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a b s t r a c t

Meniscal repair is widely used as a treatment for meniscus injury. However, where meniscal damage has
progressed such that repair is not possible, approaches for partial meniscus replacement are now being
developed which have the potential to restore the functional role of the meniscus, in stabilising the knee
joint, absorbing and distributing stress during loading, and prevent early degenerative joint disease. One
attractive potential solution to the current lack of meniscal replacements is the use of decellularised
natural biological scaffolds, derived from xenogeneic tissues, which are produced by treating the native
tissue to remove the immunogenic cells. The current study investigated the effect of decellularisation on
the biomechanical tensile and compressive (indentation and unconfined) properties of the porcine
medial meniscus through an experimental–computational approach. The results showed that decel-
lularised medial porcine meniscus maintained the tensile biomechanical properties of the native
meniscus, but had lower tensile initial elastic modulus. In compression, decellularised medial porcine
meniscus generally showed lower elastic modulus and higher permeability compared to that of the
native meniscus. These changes in the biomechanical properties, which ranged from less than 1% to 40%,
may be due to the reduction of glycosaminoglycans (GAG) content during the decellularisation process.
The predicted biomechanical properties for the decellularised medial porcine meniscus were within the
reported range for the human meniscus, making it an appropriate biological scaffold for consideration as
a partial meniscus replacement.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The meniscus is recognised as having an important role in
stabilising the knee joint (Allen et al., 2000), as well as redistribut-
ing (Kurosawa et al., 1980; Voloshin and Wosk, 1983) and reducing
stress during loading (Fukubayashi and Kurosawa, 1980; Ahmed
and Burke, 1983; Ahmed et al., 1983). The shock absorption effect of
meniscus has recently been discussed (Andrews et al., 2011). The
meniscus also plays an important role in joint lubrication and
nutrient distribution (Allen et al., 1995). Excessive harmful defor-
mation is controlled by the “stress stiffening” feature of the
collagen-fibre structure of the menisci (Rongen et al., 2014).

Tearing of the meniscus is one of the most common injuries
of the knee (Baratz et al., 1986; Muscolo et al., 2006), with a h
igh risk of subsequent degenerative changes within the joint if the
meniscus is removed (Aagaard and Verdonk, 1999; Englund

et al., 2003; Mcdermott and Amis (2006); Stensrud et al., 2014).
Meniscal repair is nowwidely adopted as a treatment for meniscus
injury (Laible et al., 2013; Moriguchi et al., 2013; James et al.,
2014). If meniscal repair is, however, not possible, partial meniscus
replacement can be performed in order to maintain the functional
role of the meniscus with the aim to prevent early degenerative
joint disease (Papalia et al., 2013).

Meniscal allografts have been used to replace the meniscus since
the 1980s (Milachowski et al., 1989; Stollsteimer et al., 2000; Wirth
et al., 2002; Faivre et al., 2014; Vundelinckx et al., 2014; Yoon et al.,
2014). Although allograft tissues are sterilised using different ster-
ilisation methods to prevent potential problems of disease associated
with allograft transplantation (Kainer et al., 2004; Tugwell et al.,
2005), allograft transplantation is still constrained by the limited
availability of donor tissue of suitable quality. Biomaterials, both
natural and synthetic are being researched and developed with a
view to constructing a meniscal implant or a cell-seeded scaffold
capable of restoring the major functions of the meniscus. Ideally
these devices or engineered tissues should have a structure similar to
the fibro-cartilaginous structure to the native meniscus in order to
restore load-transfer function (Marsano et al., 2006; Kon et al., 2008,
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2012). To date, however, this has not been achieved using synthetic
or natural biomaterials.

One potential solution to the current lack of suitable meniscal
replacement/repair devices is the use of decellularised natural
xenogeneic tissue which is produced by treating the native tissue
to remove the immunogenic cells (Stapleton et al., 2008). Decel-
lularised natural xenogeneic tissues can provide an “off the shelf”
solution, are not constrained by donor tissue supply and can be
translated to the clinic as class 3 medical devices. Preservation of
the native tissue structure and biomechanical properties during
the process of decellularisation of the tissue is highly desirable, to
enhance meniscus repair function. The use of an off the shelf
decellularised scaffold derived from porcine tissue offers the
potential for supplying a product range of different sizes, as well
as allowing the surgeon to prepare the size and geometry (shape)
intra-operatively. This provides potential for greater flexibility in
both supply, sizing and matching of geometry compared to the
limited supply of donor allograft tissues currently used.

The aim of the current study was to investigate the effect of
decellularisation on the tensile and compressive biomechanical
properties of the porcine medial meniscus through an experi-
mental–computational study.

2. Materials and methods

Native and decellularised porcine medial menisci were supplied by Tissue
Regenix Group Plc, York, UK. The animals used in the current study were typically
six months old and weighed between 90 and 105 kg. Native porcine meniscus was
decellularised by exposing the tissue to freeze-thaw cycles, incubation in hypotonic
tris buffer, 0.1% (w/v) sodium dodecyl sulfate in hypotonic buffer plus protease
inhibitors, nucleases, hypertonic buffer followed by disinfection using 0.1% (v/v)
peracetic acid and final washing in phosphate-buffered saline, according to the
decellularisation protocol published elsewhere (Stapleton et al., 2008). Decellu-
larised meniscus samples were prototypes, not final product, and they were
aseptically processed but not terminally sterilised. Native and decellularised
menisci were stored frozen until mechanical testing. Although many studies on
native animal and human tissues have reported that low number of freezing—
thawing cycles (less than three cycles) did not affect neither macroscopic (Proctor
et al., 1989) nor the biomechanical properties (Maroudas et al., 1968; Athanasiou et
al., 1991; Yahia and Zukor, 1994; Huang et al., 2011) of the tissue, there are
conflicting opinions of the effects of freezing on the biomechanical properties of
native tissues (Hori and Mockros, 1976). Freezing may affect the viability of cells in
native menisci, however, our data on testing fresh and frozen porcine menisci using
the creep indentation tests showed no difference between the frozen meniscus
used in the current study and fresh meniscus (n¼9 specimens). Therefore, in order
to maintain a similar pre-test storage condition to the decellularised menisci, the
native menisci were stored frozen until mechanical testing. Moreover, the number
of freezing—thawing cycles for both native and decellularised menisci was one
cycle. All the mechanical tests were performed according to standard operating
procedures (SOP) developed specifically for the meniscus.

2.1. Tensile tests

Mechanical uniaxial tensile tests were conducted, using an Instron uniaxial
testing instrument, to determine the tensile initial elastic modulus, elastic modulus,
transition stress, transition strain and ultimate tensile strength of each specimen.
The tests were conducted at approximately 20 1C and 1 mm/min with strain rate of
0.00167 s�1, similar to that was used by Proctor et al. to negate the frictional drag
effects caused by interstitial fluid flow (Proctor et al., 1989), and similar to what was
reported for tensile tests of meniscus (Fithian et al., 1990; Goertzen et al., 1997;
Lechner et al., 2000). The low strain rate used in the current study is not
physiologically representative (Chia and Hull, 2008) but was selected in order to
obtain more consistent determination of failure properties in tension. A higher
strain rate would produce larger drag forces that would help support the load while
at equilibrium stresses are supported solely by the solid matrix (Chia and Hull,
2008). In addition, constant strain-rate ramp tests conducted at extremely slow
strain rates could possibly allow viscoelastic dissipation and, hence, yield the elastic
material properties of the tissue (Lynch et al., 2003). The test specimens were
gripped using custom made adjustable wide titanium grips to allow better stress
distribution over a wider gripping area. The bottom part of the grip was used to
apply a pre-load of 0.5 N (the weight of lower part of the grip), no further pre-load
was applied. The strain was measured from grip to grip and marker points were
added at the tissue—grips edges to monitor the tissue slippage. The specimens

which slipped during the test were discarded from the analysis. The meniscal
specimens were kept hydrated for the duration of the tests using phosphate
buffered saline (PBS) spray. On the day of testing, slices were cut frozen from the
central portion of the menisci to the pre-specified thickness, using a custom made
tissue cutter. The tensile test specimens were then cut from the middle portion to
the pre-specified width and were initially rectangle-shaped. However, to reduce
the high number of specimen failures that occurred at the grips (more than 50%) in
the rectangular specimens, the tensile test specimens were then cut with a
dumbbell-shape with a gauge length of 10 mm between the grips (Fig. 1). Five
different native meniscal specimens with cross-sectional areas of 1.5�1.5, 1.5�3,
2�3, 3�2 and 3�3 [mm] (thickness�width) were tested to represent different
meniscal regions (with different structures) (Fox et al., 2012). However, based on
the sensitivity study on native meniscus, decellularised meniscal tensile specimens
of 3�3 [mm] cross-sectional area were used. The specimens’ dimensions were
checked and only specimens with dimensions within 710% of the pre-specified
dimensions were considered. The specimens were kept hydrated during prepara-
tion using PBS.

The experimental stress strain data were processed in Matlab (Matlab R2011b).
The initial elastic modulus and elastic modulus were defined as the slope of the
linear curve fit up to 1% strain and the slope of the linear part of the curve, based on
the best R-square value using the linear curve fitting and optimisation functions in
Matlab (Matlab R2011b), respectively. The intersection point of the two slopes
defined the transition stress and strain. The ultimate tensile strength was defined
as the highest point on the stress strain curve, as shown in Fig. 1.

2.2. Indentation creep tests

Mechanical creep indentation tests were conducted using cylindrical speci-
mens (meniscal pins) to determine the indentation elastic modulus, permeability
and Poisson’s ratio of each specimen (Fig. 2). Each meniscal pin was subjected to
creep-deformation at approximately 20 1C using a 2.5 mm rigid flat indenter under
0.05 MPa stress. The instantaneous (within 40 ms) load was maintained until the
creep deformation reached equilibrium. The test times were 3600 and 4800 [s] for
native and decellularised meniscus respectively, during which creep deformations
were recorded. The instance at which the full load was recorded was assumed to be
the start time (t¼0). The meniscal pins were kept submerged in PBS for the
duration of the test.

On the day of testing, 8 mm diameter cylindrical specimens were cut from the
central portion of the anterior, middle and posterior sections of the menisci and
were then cut to the specified thickness (Fig. 2). Five different native meniscal
specimens of 0.5, 1, 1.5, 2 and 3 [mm] thicknesses were tested. However, based on
the sensitivity study on native meniscus and to represent different meniscal
regions, two different decellularised meniscal pin thicknesses of 1.5 and 3 [mm]
were tested. The specimens were kept hydrated during preparation using PBS. The
specimens’ dimensions were checked prior to testing, after at least 30 min in PBS,
based on the sensitivity study on the effect of PBS absorption on the specimen
dimensions, and only specimens with dimensions within 710% of the pre-
specified dimensions were considered.

The linear-biphasic indentation creep problem was solved using a combined
analytical and computational approach. This solution scheme allowed simulta-
neous computation of the three independent intrinsic biphasic properties of the
menisci. The shear modulus was first calculated using the equation derived from
the solution by Hayes et al. (1972) and an initially assumed Poisson’s ratio
(Poisson’s ratio of zero was initially assumed, to allow for maximum biphasic
effect (Jin et al., 2000); however, this value is updated through the iteration
process). The elastic modulus of the solid matrix was then calculated. A finite

Fig. 1. Representative curve for the tensile test, test specimen, and different tensile
biomechanical properties.
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element (FE) model of the indentation problem was created in ABAQUS (SIMULIA,
ver. 6.12-2). The solution algorithm described by Pawaskar et al. (2010) was used to
solve, for the meniscal pin, permeability and Poisson’s ratio, assuming 74% water
content (Fithian et al., 1990; Joshi et al., 1995; Sweigart et al., 2004). However, the
effect of water content on the predicted biomechanical properties was investigated.
The predicted new value for the Poisson’s ratio from the FE model was then used to
calculate the new elastic modulus of the solid matrix. This iteration process
continued until the best R squared value between the experimental and the
computational deformations was obtained. The described solution scheme allowed
simultaneous computation of the three independent intrinsic biphasic properties of
soft tissue. Indentation compression creep tests were conducted to determine the
equivalent (full creep curve was considered) and equilibrium (only the final 30%
creep deformation was considered) compressive biomechanical properties of each
specimen.

2.3. Unconfined compression test

On the day of testing, 8 mm diameter cylindrical specimens were cut frozen from
the central portion of the anterior, middle and posterior sections of the menisci, and
were then cut to the specified thickness (Fig. 2). The unconfined compression creep
study was run using 3 mm thickness meniscal pins, to describe the overall structure of
the tissue. The specimens were kept hydrated during preparation using PBS. The
specimens’ dimensions were checked prior to testing, after at least 30 min in PBS,
based on the sensitivity study on the effect of PBS absorption on the specimens’
dimensions, and only specimens with dimensions within 710% of the pre-specified
dimensions were considered (maximum of 3 meniscal pins out of 18 were not within
the 710%, for 3 mm thickness decellularised meniscus, and were therefore discarded).

Mechanical unconfined compression creep tests were conducted to determine
the unconfined elastic modulus and permeability of each specimen. Each meniscal
pin was subjected to unconfined creep-deformation at approximately 20 1C using
two rigid smooth flat plates under 0.01 and/or 0.05 [MPa] stresses. The instanta-
neous (within 40 ms) load was maintained until the creep deformation reached
equilibrium. The test time was 3600 s, during which creep deformations were
recorded. The instance at which the full load was recorded was assumed to be the
start time (t¼0). The meniscal pins were kept submerged in PBS for the duration of
the test.

The biphasic unconfined compression creep problem was solved using the
linear biphasic solution formulated by Armstrong et al. (1984). The solution
algorithm was developed in Matlab (Matlab R2011b) and was used to solve for
the meniscal pin permeability and elastic modulus, assuming 74% water content
and Poisson’s ratio of zero or 0.1 (Sweigart et al., 2004). The calculated permeability
and elastic modulus were iterated to match the calculated creep values to the
experimental measurements. This iteration process continued until the best R
squared value between the experimental and the computational deformations was
obtained. Unconfined compression creep tests were conducted to determine the
equivalent (full creep curve) and equilibrium (final 30% creep deformation)
compressive biomechanical properties of each specimen.

2.4. Data analysis

All numerical data were analysed using SPSS statistics (IBM SPSS, ver. 22). The
means and outliers within each set of data were calculated using the Descriptive
Statistics function with 95% confidence interval. Data from fresh and decellularised

specimens as well as data from different test configurations were compared using
the one-way analysis of variance (ANOVA). When necessary, a Post-hoc test was
performed (Fisher’s Protected Least Significant Difference (LSD), Tukey and Gabriel
tests). A p-valueo0.05 was accepted as significant. In addition, the statistical
analysis was cross-checked in Matlab using an in-house developed statistical
program (Matlab R2011b).

3. Results

3.1. Tensile tests

Representative curve for the tensile test results is shown in
Fig. 1. When the dumbbell-shaped specimens were used, more
than 75% failures occurred within the middle of the test speci-
mens. Specimens which failed at the grips were discarded from
the analysis and only the results for those which failed at their
central regions were considered. The tensile biomechanical prop-
erties for native meniscus are shown in Fig. 3. The sensitivity study
on the native meniscal cross-sectional area of the tensile test
specimens showed a dependence of the tensile biomechanical
properties on the cross-sectional area of the tensile specimen.
However, this dependence was found not to be statistically
significant in the majority of the comparisons of the groups (only
the differences in the measured ultimate strength and transition
strain between 1.5�1.5 and 3�3 [mm] (thickness�width) speci-
mens and in the measured initial elastic modulus between
1.5�1.5 and 3�2 [mm] (thickness�width) specimens were sig-
nificantly different (ANOVA, po0.05)). Therefore recommendation
for future testing was to use 3�3 [mm] (thickness�width) speci-
mens, to describe the overall structure of the tissue. The measured
initial elastic modulus, elastic modulus, ultimate tensile strength,
and transition stress for the native porcine meniscus were in the
ranges 14 to 26, 113 to 142, 23 to 33, and 2 to 3.2 [MPa]
respectively, depending on the cross-sectional area of the meniscal
samples. The corresponding transition strain ranged between
4.6 and 6.4% strain.

The tensile biomechanical properties of decellularised medial
porcine meniscus are compared to that of native medial porcine,
using meniscal specimens of 3�3 [mm] cross-sectional area, in
Fig. 4. The decellularised scaffold showed lower initial elastic
modulus (9.4171.38) (ANOVA, po0.05), compared to that of native
porcine meniscus. The measured elastic modulus (133711), ultimate
strength (3574.5), transition stress (1.6670.23), and transition
strain (5.3270.58) for the decellularised porcine meniscus were,

Fig. 2. Right medial meniscus showing the specimen locations (a) and the indentation and unconfined test rig (b).
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however, not significantly different (ANOVA, p40.05, nZ15) com-
pared to that of native meniscus.

3.2. Indentation creep tests

Representative curve for the compressive creep test results is
shown in Fig. 5. The sensitivity study showed no further change in
the specimens’ dimensions, due to PBS absorption, after 30 min
and up to 5 h. The sensitivity analysis on the native meniscal pin
thickness of the compressive creep indentation test specimens
showed that specimens of 1.5 mm thickness were sufficient to
describe the biomechanical properties of the tissue (ANOVA,
p40.05). In addition, the indentation creep results showed no
significant differences between the anterior, middle and posterior
meniscal regions (ANOVA, p40.05), as shown in Table 1. More-
over, the effect of meniscus water content (from 60% to 80%) on
the predicted properties from the computational simulation model
was shown to be insignificant. Similar finding was reported by Abd
Latif et al. (2012).

Fig. 4. Tensile mechanical properties for native and decellularised menisci (3.0�3.0�10 [mm] samples, mean 795% CI) at a strain rate of 0.00167 s�1.

Fig. 5. Representative curve for the compressive creep test results, 3 mm thickness
meniscal pins and 0.05 MPa stress indentation test.

Fig. 3. Tensile mechanical properties for native menisci (mean 795% CI) at 0.00167 s�1 strain rate.
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The predicted Poisson’s ratio for native and decellularised
menisci was zero. The predicted equivalent elastic modulus and
permeability for the 1.5 and 3 [mm] thickness native meniscus are
summarised in Table 2. Only the predicted equivalent elastic
moduli for the 1.5 mm specimens of the native and decellularised
tissues were significantly different (ANOVA, po0.05).

3.3. Unconfined compression test

The sensitivity study showed no further change in the specimens’
dimensions, due to PBS absorption, after 30 min and up to 5 h. The
unconfined compression creep tests were first run under 0.05 MPa
stress, similar to the indentation creep study. However, high creep
deformations were measured (creep deformation425% meniscal
pin’s thickness), therefore the unconfined compression creep study
was run under 0.01 MPa stress to maintain low deformation levels
to match the linear biphasic theory and constant permeability
assumptions used in the current study (Armstrong et al., 1984).
The measured deformation levels under the 0.01 MPa stress, of
approximately 8% and 11% of the specimen thickness for native and

decellularised menisci respectively, were within the deformation
ranges reported with the linear biphasic solution (Proctor et al.,
1989; Athanasiou et al., 1991). The predicted equivalent elastic
modulus and permeability for zero Poisson’s ratio were 0.127
0.03 MPa and 2.07�10�1570.24�10�15 m4/N s, and 0.097
0.02 MPa and 2.47�10�1570.27�10�15 m4/N s (mean 795% CI)
for native and decellularised meniscus, respectively. Similar values
and trend were predicted for equilibrium and for 0.1 Poisson’s ratio
as well, as shown in Fig. 6. The predicted elastic moduli for native
and decellularised tissues were not significantly different (ANOVA,
p40.05). However, the difference between the predicted equili-
brium permeability for native and decellularised menisci with
0.1 Poisson’s ratio was significant (ANOVA, po0.05).

4. Discussion

Partial meniscus replacement devices may be used clinically to
prevent secondary osteoarthritis in the knee joint. These devices
should ideally have similar intrinsic biomechanical properties to
native meniscus, to enable function of the partial meniscus
replacement to be delivered, and be capable of fully supporting
tissue neogenesis (Rizzi et al., 2012). An decellularised scaffold
derived from natural xenogeneic tissue is one potential solution
(Stapleton et al., 2008). The effect of the decellularisation process
on the biomechanical properties of the meniscus requires in depth
investigation. The current study therefore investigated the effect of
decellularisation on the tensile and compressive biomechanical
properties of the porcine medial meniscus.

Table 1
Equivalent biomechanical properties for different specimens’ locations of native
porcine menisci (mean 795% CI), for 1.5 mm thickness meniscal pins and 0.05 MPa
stress indentation test.

Anterior (n¼5) Centre (n¼6) Posterior (n¼5)

E [MPa] 0.2470.095 0.2370.101 0.2570.089
Permeability [�10�15

m4/N s]
4.0472.33 3.7972.31 3.4672.16

Table 2
Indentation biomechanical properties for native and decellularised porcine menisci (mean 795% CI), for 1.5 and 3 [mm] thickness meniscal pins and 0.05 MPa stress.

1.5 mm Specimens (n¼16) 3.0 mm Specimens (n¼12)

E (MPa) Permeability�10�15 m4/N s E (MPa) Permeability�10�15 m4/N s

Native Equivalent 0.2470.04 3.7470.97 0.2670.07 4.7471.69
Equilibrium 0.1970.05 2.0670.49 0.2970.08 3.7371.01

Decellularised Equivalent 0.1870.02 4.7470.61 0.2570.06 4.1471.34
Equilibrium 0.1370.02 2.7370.52 0.2970.06 4.0471.38

Fig. 6. Unconfined compression biomechanical properties for native and decellularised porcine menisci (mean 795% CI), for 3.0 mm thickness meniscal pins and 0.01 MPa
stress.
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The tensile study showed that the tensile biomechanical proper-
ties of native porcine meniscus are cross-sectional area and position
dependent (Fig. 3). This dependence can be explained by the nature
of the collagen fibre arrangement in the structure of the meniscus,
with different regions having different arrangements with varied
fibre densities and orientations (Fithian et al., 1990; Mcdermott
et al., 2008; Fox et al., 2012). Similar dependence relationships of
the meniscal tensile biomechanical properties on the cross-
sectional area, specimen location and direction have been reported
in the literature (Proctor et al., 1989; Fithian et al., 1990; Lechner et
al., 2000; Leroux and Setton, 2002; Mcdermott et al., 2008). The
1.5�1.5�10 [mm] specimens had the highest initial elastic mod-
ulus. This might have been due the high pre-stress associated with
this small cross-sectional area due to the preload.

The decellularised medial porcine meniscal tensile properties
were compared to the corresponding native meniscal properties
(Fig. 4), using the 3�3 [mm] cross-sectional area to describe the
overall structure of the tissue. The decellularisation process appeared
to decrease the initial elastic modulus (ANOVA, po0.05) compared
to that of native porcine meniscus. However, further microscopic and
histology studies are required to investigate this effect. The reported
average range for the human meniscal circumferential tensile elastic
modulus and ultimate tensile strength ranges between 50 and 198
[MPa] (Tissakht and Ahmed, 1995; Lechner et al., 2000; Leroux and
Setton, 2002) and between 8 and 19 [MPa] (Bullough et al., 1970;
Fithian et al., 1990; Tissakht and Ahmed, 1995), respectively, depend-
ing on the specimens location, region, and dimensions. The corre-
sponding average values for decellularised medial porcine meniscus
from the current study were 133 MPa and 35 MPa, respectively.

The experimental indentation and unconfined compression creep
studies were carried out to determine the compressive biomechan-
ical properties of native and decellularised menisci. For the native
porcine meniscus, the reported average compressive elastic modu-
lus and permeability were 0.2770.04 MPa and 1.74�10�157
0.19�10�15 m4/N s (from confined compression test, 1.10 mm thick-
ness specimens) (Joshi et al., 1995) and 0.1370.03 MPa and 6.32
�10�1574.21�10�15 m4/N s (from indentation creep test, whole
specimens) (Sweigart et al., 2004), respectively, whereas the results
presented here were 0.2970.08 MPa and 3.73�10�1571.01�
10�15 m4/N s (indentation, 3 mm specimens). These differences
between the results presented here and the reported results for native
porcine meniscus are most likely due to differences in test type, test
conditions, solution techniques, specimen size, direction and location
(Joshi et al., 1995; Sweigart et al., 2004).

The reported compressive elastic modulus and permeability for
human meniscus ranged between 0.09 and 0.23 [MPa] and from
1.32�10�15 to 2.74�10�15 m4/N s, respectively, depending on
test type and conditions (Joshi et al., 1995; Sweigart et al., 2004).
The reported wide range of biomechanical properties for human
tissue can attributed to the dependence of the biomechanical
properties on the age of the donor, test conditions, and specimen
specifications. The predicted compressive elastic modulus and
permeability for decellularised meniscus reported here of betw-
een 0.09 and 0.29 [MPa] and between 2.47�10�15 and 4.74�
10�15 m4/N s, respectively, were within the corresponding rep-
orted range for human meniscus.

This is the first study to investigate the effects of a decellularisa-
tion process on both the tensile and compressive biomechanical
properties of the porcine medial meniscus. The results suggested
that the decellularisation process had some degree of effect on the
biomechanical tensile and compressive properties of the porcine
medial meniscus. The basic study by Stapleton et al. indicated
similar results (Stapleton et al., 2008), which reported insignificant
�10% increase in the decellularised meniscus tensile elastic mod-
ulus, ultimate tensile strength, transition stress and 33% increase
in transition strain (ANOVA, p40.05, n¼7), compared to native

meniscus. In addition, in their indentation study, the native and
decellularised menisci showed similar deformation under 0.14 MPa
stress (ANOVA, p40.05, n¼6), and �6% increase in the decellu-
larised meniscus deformation under 0.28 MPa, compared to native
meniscus (ANOVA, p40.05, n¼3). However, the tensile study was
performed at 10 times higher strain rate than the current study, and
computational simulation was not adopted to predict the compres-
sive biomechanical properties of the tissue (Stapleton et al., 2008).

The current study showed that decellularised porcine medial
meniscus maintained the tensile biomechanical properties of the
native meniscus, but had a lower initial elastic modulus. The
decellularised porcine medial meniscus generally showed lower
compressive elastic modulus and higher compressive permeability
compared to that of native meniscus. These changes in the
biomechanical properties were most likely due the reduction in
glycosaminoglycan (GAG) content during decellularisation. The
previously reported histological, immunohistochemical, and bio-
chemical analyses showed that the decellularised tissue retained
the major structural proteins, however, there was approximately
60% loss of GAG content. This GAG loss was location dependent
and varied from zero to 100% GAG loss, with the central area
maintained its GAG content (Stapleton et al., 2008). The GAG
content is known to be directly related to the compressive
biomechanical properties of the tissue. As the wide 8 mm dia-
meter meniscal pins were cut from the central portion of the
tissue, the compressive test specimens represent the average of
the GAG content and the average of the changes in GAG content.
However, the effect of different positions in the meniscus on GAG
content and changes in GAG content will be studied further in the
future. The predicted changes in the compressive biomechanical
properties were not significant in the majority of the comparisons.
In addition, the predicted tensile and compressive biomechanical
properties for the decellularised porcine medial meniscus were
within the reported range for the human meniscus (Bullough et al.,
1970; Fithian et al., 1990; Joshi et al., 1995; Tissakht and Ahmed,
1995; Sweigart et al., 2004).

The limitations associated with the linear biphasic theory and
constant permeability assumptions are well recognised. In addi-
tion, Poisson’s ratio was assumed in the unconfined compression
study (either zero or 0.1). It was however difficult to measure the
deformation in the lateral direction in order to calculate Poisson’s
ratio. Moreover, the tensile and compressive biomechanical prop-
erties of human meniscus were taken from the literature, rather
than testing the human meniscus under the same test conditions.
These limitations did not affect the main objective of the current
study (to investigate the effects of decellularisation on the bio-
mechanical properties of the porcine medial meniscus). Future
work will consider testing of the human meniscus under the same
test conditions as well as extending the tests to consider confined
compression and tensile suture retention tests.

5. Conclusion

The current study documented the differences in the biomechani-
cal properties between native and decellularised medial porcine
menisci. A decellularised scaffold derived from the porcine medial
meniscus maintained the tensile biomechanical properties of the
native meniscus, but had a lower initial elastic modulus. The decel-
lularised porcine medial meniscus generally showed lower elastic
modulus and higher permeability under compression, compared to
that of native meniscus. These changes in the biomechanical proper-
ties of porcine medial meniscus were attributed to the reduction of
GAG content during decellularisation. The predicted biomechanical
properties of decellularised medial porcine meniscus were however
within the reported range for the human meniscus. The decellularised
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porcine meniscus therefore has potential as a partial meniscus
replacement device.
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