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Preface 

Our goal is to produce a set of accessible, inexpensive statistics guides for 

undergraduate and post-graduate students that are tailored to specific fields and 

that use R. These books present minimal statistical theory and are intended to 

allow students to understand the process of data exploration and model fitting 

and validation using datasets comparable to their own and, thereby, encourage 

the development of statistical skills. We provide a list of more comprehensive 

texts for those that wish to continue their development as statisticians at the end 

of the book. The datasets and R code used in this book can be obtained by 

emailing the authors.   
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1 Introduction to GLMs 
 
General and Generalized Linear Models (GLMs) allow the prediction of a 

response (or dependent) variable by either single or multiple independent 

variables. Independent variables (or covariates) may be continuous, categorical 

or a combination of both. Statistical analyses such as t-tests, ANOVA, ANCOVA 

and regression are types of GLM in which the independent variables are either 

categorical (t-test and ANOVA), continuous (regression) or a mix of both 

categorical and continuous (ANCOVA). The difference between General Linear 

Models and Generalized Linear Models is simply the way that error (i.e. the 

variation in the data that is not explained by the model) is handled. In a General 

Linear Model, errors are assumed to be independent and follow a Gaussian 

(normal) distribution. In a Generalized Linear Model, other data distributions 

can be used as an alternative to normally distributed errors. Typical data 

distributions used in Generalized Linear Models are binomial, Poisson, negative 

binomial, beta and gamma distributions, though a wide range of distributions 

can potentially be used, giving great flexibility in how models can be fitted to 

data. We present examples of Gaussian (a General Linear Model), Poisson, 

negative binomial, and binomial GLMs. Hereafter we will not distinguish 

between General and Generalized Linear Models and will refer to both as GLMs. 

 

GLMs are specified by three elements: 

1. The distribution of error terms. 

2. The predictor function; comprising a set of covariates used to predict the 

response variable. 

3. The link function, describing the linear relationship between the mean of the 

response variable and the model covariates. 

 

It is good practice to specify each of these elements in the Methods section of 

your paper or thesis to make explicit how you have modelled your data. 

Examples of model specification are presented for each of the models in this 

book. 
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1.1 Introduction to R 
 
The advent of the statistical software package R has contributed substantially to 

an improvement in the quality and sophistication of data analyses performed in 

a range of scientific fields, including ecology. While not intuitive to use, R has 

become the industry standard, and time invested in learning to master R will be 

rewarded with an improved understanding of how to handle and model data. 

There are several benefits to using R. It is extremely flexible and permits 

exploration, analysis and visualisation of almost any type of data. R also readily 

permits the sharing of code with collaborators or journal reviewers and can be 

archived with corresponding datasets for others to use and improve upon. For 

this book we assume basic knowledge of running R code. 
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2 Gaussian GLM 
 

A Gaussian GLM is simply a linear regression model and is widely used in 

ecology to model a continuous variable that is assumed to be normally 

distributed. Typical ecological data that can be modelled with a Gaussian GLM 

include growth and body size data, species distributions along environmental 

gradients and animal and plant densities.  
 

2.1 River macroinvertebrate response to low flows  
 
Macroinvertebrate communities inhabiting the substrates of rivers and streams 

are useful indicators of river quality. They are used extensively around the 

world to assess the impacts of organic and inorganic pollution, changes in 

physical habitat quality, sedimentation and river flow conditions. The 

Environment Agency in the UK uses specialist invertebrate community indices 

to assess the biological quality of rivers and streams throughout England and 

Wales. Community indices are abundance weighted using data from 

standardised 3-minute kick-samples. The relative abundance of different 

macroinvertebrate taxa in a sample can be used to provide information on 

environmental conditions within river and stream ecosystems. One index, called 

the Lotic-invertebrate Index for Flow Evaluation (LIFE) (Extence et al. 1999), has 

been specifically developed to assess the biological effects of low flows and 

drought. High LIFE scores indicate a macroinvertebrate community dominated 

by taxa associated with higher river flows (lotic) and low scores indicate 

dominance by taxa found in more sluggish (lentic) flow conditions.  

  

Here we analyse data that were collected each year in spring and autumn from 

river sampling sites within a pre-determined network covering England and 

Wales. The specific aim of monitoring was to assess the effects of water 

extraction from rivers on biological quality whilst controlling for other 

environmental stressors. The prediction was that in locations with greater water 

extraction, and reduced river flows, biological quality will be poorer.  

 

The data in this example are a subset of the national Environment Agency 

dataset from one year at 66 sites that are paired to river flow gauging stations so 

that recorded summer river low flow can be linked to autumn 

macroinvertebrate samples. The 3-minute kick samples were analysed in the 

laboratory, with macroinvertebrates identified to family level. Abundance 

weightings are assigned to each taxonomic group in the sample so that a LIFE 
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score can be calculated. In addition to the ‘observed’ LIFE scores, physical 

habitat data are used to derive ‘expected’ LIFE scores to provide an indication 

of the macroinvertebrate community in ‘reference’ conditions. Dividing the 

‘observed’ by the ‘expected’ gives an ecological quality ratio, this is life in the 

dataset and is used as the response variable for the analysis.  

 

2.2 Data exploration 
 
Before fitting a model to data, it is important to perform a data exploration. A 

data exploration will save time by identifying any potential problems in the data 

and will help in deciding what type of analysis to conduct. We adopt the 

protocol proposed by Zuur et al. (2010) for conducting data exploration. This 

protocol comprises 6 steps and is intended to identify: 

 

1. Outliers in response and independent variables 

2. Normality and homogeneity of the response variable 

3. An excess of zeros in the response variable 

4. Multicollinearity among independent variables 

5. Relationships among response and independent variables 

6. Independence of response variable 

 

Here we show a basic data exploration. A fuller data exploration is presented in 

the R code available for the book. 

 
Import data 
 

Data for macroinvertebrates are saved in the tab-delimited file invert.txt 

and are imported  into a dataframe in R using the command: 
 
> invert <- read.table(file = "invert.txt",  

                       header = TRUE, dec = ".") 

 

Start by inspecting the dataframe: 
 
> str(invert) 

 

'data.frame': 66 obs. of  4 variables: 

$ eco   : Factor w/ 4 levels "midland","north", 

$ site  : int  54739 54740 54741 55819 ... 

$ rfr   : num  9.75 9.75 9.75 4.8 4.8 0.82 ... 

$ life  : num  0.99 0.97 0.98 0.72 0.77 ... 
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The dataframe comprises 66 observations of 4 variables. Each row in the 

dataframe represents a record for an individual kick sample from a river. The 

variable site is a unique identifier for the location where kick samples were 

taken in each year and season. The variable eco is hydro-ecological region and 

is a categorical variable that represents features of geology, altitude and average 

rainfall conditions; there are four levels of this variable. The variable rfr is a 

continuous variable and represents the proportion of natural low flow once 

water extraction and discharges to rivers are estimated. An rfr value of less 

than 1 indicates that low flows are less than natural levels, a value of 1 indicates 

natural low flow levels and greater than 1 suggests that low flow levels are 

higher than natural. The variable life is the LIFE score and is a continuous 

variable. 

 

Missing data can be problematic in fitting a GLM. It is necessary to check if there 

are any missing values in the dataframe (missing values are designated 'NA' in 

the tab-delimited file). 

 
>  colSums(is.na(invert)) 

 

site  eco    rfr    life 

0       0      0       0 

 

No missing data. 
 

2.2.1 Outliers 
 
Outliers in the data can be identified visually using boxplots: 
 
> par(mar = c(6,6,2,2), cex.lab = 1.5) 

> boxplot(life ~ eco,  

        ylab = "LIFE score", 

        xlab = "Hydro-ecological region", 

        data = invert, 

   las=1) 
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Fig. 2.1 Boxplot of LIFE scores for each hydro-ecological region. 
 

Fig 2.1 shows that there are differences in the average LIFE scores among hydro-

ecological regions. This outcome suggests there could be spatial differences in 

the macroinvertebrate communities related to geology, altitude and average 

rainfall conditions. 

 

An alternative approach to identify outliers for continuous variables is to use 

multi-panel Cleveland dotplots from the lattice package: 

 
> Names <- c("life", "rfr") 

> dotplot(as.matrix(as.matrix(invert[,Names])), 

        groups=FALSE, 

        strip = strip.custom(bg = 'white', 

        par.strip.text = list(cex = 1.2)), 

        scales = list(x = list(relation = "free",  

          draw = TRUE), 

        y = list(relation = "free", draw = FALSE)), 

                      col = 1, cex  = 1, pch = 16, 

        xlab = list(label = "Value of the variable",  

                      cex = 1.2), 

        ylab = list(label = "Order of the data",  

                      cex = 1.2)) 
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Fig. 2.2 Dotplots of the continuous variable life and rfr. Data are arranged by the 
order they appear in the dataframe.  
 

Dotplots for life and rfr show no prominent outliers. However, for rfr there 

appears to be clusters of certain values. We can plot this variable on its own, 

split the data by hydro-ecological region and order the data by magnitude using 

the following R code: 
 
> x <- invert[order(invert$rfr),] 

> x$fEco <- factor(x$eco) 

> dotchart(x$rfr,  

           cex = 1,  

           pch = 16,  

           groups = x$fEco, 

           xlab = "Proportion of natural flow") 
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Fig. 2.3 Dotplot of rfr with data split by eco and ordered by magnitude. 
 

There are no prominent outliers. Grubb’s test can be used to test whether the 

value that is farthest (above or below) the mean is an outlier: 
 
> grubbs.test(invert$life, type = 10)) 

 

Grubbs test for one outlier 

 

data:  invert$life G = 1.75465, U = 0.952, p-value = 1  

alternative hypothesis: highest value 0.999 is an outlier 

 

> grubbs.test(invert$rfr, type = 10) 

 

 Grubbs test for one outlier   

data:  invert$rfr G = 1.76860, U = 0.951, p-value = 1  

alternative hypothesis: highest value 9.752 is an outlier 

 

The tests indicate that there are no values that deviate significantly from the 

mean. Even where outliers exist, before considering dropping outliers, go on 

with the data exploration, but take note of the variables that have at least one 

outlier that may be influential in a subsequent analysis. 

 
2.2.2 Normality and homogeneity of the dependent variable 
 
An assumption of a Gaussian GLM is that the response variable is normally 

distributed at each value of the covariate values. The distribution of a 
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continuous variable can be visualized by dividing the x-axis into “bins” and 

counting the number of observations in each bin as a frequency polygon using 

the geom_freqpoly() function from the ggplot2 package: 
 

> p <- ggplot() 

> p <- p + ylab("Frequency") 

> p <- p + xlab("LIFE score”) 

> p <- p + theme(text = element_text(size=15)) 

> p <- p + theme(panel.background = element_blank()) 

> p <- p + theme(panel.border = element_rect(fill = NA, 

           colour = "black", size = 1)) 

> p <- p + theme(strip.background = element_rect(fill =  

           "white", color = "white", size = 1)) 

> p <- p + theme(text = element_text(size=15)) 

> p <- p + theme(legend.position='none') 

> p <- p + geom_freqpoly(data = invert, aes(life), 

           bins = 7) 

> p 

 

 
 
Fig. 2.4 Frequency polygon of LIFE scores for river macroinvertebrates. 
 

The frequency polygon plot of the dependent variable (Fig. 2.4) shows 

potentially two distributions. However, this figure ignores the covariate values, 

which may explain deviation from normality. Given that we already know that 

the distribution of LIFE scores varies with hydro-ecological region (Fig. 2.1), it 

is not surprising that the data appear as they do. Low flow values and river 

0

5

10

15

20

0.6 0.7 0.8 0.9 1.0 1.1

LIFE score

F
re

q
u

e
n
c
y



 

 

10 

hydro-ecological region may also affect the distribution of the dependent 

variable. At this stage, then, we can proceed with the data exploration bearing 

in mind that the raw data values for the dependent variable are not truly 

normally distributed. Model validation (see section 2.4) will be important to 

ensure the assumptions of any fitted model are met and this is more important 

than having normally distributed raw data values. 

 
Homogeneity of variance is an even distribution of covariate values around the 

mean and is an important assumption of a Gaussian GLM. Without 

homogeneity of variance estimated p-values are unreliable. There are several 

ways to measure homogeneity of variance. 

 

To visualise the homogeneity of the response variable in relation to a categorical 

covariate a boxplot is illustrative. Fig. 2.1 shows variation in spread of LIFE score 

data among levels of the factor eco, possibly indicating a lack of homogeneity. 

A scatterplot can be used to visualise homogeneity of variance in relation to a 

continuous covariate. 

 
Fig. 2.5 Scatterplot of life scores and rfr for each level of eco (open circles = sou
th, closed circles = west, open triangles = north, closed triangles = midland). 
 

There are several tests of homogeneity of variance, such as Bartlett's Test, the F-

ratio test, and Levene's test. The first two of these assume normality of the data. 

If your data deviate from normality they should not be used. Levene's test does 
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not assume normality. An alternative is the Brown & Forsythe test, which uses 

the median rather than mean in its estimation, and is robust to departures from 

normality. This test is based on Levene's test and can be obtained using the 

levene.test() function from the lawstat package:  

 
> levene.test(invert$life, 

              invert$eco, 

              location = c("median"),  

              trim.alpha = 0.25) 

 

Levene's Test for Homogeneity of Variance 

 

       Df  F value  Pr(>F)   

group  3   2.3415   0.0818 

 

Which shows that the data do not deviate significantly from homogeneity. 

 

2.2.3 Lots of zeros in the response variable 
 
Zeros should not be omitted from a dataset. However, an excess of zeros in the 

response variable, termed ‘zero inflation’, can cause problems with an analysis. 

Fortunately, there are a number of ways of dealing with zero inflation. The first 

step is to identify whether there is a potential problem. The percentage of zeros 

in the response variable can be estimated as: 

 
> sum(invert$life == 0,  

      na.rm = TRUE) * 100 / nrow(invert) 

 

[1] 0 

 

There are no zeros in the response variable for this dataset but you should 

always check with your own datasets. If there had been zeros, how many would 

be too many? The question of how many zeros leads to zero inflation is often 

asked but cannot be answered without fitting a model and then running 

simulations from it to see how many zeros are predicted and then compared to 

the raw data. This procedure is dealt with in Section 3.4 of Chapter 3. 

 
2.2.4 Multicollinearity among covariates 
 
Along with normality of residuals and homogeneity of variance, an additional 

assumption of linear modelling is independence of the independent variables. 

In ecological studies it is not unusual to collect a large number of variables, 
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which are often highly correlated. If covariates in a model are correlated, then 

the model may produce unstable parameter estimates with inflated standard 

errors that will result in an overall significant model but with no significant 

predictors. 

 

Multicollinearity can be tested in several ways. The simplest is to construct a 

correlation matrix with corresponding pairplots. The code for this plot is 

available in the R file associated with this chapter. 

 
Fig. 2.6 Pairplot of rfr and eco. The lower panel shows the pairwise Pearson 
correlation, with font size proportional to correlation coefficient. Variables are not 
collinear. 

 

Another approach to identifying multicollinearity is by calculating a variance 

inflation factor (VIF) for each variable. The VIF is an estimate of the proportion 

of variance in one predictor explained by all the other predictors in the model. 

A VIF of 1 indicates no collinearity. VIF values above 1 indicate increasing 

degrees of collinearity. VIF values exceeding 3 are considered problematic (Zuur 

et al. 2010). In this case the variable with the highest VIF should be removed from 

the model and the VIFs for the model recalculated. 

 

The VIF for a model can be estimated using the vif function from the car 

package: 
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> vif(lm(life ~ rfr + eco,  

                data = invert)) 

 

     GVIF      Df       GVIF^(1/(2*Df)) 

rfr  1.135876  1        1.065775 

eco  1.135876  3        1.021461 

 
For the macroinvertebrate model estimated VIFs are <3, so there appear to be no 

serious problems with multicollinearity. 

 
2.2.5 Relationships among dependent and independent variables 
 
Visual inspection of the data using plots is a critical step and will illustrate 

whether relationships are linear or non-linear and whether there are interactions 

between covariates. 

 
> xyplot(life ~ rfr | eco,  

         data = invert, 

         layout = c(2,2), 

         xlab = list(label = "Low flow level", 

  cex = 1.2), 

         ylab = list(label = "LIFE score", 

  cex = 1.2), 

         strip = function(bg = 'white', ...)  

         strip.default(bg = 'white', ...), 

         scales = list(alternating = TRUE,  

          x = list(relation = "free"), 

          y = list(relation = "same")), 

         panel = function(x,y){ 

         panel.grid(h = -1, v = 2) 

         panel.points(x,y, col = 1,  

  pch = 16,  

          cex = 1.2) 

         panel.abline(lm(y~x),  

  col = 1,  

  lwd = 5)}) 
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Fig. 2.7 Multipanel scatterplot of life scores and rfr across hydro-ecological 

regions (eco) with a line of best fit plotted. 

 

The plot of the data in Fig. 2.7 do not suggest strongly non-linear patterns in the 

data. Fitted lines for the relationship between life and rfr indicate that the 

nature of this relationship is different for at least one level of eco (the level for 

'north'), implying an interaction between low river flow and hydro-ecological 

region. If the relationship between life and rfr did not vary between regions; 

i.e. the slopes were the same in each region, the implication would be that there 

was no interaction with hydro-ecological region. In this case, inclusion of an 

interaction term in the model would not be justified. 

 

2.2.6 Independence of response variable 

 
A critical assumption for a GLM is that each observation in a dataset is 

independent of all others. For some data this assumption is difficult to confirm 

but the risk of non-independence can be reduced by careful sampling. Strictly 

randomly collected samples will tend to be independent. 

 

Additional information, such as spatial location or time of collection, can be 

included in a dataset. Spatial and temporal dependency in ecological data are 

common and require specific modelling approaches. 
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For the river macroinvertebrate data, samples were collected by experienced 

biologists and we are only using one observation from each sampling site for 

one particular year. In this case, then, we can be reassured that the response 

variable values are independent. 

 

2.3 Model fitting 
 

The data exploration showed: 

 

1. No outliers in the response variable, life. 

2. A non-normally distributed but homogenous response variable. 

3. No zeros in the response variable. 

4. No serious collinearity between variables. 

5. A potential interaction between rfr and eco. 

6. Probable (but untested) independence of the response variable. 

 

Given these outcomes of the data exploration the model is fitted as: 

 
> Gaus1 <- lm(life ~ rfr * eco, 

                     data = invert) 

 
The numerical output is obtained with the summary function: 

 
> summary (Gaus1) 

           Estimate   Std. Error t value Pr(>|t|)     
(Intercept)   0.715202   0.026291  27.203  <2e-16 

rfr           0.015447   0.006326   2.442  0.01768 

econorth     -0.076067   0.042455  -1.792  0.07840 

ecosouth      0.021766   0.037257   0.584  0.56133     

ecowest       0.015707   0.044434   0.353  0.72500     

rfr:econorth  0.030198   0.010783   2.800  0.00692 

rfr:ecosouth  0.007868   0.007496   1.050  0.29827     

rfr:ecowest   0.009060   0.008432   1.074  0.28707     

 

Residual standard error: 0.0628 on 58 degrees of freedom 

Multiple R-squared:  0.6738, Adjusted R-squared:  0.6345  

F-statistic: 17.12 on 7 and 58 DF,  p-value: 4.742e-12 

 

This output shows interesting patterns. However, before attempting to interpret 

these results it is necessary to conduct model validation. 
 

2.4 Model validation 
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For the fitted model, validation requires verification of: 

 

1. Homogeneity of variance. 

2. Model misfit. 

3. Normality of residuals. 

4. Absence of influential observations. 

 

2.4.1 Homogeneity of variance 
 

Homogeneity of variance can be assessed visually by plotting model residual 

variance (the variance in the response variable that is not explained by the 

model) against model fitted values. R code to plot standardised residuals against 

fitted values is given by: 

 
Fitted <- fitted(Gaus1) 

Resid  <- resid(Gaus1, type = "pearson") 

par(mfrow = c(1,1), mar = c(5,5,2,2)) 

plot(x = Fitted, y = Resid, 

     xlab = "Fitted values",  

     ylab = "Pearson Residuals") 

abline(h = 0, lty = 2) 

 
Fig. 2.8 Pearson residuals plotted against fitted values to assess homogeneity of 
variance. Ideally, the distribution of residuals around zero should be consistent along 
the horizontal axis. 
 
The distribution of residuals is consistent along the horizontal axis  (Fig. 2.8); the 
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absolute values of the residuals are independent of the fitted values, which 

imply homogeneity in the model.  

 
2.4.2 Model misfit 
 

Model misfit occurs if key covariates (including interactions) are missing from 

the model, or the model departs from linearity. Model misfit can be recognised 

visually by plotting Pearson residuals against each covariate in the model, as 

well as those not included in the model. 

 
> plot(x = invert$rfr, 

       y = Resid, 

       xlab = "Low flow level" 

       ylab = "Pearson residuals", 

       pch = 16, cex = 1.5) 

> abline(h = 0, lty = 2) 

 

 
 

Fig. 2.9 Pearson residuals plotted against rfr to assess model misfit. Ideally, the 
distribution of residuals around zero should be consistent along the horizontal axis. 
 

For the covariate rfr, the distribution of residuals is relatively consistent along 

the horizontal axis and shows no obvious patterns (Fig. 2.9). 
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       xlab = "Hydro-ecological region", 

       ylab = "Pearson residuals", 

       pch = 16, cex = 1.5) 

> abline(h = 0, lty = 2) 

 

 
 
Fig. 2.10 Boxplot of Pearson residuals from different hydro-ecological regions. 
 

For the categorical covariate eco, the distribution of residuals is relatively 

consistent across all hydro-ecological regions (Fig. 2.10). 

 

2.4.3 Normality of residuals 
 

The normality of residuals can be judged by plotting a histogram: 

 
p <- ggplot() 

p <- p + ylab("Frequency") 

p <- p + xlab("Pearson residuals") 

p <- p + theme(text = element_text(size=15)) 

p <- p + theme(panel.background = element_blank()) 

p <- p + theme(panel.border = element_rect(fill = NA,  

               colour = "black", size = 1)) 

p <- p + theme(strip.background = element_rect(fill =    

              "white", color = "white", size = 1)) 

p <- p + theme(text = element_text(size=15)) 

p <- p + geom_histogram(colour = "black", fill = "white",  

               data = invert, aes(Resid), bins = 8) 

p 

mids north south west

−0.10

−0.05

0.00

0.05

0.10

Hydro−ecological region

P
e
a

rs
o

n
 r

e
s
id

u
a
ls



 

  

19 

 

 
 
Fig. 2.11 Histogram of model Pearson residuals. 

 

The assumption of the normality of the model residuals appears to me met (Fig. 

2.11) despite the distribution of the raw data that did not follow a normal 

distribution (Fig. 2.4). 

 
2.4.4 Absence of influential observations 
 

The absence of influential observations can be tested by plotting Cook's distance. 

This function identifies data points with large influence. Cook's distance is 

estimated by systematically dropping each observation and comparing the fitted 

values with those when all observations are included in the model. A Cook's 

distance exceeding 1 indicates an influential data point. R code to plot Cook's 

distance for model Gaus1 is given by: 

 
> par(mfrow = c(1, 1)) 

> plot(cooks.distance(Gaus1), 

       xlab = "Observation",  

       ylab = "Cook's distance", 

       type = "h",  

       ylim = c(0, 1.1), 

       cex.lab =  1.5) 

> abline(h = 1, lty = 2) 
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Fig. 2.12 Plot of Cook's distance for model Gaus1. A Cook's distance of 1 (indicated by 
a dashed horizontal line) denotes an influential observation. 

 
There is no evidence from plotting Cook’s distance for influential observation in 

the model (Fig 2.12). 

 

Model validation has shown no evidence of model misfit, model residuals 

appear normal and there are no influential observations. However, there is some 

evidence for a lack of homogeneity of variance (termed heteroscedasticity) but 

this is for a covariate that was not included in the model. 

 

2.5 Model presentation  

 
We can specify the model using mathematical notation in the following way: 

 

lifei ~ Gaussian(i, 
2) 

E(lifei) = i   and   var(lifei) = 2
 

i = 1 + 2 x rfri + 3 x ecoi + 4 x rfri x ecoi 

 
Where lifei is the macroinvertebrate metric for river i assuming a normal 

distribution with mean i and variance 2. rfri is a continuous covariate 

corresponding with the low flow level for river i and ecoi is a categorical 

covariate with four levels corresponding with the hydro-ecological region in 

which a surveyed river was located. A full model specification should be 
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included in the Methods section of a paper or dissertation. The numerical output 

of the model is obtained with: 

 
> summary (Gaus1) 

           Estimate   Std. Error t value Pr(>|t|)     
(Intercept)   0.715202   0.026291  27.203  <2e-16 

rfr           0.015447   0.006326   2.442  0.01768 

econorth     -0.076067   0.042455  -1.792  0.07840 

ecosouth      0.021766   0.037257   0.584  0.56133     

ecowest       0.015707   0.044434   0.353  0.72500     

rfr:econorth  0.030198   0.010783   2.800  0.00692 

rfr:ecosouth  0.007868   0.007496   1.050  0.29827     

rfr:ecowest   0.009060   0.008432   1.074  0.28707     

 

Residual standard error: 0.0628 on 58 degrees of freedom 

Multiple R-squared:  0.6738, Adjusted R-squared:  0.6345  

F-statistic: 17.12 on 7 and 58 DF,  p-value: 4.742e-12 

 

These results can be more formally presented in the following way:  

 

Table 2.1. Summary of Gaussian GLM to model the macroinvertebrate LIFE 

score in a set of English rivers 

 

Model parameter Estimate SE P 

Intercept(midland) 0.715 0.026 <0.001 

rfr 0.015 0.006 0.018 

eco(north)  -0.077 0.042 0.078 

eco(south) 0.022 0.037 0.561 

eco(west) 0.016 0.044 0.725 

rfr x eco(north) 0.030 0.011 0.007 

rfr x eco(south) 0.008 0.008 0.298 

rfr x eco(west) 0.009 0.008 0.287   

 

These results indicate a modest interaction between LIFE scores and hydro-

ecological region. To understand this result it is best to visualize the model result 

in a figure. The R code to do so is available in the accompanying R code. 
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Fig. 2.13 Mean fitted LIFE scores for rivers (solid line) and 95% confidence intervals 
(shaded area) against low flow level in four hydro-ecological regions. Black dots are 
observed data. 
 

Macroinvertebrate LIFE scores do not generally differ across all four hydro-

ecological regions. However, the relationship between relative natural flow and 

LIFE score differs slightly between regions and is more positive for the north 

hydro-ecological region (Fig 2.13). 

 

Conclusions 
 

The Gaussian GLM predicted a positive relationship between magnitude of low 

river flow (rfr) and the macroinvertebrate index (life). This relationship 

changes slightly across hydro-ecological regions, with the northern region 

showing a stronger positive relationship. 
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3 Poisson GLM 
 

A Poisson GLM is suitable for ecological data in which the response variable 

comprises count data, such as the number of individuals or species in a specific 

habitat. Data must not take values below zero and the variance is assumed 

approximately equal to the mean. 
 

3.1 Abundance of freshwater mussels  
 
Unionid freshwater mussels are benthic macroinvertebrates that play a key role 

in the ecology of many freshwaters. They use a muscular foot and shell to 

burrow into the sediment and filter feed on suspended particles using cilia-

generated water currents. They possess a parasitic larval stage, called a 

glochidia, that attach to a vertebrate host, usually a fish, and subsequently 

metamorphose into a juvenile mussel. Freshwater mussels are globally 

threatened, with declines in distribution and abundance associated with habitat 

modification, declines in water quality, impacts of non-native species, declines 

in fish hosts, and over-exploitation. 

 

As part of a larger scale study, Smith et al. (2000) surveyed the abundance of 

freshwater mussels in a series of lakes in the Danube basin in the Czech 

Republic. The aim of the study was to identify which environmental variables 

predicted the abundance of the swan mussel (Anodonta cygnea). Mussels were 

collected by hand from 1 m2 quadrats. In total, 21 lakes were surveyed, though 

data for only a single lake are presented here .  

 

For each quadrat, water depth was measured (m) and the substrate type 

classified as either mud, sand or gravel. All freshwater mussels in the quadrat 

were collected, identified to species and counted. Four mussel species were 

present. In addition to the swan mussel, the duck mussel (A. anatina), painter's 

mussel (Unio pictorum) and swollen mussel (U. tumidus) were collected. The 

number of swan mussels is the response variable, and comprises a count that is 

bounded at zero. Water depth, and the abundance of duck, painter's and swollen 

mussels are continuous covariates. Substrate type is a categorical covariate.  

 

It was predicted that swan mussel abundance would be positively associated 

with water depth and a mud substrate, but negatively with the abundance of 

duck mussels, to which they are closely related. The abundance of painter's and 

swollen mussels, which are more distantly related to swan mussels, were 
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combined into a single covariate (unio) and predicted to have no association 

with the abundance of swan mussels. 

 

3.2 Data exploration 
 
As with a Gaussian GLM, before fitting a Poisson GLM it is necessary to perform 

a data exploration (see section 2.2). A Poisson GLM does not assume normality 

of the response variable, and homogeneity of variance will be assessed using the 

residuals of the model as part of model validation. 

 

Import data 
 

Data for mussels are saved in the tab-delimited file muss.txt and are imported  

into a dataframe in R using the command: 
 
> muss <- read.table(file = "muss.txt",  

                   header = TRUE, dec = ".") 

 

Inspect the dataframe: 
 
> str(muss) 

 

'data.frame': 95 obs. of  5 variables: 

$ depth: num  0.08 0.12 0.14 0.17 0.18 0.24 0.25... 

$ subs : Factor w/ 3 levels "gravel","mud"... 

$ unio : int  0 0 0 0 0 0 0 0 0 12 ... 

$ duck : int  0 0 0 0 0 1 0 0 0 2 ... 

$ swan : int  0 0 0 0 0 0 0 1 0 0 ... 

 

The dataframe comprises 95 observations of 5 variables. Each row in the 

dataframe represents a separate quadrat. Substrate (subs) is a factor; i.e. a 

categorical variable, with three levels (gravel, mud, sand). Water depth (depth), 

and abundance of painter's and swollen mussels (unio), duck (duck) and swan 

mussels (swan), are all continuous covariates. 

 

Missing data can be problematic in fitting a Poisson GLM. It is necessary to check 

if there are any missing values in the dataframe (missing values are designated 

'NA' in the tab-delimited file). 

 
>  colSums(is.na(muss)) 

 
depth   substrate   unio      duck      swan  
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  0         0         0         0         0  

 

No missing data. 

 
3.2.1  Outliers 
 
Outliers in the data can identified visually using Cleveland dotplots: 

 
> Var <- c("depth", "substrate", "unio", "duck", "swan") 

> dotplot(as.matrix(as.matrix(muss[,Var])), 

     groups=FALSE, 

     strip = strip.custom(bg = 'white', 

     par.strip.text = list(cex = 1.2)), 

     scales = list(x = list(relation = "free", draw = TRUE), 

     y = list(relation = "free", draw = FALSE)), 

     col=1, cex  = 0.6, pch = 16, 

     xlab = list(label = "Data range", cex = 1.5), 

     ylab = list(label = "Data order", cex = 1.5))  

 

 
 
Fig. 3.1 Dotplots of duck mussel abundance (duck), swan mussel abundance (swan), 

depth (depth), and painter's and swollen mussel abundance (unio). Data are arranged 
by the order they appear in the dataframe.  

 

There are no obvious outliers in the data (Fig. 3.1). Are the data balanced among 

different levels of the categorical covariate? 
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> table(muss$subs) 

 

gravel   mud   sand  

    16    49     30 

 

The data are not well balanced among levels. However, if data are a random 

sample from the population, then a lack of balance is inevitable. In the present 

case, care must be taken in fitting a complex model to the data.  

 

3.2.2  Lots of zeros in the response variable 
 
The number of zeros in the response variable can be estimated as: 

 
> sum(muss$swan == 0) * 100 / nrow(muss) 

 

[1] 40 

 

40% of quadrats contained no swan mussels. This figure is high and could cause 

problems. 

 

3.2.3 Multicollinearity among covariates 
 

Use a correlation matrix with corresponding pairplots. The code for this plot is 

available in the R file associated with this chapter. 

 
Fig. 3.2 Pairplot of covariates. The lower panel shows pairwise Pearson correlations, 
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with font size proportional to correlation coefficient. No covariates are collinear. 

 

Fig. 3.2 suggests covariates are not collinear. This conclusion can be confirmed 

by estimating the variance inflation for the covariates using the vif function: 

 
> vif(glm(swan ~ substrate + depth + unio + duck, 

                 family = poisson, 

                 data = muss)) 

 

      GVIF  Df  GVIF^(1/(2*Df)) 

subs  1.24  2   1.05 

depth 1.56  1   1.25 

unio  1.36  1   1.17 

duck  1.12  1   1.06 

 

Estimated VIFs are <3, so there is no problem with multicollinearity. 

 

3.2.4 Relationships among dependent and independent variables 
 
Plot data to examine whether data are linear or non-linear and whether there 

are interactions between covariates. 

 
> par(mfrow=c(2,2), mar=c(5,5,1,1)) 

> plot(y = muss$swan, x = muss$depth,  

  xlab = "Depth (m)", ylab = "Swan mussel abundance") 

> plot(swan ~ unio,  data = muss,  

  xlab = "Unio mussel abundance", ylab = "Swan mussel  

  abundance") 

> plot(swan ~ duck,  data = muss,  

  xlab = "Duck mussel abundance", ylab = "Swan mussel  

  abundance") 

> boxplot(swan ~ subs, data = muss,  

  xlab = "Substrate type", ylab = "Swan mussel  

  abundance") 
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Fig. 3.3 Plots of number of swan mussels in quadrats against water depth (m), number 
of unio and duck mussels and substrate type. 
 

There is a positive association between swan mussel abundance and water 

depth, and a weak negative association with unio abundance. There is no direct 

association with duck mussel abundance. Swan mussels are more abundant on 

a mud and sand substrate in comparison with gravel (Fig. 3.3). It is also 

informative to plot two covariates together using multipanel scatterplots. 

 

 
 
Fig. 3.4 Multipanel scatterplot of number of swan mussels in quadrats against water 
depth (m) on three different substrates. 
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The strength of relationship between the number of swan mussels in quadrats 

with a mud substrate in comparison with sand and gravel is greater, which 

suggests a possible interaction between the effects of water depth and substrate 

on swan mussel abundance (Fig. 3.4). The code for Figs 3.4-3.6 is available in the 

R file associated with this chapter. 
 

 
 
Fig. 3.5 Multipanel scatterplot of number of swan mussels in quadrats against 
number of unio mussels on three different substrates. 

 

The relationship between swan and unio mussel abundance varies with 

substrate (Fig. 3.5). With mud and sand the relationship is negative while on a 

gravel substrate it is positive. Again, this pattern suggests an interaction 

between unio abundance and substrate on swan mussel abundance. 

 
 
Fig. 3.6 Multipanel scatterplot of number of swan mussels in quadrats against 
number of duck mussels on three different substrates. 
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In Fig. 3.6 the strength of relationship between the number of swan mussels and 

duck mussels varies modestly among substrate types but is broadly consistent. 

This pattern suggests that there is no interaction between number of duck 

mussels and substrate on swan mussel abundance. 

 

3.2.5 Independence of response variable 

 
An assumption is that swan mussel abundances for each quadrat are 

independent of each other; swan mussel abundance in one quadrat should not 

provide be informative of swan mussel abundance in another. Data were 

collected to achieve independence, but insufficient data were collected to 

adequately test this assumption. Additional data on quadrat location could be 

used to test this assumption, but these were not collected. We can proceed with 

model fitting, but with the caveat that the assumption of response variable 

independence has not been tested. 

 

3.3 Model fitting 
 

The data exploration showed: 

 

1. No outliers in the data. 

2. A high proportion of zeros in the response variable. 

3. Imbalance of data among levels of the categorical covariate 'substrate' 

4. No collinearity between covariates. 

5. Potential interactions between substrate type and both water depth and 

unio mussel abundance. 

6. Probable (but untested) independence of the response variable. 

 

Given the imbalance in the data the model will be fitted without interactions. 

 

The Poisson distribution 
 
The Poisson is a non-normal distribution that is effective for modelling strictly 

positive integer data (such as counts of mussels in quadrats). It has a single 

parameter (lambda, λ), which is both the mean and variance of the response 

variable. Sometimes you will see mu (𝜇) used to represent the mean. The 

variance in the Poisson distribution is proportional to the mean so that larger 

mean values have larger variation. 
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The predictor function 
 
A GLM uses a predictor function (eta, ) that specifies the covariates to be used 

in the model. In this example for swan mussel abundance we use: 

 

 = Intercept + Substrate + Depth + Duck mussels + Unio mussels 

 

The link function 
 
The link function is used to link the response variable (counts of swan mussels) 

and the predictor function (covariates). In the case of a Poisson GLM the default 

is a log link function. The link function is needed to ensure model fitted values 

remain positive, while allowing zeros in the data.  

 

So, to fit the model in R, we must specify the 'family' and the link function: 
 

> Pois1 <- glm(swan ~ subs + depth + duck + unio, 

                      data = muss,  

                      family = poisson(link = log)) 

 

> summary (Pois1) 

 

             Estimate  Std. Error z value Pr(>|z|)     

(Intercept)  -1.9556     0.5066   -3.86   <0.001 

subsmud       0.8138     0.4853    1.68    0.094  

subssand      0.4210     0.4951    0.85    0.395     

depth         0.9547     0.1626    5.87   <0.001 

duck          0.0512     0.0417    1.23    0.220     

unio          0.0387     0.0531    0.73    0.466 

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 176.40  on 94  degrees of freedom 

Residual deviance:  96.49  on 89  degrees of freedom 

AIC: 251 

 

For Poisson models there is no true R2 for the model. Instead we can calculate 

the explained deviance (sometimes called the pseudo-R2). This is calculated as: 

100 x (null deviance-residual deviance) / null deviance; i.e.  100 x (176.40 - 96.49) 

/ 176.40 = 45.3% of the variation in the number of swan mussels.  
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The Akaike Information Criterion (AIC) is 251. The AIC is useful for comparing 

models with different combinations of covariates, for instance if we wish to carry 

out model selection. 

 

However, before we attempt to interpret this model further, we must first carry 

out model validation. 

 
3.4 Model validation 
 
For the fitted Poisson GLM, validation is required to look for: 

 

1. Overdispersion. 

2. Model misfit. 

 

3.4.1 Overdispersion 
 

Poisson GLMs assume that the mean and variance of the response variable 

increase at the same rate (see the model summary output above and the 

statement Dispersion parameter for poisson family taken to be 

1). This assumption must be confirmed. If the residual deviance of the fitted 

model is bigger than the residual degrees of freedom, then we have 

overdispersion. Overdispersion means that a Poisson distribution does not 

adequately model the variance and is not appropriate for the analysis. 

 

The overdispersion statistic can be calculated with the following R code: 

 
> ods <- Pois1$deviance / Pois1$df.residual 

> ods 

 

1.11 

 

A value of 1.11 indicates mild overdispersion and in this case is acceptable. 

Values exceeding 1.2 are problematic. In Chapter 4 we explain the approach to 

take if a Poisson GLM shows severe overdispersion. 

 

3.4.2 Model misfit 
 

As with a Gaussian GLM, model misfit in a Poisson GLM is recognised by 

plotting Pearson residuals against fitted values, against each covariate in the 

model, as well as any not included in the model (in this case we included all 
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variables in the model). The presence of influential observations can be tested 

by plotting Cook's distance. 

 

 
 
Fig. 3.7 A. Pearson residuals plotted against fitted values; B. Pearson residuals against 
depth; C. Number of unio mussels; D. Number of duck mussels, E. Substrate type. F. 
Cook's distance values for model Pois1. 

 

Plots A-E in Fig. 3.7 show no causes for concern; residuals are distributed 

consistently along the horizontal axis in each case and there are no obvious 

patterns in the residuals. There is also no evidence from plotting Cook's distance 

(Fig. 3.7F) of influential observations in the model. 

 

3.4.3  Simulating from the data 
 

During data exploration it was observed that 40% of quadrats contained no 

swan mussels, and this was raised as a potential problem. As part of model 

validation, we can simulate data from the model and compare with the observed 

data to see if the number of zeros in simulated datasets matches the 40% of zeros 

observed. 

 

Start by simulating 10,000 datasets using the parameters of model Pois1: 
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> Nmuss <- nrow(muss) 

> Fitted<- fitted(Pois1) 

> Ysim  <- matrix(nrow = Nmuss, ncol = 10000) 

> Zeros <- vector(length = 10000) 

> for(i in 1:10000){ 

  Ysim[,i] <- rpois(Nmuss, lambda = Fitted) 

  Zeros[i] <- sum(Ysim[,i] == 0) / Nmuss} 

 

These data are then plotted as a frequency histogram:  

 
> par(mar = c(5,5,2,2), cex.lab = 1.5, mfrow = c(1,1)) 

> plot(table(Zeros),  

     axes = FALSE, 

     xlab = "Percentage of zeros", 

     ylab = "Frequency", 

     xlim = c(0.2, 0.6), 

     ylim = c(0, 1000)) 

> axis(2) 

> axis(1, at = c(0.2, 0.3, 0.4, 0.5, 0.6), 

     labels = c("20%", "30%", "40%", "50%", "60%")) 

 

Finally, the percentage of zeros in the observed data are plotted as a black 

diamond to indicate where in the distribution the observed data lie. 

 
> points(x = sum(muss$swan == 0) / Nmuss, y = 30,  

       pch = 18, cex = 5, col = 1) 
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Fig. 3.8 Frequency histogram of the percentage of quadrats with no swan mussels in 
10,000 simulated datasets. The black diamond is the percentage of quadrats without 
swan mussels in the observed data. 
 

The number of zeros  in simulated datasets corresponds well with what was 

observed during mussel surveys. This outcome gives us confidence that the 

Poisson GLM is reliably recreating a comparable pattern of data to that 

observed. 

 

3.5 Model presentation  
 
Specify model Pois1 using mathematical notation in the following way: 

 

Swani ~ Poisson(i ) 

E(Swani) = i   and   var(Swani) = i 

log(i ) = i 

i = 1 + 2 x Substratei + 3 x Depthi + 3 x Ducki + 4 x Unioi 

 
Where Swani is the number of swan mussels in quadrat i assuming a Poisson 

distribution with mean and variance i. Depthi is a continuous covariate 

corresponding with water depth of quadrat i (m) and Substratei is a categorical 

covariate with three levels (gravel, sand, mud). Ducki is a continuous covariate 
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corresponding with the number of duck mussels in quadrat i and Unioi is the 

total number of painter's and swollen mussels in quadrat i. 

 

The numerical output of the model is obtained with: 

 
> summary(Pois1) 

 

              Estimate Std. Error t value Pr(>|t|)     

(Intercept)  -1.5367     0.3987   -3.85   0.00012 

subsmud       0.2934     0.3648    0.80   0.42127     

subssand     -0.0440     0.3780   -0.12   0.90732     

depth         0.9971     0.1668    5.98   2.3e-09 

duck          0.0513     0.0419    1.22   0.22099     

unio          0.0304     0.0545    0.56   0.57720   

 

These results can be more formally presented in the following way:  

 

Table 3.1. Summary of Poisson GLM to model the number of swan mussels 

(Anodonta cygnea) collected in 1 m2 quadrats in a lake in the River Danube basin. 

 

 

Model parameter Estimate SE P 

Intercept(gravel) -1.54 0.40 <0.001 

Substrate(mud) 0.29 0.36    0.421 

Substrate(sand) -0.04 0.38    0.907 

Depth 1.00 0.17  <0.001 

Duck  0.05 0.04   0.221 

Unio  0.03 0.05   0.577 

 

Some covariates are non-significant and appear redundant in the model. Should 

we proceed with model selection and find an optimal model? Model selection 

in ecology is a contentious issue and, for now, we choose to leave the model as 

it was formulated to address the original model predictions. 

 

The model can be visualized using ggplot2. The code for this plot is available 

in the R file associated with this chapter. 
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Fig. 3.9 Mean fitted number of swan mussels (Anodonta cygnea) (solid line) with 95% 
confidence intervals (shaded area) against water depth (m) on three substrate types 
(gravel, mud and sand). Black dots are observed data. 

 

 
Conclusions 
 

On the basis of Smith et al. (2000) it was predicted that the abundance of swan 

mussels would be positively associated with water depth and a mud substrate, 

negatively with duck mussel abundance, and with no relationship with Unio sp. 

mussels. The Poisson GLM fitted to these data supported the prediction for a 

relationship with depth, but no significant association, after controlling for the 

effects of depth, was demonstrated for a mud substrate. There was no support 

for the predicted relationship with duck mussels. As predicted, the abundance 

of swan mussels appeared unaffected by the abundance of Unio sp. mussels. 

 

Reference 
 

Smith, C., Reynolds, J.D., Sutherland, W.J. & Jurajda, P., 2000. The population 

consequences of reproductive decisions. Proceedings of the Royal Society, London. 

B. 267, 1327-1334. 
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4 Negative binomial GLM 
 

A negative binomial GLM is used for the same type of ecological data that a 

Poisson GLM would be used to analyse; count data that does not take values 

below zero. However, the negative binomial GLM does not assume that the 

variance of the response variable is equal to its mean and, therefore, can be used 

to model overdispersed data (see 3.4.1), which is a common property of 

ecological data. Formulation of a negative binomial GLM is slightly more 

complex than a Poisson GLM, and a negative binomial GLM is used when a 

Poisson GLM is not appropriate due to overdispersion. 

 

4.1 Species diversity of chironomids  
 
Chironomids are a taxonomically diverse family of non-biting flies with a global 

distribution in freshwaters. They are capable of adapting to a wide range of 

environmental conditions and play a key ecological role in cycling organic 

matter. 

 

A study was conducted by Leszczyńska et al. (2019) to analyse the structure of 

chironomid assemblages and identify the environmental factors that underpin 

variation in chironomid species richness across a set of lowland rivers. The aim 

of the study was to identify which environmental variables predicted 

chironomid species richness. Chironomid samples were collected from fourteen 

study sites in seven lowland rivers in central Poland. On each sampling occasion 

samples were collected in different months, with a total of 82 samples collected 

in total.  

 

The data collected by Leszczyńska et al. (2019) include river name and month of 

sample collection. At each sampling point benthic samples containing 

invertebrates and particulate organic and inorganic matter were collected and 

the current velocity (m s-1), river width (m), water depth (m), water temperature 

(°C), and dissolved oxygen (mg l-1) were also recorded. Benthic samples were 

transferred to the laboratory and invertebrates were sorted from benthic 

sediment by hand. All chironomids in samples were identified to species level 

and counted. The organic content of samples was determined as benthic 

particulate organic matter (BPOM) (g m-2). The quantity of inorganic substrate 

was estimated as substrate inorganic index (SI). 
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The number of chironomid species in each sample is the response variable, and 

comprises a species count that is bounded at zero. River and month are 

categorical variables while all the other covariates are continuous. 

 

4.2 Data exploration 
 
Import data 
 

Data for chironomids are saved in the tab-delimited file rivchir.txt and are 

imported  into a dataframe in R using the command: 
 
> rivchir <- read.table(file = " rivchir.txt", 

                  header = TRUE, dec = ".") 

 

Start by inspecting the dataframe: 
 
> str(rivchir) 

 

'data.frame': 82 obs. of  7 variables: 

 $ river: Factor w/ 7 levels "bzur","grab", ... 

 $ vel  : num  0.61 0.61 0.28 0.26 0.28 0.33 0.31 ... 

 $ si   : num  5.5 20.9 3.8 24.8 3.9 21.6 4 19.3 ... 

 $ bpom : int  1700 260 2000 500 1800 400 1800 450 ... 

 $ temp : num  13 13 18 21 5 0 17 19 18 18 ... 

 $ oxy  : num  7.7 7.9 5 5.9 9.9 10.2 5.8 6.5 6.5 ... 

 $ taxa : int  17 23 28 22 21 21 25 21 23 22 ... 

 

The dataframe comprises 82 observations of 7 variables. Each row in the 

dataframe represents a sample collected from a different river in a different 

month. River (river) is a factor; i.e. a categorical variable. River velocity (vel), 

inorganic substrate index (si), benthic particulate organic matter (bpom), water 

temperature (temp), dissolved oxygen concentration (oxy), and number of 

chironomid species (taxa) are all continuous covariates. 

 

It is necessary to check if there are any missing values in the dataframe (missing 

values are designated 'NA' in the tab-delimited file. 

 
>  colSums(is.na(rivchir)) 

 
river   vel    si  bpom  temp   oxy  taxa  

    0     0     1     0     0     1     0 
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A small number of missing values - these must be removed.  

 

Is the categorical covariate river balanced? 
 

> table(rivchir$river) 

 

bzur grab mosz mrog mroz wart wida  

  12   12   12   12   12   10   12  

 

The data are well balanced. 

 
4.2.1  Outliers 
 
Outliers in the data can be identified visually using Cleveland dotplots. 

 
> Var <- c("vel", "si", "bpom", "temp", "oxy", "taxa") 

> dotplot(as.matrix(as.matrix(rivchir[,Var])), 

 groups=FALSE, 

 strip = strip.custom(bg = 'white', 

 par.strip.text = list(cex = 1.2)), 

 scales = list(x = list(relation = "free",  

 draw = TRUE), 

 y = list(relation = "free", draw = FALSE)), 

 col=1, cex  = 1.0, pch = 16, 

 xlab = list(label = "Data range", cex = 1.2), 

 ylab = list(label = "Data order", cex = 1.2)) 
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Fig. 4.1 Dotplots of river velocity (vel), inorganic substrate index (si), benthic 
particulate organic matter (bpom), water temperature (temp), dissolved oxygen 

concentration (oxy), and number of chironomid species (taxa). Data are arranged by 
the order they appear in the dataframe.  

 

There are no prominent outliers in these dotplots. 

 

4.2.2  Lots of zeros in the response variable 
 
The number of zeros in the response variable can be estimated as: 

 
> sum(rivchir$taxa == 0) 

 

0 

 

No zeros in the response variable; chironomids were found in every sample. 

 

4.2.3 Multicollinearity among covariates 
 

Use a correlation matrix with corresponding pairplots to visualize pairwise 

correlations. Code for this plot is shown in the R file associated with this chapter. 

 
Fig. 4.2 Pairplot of covariates. The lower panel shows pairwise Pearson correlations, 
with font size proportional to correlation coefficient. 
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Some covariates appear mildly collinear from the pairplots in Fig. 4.2. Velocity 

(vel) is negatively collinear with benthic particulate organic matter (bpom) and 

water temperature is negatively collinear with dissolved oxygen. Degree of 

collinearity can be measured by calculating the variance inflation factors for each 

covariate using vif. For now, we will assume a Poisson GLM is appropriate for 

these data. 

 
> vif(glm(taxa ~ vel + si + bpom + temp + oxy, 

                 family = poisson, 

                 data = rivchir)) 

 
vel   si    bpom  temp  oxy  

2.24  1.48  2.75  1.94  2.10 

 

VIF values all <3. 

 

4.2.4 Relationships among dependent and independent variables 
 
Visual inspection of the data using plots. The code for this plot is available in 

the R file associated with this chapter. 

 

 
 

Fig. 4.3 Plots of number of chironomid taxa in benthic samples against covariates. 
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In Fig. 4.3 the plots of the number of chironomid taxa against covariates show 

no obvious patterns, with the exception of substrate index, which shows a 

distinctly positive relationship. 

 

4.3 Model fitting 
 

The data exploration showed: 

 

1. A small number of NAs. 

2. No outliers in the data. 

3. No zeros in the response variable. 

4. No imbalance of data among levels of the categorical covariate 'river' 

5. No important collinearity between covariates. 

6. Potential relationship between substrate index and number of chironomid 

taxa. 

 

Before fitting a GLM, NAs must be dropped, which means the loss of a small 

amount of data. The categorical covariate 'river' is of no specific interest and, 

therefore, will not be included in the model; this decision will be discussed 

further at the end of the chapter. Initially a Poisson GLM will be applied to the 

data. 

 

Remove NAs with 

 
> rivchir1 <- rivchir[complete.cases(rivchir), ] 

 

> dim(rivchir) 

 

82 7  

 

> dim(rivchir1) 

 
80 7  

 

Two rows of data have been lost. 

 

The model is fitted as: 
 

> Pois1 <- glm(taxa ~ vel + temp + si + oxy + bpom, 

                      data = rivchir1,  

                      family = poisson(link = log)) 
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The numerical output is obtained with the summary function: 

 
> summary (Pois1) 

 

             Estimate Std. Error  z value Pr(>|z|)     

(Intercept)  1.416e+00  1.747e-01   8.108  5.16e-16 

vel          1.010e-01  2.569e-01   0.393  0.69417     

temp         3.009e-02  6.422e-03   4.684  2.81e-06 

si           1.730e-02  4.423e-03   3.912  9.16e-05 

oxy          1.124e-01  1.732e-02   6.488  8.68e-11 

bpom        -2.658e-05  1.005e-05  -2.645  0.00816 

(Dispersion parameter for poisson family taken to be 1) 

 

Null deviance: 262.62  on 79 degrees of freedom 

Residual deviance: 149.68 on 74 degrees of freedom 

AIC: 514 

 

Before interpreting the model, we must first carry out model validation. 

 

4.4 Model validation 
 
For the fitted Poisson GLM, validation is required to look for: 

 

1. Overdispersion. 

2. Model misfit. 

 

4.4.1 Overdispersion 
 

The overdispersion statistic is calculated with: 

 
> ods <- Pois1$deviance / Pois1$df.residual 

> ods 

 
2.02 

 

The overdispersion statistic should take a value of 1.0. A value of 2.09 is too 

high; the model is overdispersed. 

 

Overdispersion 
 
Poisson GLMs assume the mean and variance of the response variable are 

approximately equal. Overdispersion can occur when this assumption is not 
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met; variance in the data is naturally larger than the mean. This situation is 

termed "true overdispersion". True overdispersion is dealt with by fitting a 

model to the data such that the variance is greater than the mean in the response 

variable.  

 

However, before we assume true overdispersion, we should consider other 

possible causes, which can represent underlying problems with the model. 

These are: 

 

1. Model mis-specification. There may be key variables, including interactions, 

that explain a large part of the variance that are missing from the model. 

Model mis-specification is handled by including additional variables or 

adding interaction terms to the model. 

2. Too many zeros in the response variable ("zero inflation"). If there are too 

many zeros a zero-inflated (e.g. a zero-inflated Poisson or ZIP model) or zero-

adjusted (e.g. a zero- adjusted Poisson or ZAP) model can be used. 

3. Influential outliers. The presence of influential observations can be tested 

by plotting Cook's distance and these can be dropped and the model refitted. 

Data dropped from the analysis must be reported in your Methods, with a 

justification. 

4. Non-independence of the data. An assumption is that each observation in a 

dataset is independent of all others. However, there may be an underlying 

association between some data that results in dependency; e.g. data may 

have been collected by different scientists, who introduce consistent bias to 

the data, or data may have been collected in different months, which affects 

the variance structure of the data. If the source of dependency is known, it 

can be incorporated into the analysis as a "random" term in a Generalized 

Linear Mixed Model (GLMM). 

5. Wrong link function. A GLM uses a link function to connect the response 

variable with the linear part of the model comprising the covariates. Trying 

an alternative link function to the default may solve the problem of 

overdispersion. 

6. Non-linearity in the data. A GLM assumes the response variable can be 

modelled as a linear relationship using a link function. However, this 

approach may not be adequate to capture the non-linear properties of some 

biological systems. In this case it is necessary to switch to using Generalized 

Additive Models (GAMs). 
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As part of model validation, it is necessary to address each of these potential 

problems. If none prove successful in reducing overdispersion, a model with a 

different error structure can be applied. 

 

1. Model mis-specification. Without additional variables to use in the model, the 

only option is to refit the model with interactions. Interactions must be 

biologically plausible; it is not satisfactory to try every possible combination of 

interactions between model covariates. Two plausible interactions in the case of 

these data are between water velocity (vel) and substrate index (si); current 

speed could influence the quantity of inorganic substrate, with implications for 

the chironomid community. A second plausible interaction is between 

temperature (temp) and dissolved oxygen (oxy); water temperature correlates 

negatively with dissolved oxygen concentration, and chironomids are adapted 

to low oxygen conditions. 

 

The alternative model, then, is: 

 
> Pois2 <- glm(taxa ~ vel * si + temp * oxy + bpom, 

                      data = rivchir1,  

                      family = poisson(link = log)) 

 

> ods2 <- Pois2$deviance / Pois1$df.residual 

> ods2 

 

2.08 

 

The alternative model is still overdispersed. 

 

2. Zero inflation. How many zeros in the response variable? 
 

> sum(rivchir$taxa == 0) 

 

0 

 

Zero inflation is not the problem. 

 

3. Influential outliers. Plot Cook's distance to identify influential observations. 

 
> par(mfrow=c(1,1), mar=c(5,5,2,2)) 

> plot(cooks.distance(Pois1), 

       xlab = "Observation",  

       ylab = "Cook's distance", 
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       type = "h",  

       ylim = c(0, 1.2), 

       cex.lab =  1.5) 

> abline(h = 1, lty = 2)  

 

 
 

Fig. 4.4 Plot of Cook's distance for model Pois1. A Cook's distance of 1 (indicated by a 
dashed horizontal line) denotes an influential observation. 

 

There is no evidence from plotting Cook's distance (Fig. 4.4) of influential 

observations in the model. 

 

4. Non-independence of the data. A variable that we have hitherto ignored is the 

river from which samples were collected. The numbers of chironomid species in 

samples from the same river may be more similar to each other than they are to 

samples from different rivers. If the case, the assumption of independence may 

be violated. To investigate potential dependency in the data we can plot the 

numbers of chironomid species for each river. If dependency is not a problem 

the expectation is that the mean and variance in the number of species from 

samples from different rivers should be similar. 

 
> par(mfrow=c(1,1), mar=c(5,5,2,2)) 

> boxplot(taxa ~ river,  

          data = rivchir1,  

          xlab = "River", 

          ylab = "Number of taxa", 

          cex.lab = 1.5) 
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Fig. 4.5 Boxplot of number of chironomid taxa in benthic samples for river from which 
samples were collected. 

 

Fig. 4.5 shows there is good evidence for dependency in the response variable; 

the numbers of chironomid species vary strongly among rivers. This is a 

potential cause of overdispersion. 
 

5. Wrong link function. Models can be fitted with alternative link functions and 

the overdispersion statistic calculated to see whether there is an improvement. 

Two alternative link functions to a log link are an 'identity' link, which assumes 

a linear relationship between the response variable and covariates and a square-

root link. 

 

Identity link 
 

> Pois3 <- glm(taxa ~ vel + temp + si + oxy + bpom, 

               data = rivchir1,  

               family = poisson(link = identity)) 

> ods3 <- Pois3$deviance / Pois3$df.residual 

> ods3 

 

2.00 

 

An identity link does not prevent overdispersion. 

 

Square-root link 
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> Pois4 <- glm(taxa ~ vel + temp + si + oxy + bpom, 

               data = rivchir1,  

               family = poisson(link = sqrt)) 

> ods4 <- Pois3$deviance / Pois3$df.residual 

> ods4 

 

2.00 

 

And neither does a square-root link. 

 

6. Non-linearity in the data. Non-linearities in the data can be identified by 

plotting the Pearson residuals of the model against each covariate and fitting a 

'loess' regression through the data. A loess regression (short for 'local 

regression') fits a smoothed curve and is ideal for highlighting non-linear 

patterns. Code for these plots is available in the file associated with this chapter. 

 

 
 

Fig. 4.6 Plots of number of chironomid taxa in benthic samples against Pearson 
residuals for model covariates. A loess smoother is added to aid visual interpretation. 
 

There is no evidence from residual plots (Fig. 4.6) for non-linear patterns. 

 

This analysis points to two sources of overdispersion: dependency due to river 

effects, and true overdispersion. Dependency can be addressed by fitting a 

GLMM and including river as a random term in the model. This approach is 

certainly needed here but is beyond the scope of this book. Instead, we will 
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assume that there is true overdispersion in the data; i.e. variance in the data is 

naturally larger than the mean and a model with a different error structure is 

needed. 
 

The model will now be fitted with a negative binomial distribution for the 

response variable using the glm.nb() function from the MASS package. The 

default link function is a log link. 
 

> library(MASS) 

> nb1 <- glm.nb(taxa ~ vel + temp + si + oxy + bpom, 

                       data = rivchir1)  

 

Assess overdispersion with: 

 
> ods_nb <- nb1$deviance / nb1$df.residual 

> ods_nb 

 

1.11 

 

The overdispersion statistic should take a value of 1.0. A value of 1.11 indicates 

mild overdispersion but is acceptable. 

 

Before interpreting the model, we must first continue with model validation. 

The fitted negative binomial GLM is not overdispersed, but it is still necessary 

to examine model misfit. 

 

As with a Poisson GLM, model misfit in a negative binomial GLM is recognized 

by plotting Pearson residuals against fitted values, against each covariate in the 

model, as well as any not included in the model (in this case we included all 

variables in the model) and the presence of influential observations is tested by 

plotting Cook's distance. 
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Fig. 4.7 Pearson residuals plotted against: A. Fitted values; B. Water velocity; C. 
Temperature (C); D. Substrate index, E. Dissolved oxygen (mg l-1). F. Benthic 
particulate organic matter (BPOM). 
 

Plots A-F in Fig. 4.7 show no causes for concern; residuals are distributed along 

the horizontal axis in each case and there are no obvious patterns in the 

residuals.  

 
Fig. 4.8 Plot of Cook's distance for model nb1. A Cook's distance of 1 (indicated by a 
dashed horizontal line) denotes an influential observation. 
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There is no evidence from plotting Cook's distance (Fig. 4.8) of influential 

observations in the model. 

 

Model comparison 
 

It is possible to compare the performance of the GLM with Poisson error 

structure with the negative binomial model. This comparison can be made using 

the AIC (Akaike Information Criterion). AIC gives a measure of the goodness of 

fit of a model by "log likelihood".  

 

The more parameters a model has, the better the fit to the data. To compensate 

for the inevitably better fit of models with many parameters,  AIC imposes a 

penalty on a model as a function of the number of parameters in the model. For 

this reason, AIC is sometimes termed the "penalized log-likelihood". There are 

alternatives to AIC for measuring goodness of fit, though AIC is reliable and 

widely recognised. 

 

AIC can be calculated for the two models with: 

 
> AIC(Pois1, nb1) 

 

      df   AIC 

Pois1  6   508.9 

nb1    7   492.5 

 

The lower the AIC, the better the model; if a model has an AIC value of 2 or 

more lower than its rival, it is considered the better fitting model. In this case the 

negative binomial model (nb1) gives a better fit to the data. The absolute value 

of AIC is meaningless. Note that the negative binomial model has one more 

parameter than the Poisson model. This is because the negative binomial model 

has a dispersion parameter (k) that accommodates higher variance in the data, 

but is penalised when calculating AIC. Thus, despite having one more 

parameter than the Poisson model, the  negative binomial model is still an 

improvement. 

 

Two models with different numbers of covariates or different distributions can 

be compared using AIC, but they must have the same number of observations. 

 

4.5 Model presentation  
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Model nb1 is specified using mathematical notation in the following way: 

 

Taxai ~ NegBin(i ,k) 

E(Taxai) = i   and   var(Taxai) = i + (i
2 / k ) 

log(i ) = i 

i = 1 + 2 x Velocityi + 3 x Temperaturei + 3 x SIi +  

       4 x DOi + 5 x BPOMi 

 
Where Taxai is the number of chironomid species in sample i assuming a 

negative binomial distribution with mean i and variance i + (i
2 / k ). The extra 

parameter k is known as the dispersion parameter and deals with the extra 

variance in the data. For the model covariates Velocityi is water velocity for 

sample i,  Temperaturei is water temperature for sample i, SIi is sample substrate 

index of sample i, DOi is dissolved oxygen concentration for sample i, and 

BPOMi benthic particulate organic matter of sample i. 

 

The numerical output of model nb1 is obtained with: 

 
> summary(nb1) 

 
             Estimate  Std. Error z value Pr(>|z|)     

(Intercept)  1.360e+00  2.347e-01   5.794 6.89e-09 

vel          5.946e-02  3.590e-01   0.166 0.868454     

temp         3.261e-02  8.858e-03   3.681 0.000232 

si           1.747e-02  6.514e-03   2.682 0.007320 

oxy          1.180e-01  2.351e-02   5.020 5.17e-07 

bpom        -2.770e-05  1.362e-05  -2.033 0.042024 

 

These results can be more formally presented in the following way:  
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Table 4.1. Summary of negative binomial GLM to model the number of 

chironomid taxa collected in substrate samples. 

 

Model parameter Estimate SE P 

Intercept(gravel) 1.36 0.23 <0.001 

Velocity 0.06 0.36    0.868 

Temperature 0.03 0.01  <0.001 

Substrate index 0.02 0.01    0.007 

Dissolved oxygen  0.11 0.02 <0.001 

BPOM  -0.01 0.01   0.042 

 

Water velocity is non-significant in the model. We choose to leave the model 

unchanged. 

 

The model can be visualized using ggplot2. R code for generating the figure is 

available in the R code that accompanies this chapter. 
 

 
 

Fig. 4.8 Mean fitted number of chironomid species (solid line) with 95% confidence 
intervals (shaded area) against: A. water temperature (°C); B. substrate index (mm); 
C. dissolved oxygen (mg l-1); D benthic particulate organic matter (BPOM) (g m-2). 
Black dots are observed data. 
 

0

10

20

30

40

5 10

Dissolved oxygen (mg l
-1

)

N
u

m
b

e
r 

o
f 

c
h
ir

o
n

o
m

id
 s

p
e

c
ie

s

0

10

20

30

0 5000 10000 15000 20000

BPOM (g m
-2

)

N
u

m
b

e
r 

o
f 

c
h
ir

o
n

o
m

id
 s

p
e

c
ie

s

0

10

20

30

0 5 10 15 20 25

Substrate index (mm)

N
u

m
b
e

r 
o

f 
c
h

ir
o

n
o

m
id

 s
p

e
c
ie

s

0

10

20

30

0 5 10 15 20

Water temperature (°C)

N
u

m
b

e
r 

o
f 

c
h

ir
o

n
o

m
id

 s
p

e
c
ie

s

A B

C D



 

  

55 

Conclusions 
 

The final model showed that the number of chironomid species in benthic river 

samples was positively associated with water temperature, inorganic substrate 

and dissolved oxygen, but negatively with organic matter (Fig. 2.8). There was 

no significant association with water velocity (Table 4.1). 

 

Overdispersion in the Poisson model was treated as true overdispersion, with a 

model fitted with a negative binomial distribution controlling overdispersion. 

The goodness of fit of the negative binomial model, measured by AIC, was also 

superior to the Poisson model. 

 

However, the negative binomial model is not optimum. As part of model 

validation, it was clear that there was dependency in the data due to river (Fig. 

4.5). The next step in modelling these data will be to fit a GLMM to accommodate 

dependency in the data due to river.  
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5 Bernoulli GLM 
 

A Bernoulli distribution is a discrete distribution for dealing with data with two 

possible outcomes such as success or failure and presence or absence. The 

Bernoulli GLM is for strictly binary data and is sometimes called a logistic GLM 

(or just "logistic regression"). In ecological studies a Bernoulli GLM is  a useful 

tool for modelling presence/absence data. 
 

5.1 The presence of red spots on pumpkinseed fish  
 
In the pumpkinseed fish (Lepomis gibbosus) some individuals have a conspicuous 

red spot on their gill cover (operculum) that has been associated with 

behavioural dominance. Zięba et al. (2018) investigated the function of the red 

spot in populations of pumpkinseed collected from sites across Europe where 

the species is invasive.  

Male pumpkinseed display alternative mating strategies. Some males 

are large-bodied and territorial. These males build nests, court females and care 

for the eggs that are laid in their nest. However, some males perform a ‘sneaky’ 

mating strategy, entering the nest of a territorial during spawning and fertilising 

eggs laid by a female courted by the nest-guarding male, with the territorial 

male subsequently caring for eggs and young stages; sneaker males perform no 

parental care. 

 The aim of the study was to determine whether the presence of the red 

operculum spot functions as a signal of sex and/or mating strategy in 

pumpkinseed. To do this males were categorised as territorials or sneakers and 

a model was fitted to test whether the probability of possessing a red spot 

differed between the sexes and between males adopting different reproductive 

strategies. The prediction was that parental males would be more likely to 

express a red operculum spot than sneaker males and females. However, 

because larger fish tend to older, the analysis needed to control for body size 

while simultaneously comparing the probability of red spots among individuals 

of different sexes/mating strategies. 

 The data collected by Zięba et al. (2018) include individual fish mating 

strategy (female, male territorial, male sneaker), fish length (mm), fish weight 

(g), and presence of a red spot. Sex and mating strategy was assigned by 

dissection of the gonads (see Zięba et al. 2018 for details). Presence of a red spot 

is the response variable, and the other variables are covariates; mating strategy 

is a categorical variable and length and weight are continuous.   
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5.2 Data exploration 
 
Import data 
 

Data for pumpkinseed are saved in the tab-delimited file pumpkin.txt and are 

imported  into a dataframe in R using the command: 
 
> pkin <- read.table(file = " pumpkin.txt", 

               header = TRUE, dec = ".") 

 

Start by inspecting the dataframe: 
 

> str(pkin) 

 

'data.frame': 900 obs. of  6 variables: 

 $ pop   : Factor w/ 14 levels "6T","BF","BP",... 

 $ sex   : Factor w/ 2 levels "F","M" ,... 

 $ wt    : num  6.3 8.4 6.9 8.4 9 10.1 10.7... 

 $ sl    : num  60.2 64.6 64.8 66.3 70.5 74.2 74.4 ... 

 $ tactic: Factor w/ 3 levels "fem","sneak",... 

 $ spot  : int  0 0 0 0 0 0 0 0 0 0 ... 

 

The dataframe comprises 900 observations of 6 variables. Each row in the 

dataframe represents an individual pumpkinseed fish collected from a different 

population. Population (pop), sex (sex) and mating tactic (tactic)  are all 

factors; i.e. categorical variables. Fish weight (wt), and length (sl) are 

continuous covariates. The presence of a red spot (spot) is binomial and the 

data are coded as 0 (red operculum spot absent) and 1 (red spot present). 
 

It is necessary to check if there are any missing values in the dataframe (missing 

values are designated 'NA' in the tab-delimited file. 

 
>  colSums(is.na(pkin)) 

 

pop  sex  wt   sl  tactic  spot  

0    0    0    0   0       0 

 

No missing values. 

 

5.2.1  Outliers 
 
Outliers in the data can be identified visually using Cleveland dotplots: 
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> Var <- c("sl", "wt") 

> dotplot(as.matrix(as.matrix(pkin[,Var])), 

        groups=FALSE, 

        strip = strip.custom(bg = 'white', 

        par.strip.text = list(cex = 1.2)), 

        scales = list(x = list(relation = "free",  

        draw = TRUE), 

        y = list(relation = "free", draw = FALSE)), 

col = 1, cex  = 0.5, pch = 16, 

xlab = list(label = "Data range", cex = 1.5), 

ylab = list(label = "Data order", cex = 1.5)) 

 

 
 

Fig. 5.1 Dotplots of pumpkinseed weight (wt) and length (sl). Data are arranged by 
the order they appear in the dataframe.  
 

There are no obvious outliers in the data (Fig. 5.1). Are the data balanced 

between the sex of fish? 
 

> table(pkin$sex)     

 

 F   M  

425 475 

 

Or mating tactic? 
 

> table(pkin$tactic) 

 

Data range

D
a

ta
 o

rd
e

r

40 60 80 100 120 140

sl

0 20 40 60 80

wt



 

  

59 

fem  sneak  terr  

425   95    380 

 

The data are well balanced between sexes (sex), but less well balanced among 

mating tactics (tactic). However, if data are a random sample from the 

population, then a lack of balance is inevitable. However, care must be taken in 

fitting a complex model to these data. 

 

An additional check is to look at a dotplot for weight and length split by sex and 

mating tactic. 

 

For sex: 

 
> par(mfrow = c(1,2), mar = c(5,5,1,1), cex.lab = 1.2) 

> dotchart(pkin$sl, groups = pkin$sex,  

  xlab = "Length (mm)") 

> dotchart(pkin$wt, groups = pkin$sex,  

  xlab = "Weight (g)") 

 

 
 

Fig. 5.2 Dotplots of pumpkinseed weight (wt) and length (sl) split by sex of fish. Data 
are arranged by the order they appear in the dataframe.  
 

And mating tactic: 
> par(mfrow = c(1,2), mar = c(5,5,1,1), cex.lab = 1.2) 

> dotchart(pkin$sl, groups = pkin$tactic,  

  xlab = "Length (mm)") 
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> dotchart(pkin$wt, groups = pkin$tactic,  

  xlab = "Weight (g)") 

 

 
Fig. 5.3 Dotplots of pumpkinseed weight (wt) and length (sl) split by fish mating tactic. 
Data are arranged by the order they appear in the dataframe.  
 

The distribution of sizes between the sexes is comparable (Fig. 5.2). Among 

mating tactics, however, there are differences, with males expressing the sneaker 

tactic tending to be smaller than territorial males and females. There may be an 

interaction between size and mating tactic. 

 

5.2.2  Lots of zeros in the response variable 
 
The number of zeros in the response variable can be estimated as: 

 
> sum(pkin$spot == 0) 

 

554 

 

A total of 554 pumpkinseed did not possess a red spot. As a proportion of all 

fish sampled this is: 

 
> sum(pkin$spot == 0) * 100 / nrow(pkin) 

 

61.55556 
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That is 62% of fish without a red operculum spot. Note though that the model 

to be fitted is binomial and is expected to contain a large number of zeros, so the 

high proportion of zeros should not be a problem. 

 
5.2.3 Multicollinearity among covariates 
 

Use a correlation matrix with corresponding pairplots to visualize pairwise 

correlations. The code for this plot is available in the accompanying R file. 
 

 
Fig. 5.4 Pairplot of covariates. The lower panel shows pairwise Pearson correlations, 
with font size proportional to correlation coefficient. 
 

Two pairs of covariates appear strongly collinear from the pairplots in Fig. 5.4. 

Fish weight (wt) is positively collinear with length (sl) and fish sex is collinear 

with mating tactic. The correlation between fish weight and length is expected 

and one of these variables must be dropped; both cannot be included in the same 

model. Similarly, sex and tactic are clearly collinear; only males play the role of 

territorial and sneaker. To fit the model, weight and sex will be excluded. 
 

5.2.4 Relationships among dependent and independent variables 
 
Visual inspection of the data using plots. Code for these plots is available in the 
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accompanying R file. 
 

 
 

Fig. 5.5 Plots of presence of red operculum spots against fish length and mating tactic. 
 

In Fig. 5.5 the plots of red operculum spots against covariates show no obvious 

patterns. However, plots of binomial data like these are not particularly 

informative. 
 

5.3 Model fitting 
 

The data exploration showed: 

 

1. No NAs. 

2. No serious outliers in the data. 

3. A large number of zeros in the response variable. 

4. Some imbalance of data among levels of the categorical covariate ‘tactic’ 

5. Strong collinearity between covariates. 

6. Possible interaction between size and tactic. 

 

The model is fitted as: 

 
> Bern1 <- glm(spot ~ tactic * sl, 

               data = pkin, 

               family = binomial(link = "logit")) 

 

A second model without interaction can be fitted as: 
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> Bern2 <- glm(spot ~ tactic + sl, 

               data = pkin, 

               family = binomial(link = "logit")) 

 

As with the Poisson and negative binomial models we use a systematic part that 

contains the model parameters. The link function for a Bernoulli model is a logit 

link. This link function ensures that the model prediction lies between 0 and 1. 

 

The fit of models Bern1 and Bern2 can be compared using AIC: 

 
> AIC(Bern1,Bern2) 

 

       df  AIC 

Bern1  6   851.0343 

Bern2  4   861.9460 

 

The AIC score for model Bern1 is substantially lower than Bern2, which means 

the model with an interaction between tactic and fish length gives a better fit to 

the data. 

 

The numerical output is obtained with the summary function: 

 
> summary (Bern1) 

 

                Estimate Std. Error  z value  Pr(>|z|)     

(Intercept)    -5.006844   0.531217  -9.425  <2e-16 

tacticsneak    -2.896331   1.963055  -1.475   0.14010     

tacticterr     -0.306384   0.865575  -0.354   0.72336     

sl              0.042615   0.005955   7.156   8.31e-13 

tacticsneak:sl  0.081898   0.031052   2.637   0.00835 

tacticterr:sl   0.030570   0.010692   2.859   0.00425 

 

Null deviance: 1199.16  on 899  degrees of freedom 

Residual deviance:  839.03  on 894  degrees of freedom 

AIC: 851.03 

 

Before interpreting the model, we must first carry out model validation, though 

this is not straightforward with a Bernoulli model. 

 

5.4 Model validation 
 

For the fitted model Bernoulli GLM, validation requires verification of: 
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1. Homogeneity of variance. 

2. Model misfit. 

3. Absence of influential observations. 

 
5.4.1 Homogeneity of variance 
 

Homogeneity of variance can be assessed visually by plotting model residual 

variance against model fitted values. R code to plot standardised residuals 

against fitted values is given by: 

 
Fitted <- fitted(Bern1) 

Resid  <- resid(Bern1, type = "pearson") 

par(mfrow = c(1,1), mar = c(5,5,2,2), cex.lab = 1.2) 

plot(x = Fitted, y = Resid, 

     xlab = "Fitted values",  

     ylab = "Pearson Residuals") 

abline(h = 0, lty = 2) 

 

 
 

Fig. 5.6 Pearson residuals plotted against fitted values to assess homogeneity of 
variance. Ideally, the distribution of residuals around zero should be consistent along 
the horizontal axis. 

 
The distribution of residuals is consistent along the horizontal axis, though this 

pattern is difficult to assess for a Bernoulli distribution. 
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5.4.2 Model misfit 
 

Model misfit occurs if covariates are missing or the model departs from linearity 

and can be recognised visually by plotting Pearson residuals against each 

covariate in the model, as well as those not included in the model. 

 

 
 

Fig. 5.7 Pearson residuals plotted against covariates to assess model misfit for 
covariates included in the model; length (A) and mating tactic (B), and not included 
in the model; weight (C) and sex (D). Ideally, the distribution of residuals around zero 
should be consistent along the horizontal axis or pass through the median of 
boxplots. 
 

Plots A-D in Fig. 5.7 show no causes for concern; residuals are distributed 

consistently along the horizontal axis in each case and there are no obvious 

patterns in the residuals. 

 

5.4.3 Absence of influential observations 
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The absence of influential observations can be tested by plotting Cook's distance. 

A Cook's distance exceeding 1 indicates an influential data point. R code to plot 

Cook's distance for model Bern1 is given by: 

 
> par(mfrow = c(1, 1)) 

> plot(cooks.distance(Bern1), 

       xlab = "Observation",  

       ylab = "Cook's distance", 

       type = "h",  

       ylim = c(0, 1.1), 

       cex.lab =  1.5) 

> abline(h = 1, lty = 2) 

 

 
Fig. 5.8 Plot of Cook's distance for model Bern1. A Cook's distance of 1 (indicated by 
a dashed horizontal line) denotes an influential observation. 
 

There is no evidence from plotting Cook’s distance for influential observations 

in the model (Fig 5.8). 

 

Model validation has shown no evidence of model misfit, model residuals are 

acceptable and there are no influential observations. 

 

5.5 Model presentation  

 
We can specify the model using mathematical notation in the following way: 

0 200 400 600 800

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Observation

C
o

o
k
's

 d
is

ta
n

c
e



 

  

67 

 

Spoti ~ Binomial(i, ni) 

E(Spoti) ~ ni x i   and   var(Spoti) = ni x i x (1 - i) 

logit (i) = i 

i = 1 + 2 x SLi + 3 x tactici + 4 x rfri x tactici 

 

Where Spoti is the probability of fish i having a red operculum spot, which is 

assumed to follow a binomial distribution with an expected probability (E) of 

expressing an operculum spot of mean niπi and variance niπi × (1−πi), with a logit 

link function. The logit function ensures the fitted probability of a red spot falls 

between 0 and 1. The variable tactici is a categorical covariate with three levels, 

corresponding with fish mating tactic; female, territorial or sneaker. The model 

also contained a linear effect for fish length (SLi). 

 

The numerical output of the model is obtained with: 

 
> summary (Bern1) 

 

                Estimate Std. Error  z value  Pr(>|z|)     

(Intercept)    -5.006844   0.531217  -9.425  <2e-16 

tacticsneak    -2.896331   1.963055  -1.475   0.14010     

tacticterr     -0.306384   0.865575  -0.354   0.72336     

sl              0.042615   0.005955   7.156   8.31e-13 

tacticsneak:sl  0.081898   0.031052   2.637   0.00835 

tacticterr:sl   0.030570   0.010692   2.859   0.00425 

 

Null deviance: 1199.16  on 899  degrees of freedom 

Residual deviance:  839.03  on 894  degrees of freedom 

AIC: 851.03 

 

These results can be more formally presented in the following way:  

 

Table 5.1. Summary of Bernoulli GLM to model the probability of pumpkinseed 

expressing a red operculum spot as a function of fish length and mating tactic. 

 

Model parameter Estimate SE P 

Intercept(female) -5.00 0.53 <0.001 

Length 0.04 0.01  <0.001 

Tactic(sneak)  -2.90 1.96    0.140 

Tactic(territorial)  -0.31 0.87    0.723 
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Length x Tactic(sneak)  0.08 0.03    0.008 

Length x Tactic(territorial) 0.03 0.01    0.004 

 

These results indicate a significant interaction between fish length and mating 

tactic. To understand this result it is best to visualize the model result in a figure. 

The R code for this figure is available in the R file accompanying this chapter. 

 

 
 
Fig. 5.9 Mean fitted probability (solid line) of pumpkinseed expressing a red 
operculum spot as a function of length (mm) with 95% confidence intervals (shaded 
area) for females, sneaker males and territorial males. Data were modelled with a 
Bernoulli GLM. Black dots are observed data. 

 

The probability of female pumpkinseed expressing a red spot at a given length 

is lower than for sneaker and territorial males. The size range of sneaker and 

territorial males differs (territorial males tend to be bigger), but there appears no 

difference in the probability of these two groups in expressing red spots. 

 

Conclusions 
 

The Bernoulli GLM predicted that male pumpkinseed, either sneakers or 

territorial, had a significantly greater probability of expressing a red operculum 

spot at a given body size than females. The size range of sneakers and territorials 

differed making it difficult to compare directly between these male mating 
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strategies. 

 

The data set was quite large, but was structured by population. Fish population 

of origin was ignored in the analysis, but there is potential for dependency due 

to population; i.e. the probability of expressing a red spot may differ with 

population, or the interaction between length and mating tactic may vary from 

one population to another. If this is the case, a Generalized Linear Mixed Model 

(GLMM) might be more appropriate for these data, with population 

incorporated into the analysis as a "random" term. 
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Coda 
 

We hope this book is useful in extending your understanding of GLMs. We are 

always interested to receive feedback; positive or negative, and would also 

welcome questions about your own analyses; feel free to email us. 

 

From time-to-time we run statistics workshops, and if you think this is 

something that might be useful for you or your research group or institution, we 

are happy to discuss your requirements. 
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Further reading 
 

This is not an exhaustive list, but the books and papers we have found most 

useful in performing statistical modelling in ecology include: 

 

Faraway, J.J., 2016. Linear models with R. Chapman and Hall/CRC. 

 

Faraway, J.J., 2016. Extending the linear model with R: generalized linear, mixed effects 

and nonparametric regression models. Chapman and Hall/CRC. 

 

Zuur, A.F., Hilbe, J.M. and Ieno, E.N., 2013. A beginner's guide to GLM and GLMM 

with R: A frequentist and Bayesian perspective for ecologists. Highland Statistics 

Limited.  

 

Zuur, A.F. and Ieno, E.N., 2016. A protocol for conducting and presenting results 

of regression‐type analyses. Methods in Ecology and Evolution 7, 636-645. 

 

Zuur, A.F., Ieno, E.N. and Elphick, C.S., 2010. A protocol for data exploration to 

avoid common statistical problems. Methods in Ecology and Evolution 1, 3-14. 

 

Zuur, A., Ieno, E.N., Walker, N., Saveliev, A.A. and Smith, G.M., 2009. Mixed 

effects models and extensions in ecology with R. Springer Science & Business Media. 

 

 


