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Abstract

We propose an event-triggered game-theoretic strategy for managing the power grids demand side, capable of

responding to changes in consumer preferences or the price parameters coming from the wholesale market. The

relationship between the retailer and the residential consumers is modeled as one-leader, N-follower Stackelberg

game. We provide a detailed characterization of the household appliances to reflect the reality and improve the

efficiency of the demand response (DR). Moreover, to consider all the appliances’ essentials, the consumer’s objective

function is formulated as a mixed integer non-linear program (MINLP), which, unlike conventional procedures, is

solved via an integrated method. The proposed method consists of a day-ahead stage, in which the DR problem

is solved for the next scheduling horizon, and a real-time stage which runs repeatedly to tackle the change in

the parameters and adapt to the new condition. For any change in the grid, the consumers use the estimated

optimal parameters (given by the original objective function) and develop another Stackelberg game based solution

to maximize the satisfaction level. Given the appliances of multi-class nature, the proposed method is shown to be

very tractable for ancillary services and reducing the mismatch between the renewable power generation and the

load demand.

Keywords: Branch-and-bound, demand response, sequential quadratic programing, smart grid, Stackelberg game.

1. Introduction

One of the most important challenges in DR programs is system balancing and tackling the uncertainty in the

availability of resources. In this context, the uses of electrical energy storage devices and thermostatically controlled

loads (TCLs) are highly regarded as potential solutions for reducing peak demand and other challenges to balance

the system. In addition, emerging new renewable and distributed energy sources increases the uncertainty in the

smart grid and volatility in energy production, as challenging problems to solve. Energy storage devices and robust

adaptive energy consumption scheduling framework decrease the impact of these factors by smoothing out the

fluctuation of the consumption curve and reducing the mismatch between the energy supply and demand [1, 2].

In recent years the DR has become one of the most attractive areas of research and activities in the field of

smart grids [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In [15] an optimization model has been proposed to schedule the

hourly energy consumption in response to hourly changes in the electricity prices. In [16] an automatic and optimal

residential energy consumption scheduling framework has been investigated which attempts to achieve a desired
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trade-off between minimizing the electricity payment and the waiting time for the operation of each appliance in

household. An efficient pricing method for the DR with a few information exchanges between the consumers and

the utility companies is proposed by Samadi et al. [17]. They analytically modeled each consumer’s preference

and energy consumption pattern in the form of a utility function and proposed a Vickrey-Clarke-Groves (VCG)

mechanism for maximizing the social welfare. Angeli et al. [4] proposed a dynamic demand management solution

for scheduling the power consumption of smart thermostatic domestic refrigerators. In their paper, the operating

temperature and the energy consumption of these appliances are modified dynamically, within a safe range, in

response to main’s frequency fluctuations such as sudden power plant outages. A game theoretic-based energy

consumption scheduling framework based on the use of mixed integer programming (MIP) to schedule the energy

consumption pattern of residential consumers is provided in [5]. This paper aims to incorporate integration of locally

generated renewable energy in order to minimize its dependency on conventional energy and the consumption cost.

The authors of [6] present a comprehensive and general optimization-based home energy management controller

in response to the dynamic price signals, incorporating several classes of domestic appliances including deferrable,

curtailable, thermal, and critical ones. Focusing on the TCLs, Tindemans et al. [7] discussed a novel decentralized

stochastic control for controlling a large collection of appliances. In [8], a multi-class appliance load scheduling is

presented for managing the energy consumption of a residence. The proposed method controls the operation time

and energy consumption level of five classes of appliances adapting to time-of-use pricing in order to maximize the

overall net utility of the residence while satisfying its budget limit. A decentralized real-time information based

demand response (also called demand-side management) for minimizing peak-to-average ratio (PAR) and cost of

power usage is proposed in [9] based on the game theoretical approaches. A DR load following strategy for an

interconnected source and load system utilizing traditional units and population of cooling TCLs to cope with the

mismatched power caused by the load activities and the renewable power injection in real time is discussed in [11].

There are also several works in the literature providing Stackelberg game-based solutions for the DR problem.

To deal with this DR problem in a network of multiple utility companies, Maharjan et al. formulated a Stackelberg

game between utility companies and end-users to maximize the revenue of each utility company and the payoff

of each user [18]. They developed a distributed algorithm which converges to the equilibrium with only local

information available for both utility companies and end-users. They also studied the impact of an attacker who

can manipulate the price information from the utility companies and provided a scheme based on the concept of

shared reserve power to improve the grid reliability and ensure its dependability. In [10], a real-time price based

DR algorithm for achieving optimal load control of various devices in an appliance is proposed by forming a virtual

electricity-trading process using one-leader, N-follower Stackelberg game.

A fully distributed algorithm that is able to optimize the aggregate cost, utility, and retailer’s profit using the

heuristic Diffusion-Stackelberg algorithm was presented in [19]. In this work, the interactions between consumers

and retailer was modeled by the Stackelberg game and the adaptive diffusion algorithm was used to solve the

consumers objective functions. A novel real-time pricing algorithm for the DR problem based on Stackelberg game

was developed in [20] to minimize the consumers’ bills and maximize the providers’ profit. It defines the consumers’

energy consumption and the providers’ price by taking advantage of the bidirectional communication infrastructure

while different producer-consumers (i.e. prosumers) negotiate with different energy providers. The authors of [21]
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presented a light-weight DR scheme based on the Stackelberg game model to reduce the communication overheads

and delays. The proposed scheme manages energy consumption based on a non-iterative Stackelberg model and

historical real-time pricing. In [22], Shinde and Swarup studied a general DR approach combining the behavior

of electric vehicle users and residential customers with other elastic loads participating in the DR and considering

different utility functions for different types of customers. Different cases with single and multiple utility companies

(UCs) were considered in this work, trying to set the prices in such a way so as to maximize their profits. A

Stackelberg game model was designed to address the conflict of interests between the UCs and the customers.

However, none of the mentioned works in the literature has provided a comprehensive DR solution with the

ability to consider detailed model for all classes of residential devices, to adaptively track the drifts in location of the

optimal parameters in real-time, and be implementable in a fully autonomous manner. Here, for the first time, we

propose an event-triggered Stackelberg game-based distributed adaptive framework considering the storage devices,

renewable sources, and detailed model for all class of appliances which gives many options to the consumers and

retailer to reschedule the DR program in advance. The main contributions of this paper are therefore as follows:

Provision of an event-triggered framework: The presented approach is adaptive and is able to track

the drifts in location of the optimal parameters. These drifts can result from the presence of unforeseen events,

e.g., changes in price and renewable power production information, or in the consumer’s preferences and objective

function.

Multi-objective optimization: The proposed mechanism considers not only the consumers payment but also

their satisfaction as well as maximization of the retailer profit, whilst the details on individual appliances are not

required to be exchanged with those of neither retailer nor consumers.

An integrated approach: The algorithm which we use to solve the MINLP problem doesn’t involve any

decomposition technique. This scheme is based on branch-and-bound in which the branching is allowed after each

iteration of solving non-linear part of the problem.

Fully classifying of the residential appliances: Due to considering all classes of residential appliances, our

framework is very tractable to adapt with different tasks such as frequency regulation and load curve flattening.

The rest of this paper is organized as follows. In Section 2 we present the system model. In Section 3 we

formulate the DR problem, and present our game theoretic strategy in 4. Section 5 presents the experimental

evaluation and in Section 6 we conclude the paper.

2. System Model

We consider a residential power system which consists of a service provider (retailer) and several consumers in

a neighborhood. The service provider buys electricity from the wholesale market and sells it to the consumers.

We assume that every consumer is equipped with smart meter and schedule his appliances with an automatic

energy consumption scheduler (ECS) embedded in the smart meter, as depicted in Fig. 1. We further assume that

communications between the wholesale market, the retailer and the consumers’ smart meters are established by

appropriate two-way communication protocols. We also consider multiple renewable sources e.g., a rooftop PV for

consumers and a wind farm for retailer, that can provide a part of total energy demand of their consumers. For

each appliance, the consumers also need to set the admissible scheduling window Hk,a , {αk,a, 1 + αk,a, · · · , βk,a} ∈
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Figure 1: Block diagram of the smart micro-grid system.

H , {1, 2, · · · , H} by specifying the beginning and end of scheduling time. Here αk,a represents minimum start

time of operating range determined by consumer k for appliance a. Similarly, βk,a (αk,a < βk,a) represents the

maximum stopping time of operating window before that, the device must complete its work.

2.1. Classification of Appliances

(I) Inelastic loads: These devices are not customizable and whenever necessary, should start work immediately,

but the time of use of these appliances is not known in advance and have a stochastic on-off behavior with time

varying properties. We show the set of these appliances for consumer k as AIk. TV and PC are two types of these

devices. The behavior of these appliances is modeled as a discrete time Markov chain [23], with random integer

decision variable κhk,a ∈ {0(off), 1(on)} representing the state of the appliance a ∈ AIk at slot h with the state

probability row vector Phk,a = (ph,fk,a , p
h,o
k,a) = (Pr{κhk,a = 0},Pr{κhk,a = 1}). ph,fk,a (off-mode), ph,ok,a (on-mode) are the

probabilities of no change in the operational status, and ph,fok,a , ph,ofk,a are time varying transition probabilities from

state off to state on and vice versa, respectively. The dynamic evolution in time of the state probability Ph+1
k,a and

the random energy consumption x̃hk,a in kWh at each slot h can be described as:

Ia,k =


Ph+1
k,a = Ph

k,aM
h
k,a

x̃hk,a = xratk,aM
h
k,a

, Mh
k,a =

1− ph,fok,a ph,fok,a

ph,ofk,a 1− ph,ofk,a

 (1)

where the time varying right stochastic matrix Mh
k,a is the Markov transition probability matrix and xratk,a is the

nominal power consumption of the related appliance when is on. Given Mh
k,a and initial state probability vector

P 0
k,a we can replace the random energy consumption x̃hk,a with its deterministic value x̂hk,a taking expectation under

its probability distribution as follows:

E[x̃hk,a] = x̂hk,a = xratk,aP
0
k,aMk,a,h[0 1]> (2)

where Mk,a,h = M1
k,aM

2
k,a · · ·M

h−1
k,a [24].

(II) Semi-inelastic loads: These kinds of appliances have low flexibility for power scheduling. However, the

thermostatically on/off operation management of these appliances is very important for ancillary service programs

such as frequency regulation. Refrigerators, freezers, and water heaters are three types of thermostatic loads. We

show the set of these appliances for consumer k as ASIk . The dynamic equation for such appliances is given by
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[25, 4]:

Th+1
k,a = ε · Thk,a +

(
1− ε

)
·
(
T 0 − η

xhk,a
A

)
, ε = e(− τA

mc
) (3)

where Thk,a is the compartment inner temperature at slot h, ε is the system inertia depending upon the insulation

A, the thermal mass mc (thermal storage capacity), and the time span τ between the two time points h and h+ 1.

The parameter xhk,a denotes the energy consumption of the appliance at slot h depending on whether the device is

on or off, η is the efficiency of the device performance and T 0 describes the ambient temperature, which is assumed

to be constant. For this class of appliances the inner temperature is constrained between minimum temperature

Tmink,a and maximum temperature Tmaxk,a as follows:

Tmink,a ≤ Thk,a ≤ Tmaxk,a , ∀ h ∈ H, a ∈ ASIk (4)

Further, these appliances must consume a specific energy through the scheduling horizons:

H∑
h=1

Γhk,ax
rat
k,a = Ek,a, a ∈ ASIk (5)

where Γhk,a ∈ {0, 1} is an integer variable that indicates whether the appliance a of consumer k is in the operating

mode (i.e., on) at slot h. Moreover, in (5) Ek,a is the total electricity demand throughout the scheduling horizon.

(III) Uninterruptible loads: The operation times of these devices are shiftable but are not interruptible and

when turned on they should stay on until the completion of their work. Washing machines are such devices. This

category is referred to as AUNk . Since the operation of uninterruptible appliances is continuous, we must define the

duration of operations ∆Tk,a for these appliances. Moreover, as is clear, each of these appliances have predetermined

energy consumption pattern and for each cycle we may have different xratk,a. So, the task of each consumer is to

determine the optimal start time h∗ for a schedulable appliance a ∈ AUNk that minimizes the consumer’s payment.

This determination can be viewed as selecting one of the cyclic shifts of the total possible power consumption

pattern χk,a at the scheduling horizon H as follows:

χk,a =


x1
k,a xHk,a · · · x2

k,a

x2
k,a

. . . . x3
k,a

... .
. . .

...

xHk,a xH−1
k,a · · · x1

k,a

 , a ∈ A
UN
k (6)

So, to provide the total amount of energy needed for perfect finishing of the operations for each appliance, we should

select one of the columns of matrix χk,a ∈ RH×H with switch vector Λk,a as:

xk,a = χk,aΛk,a (7)

where xk,a , [x1
k,a, · · · , xHk,a]> and Λk,a , [Λ1

k,a, · · · ,ΛHk,a]> are the power consumption profile and the starting

time vector of appliance a of consumer k throughout the scheduling horizon H respectively, and αk,a ≤ h∗ ≤

βk,a − ∆Tk,a + 1. As the quantities of energy consumption for these appliances are predetermined, we can only

determine the start time from its feasible operation window. So, we have:

βk,a−∆Tk,a+1∑
h=αk,a

Λhk,a = 1, Λhk,a ∈ {0, 1} (8)
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(IV) Interruptible-continuous loads: These devices are time shiftable and operate in discrete time mode.

For these kinds of appliances, the only important thing is that the total energy demand should be provided at the

end of their operation window. Including possible interruption devices can be pointed to as plug-in hybrid electric

vehicle (PHEV). We show the set of these appliances as AICk .

γmink,a ≤ xhk,a ≤ γmaxk,a , ∀ h ∈ Hk,a, a ∈ AICk (9)

where γmink,a , γmaxk,a are minimum standby and maximum power levels which can be consumed by appliance a respec-

tively. To provide the total energy demand for interruptible appliances, we should have:

βk,a∑
h=αk,a

xhk,a = Ek,a, ∀a ∈ AICk (10)

Furthermore, xhk,a in (9) can take all continuous values in this interval and the other constraint applied to this

class of appliances is as follow:

xhk,a = 0, ∀ h ∈ H \ Hk,a, a ∈ AICk (11)

(V) Interruptible-discrete loads: These appliances are similar to interruptible-continuous loads, except that

the energy consumption inside the admissible operation window Hk,a is either off or work at the nominal power

rate (xhk,a ∈ {0, xratk,a}). vacuum cleaner, battery with fixed charge rate, and digital appliances with interruptible

jobs are among these devices which is shown as AIDk . Also for these appliances (11) must be satisfied and the total

demand constraint is:
βk,a∑

h=αk,a

Γhk,ax
rat
k,a = Ek,a, with

βk,a∑
h=αk,a

Γhk,a ≥ 1 (12)

(VI) Curtailable loads: In scheduling the curtailable appliances depending on the circumstances, the total energy

consumption can take different values. For example, if a consumer has a good financial situation or the price in

a given hour is low for him, he can use more power by his curtailable appliances. We show the set of curtailable

appliances such as heating, ventilating, and air conditioning (HVAC) systems as ACUk . The dynamic thermal model

of curtailable appliances can be represented as follows [8]:

θha,in(xhk,a) = εaθ
h−1
a,in (xh−1

k,a ) + (1− εa)(Wh
a,out +Kh

ax
h
k,a) (13)

where θha,in is the temperature inside the home at slot h, xhk,a = [x1
k,a, x

2
k,a, · · · , xhk,a], εa is the inertia constant, and

Wh
a,out, K

h
a are the outdoor temperature at time slot h and the appliance efficiency, respectively. The consumer k

home’s temperature is constrained between the minimum acceptable (θmink,a ) and the maximum affordable (θmaxk,a )

temperatures as follows:

θmink,a ≤ θhk,a,in ≤ θmaxk,a , ∀ h ∈ H, a ∈ ACUk (14)

The total energy demand of theses appliances is bounded between the minimum (Emink,a ) and the maximum (Emaxk,a )

energy consumption as follow:

Emink,a ≤
βk,a∑

h=αk,a

xhk,a ≤ Emaxk,a , a ∈ ACUk (15)

These bounds can differ for different consumers.
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(VII) Energy Storage loads: The storage devices such as home battery are shown as a ∈ ASk . The vector

scheduled for the energy storage devices at each consumer side is shown as follows:

sk , s+
k + s−k , [s1

k, · · · , sHk ]. (16)

constructed of s+
k , [s+1

k , · · · , s+H
k ] and s−k , [s−1

k , · · · , s−Hk ], where s+
k and s−k are vectors of charging and

discharging of the storage device, respectively, s+h
k ≥ 0 and s−hk ≤ 0. shk is the amount of power scheduled for

storage device of consumer k in time slot h ∈ H. When this consumer stores energy, shk appears with positive sign

and when the storage device is draining with negative sign. Each storage device has limitations for the amount

of power that can store or consume according to (17) below. Parameters Bcapk and Bthk indicate maximum and

minimum energy levels of the storage device corresponding to consumer k ∈ K, respectively. Bcapk is the capacity

of storage device and Bthk is set to increase the storage device life. The following constraints must be satisfied:

Bthk ≤ bhk ≤ B
cap
k , ∀ h ∈ H. (17)

− λ−k b
h−1
k ≤ s−hk , ∀ h ∈ H. (18)

bhk = bh−1
k + λ+

k s
+h
k − λ

−
k s
−h
k , ∀ h ∈ H. (19)

smink ≤ shk ≤ smaxk , ∀ h ∈ H. (20)

where bhk is the storage device charge level for consumer k at slot h. We show the storage device charge and discharge

efficiency ratio respectively as λ+
k and λ−k ∈ (0, 1], which means that a fraction λ+

k of energy consumption of the

storage device at slot h is stored as the energy in the storage device and a fraction λ−k of the stored energy at the

previous slot (i.e., bh−1
k ) is available for discharge, as denoted in (18). Suppose that the initial energy level of storage

device is b0k. So, the level of energy stored in slot h follows the dynamic equation (19). The amount of charging

and discharging is bounded respectively by smaxk ≥ 0 and smink ≤ 0, according to (20). For each consumer k we

show the set of household devices as vector Ak = AIk
⋃
ASIk

⋃
AUNk

⋃
AICk

⋃
AIDk

⋃
ACUk

⋃
ASk . The total number

of appliances per consumer is shown as Ak , |Ak|.

2.2. Models for Power System and Appliances

In the model presented in this paper, K represents the set of consumers, with its number of consumers as K ∈ |K|.

For every consumer k ∈ K, the total power demand of retailer at slot h can be shown by lhk . In which we have,

h ∈ H , {1, · · · , H}, where H and H describe time horizon (e.g. one day ahead) and set of time slots (as integer),

respectively. Without loss of generality, for simplicity we assume H = 24. So, each time slot represents one hour,

meaning that |H| = 24. The total daily net power demand for each consumer k is denoted by vector lk , [l1k, ..., l
H
k ].

Furthermore, we assume that the retailer has a wind farm and can forecast the power production profile of wind

farm rw , [r1
w, · · · , rHw ] at the beginning of the scheduling horizons according to the explanatory and historical

information [26], where rhw is the total power drown from the wind farm at slot h. For each appliance a, we define

an energy consumption scheduling vector xk,a , [x1
k,a, · · · , xHk,a], where the scalar xhk,a denotes the corresponding

one-hour energy consumption scheduled for appliance a by consumer k at time slot h. We further assume that each

consumer k similar to retailer, can estimate the internal energy production profile of the PV rk,p , [r1
k,p, · · · , rHk,p]
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at the beginning of scheduling horizons, where rhk,p is the total power drowned from the consumer k rooftop PV at

slot h [27].

Based on the above definitions the total load demand of the retailer from the kth consumer in time slot h

becomes lhk =
∑
a∈Ak x

h
k,a+shk−rhk,p. Each consumer must take the following demand constraint into consideration:

0 ≤ lhk ≤ lmaxk , ∀ h ∈ H. (21)

where lmaxk is the maximum amount of power that consumer k can demand from the micro-grid at each slot. Indeed,

the constraint (21) ensures that the demand does not exceed the maximum capacity of network. It also prevents the

creation of sub-peak at the time slots that the energy price is low. Now, the total power demand by all consumers

throughout the scheduling horizon H is defined by l , [l1, · · · , lH ] with aggregate demand at slot h as:

lh =
∑
k∈K

lhk − rhw =
∑
k∈K

(
∑
a∈Ak

Ek,a + sk − rk,p)− rhw (22)

2.3. Dynamic Pricing and PAR

One of the most important parameters in measuring the usefulness of any DR program is ability to reduce the

peak to average energy consumption ratio (i.e., PAR) as much as possible which has several positive impacts on

the power system [28]. The PAR level throughout one scheduling horizon H is calculated as:

PAR =
lpeak
lavg

, lpeak = max
h∈H

lh, lavg =
1

H
·
∑
h∈H

lh (23)

The simulation results show that by increasing the number of consumers equipped with storage devices to a certain

number, the PAR decreases. But after that, the PAR will start to increase again. This is because those users

who have storage devices tend to buy more energy before the peak hours and consume or sell it during the peak

hours to maximize their profit. If a large number of consumers do this, the original peak energy consumption

moves to a new peak in another hour. We call this phenomenon reverse peak or sub peak. This destructive

effect can be resolved using dynamic pricing methods such as real time pricing (RTP) method provided in this

paper. Let P = [P1, · · · ,PH ] ∈ RH be a set of real time prices (RTP) for each determined time interval by

the retailer in which, Ph is the price at slot h that the retailer updates and send it to the consumers. Let

V̄k = [vk,1, · · · ,vk,Ak ] ∈ RHnew×Ak be the set of virtual time prices (VTPs) determined by the consumer k’s smart

meter when any change occurs in the consumer k state, where Hnew = H − tk + 1 and tk is the time slot when

a change occurs for consumer k. vk,a = [v1
k,a, · · · , v

Hnew
k,a ]>, where > refers to vector transpose, is just the virtual

price vector that the consumer k’s smart meter broadcasts to schedule the appliance a energy consumption when

a change occurs. Actually, VTP is a tool to transmit and manage the change command, control the power usage,

and prioritize the appliances.

It should be noted that, if after scheduling, for whatever reason, a change is introduced to the price trends

(the retailer side), all the consumers must adapt their load profiles according to the new state, but if the change

occurs in a consumer condition, preferences, or objective function, only that consumer (using VTP) must adapt

his load profile accordingly. In this situation the main challenge to make any changes is that, the last state of the

uninterruptible appliances should be checked again and if they are turned on, they should stay on until finishing their
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Table 1: Summary of Notations.
 

Symbol Description  Symbol Description 
 

     

,k a , new  
Set of permissible time slots for scheduling operation of appliance a  of 

consumer k  and the updated scheduling horizon within the day 

 
,
h
k aT , ,

min
k aT   

The compartment inner temperature of appliance a  of customer k  at slot h  
and the minimum inner temperature bound  

,k a  , ,k a  Minimum start time of operation for appliance a of consumer k  and the 
maximum end time of operation 

 
,
xm

k a
aT   

Maximum inner temperature bounds of appliance a  of consumer k  

, , , kH h t   
Set of equal length time slots, scheduling horizon, time slot index, and the time 

slot when a change occurs for consumer k  

 
,
h
a in , ,

min
k a   

The inside temperature at home at slot h regarding appliance a  and the 
minimum inner temperature bound  

, ,K k   Set of consumers, total number of consumers, and their index  
,
xm

k a
a

  
Maximum inner temperature bounds of appliance a  of consumer k  

I
k , 

I
k
S

 
Set of consumer k 's inelastic and semi-inelastic loads  

,k a , ,k a  Total possible power consumption pattern of appliance a  of consumer k and 
the switch vector 

N
k
U

,
C
k
I

 
Set of consumer k 's uninterruptible and interruptible-continuous loads  

P , 
hP  

The day-ahead vector of real time prices (RTP) and the price at slot h  

D
k
I

,
U
k
C

 
Set of consumer k 's interruptible-discrete and curtailable loads  

,min axmP P  
Minimum and maximum prices that the retailer can 
offer at each hour 

S
k , ks , ks  

Set of consumer k 's energy storage loads, vectors of charging and 
discharging 

 
( ), ( ),h k aC U  

The energy cost at the wholesale market and the utility function of appliance 

a  of consumer k  

,
min
k aE   

Minimum tolerable energy demand bounds of appliance a  of consumer k   

kV ,k av ,
h
k av  

Virtual time price (VTPs) matrix for consumer k , the VTP vector 

corresponding to appliance , and the VTP at slot h  

,
max
k aE   

Maximum tolerable energy demand bounds of appliance a  of customer k   
,, ,

h
k a k aw m  

Priority of energy consumption index at slot h  related to appliance a of 

consumer k  and the median level of energy demand 

,k ax , ,
h
k ax   

Daily energy consumption vector of appliance a  and the corresponding one-
hour energy consumption scheduled for the appliance 

 
,min max

kU c  
Minimum satisfaction level for consumer k  and the maximum amount of 
costs imposed on the consumers bound 

wr ,
h
wr  

 

Power production profile of wind farm and the corresponding one-hour  output  , ,k kA a  
 Set of customer k 's appliances, total number of these appliances, and 

appliance index 

,k pr , ,
h
k pr   

The internal energy production profile of consumer k 's PV and the 
corresponding one-hour output 

 

kl , kl ,
h
kl  

Daily net power demand for consumer k , net demand for the other 

consumers, and the total energy demand of the consumer at time slot h  

,k aE , ,
t

k a
rax  

Total desirable energy need of appliance a  of consumer k  for finishing its task 
and the nominal power consumption of the appliance 

 hl , 
max
kl  

The aggregate purchased power from the market at slot h  and the maximum 

amount of power that consumer k  can demand 

,
min
k a ,

min
ks  

Minimum power level that appliance a of consumer k can consume  , , ,y Y x X  integer variable index, set of feasible regions for these variables, continuous 
variable index, set of feasible regions for these variables 

,
max
k a

max
ks  

Maximum power level that appliance a of consumer k can consume   
, id  An acceptable step of the trust-region SQP method with component xd , yd , 

and the trust-region radius 

th
kB ,

cap
kB  

Minimum and maximum energy levels of the storage device corresponding to 

consumerk  

 , p  The integrality gap and the experimental order of convergence 

h
kb , k , k  

The storage device charge level for consumer k  at slot h with charge and 
discharge efficiency ratio 
 

 
( )kQ ,

( )iW  
Function which expresses the personal restrictions for each consumer for the 
adaptive scheduling stage and approximation of the Hessian of the Lagrangian 

     
 س
 

operations. To do this, the states of these appliances must be set as the initial conditions for the new optimization

model [6]. The main notations ans synbols of the proposed framework are listed in Table 1.

3. Problem Formulation

3.1. Retailer Price Control as Leader (Stage 1)

From the retailer perspective, the strictly convex function Ch(lh) represents the cost of providing electricity

from the wholesale market at each hour h. By defining the minimum and maximum prices that the retailer can

offer at each hour as Pmin and Pmax, we have:

Pmin ≤ Ph ≤ Pmax, ∀ h ∈ H. (24)

Pmin and Pmax are usually designed based on many factors such as price history, market competition, customers’

acceptability and the wholesale price. The retailer must bear in mind that if he wants to compete in the electricity

market and has a positive effect on the consumption patterns, there is an upper bound for determining the price

rate/signal for it. So, Pmax can be marked as this upper bound. Because of external (such as political) pressure and

consumers’ acceptability, the retailer must limit his scheduling methodology in a way that, the maximum amount

of costs imposed on the consumers does not exceed the limit cmax. As a result, we have the following constraint:∑
h∈H

Ph · (lh + rhw) ≤ cmax. (25)
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However, there is a cost imposed on the retailer for providing the power, Ch(lh) = νh · (lh)2 + bh · (lh) + ch,

representing the energy cost that can be either a real energy cost (as a result of using the fossil fuels, buying

power from the wholesale market), or a managed virtual cost for encouraging the consumers to participate in the

optimization program [17]. Here, νh > 0 and bh, ch ≥ 0 are referred to as the price parameters determined at the

wholesale market for time slot h ∈ H and lh is the total consumed energy at that slot. Finally, using (22) the profit

maximization problem can be modeled as:

max
Ph

∑
h∈H

(Ph ·
∑
k∈K

(
∑
a∈Ak

xhk,a + sk − rk,p)− Ch(lh)) s.t. (24), (25) (26)

Problem (26) shows that the cost imposed on the consumers due to the optimization variable Ph is directly affected

by their aggregate consumption
∑
k∈K l

h
k and the wholesale price parameters {νh, bh, ch}. As the objective function

(26) and constraint (24) are linear and constraint (25) is nonlinear, this non-linear optimization problem can be

solved efficiently using a non-linear solver such as interior point method (IPM) [29].

3.2. Consumer Price Control as Follower (Stage 1)

We assume that each consumer wishes to minimize his payment subject to a satisfaction level more than a

certain threshold. So, all the consumers try to reduce their electric bills as much as possible subject to an acceptable

satisfaction level. Therefore, each consumer first determines his desired utility (satisfaction), then, seeks to find a

schedule which minimizes his bill. This constraint is presented as:

Ak∑
a=1

Uk,a(xhk,a, ω
h
k,a) ≥ Umink (27)

where Uk(xhk,a, ω
h
k,a) =

∑H
h=1 1− eω

h
k,a(1−(xhk,a/mk,a)) is the concave utility function describing the quality of energy

consumption of appliance a of consumer k throughout the scheduling horizons [30], and mk,a ≥ 0 is the median level

of energy demand of this appliance [10]. The appliance a prioritization is performed through ωhk,a. A higher ωhk,a at

slot h implies higher priority for energy consumption at this slot. For example, let us assume that the consumer k

wants to use his washing machine at slot h (i.e, ωhk,a has the highest value for this slot and it reduces monotonically

as h approaches H). Without the DR program, this consumers’ satisfaction level (utility) regarding the washing

machine is 100%, as he operates this appliance right at slot h. Now, let us assume that the price signal at this

slot is high and the ECS decides to operate the washing machine at slot h+ n (i..e, n slots delay in the operation

time). This delay incurs some dissatisfaction to the consumers which is modeled by Uk(xhk,a, ω
h
k,a). So, the ECS

should make a trade-off between delaying the operation time to reduce the payment and reducing the time delay n

to increase the satisfaction level. The optimization problem at each consumer side becomes:

max
xk
−(

H∑
h=1

Ph · (lhk + lh−k)) = min
xk

H∑
h=1

Ph · (lhk + lh−k),

s.t. (2)− (5), (7)− (15), (17)− (21), (27) (28)

where lh−k is aggregated demand of all the consumers other than consumer k at slot h and we denote the vector

of aggregate demand for all h ∈ H by l−k. Without constraints (21) and (27) the problem can be decomposed

into a number of sub-problems each corresponding to an appliance and each sub-problem can be solved relatively
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easily [8]. However, in our problem the variables for appliances are coupled due to constraints (21) and (27).

Besides, the integer variables regarding appliances a ∈ ASIk
⋃
AUNk

⋃
AIDk make the problem even more complex

and challenging. In order to solve this problem, we use an efficient method inspired by the integrated filter based

Sequential Quadratic Programming (SQP) and Branch-and-bound (B&B) method [31].

3.3. The Globalized SQP Algorithm

The problem introduced in Eq. (28) is an MINLP (because of having nonlinear constraints and both integer

and the availability of continuous variables), which is hard to solve. One way to solve an MINLP problem is to

decompose it into non-linear and integer parts. Due to high computational complexity, these methods are not often

cost-effective. To address this issue, in our distributed framework we use an integrated trust-region approach [31]

for solving the MINLP. This method uses a B&B technique1, but at the consumer side, the non-linear part (NLP)

of problem is not optimally solved. Instead, branching is allowed after each iteration of the NLP solver. In this

way, the non-linear (continuous) part of the MINLP problem is solved whilst searching the tree (integer part).

To solve an MINLP with B&B, initially, all the integer restrictions are relaxed and the resulting NLP relaxation

is solved. If the obtained solution of the relaxed NLP problem assigns integer values to all integer variables, then

this solution also solves the MINLP. Usually, some integer variables take a non-integer value. The algorithm then

selects one of those integer variables which takes a non-integer value, say y(i), with value ŷ(i), and branches on it.

The branching operation generates two new NLP problems by adding simple bounds y(i) ≤ [ŷ(i)] and y(i) ≥ [ŷ(i)]+1

respectively to the NLP relaxation (where [z] is the largest integer not greater than z). One of the two new NLP

problems is selected and solved next. If the integer variables take non-integer values then branching is repeated,

thus generating a branch-and-bound tree whose nodes correspond to NLP problems and where an edge indicates

the addition of a branching bound. If one of the following fathoming rules is satisfied, then no branching is required,

the corresponding node has been fully explored (fathomed) and can be abandoned. The fathoming rules are; FT1-

an infeasible node is detected (in this case the whole sub-tree starting at this node is infeasible and the node has

been fathomed), FT2- an integer feasible node is detected (this provides an upper bound on the optimum of the

MINLP; no branching is possible and the node has been fathomed), FT3- a lower bound on the NLP solution of

a node is greater than or equal to the current upper bound (in this case the node is fathomed, since this NLP

solution provides a lower bound for all problems in the corresponding sub-tree). Once a node has been fathomed

the algorithm backtracks to another node and terminates when all the nodes are fathomed [32]. The non-linear

solver considered in this method is a SQP solver2 and the global convergence is promoted through the use of a

trust-region with the new concept of a filter [33]. Fortunately, the quadratic programs are easy to solve in the sense

that there are good procedures for their solution.

1A B&B algorithm searches the complete space of solutions for a given problem for the best solution. However, explicit enumeration

is normally impossible due to the exponentially increasing number of potential solutions. The use of bounds for the function to

be optimized combined with the value of the current best solution enables the algorithm to search parts of the solution space only

implicitly. B&B has three main components: selection of the node (unexplored subspaces) to process, bound calculation, and branching

(i.e., subdivision of the solution space of the node into two or more subspaces to be investigated).
2SQP is an iterative method for obtaining the solution to non-linear constrained optimization problems. As with most optimization

methods, SQP is not a single algorithm, but rather a conceptual method from which numerous specific algorithms have evolved.
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The general trust region method minimizes an unconstrained objective by imposing an artificial constraint on

the step length. Typically, this constraint says that the step length is less than some length, or ‖d‖ < ∆, where

d is the step length, ∆ is the maximum step distance (often considered as the ”radius” of the trust region), and

‖·‖ is some norm defined in Rn [34]. The size of the trust-region decreases if the step is refused and increases if

it is accepted. Because of space limitation, we briefly introduce the formulation by only considering the nonlinear

constraint (27). However, the other linear constraints can be applied in similar way. For each consumer, we define

f(x, y) and g(x, y) as:

f(x, y) =

H∑
h=1

Ph · lhk (29)

g(x, y) = Umink −
Ak∑
a=1

Uk,a(xhk,a, ω
h
k,a). (30)

where variables x and y are constructed of all continuous and discrete variables in lhk , xhk,a, and ωhk,a, respectively.

Consider an NLP problem at a given node of the branch-and-bound tree, we now formulate the NLP part of problem

in (28) as

(P ) =

minx,y f(x, y),

s.t. g(x, y) ≤ 0, x ∈ X, y ∈ Y integer.

(31)

(P̂ ) =

minx,y f(x, y)

s.t. g(x, y) ≤ 0, x ∈ X, y ∈ Ŷ integer.

(32)

where, as mentioned, each y is an integer variable belonging to the decision set (y ∈ {0, 1}), from a ∈ ASIk
⋃
AUNk

⋃
AIDk

and x are continuous variables belonging to a ∈ AICk
⋃
ACUk

⋃
ASk . X and Y are sets of a feasible region for this

appliance, respectively. Note that, Ŷ ⊂ Y involves further constraints added during branching. In this case the

integer restrictions are relaxed and since both f(x, y) and g(x, y) are convex, we have a convex MILP [29]. Finally,

we apply the integrated MINLP approach to our problem (P̂ ), which results in solving a sequence of quadratic

programming (QP) problems of the form

(QP ic,∞) =



mind
(
f (i) +∇x,yf (i)T d+ 1/2dTW (i)d

)
s.t. g(i) +∇x,yg(i)T d ≤ 0,

f (i) +∇x,yf (i)T d ≤ U − ε,

‖d‖∞ ≤ ρi,

x(i) + dx ∈ X, y(i) + dy ∈ Ŷ integer.

(33)

where f (i) = f(x(i), y(i)) and g(i) = g(x(i), y(i)) at iteration (i). Further, d is an acceptable step of the trust-region

SQP method with components dx and dy in accordance with the variables x and y, respectively. For approximation

of the Hessian of the Lagrangian we use W (i) ≈ ∇2L(i) = ∇2
x,yf

(i) +
∑
λn∇2

x,yg
(i)
n . Also, the parameter λn is the

Lagrange multiplier for gn(x, y) ≤ 0. The third term of (33) refers to a mechanism for terminating the progression

of (QP ic,∞) when an underestimator (e.g. (f̂)) exceeds the upper bound U of the branch-and-bound process. At
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the same term ε > 0 is an acceptable tolerance for the branch-and-bound. The trust-region radius ρi in the fourth

term is adjusted to ensure that the quadratic model (QP ic,∞) complies with the true function. The SQP method

solves the NLP using a sequence of QP approximations which is achieved by replacing the non-linear constraints

with a linear first order Taylor series approximation and replacing the non-linear objective by a second order Taylor

series approximation reinforced by second order information as constraints. Although under certain conditions the

SQP method converges quadratically to a solution, the use of trust-region may cause (QP ic,∞) to be infeasible even

though the problem without a trust-region has a non-empty feasible region. So, a feasibility restoration phase

is necessary to get closer to the feasible region (to ensure convergence to a feasible solution) by minimizing the

violation of the constraints in some norm, subject to the linear constraints x ∈ X, y ∈ Ŷ as follow:

(F ) =

minx,y ‖h+(x, y)‖,

s.t. x ∈ X, y ∈ Ŷ integer.

(34)

where h(x, y) =
(f(x, y)− (U − ε)

g(x, y)

)
The operation a+ = max(0, a) is performed component wise. Hence, a SQP

algorithm also minimizes (F ). We have shown all these procedures in Algorithm 1. In this algorithm, round(y) is

the nearest integer to y. Fathoming of nodes occurs when the lower bound exceeds the current upper bound, when

the sub-problem is infeasible or when all integer variables yn take on discrete values.

Theorem 1. Since f(x, y) and g(x, y) are smooth and convex functions, X and Y are convex sets, the number

of integer variables y is finite, and the underlying trust-region SQP method is globally convergent, Algorithm 1

converges to the unique optimal solution (x∗, y∗) of (P ) after visiting a finite number of nodes.

Proof. See Appendix A.

In step (I) of Algorithm 1 in order to efficiently integrate the restoration phase using the trust-region we must

compute an acceptable step d(i) to make sure of feasibility. In (II) we have proposed a fathoming approach (i.e.,

FT1, FT2, and FT3) of Lemma 1 to remove the infeasible solutions. The main idea of branch-and-bound method

is mentioned in steps (III) and (IV). In implementing the proposed technique, it is likely that some integer variables

converge to a non-integral solution, namely y
(i)
n → ŷn but θ ' 0.02 < τ , i.e. the integrality gap remains bounded

away from zero (we can let τ = 0.1 [35]), or the SQP solver converges at second order rate during this time and

θ �
∥∥d(i)

∥∥
∞ → 0. So, during the early branching procedure we have to first compute the integrality gap in step (V)

and the experimental order of convergence in step (VI). Then, in step (VII) we add the constraint to take advantage

of the quadratic rate of convergence and prevent inactivity in the early branching process during the second order

convergence of the SQP method3.

3.4. Virtual Electricity-Trading Process (Stage 2)

Many DR studies introduce a day-ahead pricing framework, which sometimes has significance difference from

the applied RTP [36, 17, 37, 5, 6]. The reason for this difference is imprecision in the estimation and unanticipated

3Interested readers can view more information of this scheme and its features in [31].
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Algorithm 1 Trust-region SQP and branch-and-bound
while there are pending nodes in the tree do

Select an unexplored node and repeat (SQP iteration):

I. Compute an acceptable step d(i) of the trust-region SQP method

II. If QP i
c,∞ infeasible and ‖d‖∞ ≤ ρi then fathom node (go to

Select an unexplored node step)

else if QP i
c,∞ infeasible and ‖d‖∞ = ρi

Feasibility restoration phase: Repeat SQP iteration for

feasibility restoration

(a) Compute a step of the feasibility restoration

(b) if ‖d‖∞ ≤ ρi or min ‖g+(x, y)‖ > 0 then fathom node

(go to Select an unexplored node step)

(c) if QP i
c,∞ feasible then return to normal SQP

end

III. Set (x(i+1), y(i+1)) = (x(i), y(i)) + (d
(i)
x , d

(i)
y )

IV. if x(i+1), y(i+1) NLP optimal then

if (y(i+1)integral) then Update current best point by setting

(x∗, y∗) = (x(i+1), y(i+1)), f∗ = f (i+1)and U = f∗

else Choose a non-integral y
(i+1)
n and branch

end

go to Select an unexplored node step

end

V. Compute the integrality gap θ = minn |y(i+1)
n − round(y

(i+1)
n )|

VI. Compute the experimental order of convergence

p := ln(‖d(i)‖∞)/ln(‖d(i−1)‖∞)

VII. if (θ > τ or p > 1.5) and ‖d(i)‖∞ < θ then Choose a

non-integral y
(i+1)
n and branch (Select an unexplored node).

end

end while
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events. In this work we want to reduce the consequences of this difference by means of adaptive rescheduling energy

consumption in respond to the occurred change which is based on event-triggered model predictive control methods

[38]. In this way, we propose a complementary figurative RTP-based electricity-trading Stackelberg strategy for

determination of optimal load rescheduling of appliances when an event (change) is occurred at the consumer side.

We use this algorithm to run a figurative electricity-trading Stackelberg process, in which the consumer’s smart

meter is the leader who imposes virtual time prices (VTP), and its appliances are as followers.

Remark 1. This framework does not mean that each appliance must work independently and in a distributed

manner. Indeed, in this stage, all the calculations for making optimal decisions can be done centrally by the ECS,

either. However, the difference between this framework and convex disciplined optimization methods is that this is a

more general method as the optimization method can be viewed as a special case of game theory, i.e. it involves mixed

and behavioral strategies as well as pure strategies. In the proposed method the ECS seeks to achieve an equilibrium

in a cooperative manner (which is more flexible target for our framework) instead of minimum/maximum point on

equal strategies, with the following advantages: 1- Each appliance as an active decision maker can be controlled

centrally by ECS or directly by itself with different strategies in different situations which improves the practicality

and the consumer satisfaction level. 2- The consequence of decision by each appliance directly impacts on the other

appliances. So, all the appliances can adapt to the new condition in real time when a change is occurred.

Device Model: Each appliance as an ECS followers, selects an optimal reaction from its strategy set for

minimizing its incommodity function. Let V̄k = [v>k,1, · · · ,v>k,Ak ] be the strategy of this consumer’s ESC, where

each element vk,a = [v1
k,a, · · · , vHk,a] corresponds to the VTP vector determined for device a ∈ Ak and Ak = |Ak|

is the number of appliances for consumer k. When V̄k is revealed to device a, given the designated VTP for this

appliance, it has the following incommodity function:

ϕk,a(V̄k,xk,a,ωk,a) = vk,ax
>
k,a − wk,a · Uk,a(xk,a,ωk,a) (35)

where, vk,ax
>
k,a is the cost resulting from the demand energy xk,a, Uk,a(xk,a,ωk,a) is the utility resulting from the

consuming energy (see (27)), and wk,a ≥ 0 is a weight factor that reveals the significance of the corresponding

appliance energy consumption. As device a aims to minimize the incommodity, the optimization problem for each

device is formulated as:

min
xk,a

ϕk,a(V̄k,xk,a,ωk,a) s.t. xmink,a ≤ xhk,a ≤ xmaxk,a (36)

where, xmink,a and xmaxk,a , are minimum and maximum energy consumption levels determined by consumer k for

appliance a in slot h when the program changes. We assume that this problem is strictly convex, therefore, has

unique solution [39, 29].

ECS Model: The figurative profit obtainable by the ECS through this scheme is modeled as:

Uk,ECS(V̄k, X̄k) =

Ak∑
a=1

vk,ax
>
k,a −

Ak∑
a=1

Px>k,a (37)

Here, vk,ax
>
k,a and Px>k,a denote the profit and cost resulted from appliance a, respectively. In this sense, the

ECS determines vk,a for each appliance based on the strategy profile X̄k = [x>k,1, · · · ,x>k,Ak ] coming back from the
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appliances. Afterward, each appliance receives the vector vk,a and update its strategy xk,a and send it to the ECS.

This procedure continues until convergence. The profit maximization for the ECS is proposed as:

maxUk,ECS(V̄k, X̄k) s.t. Qk(V̄k, X̄k) (38)

where Qk(.) is a function which expresses the personal restrictions for each consumer. This function can be different

for different consumers and is a private information.

4. Event-triggered Stackelberg Game

4.1. Existence and Uniqueness of Stackelberg Equilibrium

Consider Stackelberg game G , {P,S ,U }, where P is the set of players (all the consumers as well as the

retailer), S , {Sj}j∈P
4 is an (K + 1)-tuple of the pure strategy sets (total energy demand vector satisfying set

of personal constraints for each player), and U , {Uj}j∈P is an (K + 1)-tuple of the payoff functions (objective

function of each player).

Definition 1. A strategy profile S∗ ∈ S constitutes the Stackelberg equilibrium (SE) of game G , if and only if it

satisfies the following set of inequalities.

Uk(S∗k ,S
∗
−k) ≥ Uk(Sk,S

∗
−k),∀ Sk ∈ Sk, k ∈ K (39)

UR(S∗R,S
∗
−R) ≥ UR(SR,S

∗
−R),∀ SR ∈ SR (40)

where S∗k , S∗−k, S∗R, and S∗−R are the optimal strategies of consumer k, the optimal strategies of all the players

other than consumer k, the optimal strategies of the retailer, and the optimal strategies of all the players except the

retailer, respectively.

Let’s consider the mentioned game as a bi-level optimization problem consists of retailer maximization problem

(26) subject to consumers minimization problem (28) as follows [40]:

max
SR∈SR

UR(SR,S−R)

s.t., Sk ∈ argmax
Sk∈Sk

Uk(Sk, SR),∀ k ∈ K
(41)

Theorem 2. The bi-level optimization problem (41) has unique optimal solution and this solution is SE of game

G for stage 1.

Proof. See Appendix B.

At stage 2, it is clear that the demand of each consumer’s appliances (the reaction strategy) is subject to the

total available capacity, and also depends on the occurred event. So, for this stage we term the formulated game G

as generalized Stackelberg game (GSG). Since the followers’ strategies are coupled, they need to seek a generalized

Nash equilibrium (GNE) instead of a traditional Nash equilibrium. In particular, we are interested in investigating

4j ∈ {k(consumer index), R(retailer index)}
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the existence and properties of a variational equilibrium5 (VE), which is a type of GNE. This is due to the fact that

a VE is more socially stable than any other GNE (if there exists any) and thus, it is a desirable network state [41].

Theorem 3. For a fixed virtual price vector V̄k, a socially optimal VE exists in the proposed game G , between

consumer k ∈ K as the leader and his appliances as the followers.

Proof. See Appendix C.

4.2. Solution Methods for the Proposed Games

In this section we propose two different algorithms for the scenarios in Section 3. The Stackelberg game can be

interpreted as a sequential game played between one leader and some followers [42]. So, in our adaptive game, in

stage 1 the retailer plays the role of leader and determines the RTP, while the users are followers and schedule their

load profiles to only minimize the cost functions. In this stage the satisfaction function is not considered explicitly

(due to the privacy security consideration6) and there is only a lower bound Umink for the total satisfaction level.

Then in stage 2, each user becomes an autonomous virtual leader and its appliances play the role of virtual

followers and seek to maximize the satisfaction level. To follow the changes in the consumer state during the

scheduling horizon, the figurative electricity-trading process is triggered adaptively to reschedule the operation of

the appliances in response to the update in the consumer preferences or renewed production. This improves the

energy bill reduction, users satisfaction, and preserving operational constraints within limits. The whole procedure

is summarized and depicted in Fig. 2. From preceding section result, the charge for each consumer depends on how

he and all other users schedule their consumptions. This naturally leads to the game process among Retailer and

consumers proposed in Algorithm 2 and game process among smart meter’s ECS and its appliances in Algorithm 3.

In these schemes, the proposed one leader N-follower Stackelberg game model consists of sequential decision-making

problem and its traditional proposed solution, is the sub-game perfect equilibrium (SPE). To formulate the SPE

we can use Backward Induction as a common approach, which starts from the last action and reasons backwards

[43]. At stage 1, we use IPM algorithms to obtain the solution for the retailer and integrated SQP for solving

consumer’s objective functions, but at stage 2, because of change in the objective functions we use normal SQP to

optimize the ECS and the objective functions of its appliances [34]. Obviously, this theorem is strategy-proof and

the users do not benefit from misleading each other by providing inaccurate information about their usage during

their interactions [10]. Finally, we introduce two constraints for determination of the initial values in Algorithm 3

as:

Pold = P0, Pnew = P ∀h ∈ Hchange (42)

xoldk,a = x0
k,a, x

new
k,a = xk,a ∀h ∈ Hk,change, a ∈ Ak (43)

5The variational inequality problem, VI(X,F(x)), consists in finding a vector x̄ ∈ X such that (y − x̄)> · F(x̄) ≥ 0 ∀ y ∈ X.
6For taking into account utility function Uk(xhk,a, ω

h
k,a) in the optimization problem (28) as an objective function, each consumer

must share parameters such as xhk,a, ωh
k,a, and mk,a to make sure about the convergence of the corresponding game. However, such

parameters are the private information of each consumer and most of the consumers are not willing to share it neither with the retailer

nor with the other consumers.
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Figure 2: Block diagram of the proposed adaptive event-triggered game-based DR.

where, Pnew , [Pt, · · · ,PH ] and xnewk,a , [xtkk,a, · · · , x
Hk
k,a] emerge as a result of change in system and P0,x0

k,a

are initial price vector and load profile of appliance a of consumer k respectively. Hchange = {t, · · · , H} and

Hk,change = {tk, · · · , Hk} are the set of remaining time slots from when the change is occurred for retailer (t) or

for consumer k (tk) to the end of scheduling horizon, respectively7.

5. Simulation Results

5.1. Simulation Setup

In our considered benchmark smart micro-grid system, we have K = 10 consumers. For the purpose of perfor-

mance comparison, each user is selected to have 2 appliances with inelastic operation such as TV, PC or lighting

system. We divided the set of these appliances as background and digital appliances. We assumed that each con-

sumer has 2 appliances with semi-elastic operation such as refrigerator or freezer. Moreover, each consumer is also

assumed to have 2 appliances with uninterruptible operation, i.e., dishwasher, washing machine or clothes dryer,

2 appliances with interruptible continuous operation such as PHEV or pool pump, 2 appliances with interruptible

discrete operation such as vacuum cleaner or computers with interruptible jobs, and 2 appliances with curtailable

operation such as air conditioner or ventilator.

We assume that each consumer can determine the capacity of the compressor of his semi-elastic appliances,

Markov transition probabilities of inelastic loads, and the energy consumption bound of his curtailable appliance

according to the historical data and characteristics of his appliances. So, to satisfy constraint (14), based on dynamic

equation (13), (insulating) properties of the building, and experimental data we can bound the consumption level of

curtailable appliances as uhk,a ≤ xhk,a ≤ uhk,a at each slot h. To satisfy constraint (4) we assume that the compressors

of semi-elastic appliances need two time slots until the temperature of the appliance change from Tmink,a to Tmaxk,a .

Moreover, we assumed that each consumer has one rooftop PV and the retailer has one wind farm, but the capacity

of each PV is assumed to be a small fraction of the daily requirement of each consumer, so that everyone has the

7All these modifications can be done in a similar way for Algorithm 2 when a change is occurred in the retailer side.
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Algorithm 2 Global Distributed Stackelberg Algorithm
I. Initialization

- Retailer receives each consumer initial energy demand l0k, and

determines the initial price signal P0 ∈ RH by solving (26).

II. Iteration

repeat

- Retailer broadcasts the price signal Pi−1

and aggregated demand li−1 to the consumers.

- Each consumer receives price and aggregated demand,

calculates li−k = li−1 − li−1
k ,

solves (28) using Algorithm 1, and determines lik.

If lik is changed compared to the previous iteration then

Update lik and announce to the retailer and

other consumers.

end

- The retailer receives all announced lik

and calculates the new price signal Pi ∈ RH by solving (26)

If Pi is changed compared to the previous iteration then

update Pi and broadcast to the consumers.

end

until No new announcements are received.

III. Adaptation

If any change occurs in the retailer side then

- Each consumer set x0
k,a ← xold

k,a, xk,a ← xnew
k,a for all appliances

- The retailer set P0 ← Pold and P ← Pnew

- Set i = 1, go to step (II).

end
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Algorithm 3 Intra-Home Adaptive Algorithm
I. Initialization

- Each appliance sets its schedule of energy consumption

as initial state for new game.

- Smart meter initializes a virtual price V̄ 0 by gathering initial

information X̄0
k from all appliance and solves (38).

II. Iteration

repeat

- Smart meter broadcasts virtual price V̄ i−1 to appliances.

- Appliances solve local optimization problem (36) using

Algorithm 1 and determine xi
k,a.

If xi
k,a changed then

Update xi
k,a as new solution and share it with smart meter

and other appliances.

end

- Smart meter receives all the new xi
k,a and creates X̄i

k then

calculates new virtual price V̄ i ∈ RHnew×Ak by solving (38).

If The virtual price is changed then

broadcast it to all appliances

end

until No new announcement is received.

incentive to participate in the game. We listed the set of these appliances and their individual requirements in Table

2. In addition, for simplicity, without loss of generality we assumed that for the quadratic cost function, Ch(lh)

referred to in Section 3.1, we have bh, ch = 0, ν8 = (0.15, 0.12, 0.1, 0.1, 0.2, 0.3, 0.45, 0.45, 0.5, 0.6, 0.6, 0.6, 0.5, 0.4,

0.45, 0.5, 0.6, 0.8, 0.9, 1, 1.1, 0.9, 0.7, 0.5) (cents/kWh2), for battery λ+
k , λ

−
k = 1, there is not any charge/discharge

limit and the efficiency of PHEV is 100%. Note that, for curtailable appliances the utility is defined based on the

amount of energy consumption per slot, but for uninterruptible appliances the utility reduces based on the distance

from the starting time window (αk,a) and for other appliances we let ωhk,a = 0.

5.2. The Attractiveness to Retailer and Power Company

At this part, we want to evaluate our proposed event-triggered DR method by comparing it with the case

in which a constant pricing plan has been adopted. Accordingly, in the constant pricing plan (without the DR

program) the price signal is independent of consumers’ behavior. We assumed that in this scheme the consumers

use their appliances at their nominal power and whenever need to turn on an appliance, they immediately use

it. For example, they use their appliances precisely at the start time of scheduling window Ha. Further, we let

5 × νh ≤ Ph ≤ 15 at each hour h. For a better comparison, in the optimal constant pricing model we used the

same parameters as our model parameters. In Fig. 3 we have drawn the operation of retailer and consumers in

both cases. Indeed, in this figure, we have plotted total power profile of consumers to compare the PAR and the

price signal determined by the retailer before and after applying our method. Note that, PAR is one of the most

important factors for network stability measure, so the retailer and power company tries to reduce this parameter.

8Here ν is the vector of all the price parameters coming from the wholesale market through one day, i.e., ν , [ν1, · · · , νH ]
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Table 2: Parameters for residential appliances

Appliance name Emink,a Emaxk,a γmink,a γmaxk,a umink,a umaxk,a αk,a βk,a

(kWh) (kWh) (kW) (kW) (kWh) (kWh)

Background appliances 2.5 2.5 0.1 0.1 - - 1:00 24:00

Digital appliances 1.56 1.56 0.13 0.13 - - 1:00 24:00

Refrigerator 1.32 1.32 0 0.11 - - 1:00 24:00

Freezer 1.2 1.2 0 0.1 - - 1:00 24:00

Washing machine 1.94 1.94 0 0.97-0.97 - - 9:00 21:00

Dish washer 1.44 1.44 0 1-0.44 - - 20:00 7:00

Vacuum cleaner 2.2 2.2 0 0.55 - - 15:00 24:00

Computers 1.2 1.2 0 0.2 - - 15:00 10:00

PHEV 9.9 9.9 0 1.98 - - 18:00 8:00

Pool pump 12 12 0 3 - - 14:00 8:00

Air conditioner 7.2 12 0 0.7 0.12 0.5 1:00 24:00

Ventilator 3.6 6 0 0.4 0.05 0.25 1:00 24:00

Battery 0 0 -2.1 2.1 - - 1:00 24:00

Our simulation shows that the PAR in optimal constant pricing becomes 2.4241 while in our scheme it is 1.4595,

which shows 39.7924% improvement. In Fig. 3 we see that in the case of constant pricing there is high price rate

at the peak demand which makes the consumers to shift a lot of their demand to off peak demand. This behavior

creates sub-peaks at slots with low price. By contrast, in our schemes, the price is changed dynamically with change

in the total power consumption which prevents creation of sub-peaks.

In this work, we assume that all the consumers have battery with similar specifications and we see that in our

proposed dynamic pricing, the battery performance does not create sub-peaks in the demand profile, whereas if we

use constant pricing, when the number of consumers equipped with storage devices goes beyond almost half, the

PAR goes out of the optimal state. This is because a large number of consumers shift their consumption too much,

leading to an increase in PAR (creating sub-peaks) [37]. Note that, without use of batteries in the proposed DR,

PAR becomes 1.5617 which has 7% increase compared with that of our approach. Furthermore, the revenue for the

retailer before DR is $-10.76 and after DR is $84.11, the average amount of constant price before DR is about 13.7

(cents/kWh) and average amount of real-time price with DR is 12.6 (cents/kWh). This means without the DR,

there is not much economic attraction for the retailer.

On the other hand, the trends of resulting total PAR and energy cost during the distributed iterations of our

method are shown in Fig. 4. We can see that the proposed distributed algorithm converges quickly and as the
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Figure 3: Benefit for the retailer before and after the DR program.
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Figure 4: Convergence of the resulting PAR and the energy cost using the proposed ASG: (a) convergence of PAR; (b) convergence of

cost.

users run the algorithm, it converges after about 10 iterations only, i.e., around 1 iteration per user on average.

Moreover, the simulations show that the proposed adaptive pricing approach significantly increases the retailer

profit, whilst reduces the total consumer expenses up to 44.17%, in comparison with optimal constant pricing. The

peculiar behavior in the convergence of Fig. 4 (b) returns to Stackelberg theory. According to this theory, the

retailer determines the price signal at first and then the consumers try to minimize their payments by scheduling

their energy consumption patterns. So, we can expect that the total cost reduces monotonically as each consumer

updates his energy consumption schedule until the last consumer operation (iteration 10). After that, according to

the consumer’s behavior the retailer updates his price signal (at iteration 11) in order to maximize his benefit. So,

we can expect that the total cost curve has sudden increase. After the retailer action the algorithm is converged

and no one has incentive to deviate from the resulted equilibrium.

For another comparison and showing the computational performance of the presented scheme the effect of

increasing the number of customers (i.e., the size of the power system) on the total computation time in the

network is depicted in Fig. 5. In this figure the scenario “SG-B&B” is the case at which the system participants’

interactions are modeled by the Stackelberg game while the optimization solution is based on the classical branch-

and-bound method. In the “VSG-B&B” scenario, the participants’ interactions strategy is based on the VCG design

presented in [17]. Finally, the case at which all the consumers’ data are gathered at the retailers side and the DR
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Figure 5: Comparisons between the proposed framework and other scenarios, in terms of computation time.

problem is solved centrally by the retailer is denoted by scenario “Centralized Method”. As denoted, our framework

imposes the lowest computational burden on the system. The first reason is that using Stackelberg game, the DR

program converges to an optimal solution after only 2 iterations per consumer (as we saw in Fig. 4). This is why our

framework imposes lower communication and computational overhead compared to mechanisms like “VSG-B&B”.

The other reason is using the integrated trust-region approach in our framework to deal with the integer variables,

which is shown in [31] to be more effective compared to the classical B&B technique like “SG-B&B”. As is clear

in Fig. 5, the centralized solutions are not practical in real-world real-time applications as the required time to

achieve an optimal solution is way too long. It is worth mentioning that the results under different simulation

setups (e.g., communication delay, the total number of appliances, percentage of appliances ASIk ,AUNk ,ASDk , etc.)

and the PC laptop hardware can change and lead to more significant differences. For example, increasing the

percentage of appliances like ASIk ,AUNk ,ASDk , increases the number of integer variables in the DR problem, which

in turn increases the elapsed time to converge for all the scenarios and the gap between our framework and the

other solutions.

5.3. The Attractiveness to Consumers

In this part, we analyze the benefits gained by the consumers from participating in the DR program. The

simulation results of the total cost in which each consumer must pay for two scenarios is denoted in Fig. 6. For

without DR program case we assumed that each consumer uses his appliances right whenever he needs and there is

not any cooperation with the retailer and other consumers for intelligent and conscious use of energy. Further, for

the simulation scenario, we also assumed that each consumer randomly has between 2 to 6 appliances of each class

defined in Section 2.1. So, the total number of appliances for each consumer varies between 12 and 36. As is clear

from Fig. 6, by using our proposed approach, the total payment for each consumer is much less than when there is

not any DR program.

For analyzing stage 2 of the proposed ASG scheme, we show the effectiveness of the method when a change occurs

in the consumer side. To design this change, we assume that the change occurred at time 12:00 AM for consumer

3 and because of the high sun’s radiation, the power production of rooftop PV of this consumer is increased by
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Figure 6: Total cost imposed on the consumers with/without the proposed framework.

1.3 kWh. We assume that in this case the consumers only wish to increase the use of curtailable appliances with

increasing the priority factor (ωk,a) for this type of appliances. So, this consumer does not change the scheduling

for appliances AIk,ASIk and AUNk . We have depicted the simulation results in Fig. 7. The results show that

after adopting our adaptive scheme, the level of consumer welfare increases by 1%. However, this increase may be

less noticeable, whereas in larger scales with more appliances and more changes this gain can be very significant.

Further, the level of welfare strictly depends on the consumer priority factors ωk,aa ∈ Ak and can change among

different consumers and different situations. As you can see in Fig. 7, in addition to the battery, to improve the

welfare and adapting to the new conditions, the battery inside the PHEV is also used to supply power. We can

see that, from total excess power production, AC has consumed 1.1 kw and 0.2 kw has been used for ventilation,

because AC is allocated more priority factor compared to ventilation. Moreover, the negative power consumption of

pool pump means that the appliance can change its energy consumption pattern and consume less energy in those

slots. However, the total power consumption of all appliances throughout the scheduling horizons is not reduced in

this scheme and the increased power consumption of curtailable appliances is equally to increase in the PV power

production as in Fig. 8. This figure shows that the total revenue of the retailer and total PAR are not changed in

the adaptive stage of our framework and there is no concern about them or also about ancillary service problems.

In another simulations, the total cost imposed on the consumers in different situations is listed as in Table 3.

According to these results we can find that this framework is useful even for consumers who do not participate

in the program (denoted as DR-Disobey). But we must note that as the total number of consumers who do not

participate in the proposed game increased, the performance deteriorates (i.e., the retailer revenue’s reduces and

there will be imbalance in supply and demand).

To further denote the adaptive stage performance of our framework we considered another scenario in which

the power line between the consumer 5 and the retailer is interrupted and the blackout is occurred. As depicted

in Fig. 9, after the blackout, without the DR program all appliances of consumer 5 are off. However, with our

event-triggered scheme after the blackout the energy stored in the battery and PHEV is used to feed the critical

appliances such as lighting and heating/cooling systems. In other words, using priority factor ωk,a, the consumer

can prioritize his appliances and keep going on with those which are most necessary.

To evaluate the optimality of the proposed DR method, we have compared the performance of our framework

with three scenarios under a real-time pricing protocol. For the simulation setup we have randomly assigned different

appliances to different consumers and used real-time price signal data from 5/10/2019 to 5/11/2019 for pricing node

ID 3 (zone MID-ATL/APS) of Pennsylvania-New Jersey-Maryland Interconnection (PJM) electricity market [44].
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Table 3: Comparison of total cost in micro-grid

States Without DR DR DR-Disobey DR without battery

Total cost 161.21 90 104.17 91.24

(Dollars)
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Figure 10: Performance comparison of different DR mechanisms under real-time pricing protocol.

For the first DR scenario (i.e., scenario 1 in Fig. 10), we implemented the Stackelberg game solution provided in

[10]. As depicted in Fig. 10, the aggregate power consumption in our framework and scenario 1 are much more

flat than the case No-DR. Total PAR for No-DR case is 2.9682, while for our framework and scenario 1 they are

1.6186 and 1.6457, respectively. However, as in our framework all the home devices are modeled in details and the

solution is adaptive, the DR program is much more flexible. From the figure, the high flexibility in our solution

makes it possible for the consumers to significantly decrease their consumption rate when the price signal has a

sudden increase. For scenario 1 it is not possible for the consumers to effectively reduce their consumptions when

the price has the highest level (e.g., time slots 21 and 22) due to the low flexibility in modeling the home appliances

and renewable sources. The cost imposed on the consumers in our framework is $87.34 while for scenario 1 the

aggregate cost is $96.42. For the second scenario (i.e., scenario 2 in Fig. 10), we applied the solution mechanism

provided in [16] to the DR problem.

As depicted, in scenario 2, the consumers are not able to consume the least amount of power when the price

rate is the highest. The first reason is due to lack of detailed modeling of residential devices which results in low

flexibility in the energy consumption scheduling. The second reason is the lack of adaptivity to price changes which

leads to inaccurate evaluation of the price value. The aggregate PAR in this case is 1.6026 and the total cost is

$93.61. For scenario 3, we used the design model in [17]. Under this DR solution, the consumers are not able to

adapt to the changes in the real-time price and power production values. Besides, similar to the other scenarios,

this solution has also low flexibility because of not considering the detailed model for the residential devices. That

is why the aggregate consumption curve doesn’t reach to the lowest level when the price signal has the highest

amount. For this scenario the aggregate PAR is 1.6687 while the aggregate cost is $92.84.

6. Conclusion

In this paper, we developed a multi-objective distributed optimization framework in which by controlling the

multi-class appliances the PAR, the consumer’s bill, and the incommodity level are minimized and the retailer

profit maximized. To achieve this, we proposed a novel event-triggered game-theoretical two stage decision-making

scheme for the electricity retailer and his consumers. We modeled multiple appliances in six categories and used an

26



incommodity function to characterize their welfare levels. The interaction between consumers with their appliances

and the retailer was modeled as an adaptive real-time pricing Stackelberg game. In addition, we verified that such

schemes can deal with unforeseen events and increase the quality of power usage and ancillary services. Moreover,

for solving the MINLP program using our model, unlike conventional methods that are based on decomposition,

we used an integrated SQP and B&B algorithm which is faster, more accurate and requires less computation cost.

The ideas in this work can be extended in several directions. For example, a smart grid with multiple retailers can

be considered and an analysis can be performed when the consumers are also able to sell power to the main grid.

Appendix A. Proof of Theorem 1

Lemma 1. Let f(x, y) and g(x, y) be smooth and convex functions. A sufficient condition for fathoming rule FR3

applied to (P̂ ) to be satisfied is that any QP problem (QP ic,∞) generated by the SQP method in solving (P̂ ) is

infeasible.

Proof. If (QP ic,∞) is infeasible, then it follows that there exists no step d such that:

f (i) +∇x,yf (i)T d ≤ U − ε (A.1)

g(i) +∇x,yg(i)T d ≤ 0 (A.2)

Since (A.2) is an outer approximation of the nonlinear constraints of (P̂ ) and (A.1) underestimates f(x, y), it follows

that there exists no point (x̂, ŷ) ∈ X × Ŷ such that:

f(x̂, ŷ) ≤ U − ε (A.3)

Thus, any lower bound on f(x, y) at the present node has to be larger than U − ε. So, within the tolerance ε,

f(x, y) ≥ U and the fathoming rule FR3 holds.

The finiteness of integer variables implies that the branch-and-bound tree is finite. Thus, the algorithm must

terminate after visiting a finite number of nodes. The nodes are only fathomed if they are infeasible, integer feasible

or if the lower bounding of Lemma 1 holds. Thus, an optimal node must eventually be solved and the convergence

follows from the convergence of the trust-region SQP method.

Appendix B. Proof of Theorem 2

Proposition 1. For the fixed retailer price vector P, the reaction strategy Sk ∈ Sk(SR) of each consumer k ∈ K is

singleton, where Sk(SR) is the reaction strategy set of consumer k when the strategy of the retailer is fixed at SR.

Proof. According to Theorem 1, the proposed solution for solving each consumer problem (28) with constant

Ph,∀h ∈ H, converges to unique optimal solution. This unique solution is the consumer reaction strategy, which

completes the proof.
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So, based on Proposition 1, the optimization problem (41) can be rewritten as follows:

max
SR∈SR

UR(SR,

K∏
k=1

Sk(SR))

s.t., Sk ∈ argmax
Sk∈Sk

Uk(Sk, SR),∀ k ∈ K
(B.1)

From the retailer point of view, problem (B.1) can be treated as a mathematical program with an implicitly defined

constraint region given by the consumers’ decision model [40]. So, the solution of this problem achieves the maximum

benefit for the retailer (satisfies condition (40)) as well as capturing unique strategy of each consumer responding

to the optimal prices. Moreover, from Theorem 1 we know that the consumers’ strategies are optimal (satisfies

condition (39)), which completes the proof of Theorem 2.

Appendix C. Proof of Theorem 3

First, we convert self-constraint objective function (36) into non-constraint version by adding penalty term as

follows:

ϕpk,a(V̄k,xk,a,ωk,a) = vk,ax
>
k,a − wk,a · Uk,a(xk,a,ωk,a)

− η1(xk,a − xmaxk,a ) + η2(xk,a − xmink,a ) (C.1)

where η1, η2 are Lagrange multipliers [29]. We add the quantity9
∑
b6=a ϕk,b(V̄k,xk,b,ωk,b) to each appliance

objective function (C.1) resulting in the following equal objective function for each appliance a ∈ Ak:

ϕ(V̄k,xk,1, · · · ,xk,Ak ,ωk,1, · · · ,ωk,Ak) =

Ak∑
b=1

(
vk,bx

>
k,b − wk,b · Uk,b(xk,b,ωk,b)

− η1(xk,a − xmaxk,a ) + η2(xk,a − xmink,a )

)
(C.2)

To prove the socially stable outcome of the game of stage 2, we just need to prove the existence of a solution

that maximizes (C.2). Let denote the available energy capacity coupled-constraint with
∑Ak
a=1 xk,a ≤ Ecapk,a , where

Ecapk,a is the maximum available energy and xk,a =
∑H
h=1 x

h
k,a. Using the method of Lagrange multipliers [45], the

Karush-Kuhn-Tucker (KKT) conditions for the ath appliance GNE problem is given by:

∇xk,aϕ
p
k,a(V̄k,xk,a,ωk,a)

+∇xk,a
( Ak∑
a=1

xk,a − Ecapk,a

)
λk,a = 0,

λk,a

( Ak∑
a=1

xk,a − Ecapk,a

)
= 0, λk,a ≥ 0 (C.3)

where λk,a is the Lagrange multiplier for appliance a. As for a fixed price V̄k, the followers’ game admits a

jointly convex GNE problem, the solution of the GNE problem with coupled constraint can be found via a vari-

ational inequality VI (X, F(x)) [46]. This essentially reduces to determining a vector z∗ ∈ X ∈ Rn, such that

9Note that this quantity is treated as a constant quantity and does not change the problem solution.
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〈F(z∗), z− z∗〉 ≥ 0, ∀ z ∈ X, where X is the set in the definition of joint convexity and F(x) =
(
∇xϕpk,a(x)

)Ak
a=1

[47]. The solution of V I(X,F(x)) is a variational equilibrium (VE). Now the KKT conditions are:

F(x) + λk · ∇xk,a
( Ak∑
a=1

xk,a − Ecapk,a

)
= 0,

λk ·
( Ak∑
a=1

xk,a − Ecapk,a

)
= 0, λk ≥ 0 (C.4)

where the subscript a in Lagrange multiplier λk is dropped due to the fact that the solution of a jointly convex

GNE problem is a VE if and only if the coupled constraint has the same multiplier for all the players [46]. By the

definition, F(x) can be denoted in matrix form as:

F =


fk,1

fk,2
...

fk,Ak

 , (C.5)

with

fk,a = vk,a + wk,a ·
(

(ωk,a ·
1

−mk,a
) · eωk,a(1−(xk,a/mk,a))

)
− η1 + η2

The Jacobian matrix of F becomes:

JF =


f́k,1 0 · · · 0

0 f́k,2
... 0

... 0
...

...

0 0 · · · f́k,Ak

 (C.6)

with

f́k,a = wk,a ·
(

(ωk,a ·
1

−mk,a
)2 · eωk,a(1−(xk,a/mk,a))

)
Since wk,a,mk,a > 0, ωhk,a, x

h
k,a ≥ 0, ∀ h ∈ H, and xhk,a is a bounded quantity, all the diagonal elements of

diagonal matrix JF are positive. Hence, JF is positive definite on X, and therefore, F is strictly monotone. Thus,

the GNE problem admits a unique global VE solution. Because of jointly convex nature of the GNE problem, the

VE is the unique global minimizer of (C.2) [46]. So, we can claim that the proposed method, in which the ECS

sets its optimal virtual price in response to the VE demands of the ECS’s appliances, represents the socially unique

optimal solution of Stackelberg game, which completes the proof.
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