARQL queries can result in zero results due
to misalignment between data schema and query structure, despite the
queries being syntactically correct. This misalignment persists through all
instance data so that initial failure of the first instance is repeated through
all instances.

• Local and Remote Configuration: The framework must support local only,
remote and hybrid configurations. In a local only configuration a knowledge-
base is constructed at the start of the process, modules are available in
the user application and network communication costs are not incurred.
In a remote and hybrid configuration data and modules are accessed from
services through the HTTP protocol. The configuration data is provided
as a data service with URI references to the framework and service being
passed to modules so that the details can be retrieved as required.

• Error and Warning Reporting: The orchestration of multiple software com-
ponents can produce a range of undesirable issues including implementa-
tion errors, no responses from remote services, and validation and confor-
mance outcomes. Users need visibility of these issues to investigate and
make adjustments.

7.2. Framework Configuration

The Framework Configuration describes the data structure and processes to
control the configuration of the framework. This control relates to two primary
tasks: 1) the direction to datasets and modules; and 2) mediating any schema
misalignments between datasets and modules. The schema for this data struc-
ture is shown in Fig. 11. Each Framework Configuration instance is described by
properties of Service Definition, Query Definition and Module Definition with
each investigation having a single Framework Configuration.

The configuration information can be stored in the knowledge-base in a spe-
cific graph or together with other parameter data for the Travel Scenario and
execution results. These three sets of information have use in post-execution
analysis or the reconstruction of the investigation for reproduction studies.

The Framework Configuration provides a central reference for associating any
global values required by module, e.g. traffic simulator configuration parame-
ters. The optional Framework Service property states the URL HTTP service

G. L. Albiston et al./Semantic-based Assembly Framework 28

from which the Framework Configuration can be retrieved. This permits the
configuration to be passed between, and retrieved by, remote modules using
only references to the Framework Configuration URI and its service.

7.3. Service Definition

The Service Definition describes a service, graph name and the type of service/s.
The Service Type states which particular parts of the core schema the data in
the graph satisfies. Additional Service Types may be defined by modules, and
published with accompanying schema, if their data requirements are broader
or vary from the core schema. The user would fulfil these requirements in the
knowledge-base and then signpost to them using the Service Definition of the
Framework Configuration.

The service URI indicates the address of the SPARQL endpoint where the
data is located. The graph URI indicates which graph within the endpoint holds
the required data. This allows two Framework Configuration to point to the same
service and retrieve different versions of data, e.g. Year 1 and Year 2. Alterna-
tively, the two Framework Configurations could point to different services and
retrieve their alternative versions of the same data, e.g. Year 1 from Service A
and Service B.

The knowledge-base can be organised by the user to follow their own graph
structure or separate the graphs onto multiple endpoint computers. The Service
Type identifies which data schema can be satisfied by each service URI and
graph URI pair. The module will seek the Service Type it requires without
concern for the underlying organisation.

In the most simple configuration a single knowledge-base could have a single
graph. However, a minimum separation of data into three graphs, i.e. configu-
ration, scenario and results, is recommended to assist management and clarity.

Fig 11. Schema for Framework Configuration.

G. L. Albiston et al./Semantic-based Assembly Framework 29

Similarly, while a module may distinguish two areas of the data as being sep-
arate, e.g. person and vehicle data, a user can place them in the same graph
without interference. Therefore, the Service Definition may refer to multiple
service types, which are using the same service URI and graph URI.

The SPARQL queries of a module are defined as templates containing SER-
VICE and GRAPH clauses. These clauses use place-holder keywords instead of
an explicit URI. During execution these place-holders are substituted for the
service URI and graph URI of the Service Definition with the appropriate Ser-
vice Type, or module defaults when none is defined. When these replacements
match the base service or graph of the query then the clause is removed.

URIs can define a variety of schemes, including HTTP and File [20], but
SPARQL only permits HTTP for service and graph URIs within queries due
to its focus on online access. The use of a File scheme is dependent upon the
implementation provided by the user’s Semantic Web library and its interpre-
tation of the content, so is not universally accessible. However, direct file access
provides quicker access when operating in a local only context by not incurring
the cost of HTTP encoding and communication. Therefore, benefits to set-up
requirements and performance can be achieved by supporting File scheme URIs.

Access of local datasets can be achieved by defining File service URIs to
point to the data as part of the configuration, but not forming part of the final
processed SPARQL query. This requires that only a single File URI be used in
a query and it must be the base service of the query. This will strip out service
clauses for graph data or modules accessible locally, while still permitting a
hybrid approach to other remote datasets and modules. Configurations requiring
multiple local, to the user, services would require all but one to be hosted as a
HTTP service to in effect become a remote service.

7.4. Query Definition & Query Binding

The modules of the framework utilise SPARQL queries to retrieve data from
services and invoke other sub-modules to generate data. These queries can be
interpreted at runtime as text strings meaning that modifications can be applied
or transmitted without requiring alteration or recompilation of modules. The
Query Definition permits a user to define a replacement query for substitution
of the module’s default query. The modules state the default query string and
its associate Query Type.

Users can re-write the queries to retrieve alternative pieces of data for a mod-
ule. Similarly, sub-modules can be called to perform additional or alternative
processing of the data within the module as property functions using standard
SPARQL syntax. The usage of SPARQL syntax enables existing protections
against exploitation or injection attacks of an open system to be maintained
when processing queries. The only requirement is that the SELECT and CON-
STRUCT variables are unaltered and bound so that the modules can retrieve
the expected data from them. The queries used by modules can be considered
to be data retrieval and sub-module execution.

G. L. Albiston et al./Semantic-based Assembly Framework 30

In the former type, the module is adapted to the available data structure
rather than transforming the data to the module’s requirements; easing the
burden of maintaining multiple knowledge-bases for different configurations. An-
other use case is the modification of calculations and equations, e.g. utility in
discrete choice models. The query strings and types of these queries are recom-
mended for publishing, but not mandatory as users can still utilise a module by
aligning the knowledge-base with the modules’ schema and there may a large
quantity of trivial queries used by a module. The latter type of queries pro-
vide control over which sub-modules are selected and executed. These should
be mandatory for publishing so that users have control to select alternative
functionality and configure their investigations.

In both cases the user may wish to redirect part of the query to one or
more services and/or graphs. This can be achieved by replacing, or inserting,
explicit service and graph clauses in the query. However, these would require
modifying each query string in each Framework Configuration that changes from
the default. Instead the Query Binding structure is provided so that modules
can check for variations and cross-reference to existing Service Definitions in the
Framework Configuration. The place-holder variable names within a query are
substituted for the defined service and graph URIs. Redirection across multiple
queries within the configuration, as many queries may refer to the same service,
can be achieved by changing the single Service Definition.

The SPARQL query language is expressive and flexible for users to structure
queries and retrieve data from the graph data of the knowledge-base. However,
the validation of the SPARQL queries have focussed upon grammatical checking
of queries [2]. These grammatical checks identify when keywords are mistyped
or functional requirements cannot be fulfilled, e.g. variables named as a result,
but are not included in sorting or grouping statements.

They do not pro-actively ensure that queries are valid for logical or schema
constraints and instead reactively error and fail during query processing. These
logical and schema constraints have been categorised into syntactic and seman-
tic validation [2]. The identified syntactic rules cover several cases including
positioning errors, e.g. a literal being used as a subject or property, and filter
conditions using literals of different data-types. The semantic rules are formed
into an OWL ontology to use inferencing to check for logical consistency in the
query. The application of these rules in addition to the grammatical checks will
reduce the potential for invalid queries being processed.

It is proposed that the potential for meaningful results can be further en-
hanced by validating the explicit URI present in the query and through the
checking of variable name usage in the query. The validation of explicit URI in
a query can initially be performed by checking against the schema of the mod-
ule. However, sub-modules may not exactly align with a module’s own schema,
which the replacement query is itself seeking to mediate. Therefore, explicit
class or property URIs can be extracted from the query and then used in ASK
and DESCRIBE queries to the sub-module’s service. When these explicit URIs
are valid to the sub-module then the query is valid for the module.

The checking of variable name usage is intended to highlight variables that

G. L. Albiston et al./Semantic-based Assembly Framework 31

occur once in a query, and so serve no purpose, or have strong similarity to
other variables, and so may be misaligned. The mismatching of variable names
can have implications for query optimisation, results range and the binding of
explicit values. The identification of single use variables is performed on the
clauses in the results, body, and aggregation sections of the query.

The similarity of variable names is found using the Levenshtein distance [9].
This measures the edit distance, i.e. number of insertions, deletions or substi-
tutions, required for two strings to match with a zero being an exact match.
Variable names longer than three characters are checked for one or two edit dis-
tance. In one edit distance, equal length strings are ignored as enumerations if
the initial or final characters are not the same, unless the variation is in case, e.g.
”vara” and ”varA”. There is currently no checking for consistent enumeration or
handling of more than a single enumerating character, e.g. ”var1” and ”var10”.
In the two edit distance, strings of equal length are checked for the transposing
of adjacent characters. The cases that result in two insertions, two deletions,
non-adjacent substitutions and non-transposing substitutions, i.e. more than
two character values, are ignored as being too dissimilar.

These represent warnings, as similar variable names may be the user’s inten-
tion, and so should not prevent execution, but can indicate the cause, or poten-
tial existence, of error in a query. However, the single use of variable names can
represent errors as a value must be achievable for the query to execute. Once a
query has been validated the outcome can be short term cached as its structure
should not change for any following queries, while the data instances are iterated
through, and invalid queries can be quickly rejected. The further development
of these validation steps for the framework is an area of future work.

7.5. Module Definition

The final component of the configuration is the Module Definition. This iden-
tifies a module and the additional sub-modules that a user has defined in the
replacement query strings. The query validation process checks the explicit URIs
present in a query against those of the schema. The URI of a replacement prop-
erty function for a sub-module does not feature in the schema, and will not be
present in the knowledge-base of a service, and so the query would be regarded
as invalid.

A module can know its own URI and those of the default sub-modules so
that they can be excluded during validation. However, a module cannot dis-
tinguish between user defined sub-module properties and incorrectly entered
property URIs. Therefore, the Module Definition permits the user to state the
sub-modules URIs that are permitted in replacement queries.

7.6. Validation Result

The framework is developed based on the Semantic Web design principles of an
open network. Information is transferred between modules and knowledge-bases

G. L. Albiston et al./Semantic-based Assembly Framework 32

of the framework with customisation by the user. The previous sections have
outlined the mechanisms available and proposed for ensuring that the data being
produced and consumed is valid and to ensure that queries have the potential
to produce meaningful results.

Once these validation steps have been performed it is necessary to report back
to the user the outcome so that remedial action can be taken. The modules can
also check for errors reported by their sub-modules and abort their execution.
The inclusion of this validation reporting has more general usage as a means for
modules to also report other information that may assist the user, e.g. policy,
execution errors or additional meta-data, without it being included with the
results of executing the framework.

The data structure for capturing the data and query validation reports is
shown in Fig. 12. The structure has properties for a text summary of the vali-
dation results, e.g. the variable names or URI found to be invalid in a query, and
whether the result constitutes an advisory warning or a critical error. Additional
properties are defined for the identified subclasses of query and data validation
errors. Data Validation Results provide specific references to the data source
through service and graph URIs. Query Validation Results identify the URI of
the invalid query used in the Framework Configuration. Each Query Validation
Result also indicates the result type so that further background information into
the cause can be found.

In summary, the Framework Configuration provides a mechanism for direct-
ing the execution to the services and graphs containing the data necessary to
satisfy the travel demand generation modules. Published datasets or SPARQL
endpoints adhering to the core schema for the travel demand model can reduce
issues of misaligned data. However, the framework also supports adaptation and
transformation of data for new purposes or incorporating alternative datasets
and modules by the user providing modified module queries.

These user defined queries introduce greater potential for data and schema
misalignment or invalid queries due to misunderstanding or inadequate testing.
It is proposed that performing schema and query validation, by applying ex-

Fig 12. Schema for Validation Result.

G. L. Albiston et al./Semantic-based Assembly Framework 33

isting techniques and proposed solutions to address specific issues, can prevent
redundant usage of resources. A feedback mechanism is included in the Frame-
work Configuration to assist the user in understanding and rectifying the source
of errors and potential issues identified by these techniques.

The proposed Framework Configuration can support local, remote and mixed
configurations. The accessing of these configurations is achieved using the HTTP
support provided by SPARQL federated queries, but also allows direct access
to file system knowledge bases to provide efficiency and simplify set-up.

The use of SPARQL is applied throughout the framework to construct, trans-
form, redirect and execute scenarios. This provides a single language that is
platform independent so that users do not need to learn multiple programming
languages and can apply their developed skills repeatedly. The framework does
not introduce any variation to the SPARQL standard and is instead an applica-
tion of its language and principles. Therefore, the barrier to using the framework
is lowered and potentially requires a narrower skill set than a conventional so-
lution for the travel demand generation process.

The requirements of the Framework Configuration have been established with
no domain specific requirements identified. It is put forward that the framework
provides a general solution for accessing and configuring modular solutions for
other problems. The further development of the framework would seek to de-
velop, or expand upon existing, mechanisms for the discovery and negotiation of
remote services of modules and datasets to assist the user in the configuration
process.

8. Evaluation of Travel Demand Generation

This section considers the implemented prototype that has been developed using
the schema and the access configuration framework discussed in the previous sec-
tions. The described experimental scenario highlights areas controlled through
the knowledge base rather than implementation design decisions. The travel de-
mand generated by the prototype using the experimental scenario is considered
along with the variations in travel dynamics when applied to two third-party
traffic simulators. Finally, there is evaluation of several local and remote config-
urations of the knowledge base and modules to demonstrate the impact these
configurations on the performance of the demand generation process.

The experimental scenario knowledge-base of the prototype was constructed
using a randomly generated road network of 14km by 8km using SUMO simu-
lator’s NETGENERATE application [23] and converted into RDF, see Fig. 8,
using an XSLT template. RDFS inferencing was applied to the knowledge base
using the RDF schema described previously, and published public schemas, to
provide automatic inferencing and data validation, e.g. datatype checking, car-
dinalities and inferred sub-class membership and sub-property relationships.
Applying OWL2 inferencing and additional property relationships would en-
able more diverse inferencing, e.g. relationships between locations and persons
based on common activity types and person mode usage based upon vehicle
usage.

G. L. Albiston et al./Semantic-based Assembly Framework 34

A dataset was produced based on a road network containing one thousand
residence locations, five education locations, one hundred employment locations,
five freight depot locations and thirty locations each for retail, leisure, personal
business, and freight delivery. Each location was assigned geospatial coordinates
randomly selected from a set of evenly spaced points running alongside road
links. Locations were also selected at the road links closest to the cardinal points
and a central train station as starting points for external non-resident travellers
using transport link activities.

Each residence location contains a single household Travel Group consist-
ing of four persons to simulate four thousand resident individuals. Households
were assigned one of the ten Activity Pattern Sets with each person in the
group being allocated a single Activity Pattern. Ten Activity Pattern Sets were
manually created with each consisting of four Activity Patterns. The Activity
Patterns started and ended with home activities and consist of one or more
activity blocks ranging from half hour to nine and a half hours. The start and
end activities could be any Location or Activity Type but all were assigned to
residence Locations.

The activity pattern’s start and end times were chosen from the four quarters
of the hour, with later random variation of plus or minus fifteen minutes. Lunch
time and evening activities were included around core day time education and
employment activities, but interrupted by lunch time, with a home activity prior
to other evening activities.

Each resident Person was randomly allocated activities at locations according
to activity types with one employment and education location and ten each for
retail, leisure and personal business locations. Locations were assigned multiple
activity types. House residences provide home and leisure activity types due to
leisure activities also including socialising with friends and family. Other loca-
tions provide employment and other related Activity Types. This demonstrates
the potential for multiple activities and alternative activity types to take place
at a single geographic location.

Non-resident persons were similarly assigned locations for activities but were
not assigned residences. Instead these were allocated to transport link activities
at edge of network Gateway Links and Train Station locations. Two hundred
Travel Groups were split evenly between the five transport link locations with
four Persons per group. Activity Pattern Sets following those of the resident
persons were produced but with residence activities replaced by transport link.

Freight driver persons were allocated an activity at a freight depot location
to start and end the schedule. Each freight depot was allocated a Travel Group
consisting of ten freight drivers. All freight drivers were assigned the same Ac-
tivity Pattern of deliveries every thirty minutes throughout the day but varying
travel range.

No freight delivery locations were asserted for the freight drivers. Instead, po-
tential locations were searched dynamically according to proximity of the current
location and travel range of the Activity Pattern item demonstrating contextual
selection. Destination selection was equalised through the freight driver utility
coefficients and freight vehicle mode parameters. All the described Locations

G. L. Albiston et al./Semantic-based Assembly Framework 35

and Activity Types could be intermixed so that residents and freight drivers
may travel out to gateway links and freight delivery activities can take place at
residences.

The described person types, activities and locations were applied in the user
schema, rather than prototype design, and can therefore be modified. These
have been selected to illustrate typical domain concepts a user may wish to
model. The implemented prototype is able to operate upon these in a generic
manner while the user can still apply selection to use alternative modules, e.g.
trip planning for freight. This is in contrast to some travel demand models, e.g.
CEMDAP [38], which divides the population into workers and non-workers with
fixed activity travel patterns.

Each resident was potentially allocated a single private Vehicle from a dis-
tribution covering car, motorbike and bicycle Modes with children restricted to
bicycles. All non-residents arriving via gateway link were assigned either car or
motorbike Vehicles. Those non-residents arriving at the train station were not
assigned vehicles. All freight drivers were assigned Heavy Goods Vehicles. All
residents and non-residents were assigned personal walking Modes, while freight
drivers were not assigned a personal Mode to enforce continuous usage of their
vehicles.

Personal utility coefficient weightings for the Random Utility Model (RUM)
were specified according to the three person types as a model simplification
rather than technical requirement. Each Mode was assigned max speed, fixed
cost and variable cost definition for the Travel Scenario. The RUM was tuned,
except freight drivers, to provide a walking preference for stages shorter than
1.4km and using vehicles for longer trips as can be noticed in Fig. 9. This
threshold is intended to provide a mix of mode usage and was based upon
indicative distance of traveller walking [33].

The results of the traffic simulators from scheduling for all 5,000 individuals
can be seen in Fig. 13, 14 and 15. The simulation has been executed over the
period of one day. In Fig. 13, the trips in progress are shown between ideal
schedule and simulator. The general M-shaped curve of weekday commuting
can be seen along with lunch time and evening travel with the general pattern
directly influenced by the activity pattern templates. Both simulators can be
seen to have higher numbers of travel stages in-progress.

Fig. 14 shows the activity intervals in progress and is the inverse of the travel
stages, as individuals who are not travelling are performing activities, as can be
seen by correlation with the peaks seen in Fig. 13. 25,806 out of 26,280 (98.2%)
activity intervals were scheduled requiring 26,765 travel stages. The figure shows
the switch from home, delivery and transport link activities at night to day time
activities. The structure and hierarchy of these activities has been chosen for
illustration and the user is able to expand and modify as required.

The final graph illustrated in Fig. 15 shows the mean delay between the ideal
schedule and the simulated travel of the traffic simulators. Interactions between
individuals and also the traffic infrastructure means that longer travel durations
would be expected. We can identify noticeable differences between simulations
derived from the same input data. In SUMO, extreme values can be seen at both

G. L. Albiston et al./Semantic-based Assembly Framework 36

ends of the day when travel volumes are lowest, indicating severe disruption for
a few travellers, but a general alignment with traveller volume shown in Fig. 13.

In MATSim, the mean delay peak occurs during the lower volume midday
period, excluding an end scenario spike, suggesting more generalised delays are
being experienced. The maximum delay was consistently found in MATSim,
peaking at 83 minutes. The generated travel demand is platform agnostic and
can be transformed and configured according to the target application, e.g.
traffic simulators, or analysis, e.g. aggregation by type or geographic area.

The prototype was applied in several configurations of the framework to
explore the impact on execution durations of network communications. These
configuration scenarios have been executed as in-memory storage and using
local services on the same computer, i.e. http://localhost addresses through the
loop-back of the network adapter. The configurations were as follows:

• Local: local configuration with knowledge-base, modules and results all
local to the user application.

• Data: remote data configuration with the entire knowledge-base on a re-
mote server and modules and results are local to the user application.

• Joined: remote data and module configuration with both on the same
remote server and results are returned to the user application.

• Split: remote data and module configuration with each on a separate re-
mote server and results returned to the user application.

The results of these different scenarios can be seen in Figure 16 and Table
1. The Local configuration is quickest to complete as would be expected. This

Fig 13. Number of travel stages by simulator per one-minute interval.

G. L. Albiston et al./Semantic-based Assembly Framework 37

Fig 14. Number of activities by activity type per one-minute interval.

configuration does not incur the HTTP overhead as it can directly access the
knowledge-base and results for all operations. The Joined configuration is next
quickest as network communication only incurs when commencing the genera-

Fig 15. Mean error of travel stages by simulator per one-minute interval.

G. L. Albiston et al./Semantic-based Assembly Framework 38

Fig 16. Mean duration for completion of alternative in-memory configurations (10 iterations).

tion of each Travel Group and when returning the generated results back to the
user application. The Data configuration is then closely followed by the Split
configuration. These incur the most communication as the modules have to re-
trieve data about the Travel Group being processed. The advantage of the Data
configuration is that it has local access for the storage of results once generated.

The Split configuration represents the idealised scenario where the user only
needs to set-up the configuration before all the required data of the knowledge-
base is retrieved and processed by remote module. It is found to take 7.2 times
longer to execute on the same scenario data as the local configuration even in
this best-case scenario of local HTTP connection. However, there would be the
potential for these remote services to employ greater computational resources or
distributed computing as mentioned earlier to offset the communication costs.

It can also be seen that each of three alternative configurations follows the
same general pattern with peaking and troughs in the same schedule batches.
However, these do not follow the fluctuations shown in the Local configuration.
Suggesting that the difference between the remote and local configurations can

Configuration Mean Std. Dev. Min Max
Data 1,820.389 12.741 1,802.013 1,838.979

Joined 1,407.687 10.102 1,392.702 1,421.278
Local 270.469 4.587 264.932 278.806
Split 1,952.167 16.220 1,931.723 1,981.499

Table 1
Table of completion duration (seconds) of alternative in-memory configurations (10 test

iterations per configuration).

G. L. Albiston et al./Semantic-based Assembly Framework 39

be solely attributable to the cost of HTTP communication.
Another area of investigation is the use of caching to store invariant data

rather than continuously retrieve it from the knowledge-base. All the previous
results reported using caching. Testing of a single iteration of a Resident only
scenario for 1,000 individuals with in-memory storage saw performance drop
from 4 minutes 30 seconds with caching to 5 hours 25 minutes 27 seconds without
caching, an increase of 72.3 times. Therefore, the application of caching is not
really an optional implementation decision. There cannot be a reliance upon
retrieving data from the knowledge-base on-demand and instead opportunities
to retain data for future use must be identified. These performance figures can
be expected to decline for persistent storage and remote configurations.

In summary, the prototype has produced travel demand that varies by mode,
destination and time according to local and global concepts and parameters.
Expansion of concepts, e.g. activities, modes and travel users, and modification
of parameters are controlled through the knowledge base rather than being
explicitly designed into the modules.

The impact of utilising remote configurations has been shown to be notice-
able, but not prohibitive. The travel demand generation process does not require
real-time responses and so once in progress can be undertaken over a prolonged
period, while preparing data and creating integrating interfaces requires a di-
rect investment of resources and time by the user. The processes of caching
and multi-threading have also been found to improve execution and an online
approach creates the potential for accessing greater computational resources. In
principle, continued progress in network communication technology and speeds
should also reduce the difference between local and remote configurations, but
would be offset by computational performance improvements and a difference
will always exist in some form.

The retrieval of all necessary data to construct a local knowledge-base as the
initial process would still be considered the most efficient approach. This also
presents the opportunity for customisation and adaptation by users. These are
still activities that the Semantic Web can support in achieving by simplifying
and standardising the process of constructing and simulation transport travel
demand, whether for local, remote or hybrid execution. The proposed Frame-
work Configuration represents a further development to minimise the burden for
users in preparing, accessing, and integrating datasets and module implementa-
tions and improve the quality and range of traffic and transport investigations.

9. Challenges in Utilising Semantic Web Technologies for
Implementing Travel Demand Generation

The previous section discussed the prototype design for execution on a sam-
ple scenario. This section discusses the challenges identified during developing
and implementing the prototype design of the Semantic-based travel demand
generation framework.

G. L. Albiston et al./Semantic-based Assembly Framework 40

9.1. Traffic Simulator Interface Design

The Traffic Simulator Interface stage involves the conversion of the Activity
& Travel Schedules to the simulator input format, XML for both SUMO and
MATSim simulators, and return of the results to the knowledge base. A con-
ventional design approach is programming dedicated parsing interfaces for each
simulator. However, these require maintenance for changes in both the sim-
ulator and knowledge base schema. This approach is also prescriptive in the
supported platform and not easily adapted to user alterations of the knowledge
base schema, e.g. property labelling or additional data.

This does not fit with the objective of providing flexibility and choice in as-
sembling traffic and travel demand investigations. The XSLT technology [19]
enables XML schema conversion using using template files read into platform
independent engines. These templates can be modified in any text editor ac-
cording to the data available and required. Several RDF serialisation formats
are available including RDF/XML.

There are several versions of RDF/XML, but it is necessary to use the plain
serialisation with XSLT due to template complexity and efficiency. The plain
serialisation forces the use of a consistent rdf:Description label for all resources,
instead of selecting an arbitrary class name, in data with individuals having
multiple classes, and flattens the structure to remove nested child elements.
Other RDF serialisations can introduce a more complex class labelling approach,
due to RDF permitting multiple classes for each resource, which increases the
complexity and maintenance of templates. A drawback of this RDF format is a
relatively slow serialisation process.

9.2. SPARQL Language Expressivity

The SPARQL query language is a powerful tool for searching, extracting and
transforming the data contained in the knowledge base. The language supports
numerous built-in functions and the potential for performing complex operations
solely within SPARQL queries. However, its execution approach does not sup-
port iteration over a set of data with actions dependent upon earlier iterations,
e.g. scheduling of later activities and travel cannot be based on earlier decisions
in a single query. Instead multiple queries would need to be executed, requiring
management of this process, or implementing a property function module, as in
the prototype.

Another area of inconvenience is the inability to express SPARQL queries as
re-usable functions. The retrieval and transformation of data may require several
steps which are used in multiple queries. SPARQL supports sub-queries, written
out in full so increasing query complexity, or extending the query engine with
filter and property functions requiring additional configuration. The SPIN and
SHACL technologies use SPARQL syntax to describe queries encoded into the
schema and executed by their engines. However, these are extensions and not
standard SPARQL. Expressing re-usable SPARQL queries as functions within
a core schema would allow easy distribution and reduce repetition.

G. L. Albiston et al./Semantic-based Assembly Framework 41

Finally, sophisticated queries can be written using SPARQL to perform calcu-
lations and generate new values and triples. However, the complexity of express-
ing these operations and the query optimisation process can make performing
these queries computationally expensive. Operations may be performed on data
that is later discarded or the same values calculated repeatedly for alternative
parts of the dataset.

In addition, SPARQL queries are checked for syntactic correctness but not
consistency between variable names or the existence of predicates in the dataset.
This can result in minor typographic errors or schema changes causing unex-
pected and unnoticed outputs. Therefore, while sophisticated functionality, e.g.
calculating Discrete Choice probabilities and constructing Travel Stages from
Stage Estimates, can be achieved within SPARQL queries the use of property
functions to access an imperative programming language can improve mainte-
nance and performance.

9.3. SPARQL Extension Property Function Arguments

The processing of arguments passed into filter and property functions in SPARQL
queries follows the Functional Programming paradigm. A function is called for
each combination of parameter values without visibility of previous or following
calls. Therefore, processing of encoded, invariant or externally retrieved data
would happen repeatedly leading to an avoidable increase in execution time.
This can be overcome by using a caching strategy within the property function
to retain re-usable data. A caching strategy was applied in the prototype for
invariant data, e.g. location coordinates, which reduced execution duration by
a magnitude of approximately ten.

The Functional Programming paradigm also affects related items that might
expected to be treated as a collected list and are instead separated into multiple
discrete function calls. This can be mitigated by using the SPARQL
GROUP CONCAT aggregation term to produce a delimited string. Alterna-
tively, a grouping structure, termed an N-ary relationship, can be defined. The
root subject is passed into the function, which then retrieves the collection of
related items.

10. Conclusion

The research described in this paper describes a novel knowledge-based approach
that utilises Semantic Web technologies for the modelling and simulation of
traffic and travel demand. It is proposed that this approach will enable the
construction of a knowledge base, from local and remote data sources, upon
which a set of discrete and interchangeable modules to generate components of
travel demand can be developed and distributed.

Our knowledge-based approach developed a core schema that models the
interactions between the major stages of population synthesis, activity-based

G. L. Albiston et al./Semantic-based Assembly Framework 42

travel demand and traffic simulation. This schema has been applied to a proto-
type in order to explore the practical implications of this approach. An expanded
user defined schema was combined with the prototype to model three types of
travellers of resident, non-resident, and freight. These travellers use a range
of modes and engage in various activities to generate travel demand that was
simulated with two established third-party traffic simulators.

The implemented prototype and experimental scenario has demonstrated
that the user can include their own schema of concepts; select alternative mod-
ules based on those concepts; access and modify both local and remote datasets
and apply travel demand to multiple traffic simulators. The implemented mod-
ules are generic designs driven by the schema and data of the knowledge base.
However, the overall modular architecture is designed to enable substitution of
modules by users.

These features can help address the current shortcomings of singular be-
havioural models and the burden of comparing travel demand models. In the
prototype, the user has control over the activity patterns, schema, module pa-
rameters, module selection and discrete choice calculation. These can be varied
by class and properties present in the data. The applied query mechanism also
allows results to be extracted in the user’s chosen formulation.

Investigation has been undertaken into the performance of alternative config-
urations of datasets and modules to demonstrate the practical achievement and
consider their effectiveness. These configurations were controlled using the pro-
posed access configuration framework approach in a local network environment.
This has shown that the modules and datasets can be separated into discrete
components.

It was found that a local only configuration was 7.2 times quicker than al-
ternative HTTP configurations over a loop-back network. Therefore, the avail-
ability of a local configuration for simpler investigations is highly useful. The
utilisation of a caching strategy by modules was found to reduce execution
durations by 72.3 times suggesting that caching strategies would always be rec-
ommended for modules. Further investigation is needed into the implications of
the modules and datasets being hosted in an online environment, where execu-
tion durations are likely to be extended, but greater resources could be made
available for processing.

The access configuration framework also supports the provision of user de-
fined queries to reconcile between modules and datasets adhering to modified or
alternative schemas. The need has been identified for the extended validation of
these queries to prevent redundant resource usage and mechanisms are provided
to inform users. Initial solutions to achieve this validation has been discussed
and identified as an area future work. A mechanism is provided for feedback on
the outcome of these validation steps to assist the user in understanding and
rectifying errors.

The framework enables the user to select and apply modules of their own
interest; incorporate alternative implementations for their own study; apply pa-
rameter and technique variations to explore their impact; and operate this func-
tionality using existing SPARQL query language syntax. The access framework

G. L. Albiston et al./Semantic-based Assembly Framework 43

configuration data can be combined with scenario parameters utilised in the
experimental investigation to form a complete package of information to assist
in reproduction of the investigation or its replication by other investigators.

Further work is needed to address and expand upon several identified fea-
tures. There is a need to formalise module descriptions of data requirements and
functionality to facilitate interchange. Tools are also needed to assist in knowl-
edge base construction. The query validation process can be further developed
to identify incorrect class and property URI and variable names.

The modules in the implemented prototype can be further developed to in-
clude: alternative forms of decision-making; intra-household cooperation; loca-
tion popularity weightings and additional route planning, e.g. public transport.
An area of investigation is the application of other Semantic Web technolo-
gies, e.g. OWL reasoning; SPIN rules; and SHACL validation, for knowledge
inferencing and implementing travel demand functionality.

Finally, further investigation is required in applying the proposed remote ac-
cess of data sources and modules as an online framework. The investigation
has focussed upon loop-back network communication and there is no considera-
tion of network latency, configuration, throughput or capacity. These results are
intended to be indicative of the impact of applying these alternative configura-
tions and represent best-case scenarios. Establishing a complete benchmarking
process to evaluate a real-world networking environment would be an area of
future work.

In conclusion, the proposed approach enables the integration of the multiple
stages of travel demand modelling in a single framework. There is opportunity to
utilise online data sources in a manner that can be easily extended and modified.
The problem of travel demand modelling can be separated into inter-changeable
modules based on common data requirements, which can be extended to apply
new or alternative solutions. The SPARQL query language provides immediate
benefits as a mechanism for retrieving, inferring, transforming and storing data
in both local and remote knowledge bases. This allows user control of concepts
for their own purposes or to incorporate concepts from outside of the transport
engineering domain.

References

[1] Albiston, G. L., Osman, T. and Chen, H. (2018). GeoSPARQL-Jena:
Implementation and Benchmarking of a GeoSPARQL Graphstore. Forth-
coming.

[2] Almendros-Jiménez, J. M., Becerra-Terón, A. and Cuzzocrea, A.
(2017). Detecting and Diagnosing Syntactic and Semantic Errors in
SPARQL Queries. In 7th ACM International Workshop on Linked Web
Data Management. CEUR-WS.

[3] Arentze, T. and Timmermans, H. (2000). Albatross: a learning based
transportation oriented simulation system. Citeseer.

[4] Axhausen, K. W. (2007). Definition of movement and activity for trans-
port modelling, 2nd edition ed. Emerald Group Publishing Limited.

G. L. Albiston et al./Semantic-based Assembly Framework 44

[5] Berners-Lee, T., Hendler, J. and Lassila, O. (2001). The Semantic
Web. Scientific American 284 28-37.

[6] Black, C., Barrack, C., Ball, C., Keen, A., Clark, M.,
Gilbert, D. and McInroy, H. (2013). Where is 2+ car sharing headed?
Technical Report, Carplus Ride Share Working Group by Carplus.

[7] Bukhari, A. C. and Baker, C. (2013). The Canadian health census as
Linked Open Data: towards policy making in public health. In 9th Inter-
national Conference on Data Integration in the Life Sciences; July 11-12,
2013; Montreal, PQ.

[8] Castiglione, J., Bradley, M. and Gliebe, J. (2014). Activity-based
travel demand models: a primer Technical Report, Transportation Research
Board of National Academies.

[9] Cohen, W., Ravikumar, P. and Fienberg, S. (2003). A comparison of
string metrics for matching names and records. In Kdd workshop on data
cleaning and object consolidation 3 73-78.

[10] Corsar, D., Markovic, M., Edwards, P. and Nelson, J. D. (2015).
The Transport Disruption Ontology. In International Semantic Web Con-
ference 329-336. Springer.

[11] David, N. (2013). Validating simulations. Simulating Social Complexity
135-171. Springer.

[12] Directive, I. (2007). Directive 2007/2/EC of the European Parliament
and of the Council of 14 March 2007 establishing an Infrastructure for
Spatial Information in the European Community (INSPIRE). Published in
the official Journal on the 25th April.

[13] Goulias, K. G., Bhat, C. R., Pendyala, R. M., Chen, Y., Paleti, R.,
Konduri, K. C., Lei, T., Tang, D., Youn, S. Y. and Huang, G. (2012).
Simulator of activities, greenhouse emissions, networks, and travel (SimA-
GENT) in Southern California. In 91st annual meeting of the Transporta-
tion Research Board, Washington, DC.

[14] W3C OWL Working Group (2012). OWL 2 Web Ontology Language
Document Overview (Second Edition) Technical Report, World Wide Web
Consortium (W3C).

[15] Gruber, T. R. (1995). Toward Principles for the Design of Ontologies
Used for Knowledge Sharing. International Journal of Human-Computer
Studies 43 907-928.

[16] Hensher, D. A. and Button, K. J. (2008). Handbook of Transport Mod-
elling. Elsevier 01371524.

[17] Horeni, O. (2012). Measuring Mental Representations Underlying
Activity-Travel Choices, PhD thesis, Eindhoven University of Technology.

[18] Horni, A., Nagel, K. and Axhausen, K. W. (2016). The multi-agent
transport simulation MATSim. Ubiquity Press London.

[19] Kay, M. (2017). XSL Transformations (XSLT) Version 3.0 Technical Re-
port No. Jul, 14, World Wide Web Consortium (W3C).

[20] Kerwin, M. (2017). The ”file” URI Scheme Technical Report, Internet
Engineering Task Force (IETF).

[21] Kirill, M. and Axhausen, K. W. (2011). Population Synthesis for Mi-

G. L. Albiston et al./Semantic-based Assembly Framework 45

crosimulation: State of the Art. In Transportation Research Board 90th
Annual Meeting.

[22] Knublauch, H. and Kontokostas, D. (2017). Shapes Constraint Lan-
guage (SHACL).

[23] Krajzewicz, D., Erdmann, J., Behrisch, M. and Bieker, L. (2012).
Recent development and applications of SUMO simulation of urban mo-
bility. International Journal On Advances in Systems and Measurements 5
128-138.

[24] Lécué, F., Tallevi-Diotallevi, S., Hayes, J., Tucker, R.,
Bicer, V., Sbodio, M. L. and Tommasi, P. (2014). Star-City: Semantic
traffic analytics and reasoning for city. In Proceedings of the 19th interna-
tional conference on Intelligent User Interfaces 179–188. ACM.

[25] Michel, F., Montagnat, J. and Faron-Zucker, C. (2013). A survey
of RDB to RDF translation approaches and tools.

[26] Niaraki, A. S. and Kim, K. (2009). Ontology based personalized route
planning system using a multi-criteria decision making approach. Expert
Systems with Applications 36 2250-2259.

[27] Perry, M. and Herring, J. (2012). GeoSPARQL - A Geographic Query
Language for RDF Data Technical Report, Open Geospatial Consortium
(OGC).

[28] Rasouli, S. and Timmermans, H. (2014). Activity-based models of travel
demand: promises, progress and prospects. International Journal of Urban
Sciences 18 31-60.

[29] Schneider, M., Rudolph, S. and Sutcliffe, G. (2012). Modeling in
OWL 2 without Restrictions. arXiv preprint arXiv:1212.2902.

[30] Smith, L., Beckman, R. and Baggerly, K. (1995). TRANSIMS: Trans-
portation analysis and simulation system Technical Report, Los Alamos
National Lab., NM (United States).

[31] Soares, G., Kokkinogenis, Z., Macedo, J. L. and Rossetti, R. J.
(2014). Agent-Based Traffic Simulation Using SUMO and JADE: An Inte-
grated Platform for Artificial Transportation Systems. Simulation of Urban
Mobility 44-61. Springer.

[32] Stadler, C., Lehmann, J., Hffner, K. and Auer, S. (2012). Linked-
Geodata: A core for a web of spatial open data. Semantic Web 3 333-354.

[33] Stillwell, D., Pini, C., Cummings, J. and Fazil, A. (2017). England
National Travel Survey: 2016 Technical Report, Department for Transport.

[34] Tamminga, G., Knoppers, P. and Lint, J. V. (2014). Open traffic: A
toolbox for traffic research. Procedia Computer Science 32 788-795.

[35] Tamminga, G., van den Brink, L., Lint, H. V., Stoter, J. and
Hoogendoorn, S. (2013). Toward GIS-Compliant Data Structures for
Traffic and Transportation Models. In Transportation Research Board 92nd
Annual Meeting.

[36] van den Brink, L., Janssen, P., Quak, W. and Stoter, J. E. (2014).
Linking spatial data: automated conversion of geo-information models and
GML data to RDF. International Journal of Spatial Data Infrastructures
Research 9,(2014).

G. L. Albiston et al./Semantic-based Assembly Framework 46

[37] Zheng, H., Son, Y.-J., Chiu, Y.-C., Head, L., Feng, Y., Xi, H.,
Kim, S. and Hickman, M. (2013). A Primer for Agent-Based Simulation
and Modeling in Transportation Applications Technical Report, United
States. Federal Highway Administration.

[38] Ziemke, D., Nagel, K. and Bhat, C. (2015). Integrating CEMDAP and
MATSim to increase the transferability of transport demand models. Trans-
portation Research Record: Journal of the Transportation Research Board
2493 117-125.

[39] SOA Source Book Technical Report, The Open Group.

	Acknowledgement
	List of Acronyms
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Motivation
	1.2 Traffic and Transport Modelling Domain
	1.2.1 Representation of Journeys
	1.2.2 Terminology of Travel Demand Models
	1.2.3 Modelling Considerations of Activity-Based Demand Models
	1.2.4 Types of Activity-Based Demand Models
	1.2.4.1 Constraints Based
	1.2.4.2 Discrete Choice/Econometric
	1.2.4.3 Computational Process Model (CPM)
	1.2.4.4 Agent-Based

	1.3 Utilising Semantic Web Technologies
	1.3.1 Resource Description Framework (RDF)
	1.3.2 SPARQL Protocol and RDF Query Language (SPARQL)
	1.3.3 Schema Languages
	1.3.4 Rule Languages

	1.4 Problem Statement
	1.5 Proposed Solution
	1.6 Research Questions
	1.7 Thesis Contributions to Knowledge
	1.8 Research Methodology
	1.9 Thesis Structure

	2 Related Works
	2.1 Introduction
	2.2 Context of Travel Demand Modelling
	2.3 Challenges of Travel Demand Modelling
	2.4 Conclusion

	3 Architecture of the Proposed Semantic-based Travel Demand Generation Framework
	3.1 Introduction
	3.2 Design of Framework for Travel Demand Generation
	3.3 Application of Framework for Generation of Travel Demand
	3.3.1 Population Synthesis
	3.3.2 Knowledge-Base Construction
	3.3.2.1 Spatial Allocation
	3.3.2.2 Individual Classification and Linking
	3.3.2.3 Network Conversion and Land Use Relations

	3.3.3 Travel Demand Model
	3.3.3.1 Activity Pattern Generation
	3.3.3.2 Scheduling
	3.3.3.3 Trip Planning
	3.3.3.4 Network Routing
	3.3.3.5 Feedback and Learning

	3.3.4 Travel Simulator Interface

	3.4 Design of Framework Software Application and Configuration
	3.4.1 Design of Framework Software Application
	3.4.2 Configuration of Framework Components
	3.4.2.1 Local Knowledge-Base and Local Modules Configuration
	3.4.2.2 Remote Knowledge-Base and Local Modules Configuration
	3.4.2.3 Local Knowledge-Base and Remote Modules Configuration
	3.4.2.4 Remote Knowledge-Base and Remote Modules Configuration
	3.4.2.5 Implications of Remote Configurations

	3.5 Chapter Summary

	4 Semantic Modelling of Travel Demand Generation Data
	4.1 Introduction
	4.2 Semantic Web Schema Design
	4.2.1 Semantic Web Principles
	4.2.2 N-ary Relationships
	4.2.3 Ordered Lists
	4.2.4 Value Set Design Pattern

	4.3 General Data Concepts for Travel Demand
	4.4 The Temporal and Geospatial Modelling of Travel Demand
	4.4.1 Geospatial
	4.4.2 Temporal

	4.5 Concepts from the Physical World
	4.5.1 Person
	4.5.2 Travel Group
	4.5.3 Mode
	4.5.4 Vehicle
	4.5.5 Transit Line
	4.5.6 Activity
	4.5.7 Location
	4.5.8 Geographic Area
	4.5.9 Network Infrastructure
	4.5.10 Goods

	4.6 Concepts for Travel Demand Modelling and Traffic Simulation
	4.6.1 Travel Scenario
	4.6.2 Activity Pattern
	4.6.3 Activity and Travel Schedule
	4.6.4 Stage Estimate
	4.6.5 Trip Context, Stage Request and Trip Plan
	4.6.6 Trip Vehicle
	4.6.7 Activity and Travel Result

	4.7 Extension of the Person and Travel Group Concepts
	4.8 Utilisation of the Schema
	4.9 Organisation of the Knowledge-Base
	4.10 Chapter Summary

	5 Framework Configuration for the Selection of Alternative Behaviour, Techniques and Data
	5.1 Introduction
	5.2 Constructing the Knowledge-Base of the Framework
	5.2.1 Constructing a Local Knowledge-Base from Local Sources
	5.2.2 Constructing a Local Knowledge-Base from Remote Sources
	5.2.3 Retrieving and Transforming Data for the Local Knowledge-Base

	5.3 Controlling and Executing the Modules of the Framework
	5.3.1 Framework Configuration
	5.3.2 Service Definition
	5.3.2.1 Service and Graph Query Manipulation
	5.3.2.2 File and HTTP Service URIs

	5.3.3 Query Definition
	5.3.4 Module Definition
	5.3.5 Caching of Invariant Data
	5.3.6 Ensuring Validation and Conformance of Data to the Schema
	5.3.7 Ensuring Validation and Conformance of SPARQL Queries to the Schema
	5.3.7.1 Validation of Query Unique Resource Identifiers
	5.3.7.2 Validation of Query Variable Names

	5.3.8 Reporting the Schema Data and Query Validation
	5.3.9 Executing the Framework in Local and Remote Configurations
	5.3.10 Altering the Execution Flow of Modules

	5.4 Requirements of the Framework
	5.5 Security of the Framework
	5.6 Chapter Summary

	6 Implementing the Travel Demand Generation Framework
	6.1 Introduction
	6.2 Implementation of Prototype Framework Modules
	6.3 Configuration of the Framework and Knowledge-Base
	6.4 Design Features of the Prototype
	6.4.1 Scheduling Module
	6.4.2 Trip Planning Module
	6.4.3 Network Routing Module
	6.4.4 Traffic Simulator Interfaces

	6.5 Chapter Summary

	7 Evaluation of Prototype Travel Demand Generation Framework
	7.1 Introduction
	7.2 Construction of Travel Demand Generation Prototype Scenario
	7.3 Evaluation of Travel Demand Generation Prototype
	7.3.1 Activity Intervals and Travel Stages of Generated Schedules
	7.3.2 Variation of Traffic Simulation Results to Generated Schedules
	7.3.3 Issues and Summary of the Prototype Scenario

	7.4 Evaluation of Framework Configuration
	7.5 Challenges in utilising Semantic Web Technologies for Implementing Travel Demand Generation
	7.5.1 SPARQL Language Expressivity and Query Optimisation
	7.5.2 SPARQL Extension Property Function Arguments
	7.5.3 RDF/XML Serialisation for Traffic Simulator Interfaces
	7.5.4 Traffic Simulator Integration

	7.6 Chapter Summary

	8 Conclusions and Future Work
	8.1 Overview of the Work
	8.2 Thesis Contributions to Knowledge
	8.3 PhD Research Limitation and Plans for Further Work

	References
	Appendix A: Contributions to Open Source Projects and Standards
	Appendix B: GeoSPARQL-Jena: Implementation and Benchmarking of a GeoSPARQL Graphstore - Submitted Journal Article
	Appendix C: Semantic-based Assembly Framework for the Generation of Travel Demand - Prepared Journal Article

