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Abstract—Joint sparse representation (JSR) model has re-
cently emerged as a powerful technique with wide variety of
applications. In this paper, the JSR model is extended to error
concealment (EC) application, being effective to recover the
original image from its corrupted version. This model is based
on jointly learning a dictionary pair and two mapping matrices
that are trained offline from external training images. Given the
trained dictionaries and mappings, the restoration is done by
transferring the recovery problem into the sparse representation
domain with respect to the trained dictionaries, which is further
transformed into a common space using the respective mapping
matrices. Then, the reconstructed image is obtained by back
projection into the spatial domain. In order to improve the
accuracy and stability of the proposed JSR-based EC algorithm
and avoid unexpected artifacts, the local and non-local priors
are seamlessly integrated into the JSR model. The non-local
prior is based on the self-similarity within natural images and
helps to find an accurate sparse representation by taking a
weighted average of similar areas throughout the image. The local
prior is based on learning the local structural regularity of the
natural images and helps to regularize the sparse representation,
exploiting the strong correlation in the small local areas within
the image. Compared with the state-of-the-art EC algorithms, the
results show that the proposed method has better reconstruction
performance in terms of objective and subjective evaluations.

Index Terms—Robust image transmission, packet loss, error
concealment, sparse representation, mapping learning.

I. INTRODUCTION

IMAGE and video transmission over error-prone channels,
such as communication networks, always suffers from

packet loss, leading to serious distortions in the received
image/video. Over past decades, many error control techniques
have been proposed. Generally, they can be classified into
two categories: transmitter-based and receiver-based methods.
The transmitter-based approaches retransmit the lost packets
or send additional information from the transmitter to the
receiver, trading the channel bandwidth for the increased error
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robustness. Although these methods generally work well at
the low packet loss rate (PLR), their performance is known to
degrade as the PLR increases [1], [2]. Recently, a robust image
transmission scheme has been proposed by Akbari et al. [1]
and [3], by which a high quality image can be recovered, even
at the high PLRs, at the expense of adding a simple random
linear encoder at the transmitter side. However, the transmitter
still needs to send extra information, degrading the efficiency
of transmission through the low bandwidth connections.

In contrast to the transmitter-based methods, error con-
cealment (EC), as a receiver-based method, is an alternative
solution to mitigate the negative effects of the packet loss.
The EC techniques recover the missing information without
modifying the encoder or sending any additional information,
leading to a better bandwidth efficiency [4]. These methods
exploit the high spatial or temporal correlation existing among
the lost areas and correctly received neighboring pixels to
reconstruct a high quality image or video from its degraded
version. Appropriate modeling of this intrinsic characteristic
of the natural images plays an important role in the recovery
performance of the EC algorithms which has been extensively
studied over the past decades.

Sparse representation (SR) has been a powerful tool for
image processing compression and solving inverse problems
over the past decade [5]–[8]. In this technique, a signal can
be represented by linear combination of a few atoms chosen
from a pool called dictionary [9]. The used dictionary can
be designed by some mathematical functions or learned from
some training examples [10]. Recently, some SR-based EC
methods have been developed and achieved desirable perfor-
mance [11]–[13]. In these methods, the restoration is done by
transferring the recovery problem into the SR domain. Then,
the reconstructed image is obtained by back projection into the
spatial domain. In other words, these methods improve the
quality of corrupted images by uncovering the relationships
between the corrupted and original image patches in the
SR domain, where these relationships can be achieved more
adaptively and accurately than those proposed for the spatial
domain. Joint sparse representation (JSR) provides a powerful
technique for learning the salient relationships between the
data coming from different modalities [14]–[16] and can be
efficiently evolved for the EC application [12], [13]. The main
idea is to learn the relationships between the two modalities
by training two dictionaries in a coupled manner, such that
the sparse representations of the paired samples from the two
modalities with respect to the trained dictionary pair are equal.
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In this work, we build upon the recent success of the
JSR techniques and propose a novel EC method. Different
from [14]–[16] wherein the authors use the learned map-
pings and dictionaries for image synthesis and recognition,
we reformulated the JSR-based dictionary-mapping algorithm
in [16] for error concealment application. Throughout the
paper, we describe the settings for learning the dictionaries
and mappings. As in the JSR, two dictionaries corresponding
to the original clean and corrupted image patches are trained
in a coupled manner. It is assumed that the dictionaries of
the original and corrupted patches are coupled to each other
by identifying a mapping function. Based on this assumption,
the objective is to learn the mapping function jointly with the
dictionary pair. As the sparse representation of the original
clean patch and the corrupted patch may not be well correlated,
several coupling approaches are proposed in this paper to
address this problem. In the recovery phase, the dictionary
corresponding to the corrupted dataset is used to compute
the sparse representation of the corrupted patch. This is
then transformed into the common space using the respective
mapping function in order to find a good estimation of the
sparse representation of the original patch. Following this step,
the dictionary corresponding to the original dataset is used to
recover the original patch.

Apart from the JSR model to error recovery, some natural
image priors can also be used as the regularization term to
make the above joint encoding model more effective and
robust for the EC application. In this paper, non-local self-
similarity (NS) and local regularity (LR) priors are integrated
into the proposed JSR model to further regularize the solution
space. The NS model benefits from many repetitive image
structures in the whole image and best preserves the edge
sharpness and complex texture [17]–[21] in the concealed
image. On the other hand, the LR model characterizes the
local image structures, wherein each pixel is estimated via
linear combination of its surrounding pixels within the support
of the LR model [19], [20], [22], [23]. The way we mixed
the local and non-local properties with the learned mappings
and dictionaries is our main and second contribution in this
paper. In contrast to the existing approaches that use these
priors in the spatial domain, the novelty here is in the use
of modeling the local and non-local priors in a transformed
space. The reason is that it provides a more robust and accurate
estimation of the sparse representation of the corrupted patch
and the main features of the corrupted area can be recovered
more accurately in comparison with those from spatial domain.
Combining the JSR, LR, and NS models into a framework
leads to a minimization problem. Designing a fast and efficient
solution for this minimization problem is another contribution
of this paper. The main contributions of this paper are therefore
summarized as:

• We reformulated the JSR-based dictionary-mapping algo-
rithm in [16] for the EC application.

• By combining the JSR model, NS and LR priors into a
unified framework, a robust EC technique, namely joint
sparse representation based-EC with the non-local and
local regularization (JSR+NL) is proposed.

• A fast and effective algorithm for solving the designed
minimization problem is proposed.

• A number of experiments are conducted to demonstrate
the effectiveness of the proposed JSR+NL method in
comparison with recent EC algorithms. Further, we an-
alyze different parameter settings for our proposed ap-
proach, including the image patch size and the dictionary
size.

A. Paper Organization

The paper is organized as follows. A review of the most
related works is represented in Section II. Section III discusses
the EC problem and the JSR concept. Further, a simple JSR-
based EC algorithm is proposed in this section. Section IV
details the proposed JSR+NL algorithm. Section V analyzes
the influence of related parameters on the EC performance and
then presents the experimental results on several test images.
Finally, concluding remarks are made in Section VI.

B. Notation

For convenience, throughout this paper, image patch ma-
trices whose columns are the vectorized image patches are
denoted by boldface capital letters, e.g., X; image patches are
represented by boldface lowercase letters, e.g., x; and finally
scalars are denoted by italics, e.g., x.

II. RELATED WORKS

In this section, we review the sparse representation literature
as well as several recently proposed EC algorithms.

A. Sparse Representation

In recent years, sparse data representation has been exten-
sively utilized in different applications by means of `0-norm
and `1-norm minimization techniques [24]. Based on this mod-
eling, an image patch is represented using a small number of
basis functions chosen out of an over-complete dictionary [9].
The choice of over-complete dictionary plays an important
role in the sparse representation modeling. One of the most
flexible ways to obtain such an over-complete dictionary is by
learning from a set of example image patches, which has been
an active field of research over past decade [10], [25]–[27].

Recently, Yang et al. proposed a joint sparse representation
modeling for image super resolution [28]. They assume that
there exist two coupled over-complete dictionaries for two
different modalities (low resolution and high resolution image
patches), over which each paired samples of modalities have
the same sparse representations. Based on this modeling, a
coupled dictionary learning is proposed, in which the cou-
pling is realized by enforcing the low and high resolution
patches to share the same sparse feature space. This joint
sparse representation modeling has been extensively used in
other applications, including classification [29], cross-model
matching [30], and multispectral image change detection [31].
In [15], Wang et al. assumed that the sparse representa-
tions of the two modalities are related to each other via a
linear mapping function. This type of modeling relaxes the
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strong assumption of the coupled dictionary learning algorithm
in [28], and brings more flexibility to characterize the image
structures. However, using a single linear mapping may not be
good enough for the sparse representations of two modalities
accurately [32]. In the field of cross-model matching, a new
coupling model has been recently proposed by Huang et al.
[16] which uses two linear mappings to project the sparse
representations of the paired samples from the two different
modalities into a common space to enable joint assessment of
the two modalities.

B. Error Concealment

Many EC approaches have been developed in the literature
and newer techniques are still emerging. These methods can be
classified into three categories: interpolation-based, statistical-
based and example learning-based methods.

The simple interpolation-based methods typically exploit
the strong correlation among the neighboring blocks in the
image [4], [33]–[36]. Although these methods are effective
for real-time applications, in many cases, the quality of the
concealed images is unsatisfactory in practice. Li et al. [37]
propose an adaptive interpolation-based method, wherein the
pixels in the missing blocks are successively recovered by
exploiting a linear predictor on a small spatial window. This
algorithm overcomes the blocking and blurring effects of the
simple interpolation-based methods and exhibits the edge-
preserving property. Different from the algorithm proposed
in [37], Koloda et al. in [38] focus on seeking a distinct
and robust linear predictor to select a linear combination of
a few number of neighboring pixels for estimation of the lost
pixels. Also, an adaptive linear predictor is proposed by Liu
et al. in [39], in which the order of predictor is adaptively
determined using a Bayesian information criterion.

The statistical-based methods usually assume that the miss-
ing pixels can be estimated by employing some fixed-function
kernels or adaptive-structure kernels [40]–[43]. Koloda et al.
use a minimum square error estimator in [41] to conceal the
lost blocks, employing a probability density function. Zhai
et al. in [43], obtain conditional expectation of the missing
pixels given the surrounding available ones using a Bayesian
framework. Markov random fields model is considered in [40]
for filling the missing pixels. In [42], using a pair of Gaussian
kernels and capturing the block-level similarity, the lost blocks
are recovered as a weighted average of the neighboring pixels.

Example learning-based approaches are superior to both
interpolation-based and statistical-based methods, since they
are able to produce novel details that cannot be recovered
by the aforementioned methods. Several example learning-
based EC methods have been proposed in [11] and [44]. The
method in [11] assumes that the sparse representation of the
lost area in the image is the same as that of the known
neighboring areas. However, this assumption is not satisfied
when the lost area is located in the high textural region or
the size of missing area becomes larger. Therefore, there is
no guarantee for an accurate recovery of the missing regions.
Motivated by the joint sparse representation model, the works
in [12], [13] and [44] try to learn the relationships between

(a) (b) (c)

Fig. 1. Typical block loss patterns [39]; black blocks denote the corrupted
blocks, (a) isolated loss and (b) consecutive loss. (c) random loss.

the patches in the corrupted and original images using two
training datasets of the original and corrupted image patches.
This relationship can be effectively found by transferring the
original and corrupted patches into the sparse representation
space over the trained dictionaries. The approach presented in
this paper bares some similarities to the work in [44], [45],
as we also learn a mapping function. However, the authors
in [44], [45] train a mapping function between a lost block
and its neighboring pixels by finding the similar patches in
the input corrupted image in order to transfer the knowledge
of available regions to the missing regions for the EC purpose.
However, in the extreme, when the similar patches cannot be
found in the image, it is impossible to learn a good mapper.
The formulation investigated in our paper overcomes this issue
by learning a mapper offline. Furthermore, the NS and LR
priors, existing in the natural images, are exploited in a new
way to improve the quality of concealed image.

III. JOINT SPARSE REPRESENTATION FOR EC

In this section, we firstly formulate the image EC problem
to be considered in this paper. Next, based on the concept of
joint sparse representation, a joint dictionary-mapping learning
algorithm is introduced. Finally, the JSR model for the image
EC is proposed.

A. Problem Formulation

In the existing image transmission systems, each image
frame is divided into the non-overlapping blocks, which are
separately encoded. In the packetization step, one or more
encoded blocks are fed into one packet; therefore, while
transmitted over an error-prone channel, the undesired packet
erasure leads to the loss of an area of the image. Fig. 1
shows the different packet loss patterns occurred during the
transmission over an error-prone channel.

Let L denote a B × B lost block in the corrupted image
and S be the set of available pixels, called support area.
Consider a corrupted patch of size

√
T ×

√
T , represented

as a column vector y = [u, v]T , where v ∈ RP is a group
of P unknown pixels in L and u ∈ RT−P contains a set of
adjacent and available pixels in S, as shown in Fig. 2. The
image EC problem asks: given a corrupted image patch y,
recover the original image patch x using just the correctly
received information. This problem is formulated as follows:

x̂ = argmin
x
‖y− Hx‖22, (1)

where H is a T × T diagonal matrix, whose diagonal entries
are either 0 or 1. Here, value 0 refers to loss and 1 to
correctly received corresponding pixel in the image. In this



1051-8215 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2927912, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 4

Fig. 2. Structure of the corrupted patch y. Each square stands for one pixel.
L denotes the lost block and S denotes the support area.

section, in order to solve this ill-posed problem, a joint sparse
representation model is considered to regularize the solution
space. The local and non-local priors are considered as another
regularization term in the next section.

The corrupted and original patches belong to different visual
observation subspaces X and Y , respectively. There is an
intrinsic relationship, represented by mapping dunction F ,
between these subspaces and if we could find this relationship,
the error recovery can be achieved easily. One of the most
flexible ways to discover the mapping function F is by
learning. In this way, the mapping function F is learned
from the training data offline. This mapping function is then
utilized in the image reconstruction step [46], [47]. However,
learning the mapping function F in the spatial domain is
difficult due to the existence of a complex structure among
the training data. This complexity makes it hard to correlate
the data of different modalities accurately. On the other hand,
it is well-known that the image patches are sparse when
represented by dictionaries [9]. Inspired by this fact, the
mapping function F can be found in the sparse representation
domain more accurately. Therefore, a straightforward way to
find the mapping function is to build two such dictionaries,
one of which is responsible for the original patches in the
observation subspace X , whereas the other one is responsible
for the corrupted patches in the observation subspace Y . The
JSR model [15], [16], [28] provides a powerful tool to learn
these dictionaries jointly with the mapping function F .

B. Joint Dictionay-Mapping Learning

In this section, we reformulate the JSR-based dictionary-
mapping learning algorithm in [16], for EC. The main idea is
to learn a dictionary pair for the corrupted and original patches
in a coupled manner such that the sparse representations of
the corresponding patches are maximally correlated in some
transformed space.

To learn the dictionary pair, firstly, two training datasets X
and Y are constructed as follows: A set of training images
are corrupted by generating the isolated loss pattern (see
Fig. 1). The lost blocks are recovered by a simple interpolation
algorithm to generate an initial estimation for each corrupted
image. The image patches of size

√
T ×
√
T , containing both

known and corrupted pixels as shown in the Fig. 2, are ex-
tracted and considered as the set of corrupted training patches.
The corresponding image patches at the same locations in the
original images are recorded as the set of original training

patches. The mean intensity value of each patch is subtracted
in order to improve the numerical stability of the dictionaries
in representing the patch textures.

Let X = [xi]
N
i=1 and Y = [yi]

N
i=1 denote the two generated

training sets, where the vectors xi ∈ RT and yi ∈ RT are
the vector representations of the i − th original patch and
corresponding corrupted patch of size

√
T ×
√
T , respectively.

Suppose Dx ∈ RT×K and Dy ∈ RT×K denote the trained
dictionaries for the sparse representation of the original and
corrupted patches X and Y, respectively. These dictionaries
are obtained by minimizing the following objective functions:

argmin
Ax,Dx

(
‖X− DxAx‖22 + λx‖Ax‖1

)
,

argmin
Ay,Dy

(
‖Y− DyAy‖22 + λy‖Ay‖1

)
, (2)

where Ax ∈ RK×N and Ay ∈ RK×N represent the corre-
sponding sparse representation matrices. λx and λy are the
regularization parameters and ‖·‖1 denotes the `1-norm1.

It is assumed that the sparse representation matrices, Ax

and Ay , are related to each other via a linear mapping matrix
M ∈ RK×K . In [15], a mapping term, defined as:

Emapping = ‖Ax −MAy‖22, (3)

is incorporated into the dictionary learning algorithm to find
the two dictionaries, Dx and Dy , jointly with the mapping
matrix M. Although this coupled dictionary-mapping learning
algorithm has been successfully applied to several tasks, such
as image super resolution and image classification [15], as
discussed in Section V, it might not guarantee to accurately
match the corrupted and original patches for the EC applica-
tion, especially when some important structures of the patches
are corrupted. In other words, a more complex mapping matrix
M should be learned to achieve a more robust performance.
This mapping matrix provides more freedom and flexibility
to match the sparse coefficients of the original and corrupted
patches. In the following, an approach for designing such a
mapping function is described.

Recently, Huang et al. in [16] proposed a common space
mapping approach for the cross-modal matching task, wherein
a more efficient relationship is found for two different datasets
X and Y. Inspired by this, we assume that the projections
of the sparse representation matrices, Ax and Ay , into a
K-dimensional common space using two mapping matrices,
Mx ∈ RK×K and My ∈ RK×K , are the same with high
probability. In this case, a mapping term is defined as:

Emapping = ‖MxAx −MyAy‖22, (4)

and incorporated into the dictionary learning algorithm (2),
leading to the following minimization problem:

argmin
Dx,Dy,Ax,Ay,Mx,My

(
‖X− DxAx‖22 + ‖Y− DyAy‖22

+ γ‖MxAx −MyAy‖22 + λx‖Ax‖1
+ λy‖Ay‖1 + λm

(
‖Mx‖22 + ‖My‖22

))
, (5)

1The `1-norm is defined as follows: for x ∈ RN , ‖x‖1 =
∑N

i=1 |xi|
where | · | stands for the absolute value operator.



1051-8215 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2927912, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 5

where the first and second terms are fidelity terms associated
with the data reconstruction error. These terms ensure that the
data in two modalities are reconstructed accurately with min-
imum error. The third term denotes the mapping fidelity term
to represent energy associated with the mapping error between
the sparse representations of the corrupted and original training
patches. Moreover, The fourth and fifth terms ensure that the
representations of the data in two modalities X and Y with
respect to dictionaries Dx and Dy are sparse. The coefficients
γ, λx, and λy balance the image representation and sparsity,
respectively. The `2-norms on Mx and My impose additional
constraints, regularized by λm, in order to provide numerical
stability and avoid over-fitting.

The objective function (5) is convex with respect to each
of Dx,Dy , Ax, Ay , Mx, and My when the others are fixed.
An effective way to tackle the energy-minimization of (5)
is proposed as follows: first, the dictionary pair, Dx and
Dy , and the mapping matrices, Mx and My , are initialized
as principal component analysis (PCA) basis and identity
matrices, respectively. Then, three following steps are iterated
until convergence: (1) updating the sparse coefficients, Ax

and Ay , by fixing Dx, Dy , Mx, and My; (2) updating the
dictionary pair, Dx and Dy , by fixing Mx, My , Ax, and Ay;
(3) updating the mapping matrices, Mx and My , by fixing Dx,
Dy , Ax, and Ay . The step of updating the mapping matrices
is a ridge regression problem that is solved by the algorithm
described in [16]. In this algorithm, a positive constant is
added to the main diagonals of the mapping matrices. This
small perturbation produces the diagonal mapping matrices
and also guarantees that the obtained mapping matrices are
invertible. This means that the solution always exists. More
details can be found in [16].

C. The JSR based EC

Given the trained dictionaries, Dx and Dy , and the learned
mappings Mx and My , the sparse representation of the cor-
rupted patch y (as shown in the Fig. 2), can be easily converted
to the sparse representation of the original patch using the
following optimization problem:

argmin
αy,αx

(
‖y− Dyαy‖22 + ‖x− Dxαx‖22

+ γ‖Mxαx −Myαy‖22 + λy‖αy‖1 + λx‖αx‖1
)
.(6)

This optimization problem is iteratively solved by alternatingly
updating αy and αx using the two following problems:

argmin
αy

(
‖y− Dyαy‖22 + γ‖Mxαx −Myαy‖22 + λy‖αy‖1

)
,

argmin
αx

(
‖x− Dxαx‖22 + γ‖Mxαx −Myαy‖22 + λy‖αx‖1

)
.

(7)

Finally, the concealed patch is obtained via x = Dxαx. Instead
of using this iterative algorithm here, a fast and yet effective
way is proposed to obtain an approximated solution for the
minimization problem (6).

Fig. 3 shows the pipeline of proposed JSR-based EC al-
gorithm. First, an initial image is obtained using a simple
interpolation algorithm [40]. Given a corrupted patch y, its

Fig. 3. Block diagram of the proposed joint sparse representation based image
EC algorithm.

mean intensity value is subtracted, and then its sparse repre-
sentation, αy , with respect to the dictionary Dy is obtained
via the following minimization problem:

argmin
αy

(
‖y− Dyαy‖22 + λs‖αy‖p

)
, (8)

where ‖αy‖p is the sparsity-inducing regularization term and
λs denotes the regularization parameter that balances the
tradeoff between the fidelity and sparsity terms. If p = 1,
then λs = λy . It has been illustrated in [17], given a trained
dictionary learned with `1-norm, the sparse representation of
the image patches with respect to this dictionary is in general
of higher accuracy when using the `0-norm. Therefore, we
consider p = 0 in our implementations2. The `0-normalization
problem (8) is efficiently solved by the well-known orthogonal
matching pursuit (OMP) algorithm [48].

Once αy is obtained by solving the minimization prob-
lem (8), it is projected into the K-dimensional common
domain by αc = Myαy . It is assumed that the projection
of the sparse representation of the original patch, αx, into the
common domain by Mxαx, is also associated with the αc,
i.e. Myαy ≈Mxαx. We next derive

αx = M−1
x αc = M−1

x Myαy. (9)

For simplicity, we consider P = M−1
x My , then αx = Pαy .

Further, the concealed patch is obtained via x = Dxαx.
Following this, the mean intensity value of the patch is added
back to the estimated patch. Finally, the unknown pixels, i.e.
v, are replaced by the corresponding pixels in the concealed
patch x (see Fig. 2).

D. Block Recovery Order

As it can be seen in Fig. 2, the corrupted patch y contains P
missing pixels of the lost block (In this paper, we consider P =
4.) So, the lost block cannot be recovered at one time. Instead,

2The ‖ · ‖0 denotes the `0-norm counting the nonzero elements
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as in [38], we propose to recover the lost block sequentially.
First, the lost block is partitioned into

√
P ×

√
P blocks, as

shown in Fig. 4. Then, the subblocks are recovered one by one
based on a predetermined order. Consider the subblock that is
located at the upper-left corner of the lost block in Fig. 4.
In order to recover this subblock, the corresponding corrupted
patch of size

√
T ×

√
T , consisting of this subblock and its

available adjacent pixels, as shown in Fig. 2, is formed. Next,
the patch is recovered using the procedure described at the
previous section. Finally, the corrupted subblock is replaced
with the corresponding pixels in the recovered patch. These
steps are repeated for the next subblocks.

In order to improve the quality of the reconstructed block,
two further considerations are employed: recovery order and
overlap width. The reconstruction order, i.e. the order that
subblocks are recovered, plays an important role to the per-
formance of the proposed JSR-based EC algorithm. Since the
accuracy of the recovered subblock depends on the reliability
of its available adjacent pixels, the subblocks that have more
reliable information at their support area are firstly recovered.
This leads to a more precise estimation of the sparse coeffi-
cients via Eq. (8) and thus better reconstruction quality. The
recovery order of an isolated lost block of size 8× 8 pixels is
shown in Fig. 4 where the subblocks illustrated by a brighter
gray-level are recovered first. Using this order for recovering
the subblocks also ensures that more reliable information at
the support area of the next subblocks is already provided.

Addition to the recovery order, we also consider an overlap
depth between the adjacent subblocks in order to avoid the
blocking artifacts resulting from partitioning. Since the size
of each subblock is 2× 2 pixels, we set 1-pixel-width overlap
depth between the adjacent subblocks. Next, the subblocks are
recovered one by one and the value of recovered pixels located
on the overlap area are averaged as their final values.

IV. JSR-BASED EC WITH NON-LOCAL AND LOCAL
REGULARIZATION (JSR+NL)

Clearly, it is expected that the sparse representation vector
αx, obtained by Eq. (9) should be as near as to the true
sparse representation vector αt

x of the patch to be recovered.
However, the JSR model, presented in the Section III-C, may
not lead to recover the true sparse representation αt

x due
to the corrupted pixels in the input patch y. On the other
hand, there are many repetitive patterns and regular structures
throughout the natural images. This NS model in combination
with the LR prior existing in the natural images can be used
as a regularization term to regularize the solution space of the
minimization problem (8) and develop a much more accurate
sparse representation model. The NS and LR models have been
used in many applications, such as image compression [49],
[50] and inverse problems [19]–[23], [51]. However, in these
works, the NS and LR models are implemented in the spatial
domain whereas here they are in the sparse representation
domain. This regularization term is incorporated into Eq. (8)
to develop a more effective EC algorithm, called JSR-based
EC with the NS and LR models (JSR+NL).

The EC performance depends on the difference αx − αt
x.

To faithfully reconstruct the original image, this difference

should be near to zero. By incorporating this difference
into the minimization problem (8), we propose the following
optimization problem:

argmin
αy

(
‖y− Dyαy‖22 + λs‖αy‖0 + λnl‖Pαy −αt

x‖1
)
,(10)

where λnl represents the regularization parameter. This model
enforces the sparse representation vector αy to be estimated
in a way that Pαy is close to αt

x. However, αt
x is unknown

and the `1-norm in the objective function (10) cannot be
directly measured. Nonetheless, if we find a good estimation
of αt

x, then we can develop a much more accurate sparse
representation model.

Generally, αt
x can be estimated in various ways. We propose

to achieve a good estimation of αt
x using the rich non-local and

local redundancies existing in the input image. Then, a good
estimation of αt

x can be computed as the weighted average
of the sparse representation associated with an estimation of
the input patch from the non-local similar patches within
the image and the sparse representation associated with an
estimation of the input patch from the local neighboring pixels.
This leads to the following optimization problem:

argmin
αy

(
‖y− Dyαy‖22 + λs‖αy‖0

+ λnl‖Pαy − (aβns + bβlr)‖1
)
, (11)

where βns is the sparse representation vector of the estimated
patch obtained via linear combination of the non-local similar
patches within the image and βlr is the sparse representation
vector of the estimated patch obtained from the local neighbor-
ing pixels. a and b are two constants balancing the contribution
of the NS and LR models (a+b = 1). In the following section,
we discuss how the sparse representation vectors βns and βlr

are obtained.
For understanding how these estimations of αt

x, obtained by
βns and βlr, can improve the quality, we should pay attention
to the second regularization term in Eq. (10). This term regu-
larizes the solution space of the first term in the minimization
problem (10) more effectively than the first regularization
term. Since, βns and βns capture the main features of the
patches yns and ylr, respectively, this regularization term adds
an efficient constraint in order to improve the accuracy of Pαy .

A. Non-local Self-similarity for Regularization

The NS model is based on this fact that the higher level
patterns, e.g.edges and texture, tend to repeat themselves
within the image [17], [18], [51]. Based on this concept, an
estimation of each input patch y can be obtained via:

yns =
L∑

i=1

wiyi, (12)

where yi is the i− th similar patch to the input patch y and L
denotes the number of similar patches within a large enough
window of size H × H pixels. As can be seen in Fig. 5,
the search window includes the area that is clean or already
recovered. The weights wi are calculated as a decreasing
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function of the weighted Euclidean distance between patch
y and the i− th similar patch:

wi =
1

κ
exp(−‖y− yi‖22/h), (13)

where h is a pre-determined scalar and κ denotes the normal-
ization factor. The patches with a smaller Euclidean distance
have larger weights in the average. The exponential function
provides further control on the influence of similar patches
on the estimation of the patch y. The parameter h controls
the slop of the exponential function and therefore the decay
of the weights as a function of the Euclidean distances [52].
This weighting procedure emphasizes the patches which are
closer to patch y.

Given the estimated patch yns, the sparse representation βns

can be easily found by

argmin
βns

(
‖yns − Dxβns‖

2
2 + λns‖βns‖0

)
, (14)

The well-known OMP algorithm [48] is used to solve this
minimization problem.

B. Local Structural Regularity for Regularization

The LR model is based on this assumption that a local
area in the image is stationary, which states that there are
meaningful local structures in the spatial domain of the natural
image. Based on this property, one pixel can be predicted by
weighted combination of its neighbors (called context of the
LR model). Therefore, an estimation of each input patch y can
be obtained by estimating all its pixels sequentially.

The major challenge in the LR model is development of an
accurate and fast predictive model, i.e. how to find the optimal
weights in order to fully exploit the information contained
in the context. In [50], [53], the weighting coefficients are
estimated by a training procedure, where the training set is
collected from the initially recovered image by searching the
similar patch in the entire image. But, this procedure may
not adapt the LR model to the image characteristics due to
the poor quality of the initially recovered image and tends to
produce the visual artifacts [22]. In this paper, we propose a
learning procedure, wherein an external database of the high-
quality training examples are used to obtain the weighting
coefficients.

Let S is a N × J matrix including N training vectors,
extracted from a set of training images. Each row of S consists
of a 1 × J vector that includes the pixels in the context of
a target pixels z, as shown in Fig. 6. Let z be a N × 1
vector including the corresponding target pixels. Intuitively,
N training vectors in the matrix S are grouped into several
clusters, and then a LR model is learned for each cluster. In
this paper, the well-known K-means algorithm [54] is used
for clustering. Let S = {S1,S2, · · · ,SC}, where Sk ∈ RNk×J

represents the submatrix of Nk training vectors in the matrix
S which belongs to the cluster k and C is the total number
of clusters. The weighting coefficients of the LR model of the
k-th cluster, denoted by J × 1 column vector ak, is obtained
by solving the following least squares minimization problem:

ak = argmin
a
‖zk − Ska‖22, (15)

where zk is a Nk×1 column vector that consists of the target
pixels in z corresponding to the training vectors in submatrix
Sk. A well-known closed-form solution for this minimization
problem is ak = (ST

k Sk)
−1(ST

k zk) [50]. Note that ak includes
the weighting coefficients of the LR model of k − th cluster.

Given an input patch y and all C learned LR models, first,
the k−th LR model is assigned to each pixel yi of y based on
the minimum distance between its context, i.e. si ∈ R1×J as
shown in Fig. 6, and the centroid of clusters {µ1,µ2, · · ·µC},
i.e. k = argmink ‖si − µk‖. Finally, the pixel yi is updated
via yi = si ak. All pixels in the input patch y are sequentially
estimated to obtain a prediction ylr for the input patch y.
Finally, the sparse representation vector βlr is obtained by
following the minimization function that is solved by the OMP
algorithm [48]:

argmin
βlr

(
‖ylr − Dxβlr‖

2
2 + λs‖βlr‖0

)
. (16)

The idea of using Dx instead of Dy in Eqs. (14) and (16)
comes from the dictionary learning based image denoising
algorithms [25]. As explained later, the obtained patches yns
and ylr are the noisy versions of the original image patch.
Therefore, solving Eqs. (14) and (16) is a kind of image
denoising and using Dx provides better recovery quality.

C. Recovery Algorithm

The optimization problem (10) can be iteratively solved by
two following separate steps.

Step1- Initialization: First, an initial sparse representation
vector, denoted by α

[0]
y , is obtained by the following opti-

mization problem:

α[0]
y = argmin

α

(
‖y− Dyα‖22 + λs‖α‖0

)
. (17)

This minimization problem is solved by the OMP algo-
rithm [48]. Then, the initial estimation of x, denoted by x[0],
is estimated as x[0] = DxPα

[0]
y . Based on the x[0], initial non-

local estimation of βns and local prediction of βlr, i.e. β[0]
ns

and β
[0]
lr respectively, are obtained using Eqs. (14) and (16).

Step2- Enhancement: The accuracy of the sparse represen-
tation αy is improved using an iterative process. At each
iteration l + 1, for fixed β[l]

ns and β
[l]
lr obtained from previous

iteration l, the updated sparse representation vector α
[l+1]
y is

obtained via solving the following minimization problem:

argmin
αy

(
‖y− Dyαy‖22

+λnl‖Pαy − aβ[l]
ns − bβ

[l]
lr‖1

)
, (18)

Then, Eqs. (14) and (16) are used to update βns and βlr.
Given α

[l+1]
y , the concealed image patch is updated as x[l+1] =

DxPα
[l+1]
y , which can be used to update the β[l+1]

ns and β
[l+1]
lr

using the minimizations in Eqs. (14) and (16), respectively.
The improved β[l+1]

ns and β
[l+1]
lr are then used to enhance the

accuracy of αy , and so on. The accuracy of the sparse rep-
resentation αy is gradually improved, which in turn improves
the accuracy of αx and thus the EC quality. Such a procedure
is iterated until convergence. In the proposed algorithm, the
recovery process can be stopped when ‖x[l+1] − x[l]‖2 ≤ ε.
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Fig. 4. Recovery order of an isolated lost
8 × 8-pixels block. The pixels illustrated
by a brighter gray-level are recovered first.

Fig. 5. Search window of the NS model. The
search window includes the area that is clean or
already recovered.

Fig. 6. Target pixel and its causal neigh-
bors (context) of the LR model. Each
square stands for one pixel.

Algorithm 1 JSR+NL for EC
1: Input: a corrupted image patch y, Dx,Dy , Mx, and My;
2: Output: a concealed image patch x;

Step1- Initialization
3: Initialize: α

[0]
y by (17), x[0] = DxPα

[0]
y , β[0]

ns and β
[0]
lr using

(14) and (16), respectively;

Step2- Enhancement
4: Repeat on l = 0, 1, · · ·L− 1

5: Compute: β[l] = aβ[l]
ns + bβ

[l]
lr ;

6: Set: α[l,0]
y = α

[l−1]
y ;

7: For j = 0, 1, · · · J − 1 do
8: ν[l,j] = α

[l,j]
y + DT

y (y− Dyα
[l,j]
y )/c;

9: α
[l,j+1]
y = P−1S

(
Pν[l,j] − β[l]

)
+ P−1β[l];

10: End for
11: Update:
12: α

[l+1]
y = α

[l,J]
y ;

13: x[l+1] = DxPα
[l+1]
y ;

14: β[l+1]
ns and β

[l+1]
lr using (14) and (16);

15: Until ‖x[l+1] − x[l]‖2 ≤ ε.

A specific extension of the shrinkage algorithm [51], orig-
inally proposed in [55], is adapted to solve the convex mini-
mization problem (18) iteratively. At the j + 1− th iteration,
α

[l,j+1]
y is obtained by the following shrinkage operator:

α[l,j+1]
y = P−1S

(
Pν[l,j] − β[l]

)
+ P−1β[l], (19)

where ν [l,j] = α
[l,j]
y +DT

y (y−Dyα
[l,j]
y )/c, β[l] = aβ[l]

ns+bβ
[l]
lr ,

c is a constant, and S(·) is the soft-thresholding operator that
accelerates the convergence of the recovery algorithm. At the
first iteration, i.e. j = 0, α

[l,0]
y is set as α

[l−1]
y and at the

end of last iteration α
[l+1]
y is updated as α

[l,J]
y , where J is

the number of iterations for solving (18). It should be noted
that P−1 = M−1

y Mx. The complete details of the recovery
algorithm are described in Algorithm 1.

At Step-1, an initial value for vector α is obtained and at
Step-2, the accuracy of vector α is improved using an iterative
process. If the accuracy of α at Step-1 is low, it leads to a low
quality reconstructed image (at Step-1). Step-2 can compensate
this quality loss with a larger number of iterations that might
lead to a higher reconstruction time. So, the initial value of
vector α influences the computational cost of the algorithm.
In fact, the higher the initial reconstruction quality, the faster
the recovery algorithm. The reason that we use `0-norm at
Step-1 is based on the observation illustrated by Mairal et

al. in [17]. Based on this work, given a trained dictionary
learned with `0-norm, the sparse representation of the image
patches with respect to this dictionary is in general of higher
accuracy when using the `1-norm. Therefore, this initialization
process via `0-norm simplifies the subsequent work in Step-2
at a lower computational cost.

D. Discussion

As mentioned at the beginning of this section, the existing
LR and NS models are implemented in the spatial domain. In
these approaches, one can use the estimated patches, yns and
ylr, and simply improve the quality of the reconstructed image
in the spatial domain instead of solving the minimization
problem (10). However, it should be noted that the obtained
patches, yns and ylr, consist of a certain level of noise. When
these noisy patches are used for recovery of the original patch
in the spatial domain, the recovered patch looks unpleasant.
In contrast, when the LR and NS models are implemented
in the sparse representation domain, βns and βlr, which are
obtained by Eqs. (14) and (16), respectively, the noise is
mitigated significantly. In other words, Eqs. (14) and (16) tend
to extract the main features of the predicted patches yns and
ylr, respectively. Therefore, it leads to a more robust and ac-
curate estimation of the sparse representation of the corrupted
patch. This is one of the most important characteristics of the
sparse representation techniques which has been used in many
applications, especially image denoising.

V. EXPERIMENTAL STUDY

In this section, we briefly introduce the training datasets
used by the joint dictionary-mapping learning algorithm de-
scribed in Section III-B. Then, the influences of the related
parameters on the EC performance are evaluated in order to
select the appropriate values for these parameters. Finally, the
performance of the proposed JSR and JSR+NL algorithms,
presented in Sections III and IV respectively, are evaluated via
a suite of simulations carried out on a set of 8-bit grayscale
standard images of size 512 × 512 pixels, selected from the
CVG-Granada database3 and Kodak dataset4. Note that 10
images, as shown in Fig. 7, are randomly selected from both
databases for evaluation. The EC performance is assessed by
the peak signal to noise ratio (PSNR). To evaluate the proposed
methods, different types of loss patterns, i.e. isolated loss,
consecutive loss, and random loss as shown in Fig. 1, are

3http://decsai.ugr.es/cvg/dbimagenes/
4http://r0k.us/graphics/kodak/



1051-8215 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2019.2927912, IEEE
Transactions on Circuits and Systems for Video Technology

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 9

Fig. 7. 8-bit grayscale test images of size 512× 512. From left to right and
top to down: Lena, Peppers, Goldhill, Mandrill, Zelda, Barbara, Montreal,
Pelican, Kodim05, and Kodim06

considered with the lost blocks of size 8 × 8 and 16 × 16
pixels with different PLR, ranging from 10% up to 50%. In
the case of random loss pattern, the PSNR values are obtained
by running the proposed methods 10 times and the average
results are reported as the final values.

A. Training Sets Description

The CVG-Granada database is used for training and test
steps. The CVG-Granada database consists of 96 natural
gray-level images of size 512 × 512 pixels. 20 images are
randomly selected for training. A corrupted training image set
is also generated by creating the isolated loss pattern for each
image. The lost blocks are recovered by a simple interpolation
algorithm [40]. Then, the training sets X and Y are generated
following the procedure described in Section III-B. A total
number of 100000 patches of size

√
T ×
√
T , which are rich

in edges and textures, are randomly cropped from each set of
training images. In practice, in order to make dictionaries more
descriptive, the smooth patches are removed from the training
datasets [56]. This guarantees that the meaningful patches with
a certain amount of edge structures will be involved in the
training algorithm. In this paper, only the patches with the
intensity variance greater than a threshold σ = 4 are kept.

B. Experimental Setup

Several parameters should be selected carefully: dictionary
size D, size of image patch T , values of the regularization
parameters, and the related parameters in the NS and LR
models, such as number of similar patches and number of
clusters. By conducting a wide range of experiments, all
the parameters are carefully tuned according to their best
performance.

The parameters λx, λy , λm, γ in Eq. (5) are set to 0.01,
0.01, 0.1, 0.1, respectively. The parameter h in the Eq. (12)
is empirically set to 65. The parameter λs in Eqs. (8), (14),
and (16) is related to the number of non-zero entities (S)
in the corresponding sparse representation vector. In our
implementation, we set S to the nearest integer number to
T/4. The parameters λnl, a and b are evaluated by varying
one of the parameters while keeping the others constant. First,
we fix λnl to 0.1. In the next step, we vary a from 0.5 to 1 and
b from 0.05 to 0.5. By conducting a wide range of experiments,
the parameters a and b are selected as 0.8 and 0.2 respectively.

In the JSR model, the dictionary size and patch size would
jointly impact the quality of the bases in the dictionary pair and
also the precision of the corresponding mappings, thus having
a great effect on the EC quality. In the following sections, the
impact of these parameters on the EC performance is analyzed.
In each experiment, the test images are corrupted with the
isolated loss pattern and restored by the proposed JSR-based
EC method.

To evaluate the influence of dictionary size D on the EC
quality, we set T = 25 and D as 64, 128, 256, 512, and 1024.
For each size, the dictionary pair and the mapping matrices
are learned using the joint dictionary-mapping learning algo-
rithm. Table I shows the effect of dictionary size on the EC
performance using the proposed JSR-based EC algorithm in
terms of PSNR. As D increases, the PSNR value increases,
but a larger value of D does not yield higher performance. It
is easy to understand that the PSNR value first rises and then
declines, when the dictionary size becomes larger. Further, for
the highly textured images, like Mandrill, the improvement is
negligible with respect to the dictionary size. We also evaluate
the performance of the proposed JSR-based EC algorithm with
different T from 16 to 64. Best dictionary pair and mappings
are trained for each patch size. Table II shows the results
according to different values of T . As can be seen, the PSNR
values increase when T increases. Using a larger patch means
that the area u (see Fig. 2) contains more reliable information.
Note that the size of area v is always fixed (2×2 pixels). The
EC quality increases because more reliable information is used
for patch recovery.

Generally, larger D and T are more suitable for the pro-
posed JSR model for the EC. The reason lies behind the
fact that larger D and T will strengthen the representation
ability of the dictionary pair and the matching precision of
the mapping matrices. On the other hand, choosing a large
patch size and dictionary size leads to more computational
complexity. Therefore, we select an appropriate patch size to
obtain good EC performance with lower computational costs,
i.e. T = 25 and D = 256.

Other parameters: The number of similar patches in the
NS model is set to L = 10 and the size of search window
is set to 20 × 20 pixels. In addition, in order to avoid the
data over-fitting, a LR model of the order 10 (i.e. J = 10)
is used. The optimal selection of the number of clusters in
the LR model is a nontrivial task. If the number of clusters
decreases, the distinctiveness of the LR models is decreased.
On the contrary, choosing a large number of clusters makes
the LR models less representative and reliable. To select an
appropriate value for the clusters number in the LR model, we
conduct several experiments by changing the clusters number.
We have found that the performance of the proposed JSR+NS
method is stable when the cluster number is greater than 200.
The last parameter that should be set is the iterations number.
The EC performance of the proposed JSR+NS algorithm is
monotonically improved by increasing the iteration number. In
our implementation, when the difference of the PSNR value
of the reconstructed image in successive iteration falls below
a predefined threshold (ε = 0.005), the recovery algorithm is
stopped. All above-mentioned parameters are fixed for all the
experiments throughout this paper.

C. EC Quality
The performance of the proposed JSR+NL algorithm is

compared with those of other state-of-the-art EC techniques,
including non-normative spatial EC for H.264 (AVC) [33],
EC using projections onto convex sets (POCS) [34], con-
tent adaptive technique (CAD) [36], edge recovery technique
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TABLE I
EFFECT OF DICTIONARY SIZE ON THE EC QUALITY USING THE

JSR-BASED EC ALGORITHM IN TERMS OF PSNR (T IS SET TO 5)

Dictionary Size D
64 128 256 512 1024

Lena 34.59 34.90 34.92 34.76 34.68
Peppers 34.52 34.98 34.97 34.86 34.80
Goldhill 32.53 32.71 32.67 32.64 32.60
Mandrill 26.95 27.02 27.02 27.00 27.00
Zelda 37.23 37.49 37.51 37.39 37.36

TABLE II
EFFECT OF PATCH SIZE ON THE EC QUALITY USING THE JSR-BASED EC
ALGORITHM IN TERMS OF PSNR (BEST DICTIONARY SIZE IS OBTAINED

FOR EACH PATCH SIZE)

Patch Size T
16 25 36 49 64

Lena 34.57 34.92 34.97 35.05 35.07
Peppers 37.72 34.98 35.05 35.17 35.19
Goldhill 32.55 32.67 32.69 32.73 32.80
Mandrill 26.96 27.01 27.02 27.05 27.08
Mandrill 37.31 37.51 37.52 37.59 37.63

based on visual clearness (VC) [35], Markov random fields
approach (MRF) [40], multivariate kernel density estimation
(MKDE) [41], sparse linear prediction (SLP) [38], learning
sparse representation-based EC (LSR) [11], and adaptive linear
prediction (ALP) based EC [39]5. The performance of the
proposed method is also compared with one state-of-the-art
inpainting (INP) based EC method proposed in [57]. All of
the competing algorithms use a similar recovery order to fill
the lost block. Some of these algorithms, such as AVC, POCS,
CAD, and MRF recover the lost blocks pixel by pixel; the
others recover the lost block patch by patch, similar to our
approach. In order to see the effect of LR and NS models on
the EC performance, the PSNR values of the reconstructed
image using the JSR-based EC algorithm are also reported.

Tables III and IV provide the EC results of all the methods
for the test images corrupted by different loss scenarios
(isolated loss, consecutive loss, and random loss with 30%
PLR) with the lost blocks of size 8×8 and 16×16 pixels, re-
spectively. The best values are marked in bold. Three different
modes of the proposed algorithm are evaluated in Tables III
and IV: 1- recovery without employing the NS and LR models
(JSR), 2- recovery by using only the NS model (JSR-N), and
3- recovery by both the NS and LR models (JSR-NL). It can be
observed from Tables III and IV that the JSR-NL algorithm, by
employing both the NS and LR models, performs better than
the JSR-N and JSR algorithms. The reason is that the JSR-
NL algorithm uses the most available information within the
image to obtain an accurate estimation of the original patch.

In terms of PSNR, the performance of the proposed JSR-
based EC algorithm is better than most of the competing
methods, especially in the consecutive and random loss pat-

5The source code of all methods have been kindly provided by their authors.
Also, the MATLAB implementation of some techniques are available online
at http://dtstc.ugr.es/ jkoloda/download.html

terns. The EC performance can be further improved by the
proposed JSR-N and JSR+NL algorithms. As can be seen
in Tables III and IV, the EC results of competing methods
are significantly lower than those provided by the proposed
JSR+NL algorithm for the images such as Lena and Peppers,
which demonstrate its effectiveness for the error recovery
by exploiting jointly the non-local self-similarity and local
structural regularity. We do notice that for the images like
Barbara and Mandrill, the proposed JSR+NL algorithm does
not seem to outperform others. This is partially due to its
complex local texture, making it difficult to find a reliable
support area of the corrupted pixels. This type of texture calls
for a new definition of the support area which is our future
work. Generally, we can infer that the proposed method can
recover the lost blocks of the images wherein there are global
object contours. Although, the performance of the JSR+NL
algorithm for the lost blocks of size 16×16 pixels is lower than
that of the ALP method in terms of PSNR, as discussed later,
the JSR+LN algorithm is much faster than the ALP algorithm.

Several concealed images Lena, reconstructed by different
EC methods, are shown in Fig. 8 for visual comparisons. The
images are corrupted by the random loss pattern (30%PLR).
As it can be seen, the CAD algorithm fails to recover the
lost blocks and the AVC and POCS cannot restore the lost
blocks well. In comparison, the MRF, MKDE and SLP can
preserve more image details. However, these algorithms blur
the image edges. In contrast, the ALP algorithm is more
effective in reconstruction of both the smooth area and the
complex regions, including texture and edges. Similar to the
ALP algorithm, the proposed JSR+NL method achieves much
better results than the others. Evidently, it can preserve most
of image details and sharper image edges and generates much
less artifacts, leading to visually much more pleasant recovery.
It can also be observed that the JSR-based EC scheme can
well reconstruct the image. However, there are some artifacts
around the edges.

The superior performance of the proposed JSR+NL algo-
rithm comes from both the joint sparse representation model-
ing and the natural image priors of the non-local self-similarity
and the local structural regularity. By analyzing the objective
and subjective results, the following observations are made:
1) In general, the JSR-based EC approach performs better as
compared to the interpolation based methods like SLP and sta-
tistical based methods like MKDE, although its performance is
comparable with that of ALP. 2) By incorporating the local and
non-local models into the recovery phase, the image quality
can be further improved. Using the NS and LR models lead
to the consistent good performance.

D. Computational Costs

The run time of the proposed JSR+NL algorithm is com-
pared with the state-of-the-art EC methods in Table V for the
random loss pattern (PLR=30%) with the lost blocks of size
8 × 8 and 16 × 16 pixels on a typical computer (Intel(R)
Xeon(R) CPU @ 3.20 GHz 8 GB RAM) based on a non-
optimized MATLAB implementation. A similar random loss
pattern is used for all the above-mentioned algorithms and the
average run time over 10 trials is given for each algorithm. It
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TABLE III
PSNR VALUES OF THE CONCEALED IMAGES USING SEVERAL EC TECHNIQUES FOR DIFFERENT LOSS PATTERNS (ISOLATED LOSS, CONSECUTIVE LOSS

AND RANDOM LOSS WITH 30% PLR) WITH THE LOST BLOCKS OF SIZE 8× 8

EC Technique
Loss Pattern AVC POCS CAD VC MRF MKDE INP SLP LSR ALP JSR JSR+N JSR+NL

Lena
Isolated 32.04 29.15 33.97 34.58 34.38 34.55 30.55 33.72 34.45 35.69 35.08 35.67 35.78
Consecutive 28.84 26.21 27.43 22.83 31.09 30.57 28.22 29.48 30.13 32.14 31.80 32.38 32.54
Random 28.92 26.94 26.45 18.18 31.55 31.45 29.60 30.62 31.35 32.61 31.71 32.04 32.20

Peppers
Isolated 32.77 28.92 34.70 34.45 34.42 35.30 31.12 34.68 34.91 35.72 35.15 35.87 35.96
Consecutive 29.59 25.78 28.75 23.20 31.37 30.57 27.99 29.77 30.67 32.36 32.10 32.87 33.04
Random 28.98 26.70 26.97 18.40 31.44 30.95 28.56 30.23 31.25 32.29 31.52 31.86 32.01

Goldhill
Isolated 32.54 29.38 32.72 32.45 32.34 32.99 29.88 32.46 32.40 33.24 32.77 33.16 33.31
Consecutive 29.43 26.44 29.04 24.34 29.32 28.99 27.01 28.49 29.11 30.12 29.73 30.11 30.23
Random 29.80 27.77 28.28 18.77 30.22 30.03 28.22 29.46 30.15 30.89 30.55 30.70 30.99

Mandrill
Isolated 26.18 24.89 26.36 26.84 26.89 26.71 24.01 25.05 26.78 27.44 27.07 27.16 27.24
Consecutive 23.19 22.17 22.36 20.72 23.88 23.34 20.56 21.73 23.82 24.33 24.04 24.14 24.22
Random 24.83 24.09 22.10 17.55 25.57 25.18 22.87 23.62 25.23 25.87 25.86 25.90 25.95

Zelda
Isolated 36.41 32.76 37.25 37.40 37.13 37.06 33.66 36.67 36.81 38.87 37.66 38.25 38.38
Consecutive 33.46 29.54 32.73 26.15 34.30 33.40 30.25 32.79 32.38 35.68 34.86 35.40 35.57
Random 32.95 30.47 31.76 20.65 34.40 33.42 31.02 32.95 33.64 35.51 35.16 35.60 35.77

Barbara
Isolated 27.56 26.02 30.27 28.81 30.20 34.00 30.14 33.12 29.31 33.66 30.22 31.04 30.58
Consecutive 24.83 23.03 24.09 21.60 27.11 29.74 26.76 28.44 25.88 29.76 27.19 28.22 27.54
Random 25.99 27.78 22.85 18.41 28.15 30.03 27.10 28.60 27.58 30.22 28.13 28.62 28.29

Montreal
Isolated 31.15 28.73 30.72 30.85 30.69 30.98 28.10 30.12 31.09 31.62 31.02 31.32 31.41
Consecutive 27.84 25.78 27.73 24.94 27.51 27.10 24.80 26.30 27.18 28.09 27.80 27.99 28.10
Random 28.88 27.39 27.81 21.62 28.85 28.34 26.10 27.53 28.81 29.19 28.98 29.05 29.22

Pelican
Isolated 30.43 28.27 31.54 31.81 31.85 31.75 28.55 30.47 30.48 32.57 32.18 32.30 32.39
Consecutive 27.43 25.28 26.43 22.85 28.86 28.24 25.32 26.86 26.90 29.38 29.18 29.29 29.39
Random 28.99 27.22 25.82 16.02 30.60 30.00 27.12 28.76 30.42 31.20 30.78 30.84 31.32

Kodim05
Isolated 26.66 25.30 28.18 28.31 28.11 28.23 25.88 27.32 27.62 28.74 28.58 28.99 29.12
Consecutive 23.59 22.43 23.56 22.48 25.00 24.39 22.30 23.34 23.87 25.38 25.43 25.83 25.97
Random 24.64 23.75 23.11 20.21 25.96 25.24 22.90 24.34 26.10 25.86 26.19 26.37 26.44

Kodim06
Isolated 29.68 27.44 30.18 30.15 29.86 30.25 27.65 29.08 30.63 30.98 30.15 30.43 30.53
Consecutive 26.61 24.60 26.52 - 26.84 26.43 24.22 25.42 26.30 27.61 27.10 27.37 27.46
Random 28.31 26.58 25.98 - 28.45 28.34 26.01 27.31 28.18 28.98 28.58 28.67 28.75

Average
Isolated 30.54 28.086 31.58 31.56 31.58 32.18 28.95 31.26 31.44 32.85 31.98 32.41 32.47
Consecutive 27.48 25.12 26.86 23.51 28.52 28.27 25.74 27.26 27.62 29.48 28.92 29.36 29.40
Random 28.22 26.86 26.11 19.48 29.51 29.29 26.95 28.34 29.27 30.26 29.74 29.96 30.09

can be seen that the proposed algorithm is much faster than
the recently proposed ALP algorithm, which is the best among
the competing algorithms. Most competitors recover the lost
block in a pixel-by-pixel manner, wherein the pixels in the
missing blocks are successively recovered on a small spatial
window. However, our approach is block-based, in which
all the missing pixels within a subblock (subblock of size√
P ×
√
P pixels) are recovered at the same time (Please see

Fig. 2). This leads to a lower reconstruction time. Although,
the proposed JSR+NL algorithm has a considerably large error

recovery time in comparison with the AVC, CAD and MRF
methods, its advantage in precisely estimation of the corrupted
information is obvious in terms of objective evaluations.

It should be noted that the dictionaries and mappings are
trained offline and the computational cost of the proposed
JSR+NL algorithm is usually dominated by the computation
of the sparse representation of the input patches using the
OMP algorithm. In the worst case, B2 vectors should be
obtained via Eq. (17) for each lost block of size B × B.
The computational cost of the sparse representation is also
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TABLE IV
PSNR VALUES OF THE CONCEALED IMAGES USING SEVERAL EC TECHNIQUES FOR DIFFERENT LOSS PATTERNS (ISOLATED LOSS, CONSECUTIVE LOSS

AND RANDOM LOSS WITH 30% PLR) WITH THE LOST BLOCKS OF SIZE 16× 16

EC Technique
Loss Pattern AVC POCS CAD VC MRF MKDE INP SLP LSR ALP JSR JSR+N JSR+NL

Lena
Isolated 29.25 24.30 31.51 32.45 31.52 33.35 29.89 32.44 31.57 33.90 33.24 33.47 33.59
Consecutive 26.26 23.76 22.64 24.85 28.44 29.12 26.78 28.12 27.86 29.86 29.32 29.50 29.63
Random 25.72 24.30 19.87 17.59 28.18 28.81 26.90 28.16 28.15 29.25 29.06 29.18 29.27

Peppers
Isolated 29.19 23.87 30.07 30.96 30.16 31.83 29.41 31.33 30.29 31.98 31.86 32.12 32.18
Consecutive 26.40 23.47 22.65 24.88 27.56 28.68 26.59 28.00 27.14 29.49 28.88 29.14 29.25
Random 26.41 23.87 20.86 18.43 27.01 28.05 25.42 26.67 27.00 28.36 27.66 27.83 27.93

Goldhill
Isolated 30.47 25.71 28.69 30.92 30.31 31.46 28.99 30.88 30.25 31.27 31.45 31.49 31.54
Consecutive 27.32 24.66 22.65 26.17 27.03 27.89 26.10 27.43 27.03 27.97 29.01 28.06 28.08
Random 27.55 25.71 21.39 18.82 27.55 27.23 25.01 26.53 27.55 27.70 27.77 27.82 27.86

Mandrill
Isolated 25.40 23.86 24.82 26.01 26.04 26.33 23.50 24.79 26.05 26.42 26.26 26.27 26.29
Consecutive 22.57 21.98 19.40 21.81 23.29 23.22 21.20 21.97 23.08 23.49 23.35 23.37 23.38
Random 24.58 23.86 19.67 17.34 25.18 25.01 22.65 23.84 25.00 25.37 25.23 25.25 25.26

Zelda
Isolated 33.81 27.32 33.71 35.13 34.32 35.11 30.10 34.70 34.93 36.38 35.46 35.73 35.83
Consecutive 30.67 27.00 23.84 28.16 31.07 31.47 29.67 31.11 30.38 32.84 31.99 32.30 32.41
Random 29.74 27.32 23.55 20.68 29.92 31.15 29.32 30.81 30.00 31.36 31.25 31.36 31.48

Barbara
Isolated 27.09 23.21 28.00 28.58 28.46 32.35 29.43 31.56 28.43 31.46 30.96 30.98 30.99
Consecutive 23.94 21.54 21.20 23.13 25.21 28.38 26.03 27.62 24.94 27.84 27.38 27.39 27.39
Random 24.80 23.21 20.16 17.91 26.01 28.05 25.65 26.88 26.01 27.69 27.46 27.47 27.47

Montreal
Isolated 29.86 26.63 27.69 29.66 29.52 30.36 28.22 29.82 31.05 30.26 30.50 30.53 30.55
Consecutive 26.84 25.04 22.85 25.84 26.38 26.79 25.07 26.39 26.19 27.00 27.14 27.18 27.19
Random 28.09 26.63 24.18 22.06 27.49 27.66 25.88 27.27 27.42 27.61 28.16 28.20 28.22

Pelican
Isolated 28.89 24.92 30.28 30.95 30.39 30.53 27.76 29.09 30.48 31.50 30.57 30.60 30.62
Consecutive 25.78 23.86 22.03 24.87 27.45 27.52 25.00 26.46 26.79 28.36 27.82 27.87 27.92
Random 26.01 24.92 20.71 16.16 27.78 28.00 25.78 27.04 27.05 28.58 28.30 28.33 28.34

Kodim05
Isolated 25.44 22.79 25.21 26.79 26.34 27.47 25.22 26.75 26.23 27.41 27.60 27.68 27.71
Consecutive 22.16 21.24 20.17 22.46 23.23 23.67 21.87 22.77 23.35 23.89 23.91 24.00 24.05
Random 23.52 22.79 20.99 20.17 24.48 24.28 22.55 23.63 24.25 24.79 24.90 24.94 24.97

Kodim06
Isolated 28.82 25.73 28.32 29.43 28.82 29.18 26.89 28.45 28.83 29.57 29.47 29.52 29.55
Consecutive 25.64 24.55 24.58 23.84 25.69 25.84 23.65 25.11 25.57 26.32 26.20 26.25 26.28
Random 26.68 25.73 21.27 18.07 26.04 26.99 24.84 26.20 26.40 27.13 27.09 24.10 27.14

Average
Isolated 28.82 24.83 28.83 30.09 29.59 30.80 27.94 29.98 29.81 31.01 30.74 30.84 30.89
Consecutive 25.76 23.71 22.20 24.60 26.53 27.26 25.20 26.50 26.23 27.71 27.50 27.51 27.56
Random 26.31 24.83 21.27 18.72 26.96 27.52 25.40 26.70 26.88 27.78 27.69 27.45 27.49

proportional to the dictionary and patch sizes. As discussed
before, we set D = 256 and T = 25 to balance the EC
quality and the reconstruction time. Further, the NS model
adds significant computational costs which comes from finding
the similar patches for the NS model for each patch. It should
be taken into consideration that, given the recovery order of
each missing block, (see Fig. 4), the reconstruction process
can be done by starting the recovery of the subblocks located
at 4 corners of the lost block at the same time. Therefore,
the reconstruction of block can be done four times faster.

Moreover, in our implementation, similar patches for each
block are not updated at each iteration, but after 100 iterations,
thus reducing the reconstruction time significantly.

Our approach can be modified in order to reduce the
recovery time as follows:

• When building patch y, one can consider more corrupted
pixels P in the patch to be recovered. This approach
reduces the number of vectors to be recovered for each
lost block. In this paper we consider P = 4. It is
also possible to decrease the overlap depth between the
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Fig. 8. Subjective comparison between the proposed JSR+NL results and those of other EC techniques for random loss patterns with 30% PLR. Top to
Down: Lena, Montreal, Kodim06.

adjacent subblocks (see Section III-D).
• The algorithm could be optimized by using a fast NS

algorithm [58]. Further, for faster computation of the LR

models, one can obtain one LR model for all the pixels
in the input patch, instead of finding different LR models
for each pixel.
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TABLE V
RECONSTRUCTION TIME (IN SECONDS) FOR THE CONCEALED IMAGE Lena USING SEVERAL EC TECHNIQUES FOR DIFFERENT LOSS PATTERNS (ISOLATED

LOSS, CONSECUTIVE LOSS AND RANDOM LOSS WITH 30% PLR)

EC Technique
Loss Pattern AVC POCS CAD VC MRF MKDE INP SLP LSR ALP JSR JSR+NL

Block Size (8× 8)
Isolated 0.09 6.07 4.10 559 9.23 236 10987 82 64 158 22 39

Consecutive 0.20 8.70 5.22 1079 16.73 363 21876 126 126 281 41 58

Random 0.15 5.83 3.90 586 10.34 253 13654 85 75 171 25 42

Block Size (16× 16)
Isolated 0.09 7.45 5.98 2400 9.23 1189 41850 256 269 510 110 150

Consecutive 0.06 11.75 8.74 4010 16.63 1899 77980 406 510 910 223 300

Random 0.05 7.97 10.15 2480 10.62 1278 59876 301 310 580 130 183

TABLE VI
EFFECT OF MAPPING APPROACH ON THE EC PERFORMANCE (PSNR) FOR

THE IMAGE Lena AT DIFFERENT PLRS

PLR (%)
Mapping 10 20 30 40 50
JSR-C 38.41 34.96 32.31 30.13 27.28
JSR-D 38.31 34.87 32.23 30.05 27.26
JSR-I 37.35 33.88 31.16 29.24 27.24

• The computational burden of the recovery process is
substantially increased using the iterative shrinkage al-
gorithm [55]. For decreasing the complexity, the receiver
can early terminate the iterations, depending on its com-
putational power, and yet obtain a visually satisfactory
image reconstruction.

• The proposed method can be easily executed in parallel
manner and obtain an acceptable computational cost
using an array of multiple instructions multiple data
(MIMD)-based parallel processors. Further, the difficulty
in hardware implementation can be effectively handled
using a CMOS technology based architecture [59] and
learning a dictionary with binary or ternary values instead
of a real ones [60], [61].

Finally, it should be noted that, in this paper, we use the
algorithm in [40] for the initial recovery which gives us
an acceptable reconstruction time for the JSRNL algorithm.
This initial interpolation simplifies much of the subsequent
work without a computational cost. How to choose the initial
recovery algorithm to guarantee a low computational cost
and how to make the algorithm less sensitive to the initial
reconstruction, and more generally, to noise, will be part of
our future research.

E. Performance Analysis of the Proposed Algorithm

The proposed method offers several benefits. Firstly, learn-
ing a separate dictionary for each domain preserves the main
structure of the data in the both domains, which can be
represented well by sparse linear combinations of the dic-
tionary atoms. Further, learning a mapping function in the
sparse representation domain makes it more accurate since the
irrelevant information in the spatial domain is discarded. We
have introduced several mapping approaches in Section III-B
which relate the sparse representations of the original and

corrupted patches in different ways. In this section, the effect
of the employed common space mapping, defined in Eq. (4),
on the EC performance is evaluated in comparison with the
direct mapping, defined by the term (3). We also evaluate the
EC performance of the proposed coupling method in [11],
wherein the mapping matrix M in Eq. (3) is set as an identity
matrix.

Table VI reports the experimental results in terms of PSNR,
where the image Lena is corrupted with the random loss
pattern at different PLRs, ranging from 10% until 50%.
The image is concealed using the JSR-based EC algorithm
with above coupling terms. “JSR-I”, “JSR-D”, and “JSR-C”
means mapping with the identity matrix, direct mapping, and
common space mapping, respectively. It can be observed that
coupling of the sparse coefficients using a common space
performs better error recovery than other coupling methods.
The reason is that transferring the sparse representations into
a common space provides more freedom to uncover the
relationships between the sparse coefficients of the original and
corrupted patches. It means that using an accurate coupling
term in the objective function (5) plays an important role in
the enhancement of error recovery.

VI. CONCLUSION

In this paper, a new image EC has been developed by
integrating the LR and the NS properties of natural images
into the JSR. The JSR model estimates the corrupted patch
via a dictionary pair and two mapping matrices that are
trained offline from two given training datasets. By using
this model, the error concealment is achieved by transferring
the error recovery problem into a common space via the
two learned dictionaries and mappings. Such transformation
provides more freedom and flexibility for error concealment.
Incorporating this model with the local and non-local priors, as
a new regularization term in the sparse representation domain,
produces sharper edges and suppresses the visual artifacts.
The performance of the proposed method has been evaluated
and compared with those of the state-of-the-art methods, both
quantitatively and perceptually.
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