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Abstract 

Intracellular lipid droplets (LDs) are remarkably dynamic and complex organelles that 

enact regulated storage and release of lipids to fulfil their fundamental roles in energy 

metabolism, membrane synthesis and provision of lipid-derived signaling molecules. 

Although small LDs are observed in all types of eukaryotic cells, it is adipocytes that 

present the widest range of sizes up to the massive unilocular droplet of a white 

adipocyte. Our knowledge of the proteins and associated processes that control LD 

dynamics is improving. The dynamic expression of LD-associated proteins is vital for 

controlling LD biology and is most apparent during adipocyte differentiation. Recent 

findings on the molecular mechanisms of lipid droplet enlargement reveal the 

importance of distinct functional groups of proteins and phospholipids. 
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Lipid droplet fusion involves major changes in the LD membrane components. 

Phosphatidic Acid is a key regulator of LD dynamics.  

Adipocyte differentiation invokes profound regulation of lipid droplet proteins. 

Transitions between white and BRITE adipocytes require lipid droplet remodelling. 

 

Introduction 

Survival in constantly fluctuating environments that expose organisms to times 

of both feast and famine have selected for the ability of cells to efficiently store and 

release energy. As excessive free fatty acids are toxic for the cell [1], their esterification 

into triacylglycerol (TAG) and accumulation within intracellular lipid droplets (LDs) 

provides a controllable mechanism to buffer and store releasable energy in an inert 



form [2]. Once considered passive accumulators of fat, LDs are now emerging as 

dynamic organelles playing a central role in the regulation of lipid metabolism [3]. LDs 

are composed of a neutral lipid core surrounded by a phospholipid monolayer 

embedding a diverse set of proteins that facilitate the modulation of key parameters 

such as their size, stability, interactions and regulatable lipid storage. 

As LD diameter can range from 0.1-100m they can be considered the most 

morphologically dynamic organelle. LD growth can take place by the fusion of 

preexisting LDs, in situ lipid biosynthesis, or by the transfer of lipids from adjacent 

organelles, including the endoplasmic reticulum (ER) and other LDs. In this review we 

summarize the latest discoveries in relation to the mechanism of LD growth, with 

special attention to their dynamics in adipocytes. 

The ER in LD biogenesis and growth 

The first steps in forming LDs are considered to take place in the ER where 

neutral lipids are synthesised and packaged in lens-like structures that grow and bud 

from the ER membrane (reviewed in [4, 5]). Recent findings indicate that the budding 

of LDs from the ER to the cytosol is facilitated by fat-storage-inducing transmembrane 

(FIT) proteins [6] which could be mediated by the direct binding [7] and partitioning of 

de novo TAG. Unexpectedly, a further study suggests that LDs are simultaneously 

accessible by proteins expressed in the cytosol and in the ER lumen [8]. Two models 

compatible with this unique topology are suggested, both involving the presence of ER 

membranes surrounding the LDs, with LDs emerging from either the cytosolic or 

luminal leaflet of the ER. The luminal model would imply that cytosolic proteins such 

as PLINs and ATGL would not bind the LD monolayer but a TAG-rich ER bilayer 

surrounding the LD. Adding further complexity to LD cell biology, a recent investigation 

by Ohsaki et al. has convincingly confirmed the presence of intranuclear LDs in 

hepatocyte cell lines [9] and revealed Promyelocytic Leukemia Protein Isoform II 

(PML-II) as a critical factor in their formation. Nuclear LDs potentially provide a source 

of fatty acid-derived ligands for nuclear receptors such as peroxisome proliferator-

activated receptors (PPARs). In addition, PML has been found to be a potent activator 

of PPAR signalling and fatty acid oxidation [10, 11]. 

The ER protein SEIPIN has emerged as a key component of the protein 

machinery involved in LD biogenesis/maturation [12-14]. SEIPIN acts in ER-LD 



contact sites to enable nascent LDs to acquire more lipids from the ER and grow to 

form mature LDs [12, 15]. SEIPIN also regulates the metabolism of phosphatidic acid 

(PA) at the LD-ER contact, acting as a scaffolding protein recruiting PA-metabolism 

enzymes such as LIPIN1 and AGPAT2 [16, 17] as well as controlling PA levels by 

inhibiting GPAT [18]. In addition to being the biosynthetic precursor of phospholipids 

and TAGs, PA is a cone-shaped phospholipid that facilitates LD fusion [19, 20] and 

could be accommodated in the regions of negative membrane curvature associated 

to LD budding and LD-ER connections [21]. The downregulation of the ER enzymes 

CDS1 or CDS2, which consume PA to form CDP-DAG, increases PA levels in the ER 

but also in LDs, an effect accompanied by LD enlargement and also observed with the 

downregulation of LIPIN1 [22]. The importance of PA in LD dynamics is highlighted by 

the localization of AGPAT3 and LIPIN1 in LDs [23, 24], suggesting an in situ 

mechanism to control PA levels through its synthesis/degradation by these enzymes. 

LDs and ER could be directly connected by a continuity in their membranes [24, 

25], which would allow the transfer of lipids from the ER to support LD growth. In 

addition, these LD-ER connections could promote LD growth by facilitating the 

diffusion of lipogenic enzymes from the ER to increase in situ lipid synthesis [24, 26]. 

A selection mechanism for hairpin proteins diffusing to LDs from the ER may be 

mediated by the ER-associated degradation (ERAD) complex, with the ubiquitin ligase 

Doa10 facilitating the selective degradation of the ER pool of these proteins [27]. In 

addition, ADP-ribosylation factor 1 (Arf1)/COPI complex has been found to have a key 

role in the triggering the formation of membrane bridges linking the ER and LDs [28, 

29]. However, freeze-fracture electron microscopy showed adjacent LDs and ER with 

independent membranes [30], and ER proteins such as GPAT4 are only observed in 

a subset of LDs, indicating that such connections could be transient or not present in 

some LDs.  

 

LD-LD Fusion 

LD fusion occurs through two major mechanisms which produce substantially 

different outcomes (Fig. 1). LD-LD coalescence involves the formation of a continuity 

between the phospholipid monolayers of both LDs to rapidly merge their core contents. 

Although LD-LD coalescence is rarely observed in physiological conditions [31], it 



occurs spontaneously as a result of altered phospholipid composition in the LD 

monolayers, either by deficient levels of LD-stabilizing PC [32] or by accumulation of 

the fusogenic PA [20]. This fusion will result in a decrease in the total LD 

surface/volume ratio, but the fate of the spare membrane components is not well 

understood. 

A distinct LD fusion process emerged from the study of CIDE proteins, which 

are required for the formation of supersized LDs in adipocytes [33]. Both CIDEA and 

CIDEC catalyse a slow fusion mechanism in which a donor LD transfers its content to 

a larger LD in a process driven by their internal pressure gradient [34]. CIDE proteins 

stabilize LD pairs by the formation of trans homodimers at the LD-LD contact site [19, 

34, 35], where they facilitate the transport of neutral lipids through the phospholipid 

monolayer. The lipid transfer step requires the presence of a cationic amphipathic 

helix, which by interacting with PA could interfere with the phospholipid barrier to 

increase its permeability to TAG [19]. CIDEC activity is enhanced and regulated by 

accessory proteins such as PLIN1 and Rab8a [35, 36]. However, CIDE proteins alone 

are probably sufficient to fulfil the full process as the expression of murine CIDEA in 

yeast produces LD enlargement despite these organisms lacking CIDE homologues 

and therefore are unlikely to present functional interactors [19]. 

A remaining question in CIDE-triggered LD enlargement is the fate of the 

phospholipids and proteins of the donor LD, which may be degraded or transferred to 

the expanding LD or other membranes. LDs have a limited capacity for proteins and 

their shrinking during lipolysis provokes the displacement of the proteins with lower 

affinity for the monolayer due to macromolecular crowding [37]. During CIDE activity, 

protein crowding could selectively influence the protein composition of large LDs (Fig. 

1B). Similarly, the mechanisms to enlarge the membrane of the acceptor LD are not 

known and could involve the activation of PC synthesis through translocation of 

phosphocholine cytidylyltransferase to the phospholipid-deficient expanding LDs [32], 

or in situ synthesis of PC from diffusing LysoPC [38] by LD-bound 

lysophosphatidylcholine acyltransferases [39]. Alternatively, the phospholipid 

deficiency during LD expansion could facilitate coalescence with small LDs, which 

would supply the phospholipid excess resulting from each fusion.  

 

LD enlargement in brown, white and BRITE adipocytes 



There are two types of adipose tissue: white adipose tissue (WAT) and brown adipose 

tissue (BAT). Although both white and brown adipocytes accumulate large amounts of 

fat, their LDs differ in size, number and protein content [40]. White adipocytes optimize 

fat storage by accumulating lipids in a single giant (unilocular) LD occupying most of 

the cytoplasm. In contrast, brown adipocytes are filled with a many LDs of relatively 

smaller size (multilocular) which are very tightly associated with mitochondria [41]. 

This conformation increases the surface accessible to lipases facilitating the rapid 

release of fatty acids in response to cold-activated signals to fuel the mitochondria for 

the generation of heat by the UCP1-dependent uncoupling of oxidative 

phosphorylation [42]. 

Despite its functional relevance, the mechanisms leading to unilocular or 

multilocular LDs remain unclear. Although culture models of WAT and BAT adipocytes 

have been established [43, 44], unilocular adipocytes are rarely seen in 2D cultures, 

highlighting the need for innovative 3D culture systems to study the differential biology 

of white and brown adipocytes. Pre-adipocyte differentiation involves a progressive 

accumulation of fat in supersized LDs in parallel with induction of adipogenic genes. 

Examination of a 3T3-L1 adipocyte differentiation gene expression profile dataset [45] 

reveals dynamic changes in the levels of genes encoding LD-associated proteins (Fig. 

2). Genes associated with de novo lipogenesis (Lpin1, Dgat2, Acsl1, Fasn) show a 

rapid induction in expression from day 0 to day 4-6 followed by a decline to around 

50% of maximal expression by day 18. Cidec follows the same expression profile in 

fitting with its role in LD enlargement. For most genes encoding LD proteins associated 

with lipolysis the trend was to rapidly increase expression between day 0 and day 6 

with the high level of expression maintained up to day 18 (G0s2, Lipe, Lpl, Bscl2/Seipin 

and Ces3). However, Pnpla2 (ATGL) and Abhd5 (CGI-58) showed profiles more 

similar to the lipogenesis genes. Of the perilipins, Plin1 showed a pattern fitting with 

its role in regulating lipolysis with an early increase that was maintained to day 18. 

These data indicate that during differentiation there is a peak in lipogenesis around 

day 4-6 when TAG is being generated and stored in expanding LDs whereas the 

lipolysis machinery is maintained to facilitate energy release in the mature adipocyte. 

Time-lapse studies revealed that the formation of large LDs during 

adipogenesis involves LD fusion by lipid transfer characteristic of CIDE proteins [19, 

46]. CIDEA and CIDEC appear as the key elements controlling the formation of 



supersized LDs in adipocytes, as CIDEA/CIDEC double-deficient mice showed LDs of 

circa 0.6 m, which could represent the diameter achieved by CIDE-independent 

enlargement mechanisms [47]. Whereas, unlimited CIDE-triggered LD-LD fusion 

would lead to the unilocular phenotype characteristic of white adipocytes, this process 

must be halted at the multilocular stage in brown adipocytes. The differential 

expression of CIDE proteins in WAT and BAT could be important in cell-specific LD 

morphologies as in mice CIDEC is highly expressed in WAT and BAT and CIDEA is 

largely restricted to BAT [48]. However, the presence of CIDEA is not enough to induce 

a multilocular phenotype as in humans it is also expressed in WAT [49] and the white 

adipocytes of transgenic mice expressing human CIDEA in WAT maintained their 

unilocular structure [50]. In contrast, CIDEC is essential for the formation of unilocular 

LDs, as multilocular LDs are found in WAT of CIDEC-null mice, where the induction of 

CIDEA can partially sustain LD enlargement but is not sufficient to form unilocular LDs 

[47]. PLIN1 could facilitate the formation of unilocular droplets as it selectively interacts 

with CIDEC [51], but not CIDEA, increasing its TAG transfer efficiency [19]. 

Interestingly, the third member of the CIDE family, CIDEB, can also produce LD-LD 

TAG transfer in hepatocytes, but only the subset of hepatocytes expressing CIDEC or 

CIDEA will produce supersized LDs [52]. 

Profound remodelling of LDs is also observed in mature adipocytes when 

responding to signal transduction pathways. Study of the murine BAT LD proteome 

using mass spectrometry revealed increased levels of ADRP, PLIN1, HSL, ATGL and 

CIDEA following cold exposure [41], suggesting high rates of lipolysis as well as LD 

enlargement. Under conditions of prolonged lipolysis adipocytes experience a LD 

remodelling cycle, with progressive reduction on the LD size, followed by the formation 

of new LDs, which are subjected to an enlargement process [48], likely to be CIDE-

triggered. This futile cycle of TAG degradation and resynthesis implies the release of 

substantial amounts of heat that will constitute a UCP1-independent thermogenic 

system. 

An additional adipocyte termed BRITE (brown-in-white or beige) is a 

multilocular brown-like adipocyte found in WAT. The number of BRITE adipocytes is 

highly increased following cold exposure through beta adrenergic signalling. 

Importantly, lineage tracing studies show that white adipocytes within inguinal WAT 

can reversibly convert to BRITE adipocytes [53]. The transdifferentiation events are 



apparent at both the gene expression and morphological level including transitions 

between the unilocular and multilocular LD appearance. The remodelling of WAT LDs, 

in response to cold acclimatisation, is consistent with direct control by LD-associated 

proteins accompanied by potentiation of the lipolytic machinery due to increased 

expression of ATGL and CGI-58 and decreased G0s2 [48]. Although mRNA 

expression of most LD proteins was increased in WAT of cold exposed mice, the 

greatest change was the enhancement of CIDEA. The coincident induction of CIDEC 

indicates that LD-LD fat transfer is an important process during WAT browning.  

The transition from BRITE back to white adipocyte involves the acquisition of 

the unilocular phenotype and is coincident with the downregulation of LD-related 

genes, including Cidea, Cideb, Lpl, Dgat2, Plin3, Plin5 [54]. Overall these changes 

point to brown/BRITE adipocytes having a higher capacity to generate and turn over 

LDs and thus indicate a more dynamic nature than those in white adipocytes.  

Conclusion 

The biosynthesis and expansion of LDs is driven by complex and integrated 

mechanisms involving interactions with other organelles and recruitment of enzymes 

required for expansion of the lipid core and modulating the phospholipid monolayer 

composition. The remodelling of LDs, which is essential for developmental processes 

and responses to physiological metabolic requirements, is dependent on LD-

associated proteins. Further understanding of the molecules and mechanisms that 

mediate LD dynamics will provide important insights into the many metabolic diseases 

and other pathologies that are intrinsically linked with LD biology. 

 

 

Figure Legends 

Figure 1. LD membrane remodelling in LD fusion. 

A) LD-LD coalescence is a rapid process favoured by a phospholipid deficiency in the 

monolayer (LD1) or an accumulation of fusogenic phospholipids such as PA (LD2). 

The resulting reduction in LD surface/volume implies an increase in phospholipid 

packing which may selectively influence protein binding. B) CIDE proteins form trans 



complexes and interact with PA to promote slow LD fusion by the transfer of TAGs 

from small to large LDs. Phospholipid packing will increase in the shrinking LD and 

decrease in the expanding LD. Low affinity LD-proteins could be expelled from the 

shrinking LD due to protein crowding. In contrast, the expanding LD will increase its 

protein binding capacity, and could be selectively filled by the low-affinity proteins 

released from the donor LDs as a result of a local increase in the cytosolic 

concentration of these proteins and the loose phospholipid packing in the enlarged 

LD. C) Models coupling LD growth with membrane expansion. Translocation of CCT 

to the expanding LD could activate PC synthesis, which should be supplied to the LD 

from the ER (left panel). Alternatively, the presence of ACSL3 and LPCAT1/2 in LDs 

could favour the in situ generation of PC from LysoPC, which could be released from 

the ER or the shrinking LD by PLA2 (right panel). Abbreviations: Lipid droplet (LD), 

endoplasmic reticulum (ER), phosphatidylcholine (PC), phosphatidic acid (PA), cell 

death–inducing DFF45-like effector protein (CIDE), CTP:phosphocholine 

cytidyltransferease A (CCT), phospholipase A2 (PLA2), long-chain acyl-CoA 

synthetase 3 (ACSL3), lysophosphatidylcholine acyltransferase (LPCAT), 

diacylglycerol cholinephosphotransferase (CPT). 

 

Figure 2. Profile of genes encoding LD-associated proteins during 

adipogenesis. 

Expression of genes encoding LD proteins and markers adipogenesis (Pparg, Dlk1, 

Fabp4) and were analysed for 8 time points (days 0, 2, 4, 6, 8, 10, 14, and 18) of 3T3-

L1 cell differentiation, in triplicate, that were submitted to the GEO public repository 

database (identifier: GSE34150) [45, 55]. Upper panel shows schematic illustration of 

3T3-L1 cell differentiation to adipocyte over time course. For lower panel, normalised 

expression values were obtained from GEO2R (NCBI online gene expression tool) 

and data plotted are mean ± Standard Deviation. The Perilipin genes (Plin 1-4) are 

grouped, as are genes associated with lipogenesis, lipolysis (Pnpla2/ATGL, 

Abhd5/CGI-58, Bscl2/Seipin, carboxylesterase 3 (Ces3)) or other functions (Mettl7b, 

caveolins Cav1 and Cav2, and carbonic anhydrase 3 (Car3)). The validity of the 

dataset was confirmed by the induction Fabp4 and Pparg over differentiation along 

with reduction in the pre-adipocyte marker gene Dlk1. 
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