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Running head 27 

Evaporative heat loss insufficient to attain heat balance  28 

ABSTRACT 29 

The aim of the study was to determine whether climatic limits for achieving heat balance at 30 

rest are affected by spinal cord injury (SCI). Twenty-three males (8 able-bodied (AB), 8 with 31 

paraplegia (PP) and 7 with tetraplegia (TP)) rested in 37°C and 20% relative humidity (RH) 32 

for 20 mins. With the ambient temperature held constant, RH was increased by 5% every 7 33 

mins, until gastrointestinal temperature (Tgi) showed a clear inflection or increased by >1°C. 34 

Tgi, skin temperatures, perceptual responses and metabolic energy expenditure were measured 35 

throughout. Metabolic heat production (AB: 123 (21) W, PP: 111 (15) W, TP: 103 (29) W) and 36 

required rate of evaporative cooling for heat balance (Ereq, AB: 113 (20) W, PP: 107 (17) W, 37 

TP: 106 (29) W) were similar between groups (p = 0.22 and p = 0.79). Compared to AB, greater 38 

increases in Tgi were observed in TP (p = 0.01), with notable increases in mean skin temperature 39 

(Tsk) for TP and PP (p = 0.01). A Tgi inflection point was demonstrated by 7 AB, only 3 out of 40 

8 PP and none of TP. Despite metabolic heat production (and Ereq) being similar between 41 

groups evaporative heat loss was not large enough to obtain heat balance in TP, linked to a 42 

shortfall in evaporative cooling potential. Although PP possess a greater sweating capacity, the 43 

continual increase in Tgi and Tsk, in most PP, while lower than for TP, implies that latent heat 44 

loss for PP is also insufficient to attain heat balance.  45 

NEW AND NOTEWORTHY  46 

In the absence of convective heat loss, at temperatures around 37ºC, evaporative heat loss is 47 

insufficient to attain heat balance at rest in individuals with paraplegia and tetraplegia. This 48 

finding was directly linked to a shortfall in evaporative cooling potential compared to required 49 

evaporative cooling. In this environment, both individuals with paraplegia and tetraplegia 50 
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cannot subjectively determine the magnitude of their thermal strain, thus perceptual responses 51 

should not be relied upon for this population group.  52 

 53 

Keywords: Tetraplegia, Paraplegia, Heat Balance, Passive Heat, Heat loss 54 

 55 

INTRODUCTION 56 

To prevent an accumulation of heat within the body and maintain a stable core temperature 57 

(Tcore), individuals primarily rely on evaporative heat loss in warm and hot environments. Over 58 

a wide range of environments, Tcore is able to equilibrate at levels proportional to metabolic 59 

rate known as the “prescriptive zone” (27), whilst being independent of ambient conditions. At 60 

thermal environments above this prescriptive zone Tcore is forced out of equilibrium resulting 61 

in a continuous rise in Tcore and the attainment of a critical environmental limit (23). 62 

 63 

Individuals with a spinal cord injury (SCI) have a complete or partial loss of central control of 64 

the sympathetic nervous system, resulting in a loss of sweating capacity and vasomotor control 65 

below the lesion level. The higher the lesion level the smaller the body surface area of sensate 66 

skin (14, 29) resulting in a reduction in sweating capacity and hence evaporative heat loss 67 

potential. Most of the SCI literature investigating thermoregulation has involved exercise. 68 

Although these studies, typically using upper body exercise, have not matched heat production 69 

between groups, the premise of the exercise used within these studies was to replicate sporting 70 

scenarios or provide an appropriate exercise stimulus for this population group (13, 33, 34). 71 

However, to gain a deeper understanding of the effects an SCI has on heat dissipation, studies 72 

need to be conducted at rest too (i.e. removing the additional metabolic heat production from 73 

exercise), in environments considered compensable for the able-bodied (AB).   74 

 75 
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The lesion level of an individual with an SCI, determining the amount of remaining 76 

sympathetic innervation, is likely to play an important role in the dissipation of heat through 77 

sweating and the subsequent attainment of heat balance. An impairment or loss of motor and/or 78 

sensory function of the cervical segments of the spinal cord results in tetraplegia (TP). 79 

Whereas, an impairment or loss of motor and/or sensory function of the thoracic, lumbar or 80 

sacral segments of the spinal cord results in paraplegia (PP). Both individuals with PP and TT 81 

have a lower body surface area of sensate skin than AB individuals, with the amount of sensate 82 

skin related to an individual’s lesion level. Thus, TP have a lower body surface area of sensate 83 

skin than PP. While all groups may be able to attain heat balance within a “prescriptive zone”, 84 

it is expected that PP and TP may reach a critical thermal environmental limit prior to AB, i.e. 85 

a leftward shift in temperature and/or relative humidity (RH) of the prescriptive zone, with the 86 

size of the shift related to their lesion level.  87 

 88 

The aim of this study was to determine the effect the lesion level of an SCI has on the attainment 89 

of a critical environmental limit. Experimental sessions were conducted at rest, in hot 90 

conditions (37°C) using a stepwise increase in RH, based on the experimental design of 91 

previous studies (5, 21–23). The experimental design aimed to minimise heat loss from dry 92 

heat loss by removing the skin to air temperature gradient and then progressively reducing the 93 

water vapour pressure gradient from the skin to the environment, increasing the thermal stress 94 

of the environment and hindering evaporative heat loss. Based on sweat rate capacity data from 95 

pilot work, all groups were expected to have sufficient thermoregulatory capacity in the climate 96 

chosen as the starting point of the protocol. It was hypothesised that critical environmental 97 

limits would occur at high RH for AB. Whereas, in individuals with PP and TP it was 98 

hypothesised that heat balance would be attained initially but a critical environmental limit 99 
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would be reached prior to AB, with TP potentially experiencing a continual increase in Tcore 100 

from the early stages of the protocol.  101 

MATERIALS AND METHODS 102 

Participants. Twenty-three recreationally active male participants, consisting of eight AB 103 

individuals, eight individuals with PP (T3-T12) and seven individuals with TP (C5/6-C6/7) 104 

volunteered for the study. In PP, five had complete and three had incomplete injuries, whilst 105 

in TP two had complete and five had incomplete injuries (Table 1).  An individual with a 106 

complete injury has no motor and/or sensory function preserved in the lowest sacral segments 107 

of the spinal cord (S4-S5), whilst a motor or sensory incomplete injury refers to the 108 

preservation of motor and/or sensory function in the lowest sacral segments (S4-S5, (24)). 109 

Health and heat tolerance questionnaires were completed by all participants. All procedures 110 

were approved by the University Ethical Advisory Committee and conformed to the 111 

principles defined in the Declaration of Helsinki. Participants were fully informed of the 112 

experimental protocols before providing written consent to participate. 113 

Insert Table 1 here 114 

Procedures. Participants were instructed to refrain from alcohol, caffeine and strenuous 115 

exercise 24 h prior to testing. All trials were conducted at the same time of day to negate 116 

circadian variation. Prior to arrival at the laboratory, participants ingested a telemetric pill (HQ 117 

Inc, Palmetto, Florida), for the measurement of gastrointestinal temperature (Tgi), 6-8 hours 118 

prior to experimental sessions to avoid the influence of ingested food or fluid on the 119 

temperature reading, in accordance with previous recommendations (6).  120 

 121 

Upon arrival at the laboratory, skinfold measurements (Harpenden Skinfold Callipers, Baty 122 

International, West Sussex, UK) were taken from the biceps, triceps, subscapular and 123 
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suprailliac sites to calculate a sum of skinfolds (mm). Body fat percentage, using the Durnin 124 

and Wormsley four site method, plus fat and fat free mass were calculated using age dependent 125 

equations (9). To standardise clothing, all participants were given a pair of shorts and a short-126 

sleeved t-shirt to wear during testing. Participants wore their own socks and sports shoes, with 127 

an estimated clo value of 0.4 for the overall clothing ensemble (including wheelchair). Prior to 128 

instrumentation, euhydration was confirmed for all participants (urine specific gravity <1.025, 129 

Meta Scientific Ltd, Surrey, UK) and participants were weighed (Mettler Toledo KCC 150, 130 

Leicester, UK, accuracy ± 5g, resolution 1g) before entering the climatic chamber (T.I.S.S. 131 

Peak Performance, Series 2009).  132 

 133 

Skin temperature was measured throughout the protocol at 10 sites using iButtons (DS1922T, 134 

Maxim Integrated Products, Inc., Sunnyvale, CA, USA), which were applied to the forehead 135 

and on the right side of the body at the forearm, upper arm, chest, abdomen, upper back, thigh, 136 

calf, hand and foot. Mean skin temperature (Tsk) was calculated in accordance with the formula 137 

by Ramanathan (35).  138 

 139 

During the protocol, PP and TP remained in their own daily wheelchair, whilst AB remained 140 

seated in a similar wheelchair provided. The climatic chamber was initially set at 37°C and 141 

20% RH (water vapour pressure in the ambient air (Pa) = 1.26 kPa). Participants were 142 

informed that the RH would increase during the protocol but were not told the initial starting 143 

RH or when the RH was being increased. Participants sat for an initial 20 min stabilisation 144 

period, after which the RH was increased by 5% steps (ΔPa = 0.314 kPa) every 7 minutes, 145 

whilst the ambient temperature was kept constant (37.2°C ± 0.2°C throughout all trials). By 146 

the end of the 7 minutes the climatic chamber had just reached the desired humidity resulting 147 

in a steady ramp in humidity. Air velocity was measured as 0.12 ± 0.07 m·s-1 throughout all 148 
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trials. Based on sweat rate capacity data from pilot work, all groups were expected to have 149 

sufficient thermoregulatory capacity during the stabilisation period. The ambient temperature 150 

and RH inside the climatic chamber were measured next to the participant (Testo 435, Testo 151 

AG, Germany). Participants were withdrawn from the climatic chamber after a clear 152 

inflection point in Tgi had been observed (critical RH limit, (26)), or Tgi increased by 1°C 153 

from the initial value upon entering the chamber (Figure 1).  154 

Insert Figure 1 155 

Heart rate (HR, Polar PE 4000, Kempele Finland) and Tgi were measured throughout. 156 

Perceptual measures of thermal comfort, thermal sensation and wetness sensation were taken 157 

during the last minute of each step increase in RH.  The thermal sensation scale comprised of 158 

categories ranging from 0 (“unbearably cold”) to 8 (“unbearably hot”) in 0.5 increments (42).  159 

The thermal comfort scale ranged from 1 (“comfortable”) to 4 (“very uncomfortable”) in 160 

increments of 1 (12). The wetness sensation scale ranged from 0 (“dry”) to 6 (“dripping wet”) 161 

in increments of 1 (modified scale from (15)).  162 

Fluid balance. Participants could drink water ad libitum, except during the last minute of each 163 

7 min stage to prevent interference with respiratory measures.  Fluid consumption was recorded 164 

and was kept at the same temperature of the chamber to prevent any cooling effect of the fluid 165 

on the participant. Upon removal from the climatic chamber and towel drying their skin, if 166 

required, participants were re-weighed and provided another urine sample, which was analysed 167 

for urine specific gravity. The towel was subsequently weighed and any sweat trapped in the 168 

towel added to the participant’s end weight.  Sweat loss was adjusted for respiratory mass loss 169 

(Table 3). In addition to the percentage change in body mass ((Masspre - Masspost) / 170 

Masspre · 100), the change in body mass adjusted for fluid consumed (total mass loss) was also 171 

calculated ((Masspre - Masspost) + fluid consumed).  172 
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Ventilatory data and heat balance calculations. Expired gas was recorded continuously 173 

throughout the test using a calibrated online gas analysis system in breath by breath mode 174 

(Metamax, Cortex Biophysik GmbH, Leipzig, Germany). Saturated water vapour pressure 175 

(Psa), saturated skin vapour pressure (Psk) and Pa were calculated using the following equations 176 

(30).   177 

 
𝑃𝑠𝑎(𝑘𝑃𝑎) =  

𝑒(18.956−(4030.18÷𝑇𝑎+235))

10
 

(1) 

 
𝑃𝑠𝑘(𝑘𝑃𝑎) =  

𝑒(18.956−(4030.18÷𝑇𝑠𝑘+235)

10
 

(2) 

 𝑃𝑎(𝑘𝑃𝑎) = (𝛷 ∙ 0.01) ∙  𝑃𝑠𝑎 (3) 

   

Where: Ta is the ambient temperature (°C) and Φ is the relative humidity. 178 

Metabolic energy expenditure (M) was obtained from minute-average values for V̇O2 in litres 179 

per minute and respiratory exchange ratio (RER) collected with the metabolic cart. Metabolic 180 

energy expenditure was calculated using the equation below: 181 

 

 

 

𝑀 (W) =  𝑉𝑂2
̇  

(
𝑅𝐸𝑅 − 0.7 ∙ e𝑐

0.3 )  + (
1 − 𝑅𝐸𝑅 ∙ 𝑒𝑓

0.3 ) 

60
 ∙ 1000 

 (4) 

Where: ec is the caloric equivalent per litre of oxygen for the oxidation of carbohydrates (21.13 182 

kJ), and ef is the caloric equivalent per litre of oxygen for the oxidation of fat (19.62 kJ). Since 183 

the rate of external work (W) was assumed to be zero (i.e. any work on surrounding objects 184 

was negligible), metabolic heat production (M-W) was taken to be equal to metabolic energy 185 

expenditure.  Dry heat exchange (radiative (R) and convective (C)),evaporative (Eres) and 186 

convective respiratory heat exchange (Cres) and required rate of evaporative cooling (Ereq) were 187 

calculated using the following equations. Eres enabled the calculation of mass loss via the 188 

respiratory system (Mres). 189 
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Dry (W) = 
𝑇𝑠𝑘− 𝑇𝑎

𝐼𝑐𝑙 + (
𝑓𝑐𝑙

ℎ𝑐 + ℎ𝑟
)

 · BSA 

 

𝑓𝑐𝑙 = 1.0 + 0.31 · 𝐼𝑐𝑙
  

 

 

 

(5) 

 

(6) 

 

 𝐶𝑟𝑒𝑠  +  𝐸𝑟𝑒𝑠 (W) =  (0.0014 ∙ M ∙ (34 − 𝑇𝑎)  +  0.0173 ∙ M ∙ (5.87 − 𝑃𝑎)) 

 

(7) 

 𝑀𝑟𝑒𝑠 (g·h-1) = 𝐸𝑟𝑒𝑠 ·  
3600 

2430
 

 

(8) 

 𝐸𝑟𝑒𝑞 (W)=  M –  W − (C +  R +  𝐶𝑟𝑒𝑠  +  𝐸𝑟𝑒𝑠) 

 

(9) 

Where: Icl is the intrinsic clothing insulation (estimated to be 0.4 clo) and fcl is the clothing area 190 

factor, which is the ratio of the clothed surface area of the body to the nude surface area of the 191 

body. hc is the convective heat transfer coefficient (estimated at 3.1 W·m-2 K-1 when air velocity 192 

is less than 0.2 m·s-1), (28) and hr is the radiative heat transfer coefficient (estimated at 4.7 193 

W·m-2 K-1)  for typical indoor conditions, (1).  Body surface area (BSA) was calculated using 194 

the Dubois formula (8). 195 

 196 

Statistical analyses. All data were analysed using the Statistical Package for Social Sciences 197 

(version 19, SPSS Chicago, IL) and are presented as mean (SD). An a priori power analysis, 198 

conducted in G*Power 3.1, revealed a minimum sample size of 6 participants was required per 199 
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group, with 90% power and an α of 5%, based on findings from (31). Given the heterogeneity 200 

of the population group, additional participants were recruited to increase statistical power.  201 

 202 

Delta HR, Tgi, Tsk and individual skin temperatures were calculated as the change from the last 203 

minute of the 20 min stabilisation period. Statistical analysis was conducted for repeated 204 

measures up to 65% RH (n = 23), thereafter several participants from PP and TP were removed 205 

due to a ≥ 1°C change in Tgi or the participant had reached a critical RH limit. To account for 206 

the reduced number of participants tested at 70-90% RH, predicted lines were calculated for 207 

the change in Tgi and Tsk to indicate the expected trend (Figure 2). To calculate the predicted 208 

delta data the difference between each time point for each remaining individual were 209 

calculated. The average differences for each time point were then added to the previous time 210 

point to estimate data points for 70-90% RH where dropouts were present. For ventilatory data 211 

and the heat balance calculations, data from two AB participants were excluded due to missing 212 

data as a result of equipment error.  213 

 214 

For all groups a critical RH was determined grapically from the raw data. A line was drawn 215 

between the data points of Tgi starting from an initial equilibirum phase. When the Tgi  slope 216 

started to deviate upward from the equilibrium slope, a second line was drawn from the point 217 

of deviation from the first line. The RH before the point at which the second line deviated from 218 

the first was defined as the critical RH, a method previously used in (23). 219 

Distribution and normality of data were assessed using the Shapiro–Wilk test. For data 220 

violating normality and homogeneity assumptions, logarithmic or square-root conversions 221 

were applied. For one way analysis of variance (ANOVA), if these conversions failed to correct 222 

the skew and heterogeneity, a Kruskal-Wallis test was used. To analyse any between group 223 

differences at both the start and at 65% RH a one way ANOVA was used, whilst for between 224 
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group differences during the protocol a mixed method ANOVA was used. Where significance 225 

was obtained, post hoc pairwise comparisons with a Bonferroni correction were conducted. 226 

Main effects and interactions were accepted as statistically significant when p ≤ 0.05. A main 227 

effect of time corresponded to a step increase in RH. Confidence intervals (95% CI) for 228 

differences are presented, alongside effect sizes (ES) to supplement significant findings. Effect 229 

sizes were calculated as the ratio of the mean difference to the pooled standard deviation of the 230 

difference. The magnitude of the ES was classed as trivial (<0.2), small (0.2–0.6), moderate 231 

(0.6–1.2), large (1.2–2.0) and very large (≥2.0) based on previous guidelines (4).   232 

 233 

RESULTS 234 

Participant characteristics. Individuals with PP were older than both AB and TP (p < 0.01). 235 

Compared to AB, sum of skinfolds and percentage body fat were greater in PP and TP (p ≤ 236 

0.04), whilst fat mass was greater (p < 0.001) and fat free mass smaller (p = 0.04) in PP.  237 

 238 

Thermoregulatory responses. No significant differences in Tgi between groups were observed 239 

at the start (p = 0.18, AB: 37.22 (0.29)°C, PP: 36.91 (0.40)°C and TP: 37.23 (0.45)°C) or 240 

during the 20 min stabilisation period (p = 0.08). The change in Tgi during the last 5 minutes 241 

of the stabilisation period was not significantly different between groups (p = 0.26, AB: 0.03 242 

(0.03)°C, PP: 0.06 (0.06)°C and TP: 0.05 (0.03)°C). Absolute Tgi at 65% RH was 243 

significantly cooler in AB (37.43 (0.25)°C, p < 0.001, ES = 2.6) and PP (37.53 (0.45)°C, p = 244 

0.01, ES = 1.5) than in TP (38.16 (0.37)°C). The change in Tgi was smaller in AB than for TP 245 

(p = 0.01, 95% CI = 0.07 to 0.47, ES = 1.5, Figure 2) from 30% to 65% RH.  The critical RH 246 

determined graphically for thegroups are shown in Table 2.  247 

Insert Table 2 and Figure 2 here                                          248 
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No signficiant differences in Tsk between groups were observed at the start (p = 0.91, AB: 34.34 249 

(0.65)°C, PP: 34.27 (0.90)°C and TP: 34.14 (1.05)°C) or during the stabilisation period (p = 250 

0.07).  Mean skin temperature at 65% RH was significantly cooler in AB (36.25 (0.36)°C) than 251 

in PP (36.91 (0.56)°C, p = 0.05, ES = 1.3) and TP (37.45 (0.58)°C, p < 0.001, ES = 2.5). The 252 

change in Tsk was significantly smaller in AB compared to PP (p = 0.01, 95% CI = 0.14 to 0.98, 253 

ES = 1.5) and TP (p = 0.01, 95% CI = 0.29 to 1.03, ES = 2.0) across all RH stages (Figure 2). 254 

 255 

There was a main effect of time at all individual skin temperature sites (all p < 0.001), with 256 

responses shown in Figure 3. There were no differences between groups for the change in chest, 257 

hand and foot skin temperature (all ≥ p = 0.07, ≤ ES = 0.4) across all RH stages.  The change 258 

in forearm, upper back and abdomen skin temperature were smaller in AB and PP than TP (all 259 

p ≤ 0.02, ≥ ES = 1.2) across all RH stages. The change in upper arm skin temperature was 260 

smaller in AB than TP across all RH stages (p = 0.01, ES = 1.5). The change in forehead skin 261 

temperature was smaller in AB than TP from 45% to 65% RH (p = 0.04, ES = 0.2). The change 262 

in thigh and calf skin temperatures were smaller in AB than both PP (p < 0.01, ES = 1.6) and 263 

TP (p < 0.01, ES = 1.6 -1.7) across all RH stages.  264 

Insert Figure 3 here 265 

No significant difference in HR was observed between groups at the start (p = 0.18; AB: 62 (7) 266 

b∙min-1, PP: 74 (19) b∙min-1 and TP: 71 (4) b∙min-1), during the 20 min stabilisation period (p 267 

= 0.16) or during the protocol (p = 0.43). The change in HR during the last 5 minutes of the 268 

stabilisation period was not significantly different between groups (p = 0.33, AB: -5 (3) b∙min-269 

1, PP: 0 (4) b∙min-1 and TP: -5 (10) b∙min-1). Heart rate at 65% RH was not significantly 270 

different between groups, though, compared to AB (68 (10) b∙min-1), ES were moderate for PP 271 

(86 (26) b∙min-1, p = 0.16, ES = 0.9) and very large for TP (89 (8) b∙min-1, p = 0.09, ES = 2.3). 272 

Tgi, Tsk, skin temperatures and HR all significantly increased over time (p < 0.001). 273 
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 274 

Perceptual responses.  No significant differences were observed between groups for thermal 275 

sensation or thermal comfort (p > 0.05). Participants became hotter and developed greater 276 

thermal discomfort throughout (p < 0.001). Wetness sensation was significantly higher in AB 277 

at 30-35% and 50-65% RH (p < 0.001) than TP and significantly increased over time (p < 278 

0.001). 279 

 280 

Fluid balance.  Urine specific gravity was not significantly different between groups at the start 281 

(p = 0.67) but was significantly greater in AB compared to PP (p = 0.02) and TP (p = 0.04) at 282 

the end of the protocol. PP and TP gained body mass compared to AB (p = 0.10) and AB and 283 

PP tended to consume more fluid than TP (p = 0.31), but neither were significant.  Total mass 284 

loss and sweat rate were significantly greater in AB than PP (p < 0.001, ES = 1.4 - 1.7) and TP 285 

(p < 0.001, ES = 1.7 - 2.0, Table 3).  286 

Insert Table 3 here 287 

Heat balance parameters. Metabolic heat production was not significantly different over time 288 

(p = 0.46) or between groups (p = 0.22, AB: 123 (21) W, PP: 111 (15) W and TP: 103 (29) ) 289 

(Table 4). Dry heat exchange (R + C) was significantly different between AB and TP (p = 290 

0.01). Cres, Eres (p = 0.17) and Ereq (p = 0.79) were not significantly different between groups 291 

(Table 4). Evaporative cooling potential, based on observed sweat rates was significantly lower 292 

for PP and TP compared to AB (p < 0.01), and fell short of Ereq for both PP and TP. 293 

 294 

Insert Table 4 here 295 
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Complete and incomplete lesion responses. Figure 4 shows mean and individual responses for 296 

the change in Tgi and Tsk, respectively. Statistical analysis was not conducted on this data due 297 

to the small sample size. 298 

Insert Figure 4 here 299 

DISCUSSION 300 

The hypothesis of this study was that critical relative humidity limits would differ between 301 

groups, with AB having the highest critical limit, TP the lowest and PP in between, linked to 302 

their respective areas of sensate skin. While the decision on the climate settings was based on 303 

pilot work with a TP participant, both PP and TP participants in the actual experiment struggled 304 

to attain heat balance from the start of the experiment. Thus, it is evident that the response of 305 

the participant used in the pilot study was not representative of the groups studied; an 306 

unfortunate reflection of the large variability in physiological responses in individuals with an 307 

SCI. Nevertheless, the order of the groups in terms of their Tgi response was as expected. While 308 

7 out of 8 AB showed stable Tgi at the start and a defined threshold where Tgi stability was lost, 309 

only 3 out of 8 PP and none of TP achieved this. This result was directly linked to a shortfall 310 

in evaporative cooling potential (Table 3) in PP and TP, compared to required evaporative 311 

cooling (Ereq).  312 

Metabolic heat production is the primary determinant of Ereq, hence the similar metabolic heat 313 

production (and metabolic energy expenditure) between the three groups in the present study 314 

infers similar values for Ereq. Yet neither PP nor TP attained a steady Tgi response (Figure 2), 315 

and hence heat balance during the protocol. For instance, at 65% RH, the change in Tgi for PP 316 

and TP was 0.29°C and 0.51°C greater than AB, respectively. For AB Tgi was stable, up until 317 

a mean critical RH of 79% RH. The results therefore indicate that, evaporative capacity was 318 

insufficient from the start for TP and at the limit for PP in the studied conditions where 319 

evaporation was the primary pathway for heat dissipation. 320 
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The attenuation in evaporative heat loss in individuals with an SCI is further depicted by the 321 

greater change in Tsk and smaller total mass loss in PP and TP compared to AB. Both the change 322 

in thigh and calf skin temperature, i.e. skin sites below the lesion level, were significantly 323 

greater in PP and TP than AB throughout the protocol (Figure 3), contributing to the greater 324 

Tsk response. These results further support the notion that latent heat loss is greatly reduced and 325 

insufficient to attain heat balance at rest for TP and most PP in the absence of convective heat 326 

loss.  327 

 328 

Body composition. Historically body fatness was considered an important parameter for 329 

thermoregulatory response. Though it was later shown that fat percentage is only a relevant 330 

predictor of individual Tcore and sweating responses to exercise when cool climates are 331 

considered, and skin blood flow is low (16–18). This has been confirmed more recently  (7) 332 

showing that heat production and Ereq are the main driving factors in explaining most of the 333 

variance in Tcore and whole body sweat loss in the heat. Whether body fatness explains a similar 334 

amount of variance in Tgi in individuals with an SCI is unclear. It could be argued that the 335 

reduced skin blood flow to the body regions below the lesion level would make heat transfer 336 

from core to skin more sensitive to the thickness of the fat layer insulation, similar to what 337 

happens in AB in the cold. In the present study, given the close to isothermal conditions, this 338 

would however not have affected outcomes. Individuals with an SCI, due to skeletal muscle 339 

denervation and inactivity of their lower limbs, have adverse changes to their overall body 340 

composition. These include a greater fat mass of their legs and trunk not only compared to their 341 

upper limbs but also in comparison to AB (20, 39, 40). Hence a large proportion of fat mass in 342 

individuals with an SCI is below the lesion level, which for these individuals are body regions 343 

not considered to be an effective body surface area (area of skin that can partake in heat 344 

dissipation).  In relation to methodology, the Durnin and Wormsley four site method has been 345 
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shown to under-predict body fat percentage compared to dual energy x-ray absorptiometry in 346 

wheelchair athletes by 4.2% (44).  Thus, actual differences in body fat percentage between AB 347 

and both PP and TP are likely to be greater than reported. Nevertheless, in the current study 348 

the greater percentage of body fat of PP and TP compared to AB should have had minimal 349 

influence on the amount of evaporative heat loss, while due to the chosen minimal temperature 350 

difference between air and skin, a negligible effect on convective heat loss is expected. 351 

 352 

Although PP were significantly older than both AB and TP, this is likely to have had a minimal 353 

effect on the findings. Previous research has shown that the capacity to dissipate heat reduces 354 

with age, with a decrease in evaporative heat loss of 4-11% in humid conditions (35°C, 65% 355 

RH) and 4-6% in dry conditions (35°C, 25% RH) in 40-50 year olds compared to 20-30 year 356 

olds (26). These findings are related to exercise in the stated conditions and are therefore likely 357 

to be even less in resting conditions. In addition, an individual’s 𝑉̇O2max/𝑉̇O2peak is likely to 358 

play a larger role regarding an individual’s Tcore and sweat response to a warm humid 359 

environment than the individual’s age (16, 17).  Thus, in the current study despite PP being 360 

significantly older than AB and TP, the actual difference in age between the groups is unlikely 361 

to have a major influence on heat dissipation. The presence, level and completeness of an SCI 362 

and the individual’s cardiovascular fitness, which will correspond to the individual’s lesion 363 

level, i.e. lowest cardiovascular fitness for TP, is likely to have a much larger influence. 364 

 365 

Lower body skin temperatures. In individuals with an SCI, Tsk is likely to mask regional skin 366 

temperature differences, in particular skin temperatures above and below the lesion level (32). 367 

The change in thigh and calf skin temperatures were greater in both PP and TP than AB, due 368 

to the disrupted blood flow, vascular atrophy, lack of sweating response and skeletal muscle 369 

denervation below the level of the lesion (19). In individuals with an SCI, thigh and calf skin 370 
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temperatures (28-31 ºC) have been shown to be cooler at rest than the upper body (32-34ºC) 371 

and compared to AB (32, 38). Hence, the lower body may be a potential site for heat storage 372 

in hot conditions (32), due to the combination of a reduced capacity to dissipate heat and cooler 373 

initial skin temperatures, leading to a greater thermal gradient between the skin and 374 

environment.   375 

 376 

Upper body skin temperatures. For upper body skin temperatures of the upper back and forearm 377 

in PP and TP, the magnitude of the change in skin temperature reflected the preservation of the 378 

sweating capacity of these regions. Yet, large standard deviation in chest skin temperature 379 

within SCI groups (Figure 2), potentially due to differences in lesion completeness, could have 380 

masked a statistically significant finding. The chest skin temperature site is below the lesion 381 

level for TP so one would expect a greater increase in chest skin temperature compared to AB 382 

and PP. Compared to other regions of the torso, the chest has a lower regional sweat rate (37), 383 

thus the sweat response of AB and PP may have had a lower evaporative cooling effect, leading 384 

to a similar skin temperature for all three groups.  385 

 386 

At the forehead, though the magnitude of the effect was small (ES = 0.2), the change in skin 387 

temperature was significantly greater in TP than AB (Figure 3). Individuals with TP have a 388 

small surface area of sensate skin and exhibit little to no sweat response above the lesion 389 

level. Incomplete injuries and thus intact neural pathways may however lead to some 390 

individuals still exhibiting a small sweat response. Nevertheless, given the resulting small 391 

surface area of sensate skin this sweat response would not be large enough to provide 392 

effective evaporative heat loss, in conditions where heat loss is solely dependent on the 393 

evaporation of sweat, clearly demonstrated by this study.  394 

  395 
 396 
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Perceptual responses. In the able-bodied, thermal sensation is largely dictated by skin 397 

temperature, independent of Tcore (36). In the present study, despite a higher Tsk in PP and TP, 398 

thermal sensation was not significantly different between the groups suggesting that PP and TP 399 

may not be able to perceive the magnitude of thermal strain compared to AB. These results 400 

imply that the role of skin temperature for reporting thermal sensation may be limited for 401 

individuals with an SCI, in particular TP, as a result of the small body surface area of sensate 402 

skin (2). For thermal comfort, Tcore and Tsk have been reported to contribute equally in AB (11). 403 

Despite similar thermal comfort scores, TP had a greater change in Tgi and Tsk suggesting they 404 

should have been in greater thermal discomfort than AB. Alternatively, this finding may 405 

suggest that their tolerance to thermal discomfort is in fact greater, though this cannot be 406 

confirmed by the results of this study. Wetness sensation was lower in TP compared to AB and 407 

PP, due to the small body surface area of sensate skin and minimal sweating capacity. The 408 

upper body has a greater proportion of high sweat rate regions than the lower body (37). Thus, 409 

despite a lower total mass loss and sweat rate in PP, perceived wetness of the sensate areas of 410 

PP led to a similar wetness sensation score to AB.  411 

 412 

Complete and incomplete lesion responses. As noted earlier, the large variance in 413 

thermoregulatory responses in SCI is further complicated by the completeness of the lesion. 414 

Individuals with incomplete lesions potentially having a greater amount of sensory information 415 

and a greater body surface area available for sweating (43). The Tgi data grouped by lesion 416 

completeness supports this notion (Figure A), yet individually there was disparity between the 417 

Tgi of PP with incomplete lesions (all of which had a lesion below T8). Lesion completeness 418 

did also not dictate which individuals with PP obtained a stable Tgi, i.e. prescriptive zone, and 419 

a clear critical environmental limit.  If complete lesions lead to a lower sweating capacity, one 420 

would expect a complete lesion to have a greater Tsk response than incomplete lesions. Yet this 421 
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was not the case in the present study, suggesting how completeness of the lesion influences 422 

thermoregulatory responses is still not fully understood.  423 

Limitations 424 

Gastrointestinal temperature has been previously reported to demonstrate a temporal lag 425 

when used by able-bodied individuals (25, 41). Thus in the present study a lag in Tgi could 426 

suggest the critical humidity limits reported could be higher than if oesophageal temperature 427 

had been used. Yet if the lag was consistent between the three groups the differences in 428 

evaporative heat loss between the groups would still be correct.  A recent study by Au et al. 429 

(3) investigated the comparison between oesophageal and Tgi during exercise in AB and 430 

individuals with an SCI. Their results demonstrated that both methods provided similar 431 

elevations in Tcore in both AB and PP. Unfortunately there was no increase in Tcore in TP in 432 

their study, but this was most likely attributed to their lower heat production in TP of the 433 

exercise undertaken. Therefore the study suggests that the lag is similar between AB and PP, 434 

yet it is difficult to conclude whether a similar pattern is apparent for TP. However, a recent 435 

study by Forsyth et al. (10) reported that the use of telemetric pills was appropriate for both 436 

high and low level PP and TP during both exercise and recovery with a close relationship 437 

between Tgi and oesophageal temperature reported.  In addition, practically due to the limited 438 

ability to grip, TP (especially high level lesions) would also likely struggle to self-insert the 439 

oesophageal probe. 440 

Unfortunately, we did not measure the coverage of each wheelchair (seat and back rest) on 441 

each participant, which is likely to differ depending on the level of support required. 442 

However, it is important to note that for TP any sensate skin above the lesion is mostly nude 443 

skin, so would not be affected by the coverage of the wheelchair or clothing. In PP, the 444 

sensate skin areas of participants with the lowest lesion levels would be covered by the t –445 

shirt and back rest, whereas for participants with high level PP only half of their torso would 446 
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be active in convective and evaporative heat loss. In AB both the t-shirt, shorts, seat and back 447 

rest will cover skin surface areas active in convective and evaporative heat loss. Thus the 448 

coverage of clothing and the wheelchair is likely to have the greatest effect on AB and 449 

presents the best case scenario for this group in the current study. As a result of these 450 

differences in clothing and wheelchair coverage between and within groups, in our heat 451 

balance calculations we have not taken into account the amount of skin surface covered by 452 

the clothing and wheelchair.  453 

As is evident from the results obtained, the chosen starting environmental conditions for TP 454 

were too high to ensure the environment was compensable for all participants. In part this was 455 

due to the pilot test results not matching the main experiment outcomes. A second factor is the 456 

speed of the air flow in the chamber during the actual testing. The air flow of the climatic 457 

chamber is usually 0.3 m/s given the settings used, however for this study it was recorded at 458 

0.12 ± 0.07 m·s-1. Using the usual climatic chamber air flow and a maximum skin wettedness 459 

value of 0.25 for TP, the starting environment would have been just compensable for these 460 

individuals. Therefore upon reflection of the results a lower ambient temperature in the range 461 

of 33 to 35°C for all trials would have ensured the starting environmental conditions were 462 

compensable for all three groups, while still minimising convective heat losses. 463 

 464 

Conclusion. The current study demonstrates that despite producing similar low levels of 465 

metabolic heat and thus requiring the same low rate of evaporative cooling for heat balance, 466 

TP had a heightened Tgi and Tsk response throughout the protocol compared to AB. Thus, even 467 

at rest, in the absence of convective heat loss, evaporative heat loss in TP is not large enough 468 

to balance the heat load at 37ºC in an environment without solar radiation. Despite possessing 469 

a greater sweating capacity and a smaller increase in Tgi than TP, the continual increase in both 470 

Tgi and Tsk for a number of the PP participants and the too low evaporative cooling potential 471 
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observed, signifies evaporative heat loss capacity is also insufficient in PP, compared to AB. 472 

Lastly, in the studied conditions, both PP and TP were unable to subjectively determine the 473 

magnitude of their thermal strain and hence perceptual responses should not be relied upon for 474 

this population group.  475 

 476 

 477 
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Table.1 Participant characteristics for able-bodied individuals (n = 8), individuals with paraplegia (n = 8) and individuals with tetraplegia (n = 

7). 

 Age 

(years) 

Height 

(m) 

Body mass 

(kg) 

Sum of 

four 

skinfolds 

(mm)a 

Body fat 

(%)b 

Fat mass 

(kg) 

Fat free 

mass  

(kg) 

Body 

surface 

area 

 (m2)c 

Lesion 

level 

(range) 

Completeness 

of lesiond 

(number of 

participants) 

Motor or 

sensory 

incompletenessd 

(number of 

participants) 

Able-

bodied 

28 (5) 1.88 

(0.07) 

75.99 (2.86) 31.5 (9.4) 14.4 (3.3) 11.0 (2.9) 65.0 (2.0) 1.96 

(0.05) 

n/a n/a  

Paraplegia 45 (7) §# 

 

1.77  

(0.06) 

77.41 (7.26) 61.8 

(28.20)§ 

25.5 

(7.3)§ 

 

17.5 

(9.8)§ 

57.1 

(4.6)§ 

1.94 

(0.11) 

T3-T12 Complete (5), 

Incomplete (3)   

Sensory (1), 

Motor and 

sensory (2) 

Tetraplegia 32 (3) 1.80 

(0.09) 

73.78 

(12.24) 

58.3 

(13.7)* 

21.5 

(2.1)* 

16.0 (3.8) 57.8 (8.6) 1.92 

(0.20) 

C5/6-

C6/C7 

Complete (2), 

Incomplete (5)  

Sensory (3), 

Motor and 

sensory (2) 

Data are mean values with SD in parentheses. All participants were male. § = significant difference between individuals with paraplegia and 

able-bodied individuals, # = significant difference between individuals with tetraplegia and individuals with paraplegia, *= significant 

difference between individuals with tetraplegia and able-bodied individuals.  a Sum of skinfolds from biceps, triceps, subscapular and 

suprailliac sites. b Body fat percentage, was calculated using the Durin and Wormsley four site method (9). c Body surface area was calculated 

using the Dubois formula (8). d An individual with a complete injury has no motor and/or sensory function preserved in the lowest sacral 

segments of the spinal cord (S4-S5), whilst a motor or sensory incomplete injury refers to the preservation of motor and/or sensory function in 

the lowest sacral segments (S4-S5, (24)) 
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Table 2 Mean critical relative humidity for able-bodied individuals and individuals with paraplegia. The number of participants a critical 

relative humidity could be determined for and the level and completeness of lesion for those individuals with a spinal cord injury is also shown.  

 

Group (n) Mean critical relative 

humidity (%)  

Number of participants showing a 

critical relative humidity limit 

Lesion level/ Completeness of spinal cord 

injury 

Able-bodied (8) 77 (6) 7 -  

Paraplegia (8) 53 (14) 3 

T4/5 complete, T8 incomplete sensory, T12 

incomplete motor and sensory 

Data are mean values with SD in parentheses. All participants were male. 
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Table 3 Fluid balance and evaporative cooling potential during the stepwise protocol for able-

bodied individuals, individuals with paraplegia and individuals with tetraplegia. 

 Able-bodied Paraplegia Tetraplegia 

Urine specific gravity (pre) 1.018 (0.009) 1.016 (0.006) 1.019 (0.006) 

Urine specific gravity (post) 1.025 (0.008) 1.015 (0.006)§ 1.016 (0.003)* 

Body mass loss (%) 0.06 (0.44) -0.37 (0.39) -0.19 (0.28) 

Amount of fluid consumed (L) 0.41 (0.36) 0.46 (0.27) 0.24 (0.21) 

Total mass loss (kg) 0.45 (0.05) 0.18 (0.11)§ 0.11 (0.12)* 

Sweat rate (L∙h-1) 0.22 (0.03) 0.09 (0.06)§ 0.06 (0.07)* 

Potential cooling power (W) 147 (21) 63 (41) § 43 (46)* 

Data are mean values with SD in parentheses. All participants were male., § = significant 

difference between individuals with paraplegia and able-bodied individuals, *= significant 

difference between individuals with tetraplegia and able-bodied individuals. Sweat rate was 

adjusted for respiratory mass losses (Mres). Percentage of body mass loss was calculated using 

the following formula ((Masspre - Masspost) / Masspre · 100). Total mass loss was calculated 

using the following formula: ((Masspre - Masspost) + fluid consumed). 
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Table 4 Heat balance parameters during the stepwise protocol for able-bodied individuals, 

individuals with paraplegia and individuals with tetraplegia. 

 

Data are mean values with SD in parentheses. All participants were male. M = metabolic 

energy expenditure/heat production, Dry = radiative (R) and convective heat exchange (C), 

Eres = evaporative respiratory heat exchange, Cres = convective respiratory heat exchange, Ereq 

= required rate of evaporative cooling. *= significant difference between individuals with 

tetraplegia and able-bodied individuals. 

 

 

 

 

 

 

 

 Able-bodied Paraplegia Tetraplegia 

M (W) 

 

123 (21) 

 

111 (15) 103 (29) 

Dry (W) 

 

-2 (1) -1 (2) 0 (2)* 

Cres + Eres  (W) 

 

6 (2) 5 (2) 5 (2) 

Ereq (W) 113 (20) 

 

107 (17) 106 (29) 
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Figure 1 Two methods for removing participants from the climatic chamber. Participants were withdrawn from the climatic chamber after a 

clear inflection point in Tgi had been observed (critical RH limit, (26)), or Tgi increased by 1°C from the initial value upon entering the chamber. 

Note: To ensure a clear inflection in Tgi participants may not have been immediately removed from the climatic chamber following an initial rise 

in Tgi. 
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Figure 2 Change in gastrointestinal and mean skin 

temperature at rest in constant environmental 

temperature (37°C) and increasing humidity for able-

bodied individuals (AB), and those with paraplegia 

(PP) and tetraplegia (TP).  *= significant difference 

between individuals with tetraplegia and able-bodied 

individuals, § = significant difference between 

individuals with paraplegia and able-bodied 

individuals, † = statistical analysis was not conducted 

on these data, due to a reduced number of participants. 

The number of participants in each group for each 

time point are listed underneath the x axis. To 

calculate the predicted data, the difference between 

each time point (up till 65% RH) for each individual 

was calculated. The average differences for each time 

point were then added to the previous time point to 

estimate data points for 70-90% RH. 
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Figure 3  Change in upper arm, upper 

back, forehead, chest, calf and, thigh skin 

temperature at rest in constant 

environmental temperature (37°C) and 

increasing humidity for able-bodied 

individuals (AB), and those with 

paraplegia (PP) and tetraplegia (TP) upto 

65% relative humidity. § = significant 

difference between individuals with 

paraplegia and able-bodied individuals, # 

= significant difference between 

individuals with tetraplegia and 

individuals with paraplegia, *= significant 

difference between individuals with 

tetraplegia and able-bodied individuals.  
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Figure 4 (A) The change in 

gastrointestinal and mean skin 

temperature for individuals with 

paraplegia (PP) and individuals 

with tetraplegia (TP) with 

complete and incomplete lesions 

compared to able-bodied 

individuals (AB). (B) Individual 

responses for the change in 

gastrointestinal and mean skin 

temperature for complete and 

incomplete lesions for PP and 

TP. Note: five individuals with 

paraplegia had complete lesions 

and three with incomplete 

lesions. Two individuals with 

tetraplegia had complete lesions 

and two with incomplete lesions 


