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A B S T R A C T

The social motivation theory proposes that individuals naturally orient their attention to the social world.
Research has documented the rewarding value of social stimuli, such as biological motion, to typically developed
individuals. Here, we used complementary eye tracking measures to investigate how social motion cues affect
attention and arousal. Specifically, we examined whether viewing the human body moving naturally versus
mechanically leads to greater attentional engagement and changes in autonomic arousal (as assessed by pupil
size measures). Participants completed an attentional disengagement task in two independent experiments,
while pupillary responses were recorded. We found that natural, human-like motion produced greater increases
in attention and arousal than mechanical motion, whether the moving agent was human or not. These findings
contribute an important piece to our understanding of social motivation by demonstrating that human motion is
a key social stimulus that engages visual attention and induces autonomic arousal in the viewer.

1. Introduction

From birth, humans show a strong preference for social stimuli,
termed ‘social motivation’ (Chevallier, Kohls, Troiani, Brodkin, &
Schultz, 2012; Dawson, Meltzoff, Osterling, Rinaldi, & Brown, 1998;
Fletcher-Watson, Findlay, Leekam, & Benson, 2008), as demonstrated
by our reliable attentional preferences for biologically relevant stimuli
including faces, voices, and the human body (Alegria & Noirot, 1978;
Fox & McDaniel, 1982; Valenza, Simion, Cassia, & Umiltà, 1996). Social
stimuli, such as human faces and bodies, provide valuable information
about an observed individual, including their age, gender, race, iden-
tity, emotions and intentions. Reduced social motivation is suggested to
cause deficits in social reward processing, which might have negative
downstream consequences for social cognition in conditions such as
Autism Spectrum Condition (ASC1; Chevallier et al., 2012).

The Social Motivation Theory (Chevallier et al., 2012) proposes
three tiers of social motivation: social orienting, social maintaining, and
social seeking and liking. This theory suggests that we possess a set of
behavioural dispositions that guide us to preferentially orient our at-
tention to the social world (social orienting/attention), behave in ways
that allow us to develop, strengthen, and maintain our social

relationships (social maintaining), and to seek social interaction and
take pleasure in our relationships (social seeking and liking/reward).
The present study focuses on the social orienting and social reward
aspects of social motivation.

Our attention is captured and engaged by biologically relevant sti-
muli more quickly than other types of non-social stimuli (Fletcher-
Watson et al., 2008; Lavie, Ro, & Russell, 2003; Purcell & Stewart,
1988). This attentional bias to social stimuli is demonstrated by our
ability to quickly detect social stimuli (Fletcher-Watson et al., 2008;
Purcell & Stewart, 1988), and also, our slow disengagement from social
stimuli and towards non-social stimuli (Lavie et al., 2003; Senju &
Hasegawa, 2005).

In 2005, Senju and Hasegawa provided further evidence for social
attention (Senju & Hasegawa, 2005). They used an attentional disen-
gagement task to demonstrate that typically developed (TD) partici-
pants detect peripheral targets more slowly when viewing facial images
displaying direct versus averted gaze. These slower reactions to targets
could be due to increased attentional dwell time given to facial stimuli
that convey biologically important information (Fox & McDaniel,
1982). Individuals with ASC, however, show no differences in atten-
tional dwell time when shown faces or non-social objects (Kikuchi,
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Senju, Hasegawa, Tojo, & Osanai, 2013). Other studies have reported
preferential attention given to biological motion (motion patterns as-
sociated with living organisms) in newborns, which is crucial for fa-
cilitating adaptive interactions across phylogeny (Bardi, Regolin, &
Simion, 2011). Evidence also shows that TD infants naturally attend to
biological motion (Fox & McDaniel, 1982), and that this behaviour is
impaired in infants with ASC (Klin, Lin, Gorrindo, Ramsay, & Jones,
2009).

One reason our attention is captured easily by social stimuli is be-
cause of their potentially beneficial or rewarding nature (Chevallier
et al., 2012; Dubey, Ropar, & Hamilton, 2015; Haffey, Press, O'Connell,
& Chakrabarti, 2013; Sims, Van Reekum, Johnstone, & Chakrabarti,
2012; Williams & Cross, 2018). Recent studies have used effort tasks,
where participants choose to exert effort to view their preferred stimuli,
to better understand and measure the reward value of social stimuli
(Dubey et al., 2015; Williams & Cross, 2018). These studies report that
TD individuals exert more effort to view videos of faces with a direct
gaze, compared to non-social objects (Dubey et al., 2015), and to view
videos of humans moving naturally compared to mechanically, further
reinforcing the reward value of socially relevant stimuli (Williams &
Cross, 2018). Participants reporting more autistic traits or with ASC
diagnoses showed a reduced preference for social stimuli across both
studies.

While explicit preference tasks provide a useful means to investigate
social reward, another promising approach involves measuring pupil
dilation to assess implicit and automatic reward processing (Murphy,
Robertson, Balsters, & O’connell, 2011; Sepeta et al., 2012). Pupil size
not only changes in response to light, but it is also linked to arousal
level, attention, processing load, thoughts, and emotions (Beatty, 1982;
Goldwater, 1972; Hess & Polt, 1964; Kahneman & Beatty, 1966; Sepeta
et al., 2012; Unsworth & Robison, 2016). Research has shown pupil
dilation in response to arousing stimuli (with either positive or negative
valence; Bradley, Miccoli, Escrig, & Lang, 2008), and rewarding stimuli,
such as those that are sexually arousing compared to not sexually
arousing (Hess, Seltzer, & Shlien, 1965; Rieger & Savin-Williams, 2012),
or when anticipating large rewards compared to smaller rewards
(Bijleveld, Custers, & Aarts, 2009; Chae et al., 2008). For example,
smoking-related cues produce pupillary dilations in smokers but not
non-smokers (Chae et al., 2008); these cues also activate reward-related
brain regions, such as the ventral striatum (Wang et al., 2007), sug-
gesting that pupil dilation can act as a proxy for reward processing.

Sepeta et al. (2012) used pupillary reactions to measure autonomic
responses (as a proxy for reward) of children with and without ASD
when viewing facial images. They found TD children showed greater
pupil dilation when viewing images of happy faces showing direct
versus averted gaze. This association with gaze direction was absent
among children with ASC. Thus, increased pupil diameter among TD
children when directly viewing happy faces might reflect the intrinsic
reward value of a face looking directly at the observer. Indeed, the
rewarding value of faces to TD participants is well established (Dubey
et al., 2015; Hayden, Parikh, Deaner, & Platt, 2007; Shore & Heerey,
2011). The absence of increased pupil diameter among children with
ASC suggests they have reduced sensitivity to the reward value of this
stimulus.

It is currently unclear whether other salient social cues, such as
biological human body motion, engage attention more than non-social
cues do. We also do not know the extent to which socially relevant body
form and body motion cues might induce autonomic responses in par-
ticipants due to their rewarding value.

Here, we assess the social attention aspect of social motivation, by
testing the hypothesis that attention is engaged more by naturalistic
than by mechanistic motion, and by a human body compared to a non-
human agent, using two different eye-tracking experiments performed
with TD individuals. We measured the time participants took to dis-
engage attention from different video stimuli and attend to peripheral
targets, using saccades as a measure of attentional disengagement in

Experiment 1, and a button-press response measure in Experiment 2.
We hypothesised that, due to the social importance of biological motion
and its potentially rewarding or beneficial nature, participants should
show the longest attentional dwell time for natural motion performed
by a human body (shown by delayed saccadic response times in
Experiment 1, and by delayed behavioural response times in
Experiment 2). Although our main objective was to investigate parti-
cipants’ engagement with natural compared to machine-like motion,
our experimental design also enabled us to investigate whether it is the
social nature of the agent type (human or non-human) or the motion
type (natural or mechanical) that individuals find most engaging. We
also predicted that individuals reporting more autistic traits would
show less pronounced differences in attentional dwell time for videos of
natural compared to mechanistic motion, whereas those reporting
fewer autistic traits would be slower to disengage from natural than
mechanistic motion.

Using a measure of autonomic arousal as a proxy for the social re-
ward aspect of social motivation, we investigated whether differences
in pupil size emerge while participants view the different video cate-
gories to test the hypothesis that participants would show greater pupil
dilation when viewing videos of human bodies moving naturally com-
pared to other videos. We also examined the relationship between au-
tistic traits and pupil size when viewing the different categories of vi-
deos, hypothesising that individuals reporting more autistic traits
would show less of an increase in pupil size when viewing human
bodies moving naturally.

2. Experiment 1

Previous studies of attentional disengagement have primarily mea-
sured attentional dwell time via button responses to peripheral targets.
However, measuring attentional disengagement by saccades is thought
to highlight more subtle differences in response times (Azarian, Esser, &
Peterson, 2016; Belopolsky, Devue, & Theeuwes, 2011). In light of this,
participants in Experiment 1 completed an attentional disengagement
task where they watched a video until a peripheral target appeared, at
which time they were asked to saccade toward the peripheral target.

2.1. Materials and method

Consistent with recent proposals (Simmons, Nelson, & Simonsohn,
2011, 2012), we report how we determined our sample size, all data
exclusions, all manipulations and all measures in the study. In addition,
following open science initiatives (e.g., Munafò et al., 2017), the de-
identified data sets, stimuli and analysis code associated with this study
are freely available online (https://osf.io/pdcnr/). By making the data
available, we enable and encourage others to pursue tests of alternative
hypotheses, as well as more exploratory analyses.

2.1.1. Participants
Fifty-one participants were recruited from the local community or

from Bangor University’s student participant panel. Data from one
participant were excluded due to a technical issue that resulted in data
from a quarter of the trials not being recorded, and one further parti-
cipant was excluded due to having an Autism Quotient score more than
2 standard deviations away from the mean, leaving a final sample for
data analysis of 49 participants (35 females; Mage= 23.80,
SDage= 4.79). Participants were reimbursed £7 per hour or were given
course credits for their time. The sample size was determined prior to
data collection using the G*Power calculator (Faul, Erdfelder, Buchner,
& Lang, 2009; Faul, Erdfelder, Lang, & Buchner, 2007), which enabled
us to detect medium-to-large effect sizes with 80% power. However,
this sample was determined for analyses using repeated-measures
ANOVA rather than mixed-effects modelling, due to the complexity of
conducting power analyses for experiments employing mixed-effects
models (Kain, Bolker, & McCoy, 2015). All participants had normal or
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corrected-to-normal vision, provided written informed consent, and
Bangor University’s School of Psychology Research Ethics Committee
granted ethical approval (Ethics Approval Code: 2015-15400), fol-
lowing procedures in accordance with the Declaration of Helsinki.

2.1.2. Stimuli
Four categories of video stimuli developed for a previous study

(Williams & Cross, 2018) were used. The first and second category of
videos featured a human actor performing Natural Human Motion
(movements such as moving arms and legs from side to side smoothly)
and Machine-Like Motion (movements such as moving arms and legs
from side to side rigidly). These two stimulus categories included 10
unique videos each, and are henceforth referred to as ‘Human Body
Natural Motion’ and ‘Human Body Machine-Like Motion’, respectively.
Human Body Natural Motion videos were created as a proxy for bio-
logical motion, and Human Body Machine-Like Motion videos were
created as a proxy for non-biological motion (for further discussion of
the utility of this approach, please see Williams & Cross, 2018). Videos
were captured using the Kinect platform (Microsoft), where a video
stream and the agent motion structure were extracted. From these video
recordings, five computer generated image (CGI) videos featuring a
non-human control agent “performing” Natural Motion and five “per-
forming” Machine-Like Motion were created using the same motion as
the human ones; these are referred to as Control Agent Natural Motion
and Control Agent Machine-Like Motion (Fig. 1). Participants saw each
stimulus for at least 2.5 s (i.e., the combination of the shortest stimulus
onset asynchronies (SOA), plus saccade latency). The moving agents
appeared without heads, as facial information could be a potential
confound in the study. For more details about how the stimulus sets
were created, see Williams and Cross (2018).

A static target was placed onto the torso of both the human and
control agents, and the torso region remained stationary so that parti-
cipants had a stable point in the video to fixate. This manipulation also
allowed for more controlled pupil measurements as pupil size can
change with gaze position and eye movements (Brisson, Mainville,
Mailloux, Beaulieu, Serres, & Sirois, 2013).

Fluctuations in pupil size also occur as a result of changes in lu-
minance in stimuli (Mathôt, 2018; Woodhouse, 1975). This pupillary
light reflex has been suggested to be one of the main confounds in
cognitive pupillometry (Sirois & Brisson, 2014; Woodhouse, 1975).

Thus, we verified that the luminance levels of both motion categories
did not significantly differ from each other. Although the luminance
differed across the agent types (human vs. control), importantly, no
differences in luminance were present between the motion categories
(see Supplementary Materials for full luminance analysis), thus con-
firming that any changes between motion categories were not due to
low-level differences in luminance between the stimuli. The videos fell
into a 2×2 factorial design, with Agent Type (human body or control)
and Motion (natural or machine-like) as factors.

2.1.3. Apparatus
Saccadic eye-movements and pupil size were recorded from only the

right eye of participants, using an EyeLink 1000 desk-mounted eye-
tracker (SR Research Ltd., Mississauga, ON, Canada), which sampled at
1000 Hz. Pupil diameter was measured in arbitrary units as recorded by
the eye-tracker. Participants sat in a comfortable chair, with a pillow to
limit head movements, in a dimly lit room with no windows. Videos
were presented in the center of a screen at a viewing distance of
100 cm. Target dots were displayed either to the left or to the right of
the main video. All stimuli were presented on a 27-inch monitor with a
resolution of 1080× 1920 (60 Hz refresh rate). The stimuli subtended
at the maximum 14° by 14° of visual angle and were presented on a
white background. The experiment was presented using Experiment
Builder (version 1.10.1630; SR Research Ltd, 2004).

2.1.4. Procedure
The experiment began with a 9-point calibration of the eye-tracker

followed by a validation stage. Recalibrations took place after each
experimental block, and when needed (e.g., if a participant’s head
moved too much, or someone wanted a break mid-block). Participants
completed 1 practice block of 12 trials, followed by 4 experimental
blocks of 60 trials. The trials within these blocks were randomised and
included a combination of the four stimulus types. Participants were
given the opportunity to take a break after each block.

Each trial began with a central fixation cross to perform a drift
correction, followed by a video stimulus. Participants were required to
maintain fixation on the circular target on the torso of the agent in the
video. A target dot appeared in a non-predictive fashion to the left or to
the right of the stimulus, either 2500ms or 3000ms after video onset
(Fig. 2). These 2 SOAs were chosen to give the participant enough time

Fig. 1. Example video stills from the four stimulus categories.
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to perceive the different types of movements in the videos. Pupillary
reactions are also slow; it was therefore necessary that the video play
long enough to accurately measure pupil data. The target and the video
remained on the screen until a saccade was made, or until 2000ms had
passed. Participants were instructed to move their eyes away from the
target on the torso and towards the peripheral target as quickly as
possible as soon as it appeared. If a saccade was made prematurely
(before the onset of the target), or if the participant blinked before the
onset of the target, the message ‘You moved your eyes too soon!’ ap-
peared on the screen, and the trial was recycled to appear later in the
block. If participants failed to make a saccade within 2000ms of target
onset, the trial was recycled and appeared later in the block.

The latency (saccadic reaction time) was defined as being the time
between target onset and the saccade start time. At the end of a trial, a
blank screen appeared for 2000ms to allow the pupil size to return to
baseline, and to give participants a short break. At the end of the ex-
periment, participants completed a demographic questionnaire, which
assessed their age and gender, the Oldfield handedness inventory
(Oldfield, 1971) (M=69.94, SD=48.19), and the Autism Quotient
questionnaire (Baron-Cohen, Wheelwright, Skinner, Martin, & Clubley,
2001) (M=15.84, SD=6.85) to measure autistic traits. A recent meta-
analysis (Ruzich et al., 2015) found that the mean AQ score within the
typical population is 16.94 (CI: 11.6–20), thus the mean AQ score of our
sample of participants corresponds with the values found in the typical
population.

2.1.5. Latency data analysis
Due to the experimental procedure set up (i.e. trials being recycled

when participants moved their eyes too soon, blinked, or did not re-
spond within 2000ms), trials were not discarded due to participant
errors. However, saccadic latencies less than 80ms were discarded from
the analyses (following procedures reported by Azarian et al., 2016), as
they were unlikely to be triggered by the target onset; this led to a total
of 3.76% of the saccade trials being removed.

Our primary aim was to investigate the effects of Motion, Agent,
Autistic Traits, and their interactions, on participants’ attention. Thus,
the remaining data were analysed using linear mixed-effects models
with the lme4 package (version 1.1–13; Bates, Maechler, Bolker, &
Walker, 2015) in R (Version 3.3.3, R Core Team, 2016). We fitted our
data to maximal models, including both random intercepts and slopes
insofar as possible with respect to model convergence (Barr, Levy,
Scheepers, & Tily, 2013). The final, best-fitting model predicted the

time taken for participants to disengage their attention from the video
and attend to the target in the periphery by modelling the interaction
between Autistic Traits, Agent (a factor with 2 levels: Human or Control
Agent) and Motion (a factor with 2 levels: Natural Motion or Machine-
Like Motion), and including SOA (a factor with 2 levels: 2500ms or
3000ms) and Target Position (a factor with 2 levels: Left or Right) as
covariates. All predictors were mean-centered, and the log of saccadic
response time (RT) was used as the outcome variable (to correct the
positive skew in the RT distribution, Baayen & Milin, 2010). A random
by-participant intercept, and random slopes for Agent, Motion, and
Target Position (Barr et al., 2013) were included. The R formula for our
model was:

∼ ∗ ∗ + +

+ + ∗ ∗

Log Latency Autistic Traits Motion Agent SOA Target

Position Motion Agent Target Position Participant

( )

(1 | )

After running this model, the ‘romr.fnc’ function within the R
package ‘LMERConvenienceFunctions’ (Tremblay & Ransijn, 2015) was
used to exclude outliers from the model with standardized residuals
greater than 2.5 standard deviations from 0. This removed an addi-
tional 3.06% of data from the analyses. Both models were compared
using the ‘relLik’ function in R, which calculates the relative log-like-
lihood between two models, revealing that the model excluding outliers
was a better fit. This method of removing outliers post-model fitting
leads to fewer data points being removed, and to better-fitting models,
compared to the more ‘aggressive’ removal of outliers prior to model
fitting (Baayen & Milin, 2010). Plotting and inspecting the residuals for
this model revealed no violations of linearity, homoscedasticity, or
normality, and the correlations between the intercept and random ef-
fects were all below 0.43.

Both t and p-values are reported in Table 1 due to concerns relating
to p-values estimated from linear mixed-effects models (Bates, 2006).
We used t > 2 as a threshold for significance in all analyses in this
study, which is comparable to p < 0.05 (Baayen, Davidson, & Bates,
2008). The p-values reported are Satterthwaite approximated using
lmerTest (Kuznetsova, Brockhoff, & Christensen, 2015).

2.1.6. Pupillometry data analysis
Pupil data were cleaned prior to data analysis. Missing pupil data

(e.g. data missing from blinks, etc.) were linearly interpolated, and data
were baseline corrected. To perform baseline correction, the median
pupil size during the first 10ms of each trial for each participant was

Fig. 2. Example of a trial with a video of a
human body performing natural motion.
Participants were asked to make a saccade
from the centrally presented stimulus to-
ward the target dot as quickly as possible in
Experiment 1, and were asked to press a
button in Experiment 2. Pupil size was
measured from the onset of the video until
the onset of the target dot.
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subtracted from the remaining data in that trial (Mathôt, Fabius, Van
Heusden, & Van der Stigchel, 2018).

The epoch of interest was from the onset of the video to 2500ms
(i.e., before the onset of the peripheral target); this epoch was the same
for videos with SOAs of 3000ms. This led to 2500 data points per trial
per participant. For each stimulus category, we aggregated the pupil
data across time over all trials for each participant. This led to a data set
consisting of 2500 data points per condition per participant.

Data obtained from 0 to 220ms were not used for analysis as the
effects of the experimental manipulation on pupil size should develop at
the earliest from 220ms, due to the latency of the pupillary response
(Ellis, 1981; Mathôt, van der Linden, Grainger, & Vitu, 2015). The re-
maining data (220–2500ms) were analysed with mixed-effects models
via the lme4 package in R. Following Mathôt, Grainger, and Strijkers
(2017), for each 10ms time window, we conducted a linear mixed-ef-
fects model. In this model we predicted pupil size by modeling the
interaction between the fixed effects: Autistic Traits, Motion, and
Agent. All predictors were mean-centered. A random by-participant
intercept was included, as were random slopes for the interaction be-
tween Motion and Agent. To determine the significance of the fixed
effects, we set a threshold of at least 200 contiguous milliseconds where
t > 2. The R formula for our models was:

∼ ∗ ∗ + + ∗Pupil Size Autistic Traits Motion Agent Motion Agent

Participant

(1

| )

2.2. Results

2.2.1. Latency results
Results from the linear mixed-effects model (Fig. 3A and Tables 1

and 2) demonstrated that the time taken for participants to disengage
from a stimulus and attend to a target was significantly influenced by
the category of the stimulus presented to them. This was revealed by a
significant main effect of Motion, showing that participants were slower
to disengage their attention from videos of natural motion compared to
machine-like motion. Furthermore, participants disengaged from the
video stimulus more quickly at the 3000ms SOA compared to the
2500ms SOA. No other significant effects or interactions were found.

Table 1
Means and Standard Deviations for each stimulus condition in Experiments 1
and 2.

Experiment 1 Experiment 2

Mean SD Mean SD

Human Agent Natural Motion 296.12 7.01 377.96 8.00
Human Agent Machine Motion 289.81 5.81 367.38 7.75
Control Agent Natural Motion 292.91 8.26 376.67 11.14
Control Agent Machine Motion 290.99 10.96 370.66 11.53

Fig. 3. (A) Experiment 1. The mean time taken (latency, in milliseconds) for participants to disengage their attention from each stimulus category to observe a target
dot presented in the periphery, as measured by saccadic response times. (B) Experiment 2. The mean time taken (response time, in milliseconds) for participants to
press a button in response to a target dot presented in the periphery. Response times are collapsed across SOA, Target Position, and Autistic Traits. The points
represent individual participants, the coloured boxes represent the 25th and 75th percentiles of responses, and the whiskers represent the upper and lower values
within 1.5*inter-quartile range.

Table 2
Results from the mixed-effects models investigating factors contributing to at-
tentional disengagement in Experiments 1 and 2.

1. Experiment 1 B SE t p-value

Fixed Parts
Autistic Traits 0.006 0.016 0.392 0.696
Agent 0.001 0.016 0.276 0.783
Motion 0.008 0.002 3.763 <0.001
SOA −0.028 0.002 −15.40 <0.001
Target Position −0.003 0.006 −0.574 0.569
Autistic Traits * Agent 0.003 0.002 1.393 0.167
Autistic Traits * Motion 0.003 0.002 1.201 0.235
Agent * Motion 0.004 0.002 1.847 0.069
Autistic Traits * Agent * Motion 0.000 0.002 0.032 0.974
Random Parts
NParticipants 49

2. Experiment 2 B SE t p-value

Fixed Parts
Autistic Traits 0.036 0.019 1.906 0.062
Agent −0.002 0.002 −1.088 0.282
Motion 0.010 0.002 5.262 <0.001
SOA −0.030 0.002 −16.080 <0.001
Target Position 0.000 0.002 −0.045 0.964
Autistic Traits * Agent 0.000 0.002 −0.028 0.978
Autistic Traits * Motion 0.002 0.002 0.972 0.335
Agent * Motion 0.003 0.002 2.006 0.045
Autistic Traits * Agent * Motion −0.001 0.002 −0.964 0.335
Random Parts
NParticipants 50
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2.2.2. Pupil results
The results are illustrated in Table 3 and Fig. 4A. In Fig. 4A, pupil

size is plotted across time. Using the significance threshold outlined
above, a significant effect of Agent emerged between 230 and 480ms,
where participants showed a reliable increase in pupil size for videos of
human bodies compared to control agents. Furthermore, from 750 to
2200ms, a significant effect of Motion emerged, indicating that parti-
cipants showed greater pupil dilation for videos of natural human
motion compared to machine-like motion. Additionally, an interaction
between Motion and Agent was present from 990 to 1570ms, demon-
strating that the difference in pupil size was larger between the two
control agents than between the two human bodies. No other main
effects or interactions were significant. Overall, videos of natural
human motion led to greater pupil dilation among our participants,
suggesting they find this kind of motion more arousing than machine-
like motion.

2.3. Summary

Participants were more engaged with human body motion than with
(less socially relevant) machine-like motion or motion performed by
control agents. For example, participants disengaged their gaze more

slowly from natural versus mechanical motion. Their pupils also dilated
earlier (220–480ms) when viewing human versus control agents, and
later (750–2220ms) when viewing natural versus mechanical motion.
We also found a significant interaction between Motion and Agent
(990–1570ms), whereby pupil size differences were greater between
control agents than between human bodies. However, autistic traits did
not mediate attentional engagement nor pupil dilation when viewing
familiar, natural motion. Next, we examined the relationship between
eye gaze, pupil dilation and biological motion by performing a con-
ceptual replication with a new attention task.

3. Experiment 2

To replicate the attentional engagement findings of Experiment (E)
1, we used new participants and a more traditional behavioural mea-
sure (button press) of attentional disengagement (Azarian et al., 2016).
We hypothesised participants would show a similar pattern of atten-
tional disengagement behaviourally as that found in E1 with saccades,
and would show increased pupil dilation when viewing videos of nat-
ural versus machine-like motion, replicating the pupillometry findings
of E1.

Table 3
Means and Standard Deviations for significant pupil time windows for each stimulus condition in Experiments 1 and 2.

220–480ms 750–2200ms 990–1570ms

1. Experiment 1 Mean SD Mean SD Mean SD

Human Agent Natural Motion 0.63 0.46 1.63 1.05 1.64 1.04
Human Agent Machine Motion 0.62 0.45 1.58 0.92 1.60 0.92
Control Agent Natural Motion 0.60 0.51 1.64 1.18 1.67 1.22
Control Agent Machine Motion 0.58 0.47 1.51 1.13 1.53 1.14

220–510ms 420–2500ms 1090–2500ms 1620–2500ms

2. Experiment 2 Mean SD Mean SD Mean SD Mean SD

Human Agent Natural Motion 0.23 0.21 0.67 0.55 0.79 0.58 0.82 0.62
Human Agent Machine Motion 0.23 0.20 0.66 0.54 0.79 0.57 0.82 0.61
Control Agent Natural Motion 0.22 0.20 0.72 0.53 0.85 0.54 0.87 0.56
Control Agent Machine Motion 0.20 0.21 0.61 0.51 0.73 0.53 0.74 0.56

Fig. 4. (A) The change in pupil size across time, for each of the four stimulus categories in Experiment 1 and (B) in Experiment 2. In panels A and B, the shaded areas
represent ± 1 SE, and the vertical dashed lines indicate that the data from 220ms were included in the mixed-effects model. The horizontal lines indicate significant
main effects or interactions (t > 2), as calculated by the mixed-effects models.
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3.1. Materials and method

3.1.1. Preregistration
Experiment (E)2 was preregistered on 4th September 2017, before

any data were collected (https://aspredicted.org/kb9p8.pdf).

3.1.2. Participants
Fifty participants (25 females; Mage= 20.34, SDage= 2.57) were

recruited from the local community or from Bangor University’s student
participant panel, and were paid £7 per hour or were given course
credits for their time. As in E1, we estimated the required sample size
for our mixed-effects models from power calculations for repeated-
measures ANOVA. This sample size of 50 participants enabled us to
detect medium-to-large effect sizes with 80% power. All participants
had normal or corrected-to-normal vision, provided written informed
consent, and Bangor University’s School of Psychology Research Ethics
Committee granted ethical approval (2015-15400-A13785) following
procedures in accordance with the Declaration of Helsinki.

3.1.3. Stimuli
The same four categories of stimuli were used in E2, as described in

E1.

3.1.4. Apparatus
The same equipment was used as for E1. The experiment was con-

ducted in a small, dimly lit room with no windows, and videos were
presented in the center of a screen, 100 cm away from a chin rest.

3.1.5. Procedure
The task procedure was similar to that reported for E1, with the

exception that participants were instructed to press the space bar as
soon as a target appeared in their periphery, rather than making a
saccade to the target in the periphery. If a button press was made
prematurely (before the onset of the target), if the participant blinked,
or if they moved their eyes before the onset of the target, the message
‘You moved your eyes or responded too soon!’ appeared on the screen,
and the trial was recycled to appear later in the block. Failure to make a
response within 2000ms of the target onset resulted in the trial being
recycled later in the block. The response time was calculated by sub-
tracting the time of target onset from the button press time.

At the end of the experiment, participants completed the same
questionnaires as in E1, including a demographic and health ques-
tionnaire, the Autism Quotient questionnaire (M=18.08, SD=6.48;
AQ scores did not significantly differ between Experiments 1 and 2; t
(98)=−1.68, p=0.096), and the Oldfield handedness inventory
(M=72.22, SD=50.57; scores did not differ between Experiments 1
and 2; t (98)=−0.23, p=0.819). Note that on our Preregistration, we
also stated that we planned to collect participant responses to the Social
Responsiveness Scale (Constantino & Gruber, 2007). However, this
questionnaire was omitted due to lack of time in the testing session.

3.1.6. Reaction time data analysis
The same reaction time data analysis procedure was followed in E2

as that outlined in E1 for the latency data. Behavioural response times
faster than 80ms were discarded from the analyses, which led to 0.07%
of the data being removed. The data were modelled using linear mixed-
effects models in R. All predictors in the mixed-effects model were
mean-centered. Outliers were removed from the model using the
‘romr.fnc’ function in R, which removed an additional 2.4% of data. No
violations of linearity, homoscedasticity, or normality were detected,
and the correlations between the intercept and random effects were all
below 0.44. The final, best-fitting model was:

∼ ∗ ∗ + +

+ + + + ∗

Log Latency Autistic Traits Motion Agent SOA Target

Position Motion Agent SOA Position Participant

( )

(1 | )

3.1.7. Pupillometry data analysis
The same pupil data analysis procedure was followed in E2 as in E1.

3.2. Results

3.2.1. Reaction time results
The results from the mixed-effects model (Fig. 3B; Table 1) revealed

that, similar to the results from E1, participants took longer to disen-
gage their attention from natural motion compared to machine-like
motion, as demonstrated by a main effect of Motion. Again, we found
that participants were faster to disengage from the centrally presented
stimulus at the 3000ms SOA compared to the 2500ms SOA. There was
also a significant interaction between Motion and Agent, demonstrating
that the difference in RT between motion categories was larger for the
human agents than the control agents. No other significant main effects
or interactions were found.

3.2.2. Pupil results
As in E1, the type of agent reliably predicted pupil size in E2

(Fig. 4B and D). In other words, participants showed a greater increase
in pupil size when viewing videos of human bodies compared to control
agents from 220 to 510ms, and also to control agents from 1620 to
2500ms. From 420 to 2500ms, participants showed a greater increase
in pupil size to videos of natural compared to machine-like motion.
However, this appears to be driven by the control agent moving natu-
rally, demonstrated by a significant interaction between Motion and
Agent from 1090 to 2500ms. This interaction demonstrated that the
difference in pupil size was larger between the two control agents than
between the human agents.

3.3. Summary

Participants took longer to disengage from videos of natural versus
machine-like motion in the attentional disengagement task, and de-
monstrated greater pupil dilation for human than for control agents
between 220 and 510ms, and for natural versus machine motion from
420ms. This effect for natural motion emerged much earlier in E2 than
in E1; this was unexpected and could be due to the slight differences in
experimental set-up between both experiments. We replicated the sig-
nificant interaction between Motion and Agent, whereby greater dif-
ferences in pupil size emerged between the control agents than human
bodies. As before, autistic traits did not mediate attentional engagement
and arousal when participants viewed naturalistic motion.

4. Discussion

Across two experiments, participants detected peripherally pre-
sented targets more slowly when watching an agent moving in a bio-
logically plausible way, indicating that this stimulus type leads to
greater attentional engagement. This concurs with previously published
reports that attention is drawn by biological motion (Fox & McDaniel,
1982) and by other social stimuli, such as faces displaying direct gaze
(Senju & Hasegawa, 2005). These results suggest that biological motion
quickly and reflexively captures our attention and sustains it. To our
knowledge, this is the first study to demonstrate that visual attention is
more engaged by naturalistic body motion compared to other, less so-
cially relevant motion.

We also found a main effect of SOA in both experiments.
Participants disengaged attention more slowly from the central stimulus
at the 2500ms compared to the 3000ms SOA, in accordance with
previous literature (Azarian et al., 2016; Senju & Hasegawa, 2005).
Future work could test the possibility that participants are still fully
engaged with the videos at shorter SOAs, but begin to disengage at
longer SOAs, leading to faster disengagement. Additionally, a previous
study by Hedger, Haffey, McSorley, and Chakrabarti (2018) found that
responses to social stimuli evolve over time, in similar timescales as
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shown here. Thus, the SOA effect found in our study could be explained
by the time course of social attention presented by Hedger et al. (2018).

In Experiment 2, we found a significant interaction between Motion
and Figure demonstrating that the difference in RT between the two
motion types was greater between the human bodies than the control
agents. One possible explanation for this is that participants were more
easily able to perceive the motion differences when performed by
human bodies as compared to control agents.

As hypothesised, across both experiments, increases in pupil size
were greater in response to naturalistic than to mechanistic motion.
Sepeta et al. (2012) reported that participants have greater pupil dila-
tion when viewing images of happy faces showing direct compared to
averted gaze. Our findings are the first to show that it is not only social
stimuli that signal imminent social engagement, such as faces with di-
rect gaze, that induce autonomic changes in participants. We show that
other social stimuli, such as bodies moving in a naturalistic, human-like
way, induce similar autonomic changes in observers. Studies have
shown that pupillary responses may be linked to reward processing
(O'Doherty et al., 2006; Bijleveld et al., 2009), thus it is possible that
the pupil responses observed in our study are related to the reward
value of natural motion. Recently, Williams and Cross (2018) demon-
strated that participants were willing to exert more effort to view videos
of naturalistc human compared to mechanica motion, further reinfor-
cing the reward value of this type of stimulus. The present findings
corroborate this previous work and contribute significant new insights
to our understanding of social motivation in the typical population,
supporting the notion that the human body moving in a familiar way is
a rewarding stimulus. However, studies have shown pupil dilation in
response to arousing stimuli with either positive or negative valence
(Bradley et al., 2008), thus we cannot rule out that the pupil responses
observed in our study might have been due to negative responses to our
stimuli. Addressing this issue of pupil dilation and stimulus valence
remains an important challenge for future research to disentangle.

In both experiments, we demonstrated a significant interaction be-
tween motion and agent, whereby participants showed greater pupil
dilation when viewing natural versus machine-like motion. However,
later in the time course, this pupil size difference became greater be-
tween the control agents than the human bodies. In Experiment 2, the
main effect of Motion appears to be driven by this interaction between
Motion and Agent. The reasons for this unexpected interaction remain
unclear. These findings also contrast with our latency and RT data,
which demonstrate that the difference in RT between the two motion
types is greater between the human bodies than the control agents.
However, this unexpected pupil size finding might be partly due to the
novelty of the control agent moving biologically. Our attention is re-
flexively captured by living beings that move similarly to us (Simion,
Regolin, & Bulf, 2008); thus, the novelty of a non-human agent moving
in human ways could be particularly arousing. For example, the un-
canny valley hypothesis (Mori, 1970) suggests that very human-like,
non-human agents are perceived as eerie, and even more so when they
are moving. Therefore, the naturalistically-moving control agents used
here might have increased participants’ arousal due to their perceived
eeriness, or violated participants’ predictions of how a non-human
control agent should move (c.f., Cross et al., 2012; Saygin, Chaminade,
Ishiguro, Driver, & Frith, 2011). Further research is required to test this
explanation, and to explain why the human body moving in a me-
chanical way (the other mismatch between form and motion) did not
capture attention to the same degree. It is also worth noting that in both
experiments, we find the smallest pupil size increase when participants
view control agents moving mechanically. It is possible that the auto-
nomic nervous system is disproportionately quiet when viewing a
combination of stimulus features that are of least interest to humans.

Based on previous findings, we predicted that individuals reporting
more autistic traits would engage less with natural motion. However,
we found no evidence to support this hypothesis, either in the latency/
RT analyses or in the pupil analysis. The range of AQ scores reported by

our two participant samples in Experiments 1 (range: 3–28,
median= 15) and 2 (range: 8–33, median= 17.5) was limited, with
most participants scoring towards the lower end of the distribution.
While differences in attentional engagement with social stimuli may
emerge at the more extreme ends of the AQ distribution, other studies
have also failed to identify a relationship between social attention and
autistic traits (Freeth, Foulsham, & Kingstone, 2013). Thus, it remains
unclear whether reported autistic traits, or indeed an ASC diagnosis,
affects attentional engagement with, and arousal from, socially relevant
motion cues. Future studies should recruit both TD participants and
those with a clinical ASC diagnosis to further explore this relationship.

5. Conclusions

Using an attentional disengagement task, we have shown that at-
tention is engaged by naturalistic motion regardless of agent type. By
measuring changes in pupil size, we have further shown that natural
motion can lead to autonomic changes in participants. Taken together,
these results complement and extend the existing social motivation
literature. Not only is this is the first study to demonstrate that human
body motion engages participants’ attention more than machine-like
motion, but is also the first to associate this with changes in autonomic
arousal, further supporting the notion that we value biological motion
as a rewarding stimulus. Increased engagement with, and arousal in
response to, viewing natural motion could relate to our innate pre-
ference to orient out attention to social stimuli, such as biological
motion, that hold potentially beneficial or rewarding information. Our
findings were less conclusive concerning the hypothesised relationship
between autistic traits and reduced social motivation, as demonstrated
by our eye-tracking measures. Further research involving both TD and
participants with ASC will help to elucidate the social reward value of
biological motion among individuals across the spectrum of social
abilities.
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