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Abstract A contemporary outcome of dynamic host-parasite coevolution can be driven by the 23	

adaptation of a parasite to exploit its hosts at the population and species levels (parasite 24	

specialisation) or by local host adaptations leading to greater host resistance to sympatric parasite 25	

populations (host resistance). We tested the predominance of these two scenarios using cross-26	

infection experiments with two geographically distant populations of the rose bitterling, Rhodeus 27	

ocellatus, a fish brood parasite of freshwater mussels, and four populations of their mussel hosts 28	

(two Anodonta woodiana and two Unio douglasiae populations) with varying degrees of 29	

geographic sympatry and local coexistence. Our data support predictions for host resistance at 30	

the species level but no effect of local coexistence between specific populations. Rhodeus 31	

ocellatus showed a preference for allopatric host populations, irrespective of host species. Host 32	

mussel response, in terms of ejection of R. ocellatus eggs, was stronger in the more widespread 33	

and abundant host species (A. woodiana) and this response tended to be higher in sympatric 34	

populations. These outcomes provide support for the importance of host resistance in bitterling 35	

oviposition-site decisions, demonstrating that host choice by R. ocellatus is adaptive by 36	

minimizing egg ejections. These findings imply that R. ocellatus, and potentially other bitterling 37	

species, may benefit from exploiting novel hosts, which may not possess appropriate adaptive 38	

responses to parasitism.  39	



	

	

Introduction 40	

Host-parasite relationships impose strong selective forces in evolution (Woolhouse et al. 2002). 41	

The intensity of selection resulting from biological interactions can vary over space and time, 42	

ranging from hotspots, with species exhibiting rapid reciprocal adaptations, to coldspots where 43	

the same species do not coevolve despite their co-occurrence (Laine 2009). Differences in 44	

selective environments may favour different traits in different interacting populations, leading to 45	

distinct levels of reciprocal selection, as predicted by the geographic mosaic theory of 46	

coevolution (Thompson 1999, 2013).  47	

Most host-parasite relationships incur significant costs to both partners and result in a 48	

rapid coevolutionary arms race when an adaptation in one partner is followed by reciprocal 49	

counter-adaptations in the other (Dawkins and Krebs 1979). This process is dynamic and at a 50	

particular evolutionary point, hosts may be better adapted to defend themselves from the parasite 51	

or, alternatively, the parasite can be better adapted to exploit its host (Rothstein and Robinson 52	

1998; Sorensen et al. 2004; Medina and Langmore 2016). The parasite specialization scenario 53	

considers that the present coevolutionary state is primarily resolved by traits evolved by the 54	

parasite, with parasite adaptations currently overcoming the defences evolved by the host. The 55	

host resistance scenario predicts that the present coevolutionary state is primarily resolved by 56	

the host, which expresses adaptations that resist parasite virulence (Davies and Brooke 1988; 57	

Honza et al. 2004). An alternative possibility is that adaptive responses in the host-parasite 58	

relationship are lacking, a situation predicted when the cost, probability or intensity of an 59	

interaction is limited (Holland et al. 2004). 60	

Parasites may specialise on particular host species (Joshi and Thompson 1995) or specific 61	

host populations (Kaltz and Shykoff 1998; Kawecki and Ebert 2004). Host communities vary in 62	



	

	

their species composition, relative abundance of each host species and density of their 63	

populations. Given that each host species may require different parasite adaptations, variation in 64	

the structure of local host communities may lead to parasite specialization at the local level, 65	

often to the locally most common host species (Thompson 1994, 1999; Krasnov et al. 2011). 66	

This situation produces variable host-parasite associations across geographic regions, leading to 67	

local differences in parasite specialization. An example is the European cuckoo (Cuculus 68	

canorus L.) where different populations specialize on different locally accessible host species 69	

(Medina and Langmore 2016).  70	

In other host-parasite systems, however, parasites may coevolve with a single host 71	

species across their entire range. Parasite specialization at the species level requires generalised 72	

adaptations to exploit a host species and may be favoured when either parasite or host species 73	

disperse over large distances (Medina and Langmore 2016). In African indigobirds (Vidua spp.), 74	

strict host-parasite association at the species level is driven by precise mouth marking in chicks 75	

that mimic mouth marking of their respective host species (Sorenson et al. 2003). Stronger 76	

specialization on one host species, therefore, comes at a cost of a decrease in fitness on other 77	

host species, leading to parasite specialisation at the level of the host species. High host 78	

specificity is expected to lead to more intense escalation of reciprocal adaptations in hosts and 79	

parasites.  80	

An analogous, though reversed, scenario is the situation when host resistance dominates 81	

the current state of the reciprocal relationship. Increased resistance to parasites can improve a 82	

host’s fitness, but is often costly as resources are diverted from growth and reproduction (Moret 83	

and Schmid-Hempel 2000; Rigby and Moret 2000; Schmid-Hempel 2003). Hence, a high 84	

investment in host resistance is more likely to be maintained under intense parasite pressure. 85	



	

	

When effective host responses are detected, host resistance can be defined at the species and 86	

local population levels, similarly to parasite specialization. 87	

A powerful way to test for host and parasite adaptation is by using cross-infection 88	

experiments to compare parasite success (or preference) and host resistance for sympatric versus 89	

allopatric populations (reviewed by Kawecki and Ebert 2004). Local parasite adaptation can be 90	

detected by measuring the fitness of a parasite on locally coexisting host populations, with a 91	

prediction of parasite preference and increased fitness on locally coexisting hosts. In contrast, 92	

local host resistance predicts increased parasite fitness on ecologically naive hosts and, in the 93	

case that the parasite is capable of evaluating host suitability, parasite preference for ecologically 94	

naive host populations over coexisting host populations (Kawecki and Ebert 2004). Previous 95	

studies have provided evidence for local adaptation of the parasite, local adaptation of the host, 96	

and no local adaptation (Edmunds and Alstad 1978; Greischar and Koskella 2007; Hoeksema 97	

and Forde 2008; Laine 2009; Voutilainen et al. 2009). 98	

 In this study, we investigated interpopulation variation in host-parasite association 99	

between a parasitic fish, the rose bitterling, Rhodeus ocellatus (Kner), and their host mussels 100	

from the family Unionidae. Rhodeus ocellatus, like all other bitterling fishes (family 101	

Acheilognathidae), lay their eggs in the gills of unionid mussels. Female bitterling use a long 102	

ovipositor to lay their eggs in the gills of living mussels by inserting them into the host's exhalant 103	

siphon. Male bitterling fertilize the eggs deposited inside the mussel gill by releasing sperm over 104	

the host inhalant siphon (Reichard et al. 2004a; Smith and Reichard 2013). Males defend a 105	

territory containing one or more mussels against rivals, actively court females and lead them to a 106	

mussel (Smith et al. 2004). Bitterling embryos develop in the gills of the host mussel, competing 107	

for nutrients and oxygen with the host, before emerging after 3-4 weeks (Aldridge 1999; Spence 108	



	

	

and Smith 2013). Hosting bitterling embryos is costly to mussels (Reichard et al. 2006), and 109	

mussels have evolved counter-adaptations to bitterling parasitism, primarily ejections of their 110	

eggs and embryos (Kitamura 2005; Reichard et al. 2007; Reichard et al. 2010). In turn, bitterling 111	

eggs and embryos have evolved behavioural and morphological mechanisms to avoid ejection 112	

(Smith et al. 2004). The bitterling-mussel system is conceptually analogous to avian brood 113	

parasitism (Davies 2016). 114	

Rhodeus ocellatus is widely distributed across East Asia (Chang et al. 2014). It is a 115	

generalist parasite utilising a range of host mussel species, but exhibiting preferences for 116	

particular hosts (Reichard et al. 2007). Female R. ocellatus display preferences toward certain 117	

mussel individuals (Casalini et al. 2013), indicating that female R. ocellatus may tailor their host 118	

preferences to host quality cues. At least at the level of individual host mussels, males appear 119	

less selective than females (Casalini et al. 2013), trading off mussel quality against the risk of 120	

sperm competition (Smith et al. 2003). Although female oviposition decisions are also affected 121	

by mate quality (Agbali et al. 2010, 2012), the quality of the host mussel is the key factor 122	

predicting female oviposition-site decisions (Casalini et al. 2009). Female host choice decisions 123	

in R. ocellatus and other bitterling species rely on optimal mussel traits related to enhanced 124	

embryo survival, particularly the availability of oxygen for developing embryos (Smith et al. 125	

2001; Reichard et al. 2007; Spence and Smith 2013; Phillips et al. 2017).  126	

There is good evidence for coevolutionary dynamics in the relationship between 127	

bitterling fishes and their mussel hosts. Populations of the related European bitterling, Rhodeus 128	

amarus (Bloch), display variation in host species preference across their geographic distribution 129	

(Reichard et al. 2010; Smith 2017). Similarly, host mussels have evolved stronger defences (e.g. 130	

egg ejection) in areas of ancient sympatry with R. amarus than in areas of recent sympatry 131	



	

	

(Reichard et al. 2010). Hence, bitterling and their hosts can exhibit population-level variation in 132	

the intensity of reciprocal selection. We hypothesized that this variation may lead to different 133	

degrees of local adaptation, especially in areas of ancient sympatry, driven either by parasite 134	

adaptation or host resistance. 135	

Here, we used two geographically distant populations of R. ocellatus from a region of 136	

ancient bitterling-mussel sympatry to test their preference towards two widespread host mussel 137	

species, Anodonta woodiana (Lea) and Unio douglasiae (Gray). Despite wide co-occurrence 138	

between both mussel host species and R. ocellatus, A. woodiana hosts have a larger distribution 139	

and are locally more abundant, typically being the dominant unionid species in mussel 140	

communities throughout the range of R. ocellatus (He and Zimin 2013). Each host mussel 141	

species was represented by one population coexisting with and one population naïve to R. 142	

ocellatus. Mussel host populations varied in their level of regional and local coexistence with R. 143	

ocellatus, producing a mosaic of associations at the species and local levels (Fig. 1). We also 144	

measured population-specific host mussel resistance to R. ocellatus oviposition through egg 145	

ejections.  146	

The coevolutionary relationship between bitterling and their mussel hosts is antagonistic 147	

and dynamic (Smith et al. 2004; Reichard et al. 2012; Spence and Smith 2013). For parasite 148	

specialisation to play a dominant role in the association the prediction is that R. ocellatus will 149	

make oviposition-site decisions that favour the utilization of mussels with which there is an 150	

evolutionary association at a meta (species) level, as well as at a local (population) level. In 151	

contrast, in the case that host resistance plays the primary role in oviposition-site decisions, R. 152	

ocellatus are predicted to use allopatric mussel species at a meta level and populations without 153	

previous exposure to bitterling at a local level. In the context of the present study, in the case of 154	



	

	

parasite specialisation at the species level we predicted a preference by experimental R. 155	

ocellatus for sympatric host species at a broad (meta) geographic scale and, under the parasite 156	

specialisation at the local level, a preference for populations with which they locally coexist. In 157	

the case of host resistance at the species level we predicted a preference for allopatric and locally 158	

naive hosts. These predictions assumed that R. ocellatus are able to assess relevant cues 159	

associated with a host mussel's ability to eject eggs as the European bitterling R. amarus do 160	

(Mills and Reynolds 2002), though we did not test this assumption. Predictions for each host 161	

mussel and bitterling population under each coevolutionary scenario are summarized in Table 1.  162	

 163	

Material and methods 164	

Study subjects	 	165	

Two species of host mussel (Anodonta woodiana and Unio douglasiae) were collected from each 166	

mussel collection site. These were Lake Bao’an in Hubei Province (30° 17' 25.4" N; 114° 43' 167	

48.9" E) and Lake Qinglan (28° 30' 40.144" N; 116° 8' 2.112" E), Jiangxi Province, China. Both 168	

mussel species were confirmed to be hosts of R. ocellatus (Reichard et al. 2007; R. Rouchet 169	

unpublished data). Mussels locally coexisting with the local R. ocellatus population were 170	

collected from Lake Bao’an, a shallow lake with abundant aquatic vegetation where R. ocellatus 171	

is common and co-occurs with at least four other bitterling species - Rhodeus sinensis Guenther, 172	

Rhodeus fangi (Miao), Acheilognathus chankaensis (Dybowski) and Acheilognathus imberbis 173	

Guenther. Mussels naive to R. ocellatus were collected from Lake Qinglan, a part of Lake 174	

Poyang, the largest lake in China. Bitterling species recorded in Lake Qinglan include A. 175	

chankaensis, A. imberbis, Acheilognathus tonkinensis (Vaillant), Acheilognathus cf. meridianus 176	

(Wu), Acheilognathus barbatulus Guenther, Acheilognathus rhombeus (Temminck & Schlegel) 177	



	

	

and Acheilognathus gracilis Nichols. There are no records of R. ocellatus from the lake although 178	

this species is found in some smaller affiliated waters. Given the pronounced dispersal capability 179	

of unionid mussels during their larval stage (Douda et al. 2012), it is possible that host mussels 180	

from Lake Qinglan may have a history of coexistence with R. ocellatus at a larger scale, despite 181	

individual host mussels from Lake Qinglan not co-occurring with R. ocellatus. In Lake Qinglan, 182	

U. douglasiae is known to be parasitized by the embryos of A. tonkinensis (a bitterling species 183	

unrelated to R. ocellatus), while there are no records of bitterling embryos recovered from A. 184	

woodiana from Lake Qinglan (Liu et al. 2006). 185	

 Mussels were collected by hand from both lakes. In the case of Lake Qinglan, because of 186	

its greater depth, specimens were also collected using a mussel dredge hauled by a boat. Stocks 187	

of experimental A. woodiana and U. douglasiae were collected in early April 2014 and 188	

supplemented during three additional collections in Lake Bao’an and four in Lake Qinglan 189	

between late April and mid-June. Mussels were stored in large (2.0 x 1.0 m) plastic containers 190	

filled with water to a depth of approximately 300 mm and aerated continuously. 191	

Rhodeus ocellatus used in the study were collected in April and May 2014 using baited 192	

fish traps. Fish from the locally coexisting population were collected from Lake Bao’an (the 193	

same site as mussel collection) where R. ocellatus lived in sympatry with at least four species of 194	

freshwater mussel, including both study host species (included as two host study populations). 195	

The second population of R. ocellatus (Nanchang) was not coexisting with any experimental 196	

populations of host mussels, but coexisted with a local (non-experimental) population of A. 197	

woodiana. Fish from this R. ocellatus population were collected in a natural pond in the city of 198	

Nanchang (Jiangxi province, 28° 39' 55.08" N; 115° 48' 57.79" E), located 35 km from Lake 199	

Qinglan where the mussels ecologically naive to R. ocellatus were collected. The pond was 200	



	

	

shallow (<1 m) and measured approximately 15 x 40 m. There was no connection allowing fish 201	

migration between the pond and Lake Qinglan or adjacent bodies of water. Only a single mussel 202	

species (A. woodiana) was recorded in Nanchang pond despite an intensive search. R. ocellatus 203	

coexisted in the pond with another bitterling species, R. sinensis. 204	

 Experimental bitterling were transported in aerated containers and housed in four large 205	

(2.0 x 1.0 m) tanks. A maximum of 150 fish were stored in each tank, with approximately equal 206	

sex ratio. In each tank we placed Lamprotula caveata (Heude) mussels to encourage female 207	

ovulation. These mussels were enclosed with transparent covers that permitted bitterling to see 208	

and smell them but prevented oviposition. L. caveata was chosen because it is phylogenetically 209	

and morphologically unrelated to A. woodiana and U. douglasiae (Liu et al. 2006) and hence 210	

prevented fish habituation towards one of the tested host mussels prior to the start of the 211	

experiment. 212	

Behavioural experiment 213	

The experiment consisted of a test of male and female R. ocellatus towards a pair of host mussel 214	

species of different combinations of host species, meta and local co-occurrence (Fig. 1). We use 215	

the terms sympatric and allopatric at the “meta” scale (Bao'an host mussels sympatric with R. 216	

ocellatus, Qinglan host mussels allopatric with R. ocellatus) and the terms locally coexisting and 217	

ecologically naive at the “local” scale (ecologically naïve: populations of fish and mussels not 218	

locally coexisting regardless of sympatry at the meta scale) (Fig. 1). The experiment took place 219	

between April and June 2014 in the laboratory facilities of the Institute of Hydrobiology of the 220	

Chinese Academy of Sciences in Wuhan, China. 221	

For each replicate, we used a set of four mussels: one A. woodiana from Lake Bao’an, 222	

one A. woodiana from Lake Qinglan, one U. douglasiae from Lake Bao’an and one U. 223	



	

	

douglasiae from Lake Qinglan (Fig. 1). Although it was impossible to obtain all four adult 224	

mussels of the same size because A. woodiana (shell length: 91-132 mm) is larger than U. 225	

douglasiae (37-91 mm), mussels from the same species within a set were size-matched. Four 226	

separate preference tests (always containing a pair of host mussels; Fig. 1) were performed in a 227	

random predetermined order. A full set of preference tests within a replicate was tested within 228	

one day for one of the two R. ocellatus populations (Bao’an or Nanchang). The same set of 229	

mussels was tested with the second fish population on a subsequent day, usually the following 230	

day, but always within one week. A set of four host mussels (one individual from each study 231	

population) was, therefore, tested in four separate paired tests (A. woodiana Bao’an x A. 232	

woodiana Qinglan; U. douglasiae Bao’an x U. douglasiae Qinglan; A. woodiana Bao’an x U. 233	

douglasiae Bao’an; A. woodiana Qinglan x U. douglasiae Qinglan) with the same pair of R. 234	

ocellatus fish in one day and with another pair of R. ocellatus (from a different population) on a 235	

later day (Fig. 1). In seven cases, mussel mortality prevented completion of the test with the 236	

second bitterling population. 237	

Experimental aquaria measured 550 (length) x 350 (width) x 450 (depth) mm and 238	

contained a 20 mm layer of washed sand as a substrate. In the evening prior to the start of a test, 239	

a focal male R. ocellatus was introduced into an experimental aquarium with a non-experimental 240	

L. caveata mussel placed in the centre of the aquarium to elicit territoriality. On the following 241	

morning the L. caveata mussel was removed. A second, non-experimental R. ocellatus male 242	

(from the same population as the focal male) was placed in the tank in a cylindrical glass jar 243	

(diameter 100 mm) to further stimulate the territorial and reproductive behaviour of the focal 244	

male. A female in spawning condition, obvious from an extended ovipositor that unambiguously 245	

demonstrates that a female bitterling has ovulated a batch of eggs, from the same population as 246	



	

	

the focal male was gently released into the aquarium. The first pair of mussels to be tested were 247	

placed 150 mm apart in the centre of the aquarium inside sand-filled plastic pots to hold them in 248	

position. The mussels were covered with a transparent pierced plastic box that allowed the fish to 249	

see and smell the mussels but prevented oviposition. After at least 30 min. of acclimation, the 250	

covers were removed from the mussels. Behaviour recording started once one of the 251	

experimental fish began inspection of the siphons of a mussel. Behaviours directed at a specific 252	

host mussel and relevant to oviposition preference were recorded. These were: male leading the 253	

female R. ocellatus towards one of the mussels (though with no interference with that mussel), 254	

male or female inspection of the exhalant and inhalant siphons of the host mussel (sampling host 255	

cues to assess its suitability for the incubation of R. ocellatus embryos), sperm release by the R. 256	

ocellatus male (indicating investment into a particular host mussel, clearly detected by typical 257	

male movement over the mussel inhalant siphon), skimming by a R. ocellatus female (a 258	

behaviour resembling oviposition but without insertion of the ovipositor into the mussel siphon 259	

and without egg laying) and female oviposition (spawning, identified by a typical female 260	

movement and insertion of her ovipositor into the mussel exhalant siphon). For a detailed 261	

description of bitterling reproductive behaviour see Reichard et al. (2004b). R. ocellatus 262	

behaviour was recorded continuously for 20 min. or until oviposition, whichever occurred 263	

earlier. If oviposition occurred, the mussel was observed for a further 1 min. to record any egg 264	

ejections by the host mussel. Mussel ejections occur either within a few seconds of oviposition 265	

(immediate ejections) or over an extended period of several days (late ejections). The two types 266	

of ejections are positively correlated (Reichard et al. 2007a, b) but late ejections cannot be 267	

observed directly. After completion of a trial the experimental host mussels were replaced with 268	

the next treatment combination and covered until the subsequent behavioural test, with a 269	



	

	

minimum interval of 30 min. between tests to ensure that females were capable of spawning 270	

another batch of ovulated eggs (Smith et el. 2004). Experimental mussels did not contain any 271	

bitterling eggs or embryos prior to their use in a trial. Once all trials were completed for a given 272	

pair of fish, they were stocked in a separate tank and not used again in the experiment. 273	

Data analysis 274	

Data from each focal female and male R. ocellatus were used to model host mussel preference. 275	

Before applying statistical models a data exploration was undertaken, following the protocol 276	

described in Ieno and Zuur (2015). The data were examined for outliers in the response and 277	

explanatory variables, homogeneity and zero inflation in the response variable, collinearity 278	

between explanatory variables and the nature of relationships between the response and 279	

explanatory variables. Oviposition was used as a definitive measure of mussel preference. We 280	

detected collinearity between female inspection of host mussels with oviposition and dropped 281	

female inspection from the analysis. Male mussel inspection behaviour was similarly found to be 282	

collinear with male leading behaviour and was subsequently dropped from the analysis. Male 283	

leading behaviour was included in the model as a covariate to accommodate the effect of male 284	

behaviour on female oviposition-site decision. Sperm release by males rarely occurred prior to 285	

oviposition, limiting its informative value, and this variable was not included in the model. No 286	

outliers were detected. 287	

 Mussel preference was modelled using a Bernoulli Generalized Linear Mixed Model 288	

(GLMM). The model contained fixed effects for sympatry (two levels: sympatry and allopatry), 289	

local coexistence (two levels: locally coexisting and ecological naive), and host species (two 290	

levels: A. woodiana and U. douglasiae). An interaction between host mussel species and local 291	

coexistence was included to test for an effect of conditioning on host preference. Male leading 292	



	

	

was a covariate representing the frequency of male leading behaviour to a mussel, which can 293	

potentially influence female oviposition decisions (Smith et al. 2004). We also included the 294	

effects of body size (measured as the total length, including caudal fin) of male and female R. 295	

ocellatus. Mussel shell size was not included as a covariate because host mussels were size-296	

matched within host species and fully collinear (non-overlapping size range) between species. 297	

Random terms were Fish ID (permitting random variation on the intercept for each individual 298	

fish (fish pair used in trials) and Trial as a random intercept for each pairwise experimental trial 299	

(with response to two host mussel individuals tested simultaneously in a paired design) nested 300	

within individual fish and permitting a different intercept for each experimental trial. 301	

 The occurrence of egg ejection by mussels immediately following oviposition was 302	

modelled using a subset of the data that included only trials that resulted in oviposition. The 303	

model was fitted as a Bernoulli GLMM (log-link function) and contained the same set of fixed 304	

and random effects as the oviposition model, except for the removal of male leading given the 305	

lack of an association between male leading behaviour and host mussel ejection. Data analyses 306	

were conducted using the lme4 package in R 3.2.0 (Bates et al. 2014; R Core Development Team 307	

2015). We quantified model goodness-of-fit (R2
GLMM) for the fixed part of the model (R2

GLMM 308	

marginal) and for the complete model (including random effects; R2
GLMM conditional) 309	

(Nakagawa and Schielzeth 2013). Goodness-of-fit parameters were extracted using the MuMIn 310	

package (Bartoń 2015). The effects package (Fox 2016) was used to visualize model estimates of 311	

fixed term effects.  312	

 313	

Results 314	



	

	

A total of 272 paired trials were conducted, of which 80 resulted in oviposition. Rhodeus 315	

ocellatus spawned more frequently in allopatric than sympatric mussel species, regardless of 316	

mussel population of origin (Table 2a, Fig. 2), which is in agreement with a predominant role for 317	

host resistance and contradicts predictions for the importance of parasite specialization at the 318	

meta level. There was no effect of local coexistence between R. ocellatus and host mussels on the 319	

probability of R. ocellatus oviposition, suggesting the parasite specialization was not affected by 320	

local interactions and, therefore, not supporting predictions for parasite specialization at the 321	

local level. There was no effect of host mussel species on the probability of R. ocellatus 322	

oviposition, indicating that there was no parasite specialization for a particular host species. 323	

There was no interaction between host mussel species and the effect of local coexistence, 324	

indicating no effect of local conditioning on host preference. Male leading behaviour, a covariate 325	

in the model, had a significant positive effect on the probability of oviposition (Table 2a). There 326	

was no effect of female R. ocellatus body size on oviposition but a positive trend of male R. 327	

ocellatus body size (Table 2a), indicating that females were more likely to spawn with larger 328	

males. The model explained 9% of variability in the data (R2
GLMM marginal = 0.0887), with 329	

almost all explained variation related to fixed part of the model (R2
GLMM conditional = 0.0887). 330	

Ejection of R. ocellatus eggs by host mussels showed a significant effect of mussel 331	

species (Table 2b), with A. woodiana exhibiting a higher frequency of egg ejection than U. 332	

douglasiae (Fig. 3). Sympatric mussel hosts, irrespective of species, tended to eject R. ocellatus 333	

eggs more frequently, though this effect was not statistically significant (P = 0.068). This trend 334	

tends to support a role for host resistance at the meta level. There was no effect of local host 335	

mussel coexistence on egg ejections (Table 2b), discounting the importance of local level effects. 336	



	

	

The model explained 30% of variability in the data (R2
GLMM marginal = 0.2997), with almost all 337	

explained variation related to the fixed part of the model (R2
GLMM conditional = 0.2996). 338	

 339	

Discussion 340	

We investigated outcomes in the host-parasite relationship between R. ocellatus and its unionid 341	

mussel hosts with respect to parasite specialization and host resistance. Using an experimental 342	

design that allowed us to distinguish the effects of host-parasite coexistence on a larger 343	

geographical level (sympatry/allopatry) and local population level (ecologically relevant local 344	

coexistence), we found support for the role of host resistance, with its effects operating at a 345	

regional rather than local level. R. ocellatus avoided oviposition in sympatric populations of two 346	

host mussel species in favour of allopatric populations and there was no effect of local host-347	

parasite coexistence or host species identity on R. ocellatus host preference. Ejection of R. 348	

ocellatus eggs by host mussels was more likely by populations of one species, A. woodiana. This 349	

host species has higher local population densities and a wider distribution than the other test host 350	

species and is, therefore, more likely to be encountered by R. ocellatus and other bitterling 351	

species. In addition, ejections tended to be higher in sympatric host mussel populations 352	

irrespective of host species, providing further support for the importance of host resistance at a 353	

meta level.  354	

Parasite preference for allopatric hosts may interact with host species preference. We 355	

found no difference in the preference of R. ocellatus between host mussel species, although A. 356	

woodiana mussels exhibited overall higher egg ejection rates than U. douglasiae mussels (Table 357	

2b). The lack of preference for host species may have been overridden by a strong preference for 358	

allopatric hosts. R. ocellatus is a host generalist, capable of successfully parasitizing both mussel 359	



	

	

species offered in the study, but demonstrating a certain level of host species preferences 360	

(Reichard et al. 2007). Moreover, conditioning has been shown to affect the choice of host 361	

mussel species in the European bitterling R. amarus, with a tendency to preferentially exploit 362	

host mussel species that were housed with experimental fish (Reichard et al. 2011). In our study, 363	

a population of R. ocellatus from Nanchang had no previous experience with U. douglasiae 364	

hosts, but did not exhibit any mussel species preference towards A. woodiana hosts. This 365	

outcome contradicts the potential role for a conditioning effect and reinforces the importance of 366	

generalised host suitability (i.e. the lack of host resistance) in the oviposition-site decisions of R. 367	

ocellatus. The cues that bitterling use for oviposition decisions appear to include mussel odour, 368	

the dissolved oxygen concentration of the water emerging from the mussel and the flow velocity 369	

of the exhalant flow (Smith et al. 2001; Mills and Reynolds 2002; Phillips et al. 2017), though 370	

these are not yet fully understood. In European unionids, host mussel populations have evolved 371	

morphological and behavioural adaptations, including egg ejection, to avoid bitterling 372	

oviposition, with mussel populations from areas under stronger parasitic pressure exhibiting 373	

enhanced counter-adaptations to reduce parasitism by bitterling (Reichard et al. 2010). It is 374	

unclear whether bitterling are capable of perceiving such differences in the level of host counter-375	

adaptation, but our results suggest it may be the case at the host population level, making R. 376	

ocellatus highly efficient at utilising a broad range of novel host populations and species. 377	

However, despite showing appropriate responses, the cues used by R. ocellatus to recognise host 378	

suitability remain to be identified. 379	

The limited species selectivity by R. ocellatus may appear contradictory in the context of 380	

host-parasite coevolution, but may reflect an overriding role for host quality traits rather than 381	

host specific traits. Thus the dissolved oxygen concentration and flow velocity of the exhalant 382	



	

	

flow of a mussel may be more reliable predictors of the suitability of a host for the incubation of 383	

eggs and embryos than species identity, at least in the case of R. ocellatus. This effect arises 384	

because host quality, irrespective of species, can change markedly over a spawning season 385	

(Kitamura 2005; Smith 2017). The spawning season of R. ocellatus is relatively protracted, 386	

starting in April and typically lasting 6 months (Kitamura 2005; Pateman-Jones et al. 2011). As 387	

the spawning season advances mussels fill with eggs and embryos and progressively decline in 388	

quality as incubation sites. Towards the end of the spawning season bitterling offspring emerge 389	

from mussels, which consequently increase in quality as hosts (Kitamura 2005). While we have 390	

only tested host mussels without bitterling eggs and embryos to standardise host condition, the 391	

capacity to distinguish the relative quality of an individual mussel when making oviposition-site 392	

decisions may be more critical than host species discrimination. Additional studies to compare 393	

egg ejection rates among more host species and hosts with varying intensity of infection by R. 394	

ocellatus would help clarify variation in host preference.   395	

The host mussel choice by R. ocellatus was adaptive in terms of the use of host mussel 396	

populations that tended to be least effective in ejecting R. ocellatus eggs. We have previously 397	

detected large differences in capability of European unionid hosts to eject the eggs of the 398	

European bitterling, R. amarus, between areas of recent and ancient association (Reichard et al. 399	

2010). However, cross resistance experiments between host mussel and fish parasite populations 400	

from areas of ancient and recent sympatry were not possible in that study due to the lack of legal 401	

approval of animal transport between study regions. The current findings with R. ocellatus and 402	

their host mussels are consistent with the prediction that naive hosts, evolving in the absence of 403	

parasites, relax costly resistance mechanisms in comparison with hosts continuously exposed to 404	

parasites. Similarly, relaxed selection by brood parasitic brown-headed cowbirds Molothrus ater 405	



	

	

(Boddaert) on allopatric populations of American robins Turdus migratorius L. and gray catbirds 406	

Dumetella carolinensis (L.) resulted in a lower frequency of ejection of parasite eggs compared 407	

with sympatric populations (Kuehn 2009). Analogous observations have been found in other 408	

host-parasite systems, such as for the susceptibility of isopod populations to an acanthocephalan 409	

parasite (Hasu et al. 2009), and infection by the yeast parasite Metschnikowia bicuspidata 410	

(Metschnikow) of the crustacean Daphnia dentifera Forbes (Auld et al. 2013). 411	

No effect of local coexistence on host mussel preference across R. ocellatus populations 412	

failed to support the existence of fine-scale local adaptations of R. ocellatus to avoid their locally 413	

coexisting population of hosts. Parasites are frequently reported to avoid local hosts due to their 414	

better resistance, for example in the relationship between the bacterial parasite Holospora 415	

undulata Hafkine and its protozoan host Paramecium caudatum Ehrenberg (Adiba et al. 2010). 416	

However, the lack of host-parasite coevolution at a local scale could be explained by other 417	

factors. First, studies based on parasites with broad host ranges are less likely to demonstrate 418	

local parasite adaptation than those on parasites with narrow host ranges, probably due to 419	

evolutionary lags during diffuse coevolution of generalist parasites with their hosts (Lajeunesse 420	

and Forbes 2002). In terms of our study system, this would predict more localised coevolutionary 421	

dynamics in host specialist bitterling, such as R. sinensis (Reichard et al. 2007a). Second, the 422	

potential for large-scale dispersal by at least one of the partners mitigates the opportunity of fine-423	

scaled local adaptation. All unionid mussels have a larval stage (glochidium) that attaches to host 424	

fish for days to months and may be dispersed over large distances (Dillon 2000). Third, in some 425	

systems, local adaptation of the parasite can be observed over a scale of meters (Lively and 426	

Jokela 1996), while in other systems parasites exhibit no local adaptation within-regions but do 427	

express adaptations at larger distances (Hanks and Denno 1994). Hence, although it is possible 428	



	

	

that R. ocellatus exhibit no local adaptation at the scale tested here, we cannot preclude local 429	

adaptation on a larger environmental scale, particularly given the limited number of test 430	

populations and the use of naive mussels as one of the host populations. 431	

Understanding the coevolutionary dynamics between R. ocellatus and A. woodiana has 432	

become a pressing question because A. woodiana is an invasive species across Europe, Asia, and 433	

the Americas (Watters 1997; Douda et al. 2012). The invasive range of A. woodiana includes 434	

large parts of the range of the European bitterling R. amarus (Reichard et al. 2015). While we 435	

show that A. woodiana was capable of ejecting a large proportion of eggs oviposited by R. 436	

ocellatus in its gills, its ejection rate of R. amarus eggs is even greater (Reichard et al. 2012; 437	

Reichard et al. 2015). Notably, R. ocellatus is itself an invasive species in several Asian 438	

countries (Welcomme 1988; Kawamura et al. 2001; Vasil’eva et al. 2015). Our results show a 439	

preference for allopatric, evolutionarily naive hosts, regardless of host species identity. In order 440	

to establish, persist and spread without their native hosts, introduced parasites must either be 441	

generalist species that can infect a large range of new hosts, with at least some degree of success, 442	

or specialize on a new host species in the novel communities they invade (Font 2003; Frankel et 443	

al. 2015). One of the primary reasons for the invasive success of R. ocellatus may be its capacity 444	

to exploit a wide variety of mussel species and populations as hosts, coupled with the fitness 445	

advantage demonstrated here in using naive host populations due to their lower egg ejection rates 446	

(Reichard et al. 2010). Given that several successful parasite invasions have been attributed to 447	

the use of naive hosts species owing to the absence of an effective adaptive response (Kelehear et 448	

al. 2015), R. ocellatus is predicted to successfully reproduce and establish non-native populations 449	

in other geographic regions.   450	

 451	
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Figure Captions 613	

Figure 1 An illustration of experimental populations with regard to their reciprocal coexistence 614	

at a meta-level (sympatry/allopatry) and local coexistence (locally coexisting/ecologically naïve). 615	

Each experimental pair of Rhodeus ocellatus was tested against four contrasting pairs of host 616	

mussels, with all four trials completed over 1-3 days. The trials represented contrasts between (1) 617	

Anodonta woodiana from two populations; and (2) Unio douglasiae from two populations, each 618	

contrasting geographically sympatric and allopatric hosts; (3) A. woodiana and U. douglasiae 619	

from Lake Bao’an, contrasting host species that both locally coexisted with R. ocellatus; and (4) 620	

A. woodiana and U. douglasiae from Lake Qinglan, contrasting host species that were both 621	

ecologically naïve to R. ocellatus. Note that since two R. ocellatus populations were used overall, 622	

each contrast had additional predictions that are articulated in Table 1. 623	

 624	

Figure 2 Mean rate of oviposition of female R. ocellatus with respect to (a) sympatry/allopatry 625	

between R. ocellatus (parasite) and host mussel populations, (b) local coexistence between R. 626	

ocellatus (parasite) and host mussel populations, (c) host mussel species regardless their 627	

sympatry or local coexistence with R. ocellatus. Values represent mean and 95% confidence 628	

intervals from model estimates (Table 2a), produced in the R package effects. An asterisk 629	

indicates P < 0.05.  630	

 631	

Figure 3 Mean rate of R. ocellatus egg ejection by host mussels with respect to (a) 632	

sympatry/allopatry between R. ocellatus (parasite) and host mussel populations; (b) local 633	

coexistence between R. ocellatus (parasite) and host mussel populations; (c) host mussel species 634	

regardless their sympatry or local coexistence with R. ocellatus. Values represent mean and 95% 635	



	

	

confidence intervals from model estimates (Table 2b), produced in the R package effects. An 636	

asterisk indicate P < 0.05, asterisk in parentheses indicates P = <0.10. 637	
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Table 1. Experimental design showing the predicted responses of parasitic R. 

ocellatus and host mussels for scenarios when parasite specialisation (tested using 

parasite oviposition preference) or host resistance (tested using host egg ejection) 

dominate the current coevolutionary state. Support for each contrast is indicated by an 

asterisk (at P < 0.05) or asterisk in brackets (at P = < 0.10). 

   Predictions  

Response 
variable 

Covariate Covariate level 
Parasite 

specialisation 
Host resistance  Support 

Parasite 
oviposition 

Sympatry 
Sympatric ✔ ✗ 

* 
Allopatric ✗ ✔  

Parasite 
oviposition 

Local 
coexistence 

Coexisting ✔ ✗ 

– 
Not coexisting ✗ ✔ 

Host egg 
ejection 

Sympatry 
Sympatric ✗   ✔ 

* 
Allopatric ✔ ✗ 

Host egg 
ejection 

Local 
coexistence 

Coexisting ✗ ✔ 

– 
Not coexisting ✔ ✗ 

	

✔ – preference for this host supports the prediction 

✗ – preference for this host contradicts the prediction 

	 	



Table 2. Estimates and P-values of fixed effects from GLMMs on (a) oviposition 

rate; and(b) egg ejections. Significant P-values are indicated in bold. 

 

Variable Source Estimate S.E. z P 

(a) Oviposition  Intercept -0.528 0.241 -2.19 0.028 

Sympatry(sympatric) -0.834 0.388 -2.15 0.032 

Local coexistence(coexisting) 0.458 0.544 0.84 0.401 

Sympatry : Local coexistence -0.370 0.633 -0.58 0.559 

Mussel species(U.douglasiae) -0.135 0.319 -0.42 0.673 

Male leading  0.364 0.137 2.66 0.008 

Female R. ocellatus size -0.115 0.152 -0.76 0.447 

Male R. ocellatus size 0.262 0.143 1.83 0.067 

(b) Egg ejection Intercept 0.490 0.388 1.26 0.207 

 Sympatry(sympatric) 1.509 0.823 1.83 0.067 

 Local coexistence(coexisting) -1.230 0.966 -1.27 0.203 

 Mussel species(U.douglasiae) -1.872 0.529 -3.54 <0.001 

 Female R. ocellatus size 0.306 0.288 1.06 0.288 

 Male R. ocellatus size -0.281 0.262 -1.07 0.283 

	

	


