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Flexible electronics has huge potential to bring revolution in robotics and prosthetics as well as to bring about the next
big evolution in electronics industry. In robotics and related applications, it is expected to revolutionise the way with
which machines interact with humans, real-world objects and the environment. For example, the conformable electronic
or tactile skin on robot’s body, enabled by advances in flexible electronics, will allow safe robotic interaction during
physical contact of robot with various objects. Developing a conformable, bendable and stretchable electronic system
requires distributing electronics over large non-planar surfaces and movable components. The current research focus in
this direction is marked by the use of novel materials or by the smart engineering of the traditional materials to develop
new sensors, electronics on substrates that can be wrapped around curved surfaces. Attempts are being made to achieve
flexibility/stretchability in e-skin while retaining a reliable operation. This review provides insight into various materials
that have been used in the development of flexible electronics primarily for e-skin applications.

Keywords: electronic skin; novel materials; tactile sensing; robotics

1. Introduction

The rapid advancement in technology in the last few decades
has now enabled development of robots which has long
been a mere concept in science fiction movies. From its
primitive stage as controlled industrial tool operating hu-
man restricted environment, robots have evolved into au-
tonomous and self-adapting systems to variant situations.
Furthermore, robots such as humanoids are expected to be
involved in day to day human interaction, therefore it is
also critical to build a safer system which can interact with
human. One possible approach of building such system is
by inducing the sense of touch to robots.[1]

Among various human senses, sense of touch plays a
crucial role in the way in which we perceive our environ-
ment. For instance, information such as surface roughness,
temperature and size which are critical for object discrim-
ination and manipulation can only be determined by the
sense of touch.[2] Inspired from human skin, the develop-
ment of artificial skin (also referred to as synthetic skin or
electronic skin (e-skin)) has become an area of immense
interest to scientists. The primary function of e-skin is to
provide tactile information which could be used to evalu-
ate aforementioned parameters for the object handling. In
addition, tactile sensors can also provide information on
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surface compliance, hardness of object and electrical con-
ductivities. [3–5] Other possible functionality which could
be embraced by e-skin are chemical, temperature and bio-
logical sensors. Furthermore, development of self-healing
materials are currently under investigation.[6]

In addition to development of sensors, integration of
sensors over a large area is also a critical requirement for
the development of efficient e-skin. Furthermore, distribu-
tion of sensors over non-uniform (or curvy) surface would
provide an improved performance due to higher distribu-
tion of sensors.[7] In addition to robotics, e-skin can also
have an influence in applications such as personal health
care monitoring,[8] wearable technology,[9] artificial intel-
ligence and medical prosthetics.[10]

This paper presents an overview of various material used
in the development of e-skin which is critical components
in tactile sensing. However, unlike in previous review in
tactile sensing, we have primarily focused on the materials
used for the development of e-skin sensors.[2,11]

2. Tactile sensing for humanoids

Tactile sensing for robots has been studied since 1980s. In
the context of humanoids, tactile sensing is primarily used
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in the effort to replicate the human sense of touch through
a smart interplay of hardware and software. It is one of the
fundamental sources of information required for accurate
perception, and is essential to any tasks requiring object
manipulation, gripper dexterity or interaction with an un-
known, cluttered environment. Tactile sensing can greatly
assist vision systems by providing information unobtainable
solely from image data, such as weight, surface texture or
stiffness. A simple example illustrating the importance of
this sense is the difficulty of tying shoe laces together with
numbed fingers; such a task is extremely difficult; however,
with the sense of touch restored it becomes trivial (at least
for a robotic system that has learned how to tie shoes).

Development of flexible and stretchable electronic skin
can inspire new functionality and precise tactile informa-
tion. The electronic skin depending on the material and
sensor architecture can be utilised to measure normal and
sheer forces, vibration temperature and nociception.[12]
Furthermore, e-skin also provides a pathway for a safer
human-robot interaction. Through tactile interaction, var-
ious touch or contact modalities may be carried out; a robot
may be patted, slapped, punched, or tickled, with each ac-
tion representative of a separate communicative intent. For
any robotic system that is to work closely with humans,
evaluation and classification of these touch modalities is
vital.[13] In other words, humanoids should understand,
just as humans do, that a slap is a form of negative feedback
that a pat is one of encouragement and so on.[14] Moreover,
having flexible, stretchable tactile sensors over whole body
of humanoids are particularly important in applications such
as disabled and aged care, nursing and caring for patients
with mild mental impairment, where a significant amount
of communication is non-verbal interaction.[15]

Furthermore, touch information is beneficial for a natural
handling of a robots motion by users. For instance, users
can push the robot away in an arbitrary direction to place it
accordingly.

Tactile sensors can be also classified based on its trans-
duction mechanisms. Frequently used transduction mech-
anisms include capacitive, piezoresitive, piezoelectric, tri-
boelectric, ultrasonic, optical and magnetic. The detailed
study of some of these mechanisms are available in [12].

Over the years, there has been a paradigm shift in the
development of flexible and stretchable e-skin. Early works
on development of flexible e-skin involved the use of flex-
ible PCB or PCB on flexible substrate onto which the elec-
tronic components were mounted. Examples of such work
includes development of triangular [16] and hexagonal [17]
tactile skin patches. Kim et al. [18] developed such a skin
using silicon micro-machining and packing technology (on
a flexible substrate), allowing for the detection of normal
and shear forces at high resolution. This skin was shown
to be able to effectively measure normal force, hardness,
slip and touch. Such a sensor is ideal for touch classifica-
tion since movements such as tapping and rubbing can be

easily differentiated via the applied shear force. Restricting
measurement to only force allows for a higher resolution,
however it limits the ability to collect vibro-tactile data.
RI-MAN [19] is one of the few humanoid robots capable of
interacting through whole-body contact, and is able to per-
form complex movements such as lifting a human with its
arms. Semiconductor pressure sensors were placed in multi-
ple sections of the robot body, providing tactile feedback on
the position and orientation of the human subject. However,
poor bending radii limited their use in applications such as
finger tips of robotic hands which require larger bending
radii.

In recent years, the trend in development of e-skin has
shifted to development of flexible and stretchable electron-
ics. Nevertheless, the development of flexible and stretch-
able electronics has been impeded by many challenges
including those posed by today’s electronic systems, which
are developed on rigid and non-planar substrates. Develop-
ment of flexible and stretchable electronic systems requires
novel and cost-effective fabrication techniques, new mate-
rials that lead to innovative devices and structural designs
that can withstand large strain or deformity during their use.
In addition to technological aspects of the sensory device,
the performance of robotic system equipped with e-skin
also depends on the appropriate processing and learning
methods that interpret information contained in tactile data.
For instance, dexterous object manipulation with an an-
thropomorphic hand requires flexible electronic skin which
can provide high enough spatial tactile resolution. Flexible
and bendable robotic skin provides the robotic hand with
the ability to accurately detect and accordingly to learn the
physical properties of in-hand object for dexterous in-hand
object manipulation.

The haptically accessible object characteristics can be
divided into two general classes: geometric and material
properties. The geometric properties can be recognised by
the object size and shape and the related work can be found
in [20–22]. The object material can be characterised and
differentiated based on surface texture, stiffness and ther-
mal quality obtained through tactile sensing. For instance,
in order to classify cotton, linen, silk and denim fabrics,
Song et al. designed a mechanism to generate the relative
motion at a certain speed between the PVDF film and sur-
face of the perceived fabric. In this study, neural network
and K-means clustering algorithms were used for fabric
surface texture recognition.[23] Five textiles were explored
and discriminated from each other via k-nearest neighbour
(K-NN) using an active sliding touch strategy and an array
of microelectromechanical systems (MEMS) in the distal
phalanx of a robotic finger.[24] Jamali et al. fabricated a
biologically inspired artificial finger composed of silicon
within which were two PVDF pressure sensors and two
strain gauges. The finger was mounted on a robotic grip-
per and was scraped over eight materials. The Majority
voting learning method was employed to find the optimal
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Figure 1. Robots equipped with e-skin. (a) NAO Humanoid Robot with multi-modal artificial skin, at the Institute for Cognitive Systems,
TUM- Germany; (b) the Shadow Robotic Hand with BioTac Sensors on fingertips at the Shadow Robot Company UK.

technique for the texture recognition problem.[25] Kaboli
et al. proposed a set of biologically inspired tactile feature
descriptors to classify and categorize objects through their
texture and weight, respectively [14]. In this respect, the
NAO humanoid robot with multi-modal artificial skin on
the arms was employed. The NAO humanoid equipped
multi-modal artificial skin is shown in Figure 1(a). In [15],
for the first time, an anthropomorphic robotic hand called
Shadow Hand with artificial skin on the fingertips, shown
in Figure 1(b), discriminated 20 different in-hand objects
with different shapes via the surface texture properties.

3. Materials for the development of stretchable
electronics

The ability to stretch, flex and self-heal on occurrence of
damage are some of the defining features of human skin.
In addition, its extraordinary sensing capability to detect
a broad range of force further signifies its importance to
human. It is critical to incorporate some of these features
into e-skin to achieve better performance from robots that
could match or rival the performance of humans. Therefore,
the choice of materials for the development of electronic
skin is critical as they greatly influence both the mechanical
and electrical performance of the device. Stretchable elec-
tronics are realised via: (a) synthesis of novel materials such
as composites of soft materials with conductive fillers (b)
Smart structural engineering and designs such as serpentine-
like structures for interconnects or wires. Furthermore, flex-
ible nature of materials could also facilitate towards low cost

and large area fabrication such as roll-to-roll production.An
overview of various material used in the development of
stretchable electronics will be presented in the forthcoming
section.

3.1. Substrates

Silicon has an unprecedented impact on the electronics in-
dustry over the last several decades and its wafer has become
the natural choice as a substrate for new developments in
modern electronics. However, the rigid and brittle nature
of Si wafer limits its use in the development of flexible
electronics applications. Among various polymers, elas-
tomers like PDMS have received a significant attention
due to the biocompatibility, chemical inertness and me-
chanical strength (Young’s Modulus of 1.8MPa).[26–28]
An apparent advantage of elastomer for e-skin application
is its conformability to uneven surface, thus aiding distri-
bution of sensors. Rogers’s group demonstrated that higher
strain could be accommodated by building devices on top
of islands moulded on top of PDMS. In this scenario the
islands were capable of withstanding a strain of 452% be-
tween the trenches presented within the island while the
strain at top and bottom surface of the island were 0.32
and 0.36%, respectively.[29] In another study, Yamada et
al. demonstrated carbon nanotube strain sensor with PDMS
as a substrate. The reported device was capable of accom-
modating strain of up to 280%.

Other polymers such as Ecoflex,[30,31] polyimide (PI),
[32,33] polyurethane and poly(ethylene naphthalate)
(PEN) [34] have been investigated as suitable substrate
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for flexible electronics applications. A significant advan-
tage of Ecoflex in comparison with the other polymer is its
biodegradability.[30]

3.2. Dielectric

Dielectric materials are one of the most critical components
in the development of flexible electronics devices. Some
of the key criterions expected of dielectric materials are
high capacitance and low temperature processability. High
capacitance layers are preferable for a low voltage or high-
performance operation. PDMS has been one of the versatile
materials in terms of its applications for the development
of flexible and stretchable electronics, in addition to its use
as a substrate, PDMS has also been exploited as a dielectric
material. Furthermore, it has also been demonstrated that
micro structuring of PDMS film results in an improved
device sensitivity and device performance for pressure sens-
ing applications.[8,35] Microstructures on PDMS allow it
to elastically deform on application of an external force,
thereby storing and releasing the energy eventually leading
to the reduction of the viscoelastic creep. Besides PDMS,
other polymers such as polyimide,[34] co-polymers such
as P(VDF-TrFE) [36,37] has also been used as dielectric
for pressure sensing applications. Other materials that have
been investigated as dielectric material for flexible elec-
tronics applications include polymer composites compris-
ing of nanofillers, high-K dielectric materials and liquid
ion gels.[38] Some of the high-K nanomaterials used to
develop hybrid dielectric materials includes TiO2 [39] and
BaTiO3.[40] In addition to other high-K dielectric compos-
ite, high-K materials like aluminium oxide (Al2O3),[32]
tantalum oxide (Ta2O5)/SiO2 [41] have also been used as
gate dielectric. Ion gels, also referred to as gel electrolyte
comprises of an ionic liquid and a co-block polymer.[38]
Ion gel provides a very high capacitance as a result of
nanometer thick double layer formation at the electrode-
electrolyte interface and it proves to be an ideal material
for gate dielectrics. Furthermore, faster response time, high
frequency operation (10 kHz) and solution process compat-
ibility makes it a suitable dielectric material for flexible
electronics applications.[42] Sun et al. [43] reported a de-
velopment of coplanar gate graphene field effect transistor
matrix comprising ion gel as a gate dielectric for pressure
sensing applications.

3.3. Active materials

3.3.1. Nanowires

Nanowires (NWs) of semiconducting materials are one of
actively researched materials for the development of flex-
ible and stretchable electronics due to their excellent elec-
trical and mechanical properties.[44–46] NWs of inorganic
materials are attractive choice for realising electronics for
robotic skin applications. In particular, semiconducting NWs

possess interesting electrical, optical, mechanical and elec-
trochemical properties, which would be ideal for applica-
tions such as nanoelectronics, sensors, optoelectronics and
photovoltaics applications. Some of widely used NWs in-
cludes zinc oxide (ZnO),[47] germanium (Ge),[33] Gallium
arsenide (GaAs) , InAs [48] and Silicon (Si).[49,50] Though
a significant progress has been made on the synthesis of
NWs via top-down and bottom-up approach, the higher cost
associated with synthesis of NWs and difficulty in obtaining
a highly aligned uniform NWs limits its potential use in
large area electronic applications. In a recent work, Javey
group have demonstrated fabrication of pressure sensors
on a polyimide substrate suitable for large area electron-
ics applications including electronic skin. The developed
pressure sensor was based on Ge/Si core-shell NW FET
(Field Effect Transistor) which was grounded via a pressure-
sensitive rubber (PSR).[33] Application of pressure causes
a change in conductance of PSR thus affecting FET char-
acteristics in a manner similar to POSFET (Piezoelectric
Oxide Semiconducting FET) tactile sensing devices,[51,52]
which we developed in past and the organic FET-based
pressure sensors reported by Someya group.[34]Among the
compound semiconductors, ZnO NWs have been shown to
be tactile sensing element based in piezotronic transduction
mechanisms.[53] As grown ZnO films have been used in
fabrication of large area self-powered tactile imaging cir-
cuit. This brings an opportunity to directly integrate material
synthesis, device fabrication and mechanical actuation. As
against conventional vertical wrap gated FETs,[47] ZnO
piezotronic transistor consisting of metal-semiconductor-
metal junctions which utilises polarisation of immobile ions
for device operation has been demonstrated. The channel
conductivity of ZnO piezotronic transistor was modulated
by externally applied stress over the metal surface. The ex-
ternally applied strain causes polarisation of ZnO, which af-
fects the transport characteristics. Hence, the transport char-
acteristics are affected by externally applied strain, which
effects the polarisation in the ZnO NWs. The reported taxel
density of the strain gated piezotronic array is 8464 cm−2,
which is 35 times higher than that of the mechanoreceptors
in human’s fingertip. Also, the pressure sensitivity values
match with the human skin, i.e. few kPa to 30 kPa. These
merits clearly demonstrate the reduced gap between the
human skin and the artificial e-skin. In another study, a
highly sensitive pressure sensor was developed by incor-
porating tissues impregnated in gold NWs between two
PDMS substrates- of which the bottom substrate consisted
of interdigitated array of electrodes. The change in pressure
is detected by monitoring the change in resistance of the de-
vice. In addition to pressure, this device was also capable of
differentiating between various mechanical stimuli such as
bending, torsional, pressing forces and acoustic vibration. In
addition, the device is reported to be scalable, in which case
the approach is ideal for large area fabrication. However, ad-
ditional sensing/functional capabilities such as temperature
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sensing, texture recognition, distributed heating and signal
processing need to be added in these approaches to make
them perform at par or better than human skin. This is very
well possible using Si NWs based approach for artificial
skin in tandem with various sensors realised with inorganic
NWs. Si nanoribbons-based transduction mechanisms for
e-skin has been demonstrated to sense light and temperature.
An e-skin with all these sensors could find powerful and
interesting applications in robotics. However, the transfer
related issues delay utilisation of the full potential of the
elementary and compound semiconductor NWs. Current
transfer printing processes need to be scaled up for large area
printing. Figure 3 depicts fabrication steps for top-down
synthesis of silicon microwire and the subsequent trans-
fer printing process. Development of new manufacture-
friendly transfer process certainly helps to benefit more
from semiconducting NWs. One such initiative is the print-
ing of electronic layers from NWs, which we are
investigating through PRINTSKIN project.[54]

3.3.2. Carbon based materials

Graphene and carbon nanotubes (CNT) are two extensively
studied carbon allotropes owing to their fascinating ma-
terial properties. Their intrinsic material properties such
as near ballistic transport [55,56] and extraordinary me-
chanical properties [57,58] offer a new perspectives for the
development of sensing technologies over ultra-thin sub-
strates. As with any novel materials, the potential of these
materials for e-skin and related approaches relies heavily on
the capability to develop a reliable fabrication methods with
low cost and scalability. Solution process techniques such as
spin-coating,[59] spray-coating [60] and ink jet printing
[61,62] are some of the methods which could boost the po-
tentials of these materials in the development of large-scale
devices. Mechanisms of the above techniques are explained
in detail in a review by Khan et al. [63].

Lipomi et al. [64] reported the development of transpar-
ent and stretchable electronic pressure sensor capable of
detecting a pressure around 50 kPa. The sensor comprised
of Ecoflex layer sandwiched between two CNT thin films
spray-coated on top of a PDMS substrate. In addition to
pressure sensing, the device was also capable of detecting
strain. The application of strain or pressure causes a change
in capacitance, which was used as transduction mechanism
to sense the registered pressure or strain. Simple fabrication
process, physical robustness and mechanical compliance
of this sensor are some of the key features that can be
exploited for large area electronics applications. In another
study, by developing a thin film of highly aligned single wall
CNT (SWCNT) on a PDMS substrate, Yamada et al. [65]
developed a strain sensor capable of withstanding a strain
as high as 280%. Furthermore, the device also exhibited
high durability, low creep time and faster response time. In
addition, electrical response of device remained unchanged

even under a higher strain after a prolonged cyclic test. The
performance of device was merely limited by the PDMS
substrates, which began to rupture under a repeated cy-
cle at 200% strain. Such reported sensors are suitable for
human motion detection sensors and for wearable elec-
tronics applications. Additionally, CNT-based devices on
unconventional substrates have also been demonstrated for
applications such as flexible CNT transistors,[66] bendable
vapour sensors [67] and flexible pH sensors.[68,69] Devel-
opment of such devices could pave way for the development
robotic skeleton system with integration of sensors for var-
ious applications.

Besides CNT, graphene is another potential candidate
for the development of e-skin components for robotics and
similar applications. Since the isolation of graphene in 2004,
[55], a great progress has been made in the synthesis of
large area of graphene. Wafer scale growth of high quality
graphene is possible via chemical vapour deposition (CVD)
on a metal surface [70–72] and epitaxial growth of graphene
on SiC (high temperature and expensive process).[73]
Methods such as chemical exfoliation of graphite are other
promising routes for large-scale production of graphene for
large area electronics applications.[74] The development of
graphene-based devices for stretchable and flexible elec-
tronics requires transfer printing of graphene to various
substrates. The transfer printing often leads to degrada-
tion of graphene due to the formation of cracks or due
to residual remains of the support layer used during the
transfer printing process.[75,76] However, recent devel-
opment on transfer printing has led to crack and residue-
free transfer printing process.[77] Similar to CNTs, solution
processing techniques such as inkjet printing,[78] spray
coating [79] are another viable solution for the realisation
of graphene-based devices. However, in comparison with
CVD graphene, solution processed graphene exhibit poor
uniformity and higher sheet resistance. Transfer free synthe-
sis of graphene is another option for realisation of graphene-
based device on flexible substrates. Graphene is an excellent
material for the development of thin film transistors (TFT)
for flexible electronics applications.[80–82] It exhibits both
metallic and semiconducting properties, which has been
utilised to develop all graphene based TFTs. For exam-
ple, Ho-Cho’s group developed all graphene-based coplanar
graphene FET (GFET) with an ion gel as gate dielectric.[81]
The GFET exhibited high mobility, low voltage operation
and high on-current. Under strain (up to 2.8%) a 20 %
change in the carrier mobility of the device was observed;
furthermore, no prominent change in the device perfor-
mance was observed under ambient conditions. In a dif-
ferent study, based on the same co-planar gate geometry,
the same group developed a low power pressure sensor for
e-skin applications. The device had a high sensitivity of
0.12 kPa-1, low operation voltage and good mechanical
stability.[43] These features are very attractive for e-skin
in robotics, where fast, reliable and repeatable response is
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Figure 2. Large area graphene for flexible device applications. (a,b) Transfer printing of roll-to-roll fabricated 30 inch graphene and
the resistive graphene based touch screen film using flexible polyethylene terephthalate (PET) substrates [87].(c) Schematic illustration
and the operation of the broadband optical modulators based on graphene supercapacitors [121]. Application of bias voltage through the
electrolyte medium dopes the graphene layers and yields a transmittance change with the blocking of interband transitions in graphene.
(d) Graphene based flexible electrochromic devices [88].

much desired.[2] Other graphene-based solutions, which
can also be used in robotic systems, are flexible and trans-
parent strain sensors,[83] flexible supercapacitors [84] and
gas sensors on bendable and soft substrates.[85,86] In that
sense, current focus of the graphene research is the fabrica-
tion of large area graphene electrodes on flexible substrates
for touch sensor and smart window applications. Figure 2(a)
and (b) show the transfer printing of roll-to-roll fabricated
30 inch graphene and touch sensor panel developed using
graphene on flexible polyethylene terephthalate (PET) sub-
strates [87]. Figure 2(c) shows the schematic illustration and
the operation mechanism of the broadband optical modula-
tors based on graphene supercapacitors [121]. Application
of bias voltage through the electrolyte medium dopes the
graphene layers and shifts the Fermi level. This causes
the blocking of interband transitions in graphene which
makes the material more transparent. Figure 2(d) shows the
graphene based flexible electrochromic devices [88]. Mul-
tilayer graphene changes its colour with the intercalation
of ions through the graphene layers. At 5 V device allows
to see the University of Glasgow logo placed beneath it.
Device operation is stable under mechanical stress.

Given these developments, the integration of graphene
sheets onto flexible, ultra-thin and soft substrates could
find variety of uses in robotic skin ranging from motion
sensing to display applications. For example, the usage
of large area graphene sheets as flexible and transparent

electrodes [87] in the robotic skin would yield to advanced
sensing of many environmental parameters due to high car-
rier mobility and high surface coverage. Alternately, us-
age of graphene-based flexible electrochromic devices [88]
and/or graphene/nanotube-based smart windows [89] could
provide skin like display panels over the limbs of a hu-
manoid to show the information about the current status of
the system.

3.3.3. Organic materials

Organic semiconductors fuelled the initial developments
in the field of stretchable and flexible electronics. Though
these materials exhibit a poor mobility in comparison with
inorganic semiconductors, the low cost and large area fabri-
cation compatibility are some of their advantages.
Organic materials have tremendous prospective applica-
tions for electronic skin applications. Some of the widely
used conductive polymers include poly (3,4-ethylene
dioxythiophene):polystyrene sulfonate (PEDOT:PSS), poly
(3-hexylthiophene 2,5-diyl) (P3HT), polypyrrole and
polyaniline (PANI). These conductive polymers can be used
as conductive fillers in the composite.[12] Organic semi-
conductors are widely used materials in the development
of flexible electronics. Some of the organic semiconductors
used in the development of e-skin includes pentacene and
rubrene.[34,35]
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Figure 3. Schematic of fabrication steps of silicon wires by top-
down approach and the subsequent transfer printing of the wire
to a target substrate using PDMS as supporting layer; (a)–(b)
silicon microstructure were obtained by lithographic patterning
and deep ion reactive etching of SOI wafer; (d)–(e) silicon
microwire transferred using a plasma exposed PDMS; (f)–(h)
silicon microwires transferred to the target substrate and finally
the PDMS was removed.[45]

3.3.4. Stretchable polymer composite

Polymers are an interesting class of materials for the devel-
opment of flexible and stretchable electronics owing to their
excellent mechanical properties. Nevertheless, the poor
electrical conductivity of these materials limits their use to
substrate and dielectric applications during the development
of flexible electronic. Introduction of conductive fillers into
the polymers results in a composite with high electrical
conductivity and mechanical stretchability.[90–92] Though
polymer composites have long been investigated, its poten-
tial application has been limited by high filler concentration
which has a negative effect on the mechanical properties of
the composites.[93] Issues such as high filler concentration
can be obviated by the introduction of nanomaterials. Unlike
traditional conductive fillers, the use of nanomaterials as
fillers could enable the composites to acquire the desired
property at a lower filler concentration.[94,95] Some of
the widely used nanofillers are graphite nanopallets, NWs,
carbon nanotubes (CNT) and graphene. The high aspect
ratios of nanofillers such as CNT and graphite flakes are the
key reasons behind the low percolation threshold of these
materials. Percolation threshold is the minimum volume
fraction of the conductive filler required for the transition
of the polymer from its insulation to conduction phase.[12]

The transition of the polymer from its insulating to con-
ductive phase occurs when the concentration of the fillers
exceed the percolation threshold, resulting in a formation
of conductive network within the polymer matrix. A lower
percolation threshold is preferable to retain the elasticity
of polymer. The percolation threshold can be influenced
by various factors such as type of polymer matrix, size,
shape, aspect ratio and surface condition of fillers.[96] In
addition to aforementioned parameters, uniform dispersion
of fillers within the polymer also plays a crucial role in
achieving a lower percolation threshold.[97] Dispersion of
fillers within the polymer can be achieved by various tech-
niques such as sonication,[98] ball milling,[99] mechanical
stirring, sheer mixing [100] and surfactant-assisted process.
Carbon black an amorphous form of carbon is an attractive
candidate for the development of conductive fillers have
been used in the development of flexible tensile stress and
pressure sensors.[101] Among the list of other filler materi-
als, CNT is another attractive candidate as a nanofiller.[94,
95] The high aspect ratio of CNT often leads to a lower
percolation threshold. The realisation of nanocomposites
and devices is greatly influenced by patterning technologies.
Among the various patterning techniques of composites,
the most common technique is moulding. As depicted in
Figure 4(a), a master mould made of SU-8 or other UV cur-
able material is fabricated with desired structures patterned
by standard photolithography. The prepared nanocomposite
is then poured onto the mould and cured. Following curing
of composite, the polymer substrate is poured on top of
the patterned conductive composite on the mould. Finally,
the bilayer film consisting of polymer substrate/conductive
composite is peeled from the mould resulting in a patterned
structure of the composite on the substrate.[102,103] An-
other popular patterning technology is the micro-contact
printing which relies on the PDMS mould made by casting
or machining and transfers the conductive composites onto
polymer substrate shown in Figure 4(b).[104]

3.4. Smart structural engineering

Traditionally, electronics has been developed via use of
inorganic materials and metals. Development of stretchable
electronics utilising these material is highly favourable due
to their superior electronic performance and mature fabrica-
tion technology. However, the use of these materials is lim-
ited due to their rigid and brittle nature. Dahiya et al. [105]
reported development of piezoelectric oxide semiconductor
field effect transistors (POSFET) for robotic tactile applica-
tions. The device demonstrated a sensitivity of 102.4 mV/N.
Though the device exhibited a good sensitivity, its use in
electronics skin application is limited due to the rigidness
of the POSFET. Such hurdle in the development of flexible
electronics through the use of intrinsically brittle material
can be overcome by the smart structural engineering of
the materials, to accommodate the strain caused due to
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Figure 4. (a) Moulding process for patterning CNTs-PDMS composite.[88] (b) Micro-contact printing for patterning CNT-PDMS
composite.[104]

flexing of the materials. Some of the widely used structural
engineering techniques includes: (1) Thinning down of Si
wafer (2) Buckling; (3) Use of stretchable interconnects to
connect rigid islands.[106]

3.4.1. Ultra-thin Silicon chips

The organic semiconductor-based analogue and digital
electronics is not sufficient to meet many challenges, espe-
cially those related to high performance requirements and
stabilities. They are severely unstable to design analogue
circuit and sensor blocks such as comparators, amplifiers
and ADCs.[107] This is mainly due to low charge carrier
mobility of organic semiconductors, which results in de-
vices that are much slower than their inorganic counter-
parts. To overcome these challenges, new forms of high
mobility material such as single crystal Si nanowires and
ultra-thin chips have been investigated. Although very
promising, the Si micro-/nanoscale structures based
approach is still at infancy. On the other hand, ultra-thin
flexible chips are promising as they enable compact
electronics and are bendable.

Si chips are traditionally built on wafers whose thick-
nesses are in the range of 100 micrometres. These wafers
are intrinsically brittle, thus limiting their use in the devel-
opment of flexible electronics. Flexibility can be induced
into Si wafer if it is thinned below 50 µm, in the range of
20–50 µm. In addition at 10 µm range, the Si exhibited a
transparent nature, therefore enabling its usage in displays
applications.[108] These ultra-thin flexible Si chips can be
transferred onto a polymeric foil to form system in foil (SiF)
devices for electronic skin applications.[109] Thinning of Si
chips are generally achieved either by physical or chemical
methods.

Among the physical methods, back grinding of wafer
is the most popular method for thinning of wafer using
a grinder wheel. Traditionally, the removal rate for back
grinding ranges from 0.1−100µm/min.[110,111] The back
grinding of the sample causes sub surface damage and crack
at the edges. The thinned wafers are transferred using a
carrier wafer, following which the thin membrane is even-
tually removed.[112] In addition, thin Si-based devices and
nanomembranes can also be achieved by chemical etching
of SOI (Si on Insulator) wafer. Chemical etching of Si can
be achieved either via both dry and wet etching process. The
thinned Si is removed from SOI wafers by etching the under-
lying oxide. Some of the widely used wet etchants of Si are
ethylenediamine prrocatechol (EDP), potassium hydroxide
(KOH), tetramethylammonium hydroxide (TMAH). Wet
etching of samples lead to undercutting,[113] which could
be evaded by using dry etching process. Common dry etch-
ing techniques include: (1) Plasma systems; (2) Ion etching;
(3) Reactive ion etching. High cost of SOI wafer is another
limiting factor. Various alternates for SOI wafers have been
proposed. Some of the techniques include Dicing Before
Grinding (DBG),[114] thinning of wafer by a combination
of selective wet etching and back grinding process- The
devices are fabricated on top of epitaxial grown Si. Other
available techniques for thinning of chip includes Chip film,
Hyperion and Taiko [108,115,116].

Despite progress and achievement of the ultra-thin Si
chips in improving of the bendable electronics, the con-
ventional BSIM (Berkeley Short-channel IGFET Model)
models fail to predict the behaviour of such devices since
they are appropriate for rigid and planar structures. These
models need to characterise and capture the effects related
to uniaxial, biaxial and shear stress, which is important from
circuit design aspect as well as various bendable electronics
applications.
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(h)

Figure 5. Fabrication process flow for engineering 3D buckled structure. (a)–(g) Process steps in the formation and 3D buckled
semiconductor nanoribbons and process of incorporating it within the PDMS. (h) Response of the semiconductor nanoribbon under
application of force.[118].

Figure 6. Percolation path of gold film on a PDMS substrate (a) SEM micrograph of gold film on a PDMS substrate at different strain
from 0–20%. The random cracks observed at 0% strain is due to mismatch in thermal expansion coefficient PDMS and gold film occurred
during the cooling process following the deposition of gold film. (b) Schematic of conduction percolation pathway on gold film at 0%
strain and 20% strain.[120]
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3.4.2. Formation of wavy patterns

Buckling is another technique that enables stretchability of
intrinsically inelastic material. It is achieved by depositing
a thin film of thin inelastic material on top of a pre-strained
elastomer. Wavy patterns are formed on relaxation. Uniaxial
strain of elastomer results in a linear waveform while a
biaxial strain results in 2D herringbone structure.[117] In a
study by Roger’s group, a pop-up structure consisting of Si
and GaAs nanoribbons were fabricated and these structures
were capable of withstanding a stretchability and compress-
ibility of 100 and 25%, respectively. [118]. The fabrica-
tion process flow of this pop-up structure is depicted by
Figure 5. A significant advantage of buckling technique is
that it enables the use of inorganic semiconductor mate-
rial. Buckling has been demonstrated in various materi-
als ranging from metallic, semiconducting and CNT thin
films. Lipomi et al. [64], demonstrated a transparent pres-
sure and strain sensor based on the buckling mechanisms.
The developed sensors withstood a strain of 150% along
with high conductivity. Other similar approaches to attain
buckling include structures such as serpentine and coiled
spring etc. These pop-up structures can also be exploited as
stretchable interconnects connecting two rigid sections of
the circuits.[119]

3.4.3. Formation of micro-crack patterns

Formation of intentional micro-cracks is one approach that
could be used in the development of stretchable electronics.
This is achieved by depositing a thin metal film on top of an
elastomeric substrate. Continuous loading and unloading
causes the formation of cracks on the metallic film, the
formation of percolation path by the micro-cracks played a
critical role in the conductivity of the film. Graz et al. [120]
demonstrated the formation of micro-crack on a thin gold
film deposited on top of PDMS substrate. The film exhib-
ited an excellent robustness under a strain of 20% for over
250,000 cycles. Figure 6(a) shows the SEM micrographs
of micro-cracks formed in on the gold film at different
strain while Figure 6(b) shows a schematic of percolation
conduction path at different strain.

3.5. Summary

Flexibility and stretchability will be the key criterions of
future electronic skin. As described above, this could be
achieved either via smart structural engineering and use of
novel materials. In addition to mechanical robustness, the
choice of the material is also influenced by the application.
For instance, PDMS could be used as both a substrate and
dielectric based on applications.

The use of smart structural engineering techniques would
enable the use of well-established silicon technology to de-
velop flexible and stretchable e-skin sensors. Furthermore,
sensors developed via these technique would enable better

system integration thus aiding easy integration with circuits
of data collection, signal condition and processing of the
received data.

Novel materials such as nanowires, CNT and graphene
exhibit excellent mechanical and electrical properties which
are critical parameters for the development of e-skin sen-
sors. Nevertheless, the use of these novel materials is limited
by the higher fabrication cost and yet to be optimised trans-
fer printing that would suit large-scale production of devices
with similar characteristics. In addition to passive sensors,
developed via various transduction mechanisms, develop-
ment of transistors using the novel material are highly de-
sirable as it would enable the development of active circuit
matrix for large-scale sensing with low power consump-
tion. It will also enable easier readout circuit and individual
access to devices. Development of FET using the novel
material is challenging due to various aspects. Graphene for
instance is a zero bandgap material, therefore GFET often
exhibit a high off-current leading high power consumption
in its off state.

Organic materials are also desirable for the development
of flexible components for e-skin due to low cost. Someya’s
group has pioneered the development of organic FET for
pressure sensor applications and have developed pressure
sensors suitable for robotic fingertip.[34]

4. Conclusions

The development of flexible and stretchable sensors for
e-skin applications has seen an unprecedented growth in
recent years. This has to be attributed to development of
novel material and engineering which has enabled inno-
vative devices. Flexible and stretchable e-skin would have
significant impact on the tactile sensing capability of hu-
manoids, therefore will have a critical component of future
humanoids.

Despite several reported progress in development of flex-
ible pressure and strain sensors for e-skin application, there
are still several significant hurdles that need to be addressed
to enable mass production. This includes low-cost fabrica-
tion process with higher device yield with similar charac-
teristics. Other factors such as lower power consumption,
device sensitivity, device stability after repeated operation,
response time and operation bandwidth are also critical
factors. More importantly, device integration with system
is crucial for the true success of e-skin for tactile sens-
ing of humanoids. This would require development of an
electronic interface consisting components for digitalisation
of signal, signal conditioning, data processing and trans-
mission of data. Furthermore, the performance of robotic
system equipped with e-skin will also heavily be governed
by the software algorithms processing and learning methods
to distinguish between different tactile data. In addition to
tactile sensing, other features like self-healing, chemical and
biological sensing can also benefit e-skin. Recent develop-
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ments have led to e-skin sensors exceeding sensitivity of
human skins in terms of detection of human skin. Although
there are many issues yet to be addressed, the progress
in the development trend in e-skin suggest that humanoid
equipped with flexible and stretchable will be possible in
near future.
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