
Research Article

Toward navigation ability for autonomous
mobile robots with learning from
demonstration paradigm: A view
of hierarchical temporal memory

Xinzheng Zhang1, Jianfen Zhang1 and Junpei Zhong2

Abstract
Learning from demonstration, as an important component of imitation learning, is a paradigm for robot to learn new
tasks. Considering the application of learning from demonstration in the navigation issue, the robot can also acquire
the navigation task via the human teacher’s demonstration. Based on research of the human brain neocortex, in this
article, we present a learning from demonstration navigation paradigm from the perspective of hierarchical temporal
memory theory. As a type of end-to-end learning form, the demonstrated relationship between perception data and
motion commands will be learned and predicted by using hierarchical temporal memory. This framework first
perceives images to obtain the corresponding categories information; then the categories incorporated with depth
and motion command data are encoded as a sequence of sparse distributed representation vectors. The sequential
vectors are treated as the inputs to train the navigation hierarchical temporal memory. After the training, the
navigation hierarchical temporal memory stores the transitions of the perceived images, depth, and motion data so
that future motion commands can be predicted. The performance of the proposed navigation strategy is evaluated
via the real experiments and the public data sets.

Keywords
Cortical learning algorithm, hierarchical temporal memory, learning from demonstration, navigation, sparse distributed
representation

Date received: 14 May 2017; accepted: 27 April 2018

Topic: AI in Robotics; Human Robot/Machine Interaction
Topic Editor: Nak-Young Chong
Associate Editor: Kiju Lee

Introduction

Learning from demonstration (LfD), as an important issue

in imitation learning,1 is a paradigm for robot to learn new

tasks. It is inspired from the fact that the human being

learns the new skills or obtains the experiences under the

guidance of the human experts. In contrast to the traditional

scenario, LfD does not require analytically programming a

detailed behavior, and allows the users to take the appro-

priate showing and to “teach” the robot how to perform the

new tasks. With observing more demonstrations and

1 School of Electrical and Information Engineering, Jinan University,

Zhuhai, Guangdong, China
2 National Institute of Advanced Industrial Science and Technology,

Tokyo, Japan

Corresponding author:

Jianfen Zhang, School of Electrical and Information Engineering, Jinan

University, 207 Qianshan Road, Zhuhai, Guangdong 519070, China.

Email: eejfzhang@gmail.com

International Journal of Advanced
Robotic Systems

May-June 2018: 1–14
ª The Author(s) 2018

DOI: 10.1177/1729881418777939
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

mailto:eejfzhang@gmail.com
https://doi.org/10.1177/1729881418777939
http://journals.sagepub.com/home/arx
http://www.creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881418777939&domain=pdf&date_stamp=2018-05-23

repetitions, LfD provides the robot the ability to acquire the

means of behaving new skills. Considering the application

of LfD in the navigation issue, a person follows the tour

guide to move from any position to the destination when he

first visits an unknown place. After the person remembers

the path which the guide showed, he learned the navigation

skill on how to go to the destination in that place. As the

human being learns the navigation behavior above, the

robot can also acquire the navigation task via the human

teacher’s demonstration. This natural communication way

between the human teacher and robot learner releases the

complex couple of perception and planning in the naviga-

tion process, and therefore, LfD for autonomous navigation

has become an attractive topic in robotics area.

Related work

The comprehensive surveys on LfD are studied by Argall

et al.2 and Billard et al.3 These works, respectively, phrased

that the LfD can follow the machine learning and computa-

tional neuroscience approaches. Nehaniv and Dautenhahn4

analyzed four key issues of LfD, where “What to imitate”

and “How to imitate” in our opinion are the two most

important problems for the navigation task.

Learning the relationship between the perceptual infor-

mation and actions is dominant in the literatures. We call

this as end-to-end learning. The difference in previous

research works is on the representations of this relationship.

The first paradigm is learning the mapping of the per-

ceptual data and action commands5–8 directly. To learn this

mapping, De Rengervé et al.5 used artificial neural network

to recognize the places according to the panorama. The

recognized places combined with odometry and compass

data are applied to learn the motion commands by Gaussian

mixture models. Similarly, in the study by Choi et al.,7

leveraged Gaussian process regression, another statistical

technique, was presented to get the navigation policy from

sequences of sensor data and action pairs. This method also

allows demonstrations from casual or novice users not lim-

ited to experts. The associations between percepts and

actions can be described by a set of fuzzy rules,6 and pre-

dictive sequence learning (PSL) algorithm6 is used to learn

these associations and to predict expected sensor events in

response to executed control commands. In addition, with

PSL and simulation theory, the robot can generate the expe-

rience of novel sequences of events according to the

learned relationships.8

The second paradigm is to represent the relationship as a

planning cost function.9–12 Learning this cost function is

implemented by LEArning to seaRCH algorithm,9–11

which is a proper technique for imitating a nonlinear cost

function, and by Optimal Rapidly-exploring Random Trees

planner.12 Suleman and Awais13 proposed to find a trans-

latable map function of teachers’ and learners’ actions by

shared circuits model theory. It is a comprehensive and

multidiscipline representative theory explaining imitation

and other related social functions. Konidaris et al.14

described a value function as the cost to link the trajectory

segments/chains and the sequential motion commands and

applied constructing skill tree algorithm which incorpo-

rates the pros of hierarchical reinforcement learning and

statistical change-point detection algorithm to learn this

value function.

To make a summary from the literatures above, the

main methods for “How to imitate” are from the sta-

tistical theory,7,12 machine learning,6,8–11,13 and their

incorporations.5,14

Why hierarchical temporal memory

As futurist Ray Kurzweil described in his book,15 the neo-

cortex contains a hierarchy of pattern recognition circuits

and they are responsible for most aspects of human thought.

He also explains that if there exists a design of the digital

neocortex, it could be used to create the same capabilities

as the human brain. Hierarchical temporal memory (HTM)

theory,16 first proposed by Hawkins,17 is an implementa-

tion version of Kurzweil’s view of digital neocortex. It

attempts to model the brain at a functional level rather than

at a neuron or molecular level. HTM is a bioinspired model

that captures the predominant characteristics of the neocor-

tex. It mimics the neocortex’s abilities of learning, infer-

ence, and prediction from sequential input patterns that are

represented in sparse distributed forms and, therefore, it

can describe a complex model of the world. Additionally,

HTM uses the sparse distributed representations (SDRs) to

represent the complex input data and lend the HTM so

much flexibility, which is similar to the idea that the brain

is a recursive probabilistic fractal whose line of code is

represented within the 30–100 million bytes of compressed

code in the genome.15

The core of the Kurzweil’s book is the pattern recogni-

tion theory of mind. Its main idea is that the hierarchical

structure is treated as pattern recognizer and is not just for

sensing the world but for nearly all aspects of thought. It is

natural that HTM was first successfully applied for pattern

recognition system.18–20

The reasons stated above indicate that HTM can be

considered as a promising approach for implementing

LfD-based navigation task. Therefore, in this study, we

designed an LfD navigation paradigm from the view of

HTM. It is also a type of end-to-end learning form. The

relationship between perception data and motion com-

mands will be learned and predicted by using HTM. This

framework first perceives images to obtain the correspond-

ing categories information; then the categories incorpo-

rated with depth and motion command data are encoded

as a sequence of SDR vectors. The sequential vectors are

treated as the inputs to train the navigation HTM (Nav-

HTM). After the training, the Nav-HTM stores the transi-

tions of the perceived images, depth, and motion data so

that future motion commands can be predicted. The

2 International Journal of Advanced Robotic Systems

performance of the proposed navigation strategy is evalu-

ated via the real experiments and the public data sets. The

contribution of this work is not to appraise the literature

above but just to provide a promising solution from the

view of mimicking the neocortex capabilities.

Materials and methods

As a memory system, HTM is essentially a type of neural

network. It first models the cells, interconnects and

arranges cells in columns, organizes columns in a two-

dimensional (2-D) array to constitute the HTM region, and

finally establishes a hierarchical neural network, as shown

in Figure 1. The network learns from the time-varying

inputs. These inputs have the format of SDR, which is

either transformed from the environmental sensory data

by an encoder or received from the outputs of the lower-

level region. The HTM network is trained by a simple

learning algorithm, namely, the cortical learning algorithm

(CLA). It learns and stores sets of distributed input pattern

sequences (including the sensory or sensory-motor pat-

terns) and their transitions in the hierarchical organization

through spatial and temporal pooling. With the remem-

bered sequences and transitions, the HTM network per-

forms inference (i.e. recognition) and prediction for the

new coming inputs. The proposed HTM-based LfD naviga-

tion system follows the HTM workflow and is illustrated in

Figure 2. The detailed explanation and properties of HTM

and SDR can be found in technique reports.16 We describe

the crucial contents related to our application in the follow-

ing section.

HTM network model

The HTM network is composed of numerous intercon-

nected HTM cells, which are organized in a column

paradigm. HTM cells extract the most important cap-

abilities of biological neurons, and as shown in Figure 3,

they have more complex structures than conventional

artificial neurons.

A typical HTM cell has three output states: the active

state activated from feed-forward input, the predictive state

activated from lateral input, and the inactive state. Each

HTM cell in one column shares a single proximal dendrite

segment (closest to the cell body) and has a list of distal

dendrite segments (farther from the cell body). The prox-

imal dendrite segment receives all feed-forward inputs,

Figure 1. Structure of a typical HTM neural network.
HTM: hierarchical temporal memory.

Figure 2. Workflow of an HTM application. HTM: hierarchical
temporal memory.

Figure 3. Components of an HTM cell. HTM: hierarchical tem-
poral memory.

Zhang et al. 3

including the environmental sensory data and outputs of the

lower-level region, via active synapses marked by green

dots. These active synapses have a linear additive effect

at the cell body. Distal dendrite segments receive the lateral

inputs from nearby cells through active synapses marked by

blue dots. Figure 3 shows that each distal dendrite segment

is a threshold detector. The segment will be activated if the

number of active synapses on a segment is above a thresh-

old Thseg. An OR operation is executed on all active distal

dendrite segments to make the associated cell become the

predictive state. Synapses of the HTM cells have binary

weights and are formed by a set of potential synapses,

which are axons that are sufficiently close to a dendrite

segment and may become synapses. For the proximal den-

drite, a potential synapse consists of a subset of all inputs to

a region; and for the distal dendrite, the potential synapses

are predominantly from the nearby cells in a region. Each

potential synapse is assigned a scalar value ranging from 0

to 1. This scalar value is named as permanence, which

represents a closeness or connection degree between an

axon and dendrite segment. A larger permanence yields a

stronger connection. If the permanence is above a threshold

Thper, the potential synapse becomes a valid synapse, and

the weight of this valid synapse is set as 1. The cell body

receives the inputs of synapses from proximal and distal

segments and provides two outputs along the axon: one is

in an active state, which is horizontally sent to other adja-

cent cells, and the other is the OR of the active and pre-

dictive states sent to the cells of the next region.

Because the perception and action are integrated in the

HTM network, distal dendritic input can also be the exter-

nal input. That is, lateral connections between cells will

typically be turned off in sensorimotor inference.

Sparse distributed representation

SDR is an efficient information organization in the HTM.

Sparse indicates that a small percentage of cells among the

large interconnected cells are activated at one time.

“Distributed” indicates that active cells are spread out

across the region and will be involved in representing the

activity of the region.16 In HTM, the binary SDR converted

from a certain encoder is considered because the binary

representation is more biologically plausible and highly

computationally efficient. Although the number of possible

inputs is greater than that of possible representations, the

binary SDR does not generate a practical loss of informa-

tion because the SDR has the following crucial properties.

Semantic overlap: Each cell can be thought of as captur-

ing some “feature” in the inputs; therefore, every active cell

in an SDR has semantic meaning assigned from the struc-

ture in the inputs. Different active cells at different columns

in a region can produce exponential combinations of rep-

resentation for the various inputs, even if any two inputs

look similar. SDR possesses the property of mapping sim-

ilar inputs to similar representations, which can be identi-

fied by comparing the overlap of bits with

overlap ðx; yÞ � jjx ^ yjj ð1Þ

where x and y are binary SDRs of input vectors or the stored

vectors in a region; ||�|| is the vector length operator, and it

is simply the total number of “1” bits; and ^ denotes the bit-

wise AND operator.

Union: Given a set of SDRs, they can be reliably stored

in a single fixed representation by the OR operation fol-

lowing equation (2). This is important for HTM, as it holds

a dynamic set of elements and underlies the prediction

process in the temporal pooling. As such, a fixed set of

cells and connections can operate on a dynamic list, and

the union is also used to represent invariance or check a

given prediction by searching the union containing its SDR.

U SDR ¼ _
k

i¼1
xi ð2Þ

where _ is the bit-wise OR operator.

CLA dynamic process

The CLA is a mechanism for explaining the operation in a

single region of the neocortex. It has a simple framework

and mathematical descriptions. The HTM uses the CLA

dynamic process to learn the spatial and temporal variabil-

ity commonly occurring in sequential input data and then to

make predictions. The typical CLA is composed of two

subprocesses: spatial and temporal pooling. The detailed

explanations are described in the following subsections.

Spatial pooling. The essential function of spatial pooling is to

form an SDR of the inputs. When an input appears on a

region, each bit in the input signal will be assigned only to a

subset of columns. The number of columns is computed by

ppot, which is the percentage of inputs that a column can be

connected to within a given column’s potential radius rpot.

The potential synapses associated with cell proximal den-

drites on these columns will be activated when their per-

manence values are above a threshold Thsyn_per. The

number of active synapses is multiplied by a boost factor

(bf), which is dynamically determined by how often a col-

umn is active relative to its neighbors. This is the phase of

overlap, as shown in equation (3)

overlap ðxt
in; sdrcÞ ¼

0; if overlap ðxt
in; sdrcÞ < ol min

bf c � overlap ðxt
in; sdrcÞ; others

�
ð3Þ

4 International Journal of Advanced Robotic Systems

where xt
in is the input SDR vector at time t, sdrc is the stored

SDR in column c, bfc is the boosting factor for column c,

and olmin is the minimum overlap.

The columns with the highest activations after boosting

disable a fixed percentage of the columns within an inhibi-

tion radius. The result of the inhibition is to form a sparse

set of active columns that are treated as the inputs of the

temporal pooling subprocess in the same region. The math-

ematical inhibition process is

C actðtÞ ¼ C actðtÞ [fcg;
if overlap ðxt

in; sdrcÞ > 0 and overlap ðxt
in; sdrcÞ � LA min

ð4Þ

where Cact(t) is the set of the active column index at

time t and LAmin is the minimal number of winning

columns.

A Hebbian-like learning procedure is implemented for

each of the active columns. Permanence values of synapses

aligned with active input bits are increased, and those

aligned with inactive input bits are decreased, which is

represented in equation (5)

pmc
psj

c2C actðtÞ
¼

minð1:0; pmc
psj
þ pm syn incÞ; if psj is active

maxð0:0; pmc
psj
� pm syn decÞ; others

(

ð5Þ

psj denotes the jth potential synapse in active column c, and

its permanence value is denoted by pmc
psj

. pmsyn_inc and

pmsyn_dec are the increment and decrement permanence

values, respectively. The changes in permanence values

make some synapses become valid or invalid accordingly.

Simultaneously, the bf and inhibition radius are both

updated according to equation (6)

bf c ¼ f bf ðADCc
avg; ADCc

minÞ

r inh ¼
ðCS avg�PI col � 1Þ

2

8><
>: ð6Þ

ADCavg (active duty cycle) is a sliding average that

represents how often column c has been active after inhibi-

tion, for example, over the last 500 iterations. ADCmin

represents the minimum desired firing rate for column

c. fbf is the update function, which linearly interpolates the

bf between the points (0, bfmax) and (DCmin, 1), as shown in

Figure 4. In general, the bfs for all columns are updated

simultaneously. For the inhibition radius updating, the

number of inputs to which a column is connected (denoted

by CSavg) should first be determined, and then, this number

is multiplied by the total number of columns that exists for

each input (denoted by PIcol). For multiple dimensions, the

aforementioned calculations are averaged over all dimen-

sions of inputs and columns.

Temporal pooling. The key to CLA is the ability to learn and

predict how the patterns in the world change over time and

how these changes have a sequential structure that reflects

transitions of the real world. The temporal pooling is more

complex than spatial pooling because it combines the learn-

ing and inference procedures. It consists of three phases,

and the inputs are the Cact(t) obtained from the spatial

pooling dynamic.

Phase 1: Determining the active state of cells. For each

active column obtained in spatial pooling, the cells that are

fired to a predictive state from a previous time are activated

(referring to equation (7)). Simultaneously, the distal den-

drite segment on each of these cells is marked as active

when the number of synapses is over a threshold Thact. The

learning cells are chosen by equation (10). Additionally, if

a segment is activated from the learning cells during the

previous time, the cell to which this segment connects is set

as the learning cell (see equation (8)).

If no cell is in a predictive state, all of the cells in the

column are activated, which is defined in equation (9). For

this case, the segment that has the largest number of active

synapses is found in column c of cell i at time t�1, and

then, the related cell to which this segment connects is

chosen as the learning cell. If no cell has such a segment,

we select the cell that has the fewest number of segments as

the learning cell (see equation (10)). In phase 1, the result-

ing set of active cells consists of the current input in the

context of prior inputs.

For the perception–action integration case, there is an

optional “Learn-On-One-Cell (LOOC)”21 hysteresis mode.

This mode is switched in the following situation. When a

column is not predicted but activated by the sensory input,

cells that were previously selected as the learning cell

would still act as the learning cell at the current time. If

no such cell exists, the learning cell is also determined by

equation (10). If the LOOC mode is triggered, a copy of the

motor signal is added to the input of the distal dendrites

Figure 4. Function for updating the bf. bf: boost factor.

Zhang et al. 5

nac
i

c2C actðtÞ
ðtÞ ¼ 1

nlc
i

c2C actðtÞ
ðtÞ ¼ 0

9>=
>;; if npc

i
c2C actðtÞ

ðt � 1Þ ¼ 1 and sgac
i

c2C actðtÞ
ðt � 1Þ ¼ 1 ð7Þ

nac
i

c2C actðtÞ
ðtÞ ¼ 1

nlci
c2C actðtÞ

ðtÞ ¼ 1

9>>=
>>;; if npc

i
c2C actðtÞ

ðt � 1Þ ¼ 1 and sgac
i

c2C actðtÞ
ðt � 1Þ ¼ 1 and sglc

i
c2C actðtÞ

ðt � 1Þ ¼ 1 ð8Þ

nac
i

c2C actðtÞ
ðtÞ ¼ 1; i ¼ 1; :::; nc ð9Þ

nlci
c2C actðtÞ

ðtÞ ¼ 1; if

cell i has the segment with the

largest number of active synapses

OR

cell i with the fewset

number of segments

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

at time t � 1 ð10Þ

nac
i ðtÞ represents the active state of cell i in column c at

time t given the current feed-forward input and previous

temporal context; nlci ðtÞ and npc
i ðt � 1Þ are the learning

and predictive state of cell i in column c at time t and

t�1, respectively; and sgac
i ðt � 1Þ represents the active

segment on cell i in column c at time t�1. Similarly,

sglc
i ðt � 1Þ is the segment activated by the learning cell

at time t�1. If multiple segments are active, sequence seg-

ments are given preference. nc is the number of cells in

column c.

Phase 2: Forming a prediction based on the input in the

context of prior inputs. Following phase 1, according to

equation (11), the cells with active segments are admitted

to the predictive state unless they are already active due to

feed-forward input. npc
i ðtÞ represents the predictive state of

cell i in column c at time t. All of the predictive cells form

the prediction of the region

npc
i

c2C actðtÞ
ðtÞ ¼ 1; if sgac

i
c2C actðtÞ

ðtÞ ¼ 1 ð11Þ

On column c of cell i, the current active segment is

added to the update list SUc
i ðtÞ, which will be used in phase

3. To extend the prediction back in time, another distal

dendrite segment that has the largest number of active

synapses at the previous time is also considered to add to

the update list.

Phase 3: Updating synapses. Similar to the synapse

updates of the proximal dendrite in the spatial pooling

dynamic, whenever a distal dendrite segment becomes

active, the permanence values of its associated potential

synapses are modified by the Hebbian rule only if the cell

correctly predicted the feed-forward input. Thus, the

synapse permanence values for the segments in update list

will be reinforced positively or negatively by

pmc
si

j

c 2 C actðtÞ
si

j 2 SUc
i ðtÞ

ðtÞ ¼
minð1:0; pmc

si
j

ðtÞ þ pm incÞ; if nlc
i ðtÞ ¼ 1

maxð0:0; pmc
si

j

ðtÞ � pm decÞ; if npc
i ðtÞ ¼ 0 and npc

i ðt � 1Þ ¼ 1

8<
: ð12Þ

where pmc
si

j

ðtÞ represents the jth synapse permanence value

of a segment on column c of cell i, and pminc and pmdec are

the incremented and decremented permanence values in

temporal pooling dynamics, respectively.

Finally, a vector representing the OR of the active and

predictive states of all cells in a region becomes the input to

the next region in the hierarchy. With the prediction, the

HTM network can estimate approximately when the inputs

6 International Journal of Advanced Robotic Systems

will likely arrive next as well as invoke and separate the

motor information.

Results

To examine the performance of the HTM-based navigation

strategy, we designed two experiments using the TurtleBot 2

mobile robot in a typical indoor environment of our depart-

ment. One is a simple navigation in a typical office indoor

environment. The robot loaded two motion sensors, odome-

try and gyro, and moved at translational and rotational

speeds of 200 cm s�1 and 20� s�1, respectively. The percep-

tual image data were acquired from a Kinect RGB-D camera

loaded on the top of the robot. In these two experiments, we

stored RGB images with sizes of 640 � 480 per second. To

make the computation efficient, the depth information

within a region of interest (ROI) was extracted. The ROIs

were selected as individual 64 � 48 rectangles around the

image center. Simultaneously, the motion data, including the

translational and rotational speeds, were collected from the

interior motion sensors. The RGB-D and motion information

were incorporated for HTM network training and prediction.

The other experiment is designed by using the public data set

of outdoor environments to further evaluate our proposed

navigation methods.

The HTM was designed based on the open-source proj-

ect NuPIC (available at https://github.com/numenta/nupic),

and its settings were identical for both experiments. The

network has a hybrid structure. As shown in Figure 5, the

image data were first processed by another vision HTM

(VHTM) network, which is an earlier version of HTM

implementation, and its output combined with the depth

and motion data was encoded to send to the upper one-

region Nav-HTM network for motion prediction. We

treated the VHTM as a recognition system and set it as a

four-region network. Each region has a form of a 2-D cell

matrix. The input region has 640 � 480 cells, which is

equal to the image size; region 1 is an 80 � 80 cell matrix,

region 2 is 10� 10, region 3 is 2� 2, and region 4 has only

one cell, and it is also the output cell for the recognized

category. For the Nav-HTM, the number of cells in each

column was set to 32, and the size of the columns was set to

2048 (arranged as 64 � 32 in a 2-D plane). This configura-

tion maintains the diversity of SDR inputs and a low prob-

ability of a false match between any two SDR inputs. We

applied a scalar encoder16 to organize the motion data as

the two 256-bit one-dimensional (1-D) SDR vector and a

custom encoder to represent the depth data as the 8-bit 1-D

SDR vector. For the output of VHTM, we also used a scalar

encoder to encode the image category as the 16-bit 1-D

SDR vector. As shown in equation (13), all encoded 1-D

SDR vectors were integrated as a 1024-bit binary string,

where the image category and depth bits consisted of per-

ception bits and the wheel velocities were motion bits. This

binary string will be sent to the Nav-HTM network for

training and prediction.

� � � � �
zfflfflffl}|fflfflffl{16 bits

|fflfflfflffl{zfflfflfflffl}
image category

� � � � �
zfflfflffl}|fflfflffl{8 bits

|fflfflfflffl{zfflfflfflffl}
depth|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

� � � � �
zfflfflffl}|fflfflffl{256 bits

|fflfflfflffl{zfflfflfflffl}
tran: speed

� � � ��
zfflfflffl}|fflfflffl{256 bits

|fflfflfflffl{zfflfflfflffl}
rota: speed|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

0 � � � 0|fflffl{zfflffl}
reserved

ð13Þ

perception bits action bits

Note: tran. = translational, rota. = rotational.

We set three valid bits of 16 bits for the scalar encoder of

the image category. The number of 1s represents the cate-

gory to which the input image belongs. For example, the

encoded SDR 0111000000000000 indicates that the input

image is in category 1, whereas 0011100000000000 indi-

cates that it is in category 2. The length of the image category

bits is designed for our evaluation cases, and it can be tuned

adaptively according to different experimental settings. The

custom encoding mechanism for depth bits is determined by

the minimal distance extracted within the ROI. If the minimal

distance is less than a threshold, that is, 40 cm in our experi-

ments, the least significant bit of the depth bits is set as 1.

The motion bits consist of two groups of speeds on the

wheels, one for translational speed and the other for rota-

tional speed. Because the maximal translational and rota-

tional velocities of TurtleBot 2 are 70 cm s�1 and 110� s�1,

respectively, we set the velocity range for both translation

and rotation as [�50, 50] (cm s�1 or � s�1) based on

Figure 5. Structure of hybrid HTM network for perception–
action application. HTM: hierarchical temporal memory.

Zhang et al. 7

https://github.com/numenta/nupic

practical considerations, where “�” indicates the negative

direction. In our experiments, we defined forward move-

ment and leftward turning as positive for translational and

rotational velocities, respectively. Twenty-one bits in each

256 bits of the action encoder are set as valid bits, and 20

cm s�1 and 20� s�1 are both encoded as the same represen-

tation. The reserved bits are designed for the additional

sensor information, such as the accelerometer. The CLA

dynamic process parameters described in the previous sec-

tion are listed in Table 1.

The case study on “Department hallway dataset”

In this experiment, a human tele-operated the robot in the

corridor by a joystick for demonstration. The robot started

to move beside a door and stopped in front of a cabinet in

an office room. The robot met three typical objects: an open

door, a closed door, and a chair (see Figure 6) during the

navigation. We designed a set of simple action strategies:

the robot goes through the open door, stops in front of the

closed door 40 cm away, and turns left at a distance of

40 cm from the chair. The hand-measured environment

map is shown in Figure 7, where the predefined navigation

routine is marked by the arrow lines and the robot and

several grabbed environment scenes are also displayed.

Five sets of data were recorded in two separate demonstrat-

ing executions. Each included 140 RGB-D images and

motion data. We used the first 140 captured demonstrated

data to train the vision and Nav-HTM networks. After the

training, the remaining groups of data were sent to the

trained networks for offline evaluation. Offline validation

is a batch testing, that is, the images collected at all sam-

pling times were first sent to the VHTM to obtain a batch of

image category information, then the image categories,

depth, and motion data sampled at ti (i ¼ 1, . . . ,139) were

sent to Nav-HTM, and finally the Nav-HTM outputs the

predicted inputs of Nav-HTM at tj (j ¼ 2, . . . ,140). The

motion commands can be split from these predictions. The

offline evaluation results by using the second demonstrated

data set are shown in Table 2 and Figure 8. Table 2 shows

that the VHTM outputs for all testing data sets are identical

with our desired values, which maintains the valid inputs

for the Nav-HTM network. Figure 8 lists one-step ahead

sequential action predictions of wheel translational and

rotational speeds. It can be found that the predicted com-

mands for the next sampling time are consistent with the

practical ones captured by the motion sensors. In particular,

when a command switch occurs (highlighted by the black

arrows in Figure 8), this prediction mechanism still works

well and produces correct motions. These offline examina-

tion results demonstrate that our proposed navigation

method provides the correct motion predictions according

to the different perceived environmental input data.

In online examination, the real-time captured RGB

images were sent to the trained VHTM network and the

depth data were fed to the Nav-HTM network. Only the

motion data taken at the first sampling time were sent to the

Nav-HTM network. The Nav-HTM itself predicts a com-

mand for the next sampling time according to the current

RGB-D and motion data. The predicted action is executed

and fed back to the Nav-HTM to integrate with the new

RGB-D data so that the next action prediction can be gen-

erated. Figure 9 provides the online navigation routine

compared with the demonstrated routine. The current rou-

tine (marked in red line) recreates the learned routine

(marked in blue line). The difference between these two

lines is caused by odometer noise and accumulated error of

dead reckoning. This result suggests that our proposed

approach can be used for online autonomous LfD naviga-

tion. In fact, once the robot starts to move, it will maintain

velocities received at the initial time, and therefore, the

feedback of motion data at every sampling time exactly

is used to update the previous actions. The learned motion

data in the demonstration process are remembered in the

Nav-HTM, and they are treated as the reference for the

predicted actions. If the prediction is abnormal, these stored

actions can be used for anomaly detection, which will be

discussed in the “Conclusion” section.

The computational platform is a Pentium M 1.73 GHz,

with a 2G RAM laptop. The time for training the Nav-HTM

network is 80.9 s, whereas the VHTM training time is much

Table 1. Parameters of the CLA dynamic process.

Parameters Description Value

Thseg Threshold for the number of active
synapses on a segment

15

Thper Threshold for the permanence of potential
synapse

0.2

bfini Initial value of the bf 1.0
bfmax Maximal bf 2.0
olmin Minimum overlap 5
rinh_ini Initial value of the inhibition radius 0
LAmin Minimal number of winning columns 1
rpot Potential radius, the number of the input

bits that are visible to each column
16

ppot The percentage of the inputs within a
column’s potential radius to which a
column can be connected

0.8

pmsyn_inc Incremented permanence value in spatial
pooling

0.05

pmsyn_dec Decremented permanence value in spatial
pooling

0.05

Thsyn_per Any synapse whose permanence value is
above this threshold will become an
active synapse

0.1

ADCmin Minimum active duty cycle 0.001
Thact Threshold used to determine whether a

distal segment is activated
14

pminc Incremented permanence value in temporal
pooling

0.1

pmdec Decremented permanence value in
temporal pooling

0.1

CLA: cortical learning algorithm; bf: boost factor.

8 International Journal of Advanced Robotic Systems

longer (370.7 s). The online evaluation process, which con-

sists of loading trained networks, encoding RGB-D and

action data, implementing spatial and temporal pooling,

and predicting output, consumes 0.27 s. The cost of valida-

tion is considerably less than that of the training because

the training is a batch processing. Categorizing all of the

RGB images comprises nearly half of the training time. In

comparison, only one image frame, depth, and motion data

have to be processed in online evaluation; hence, the time

cost is reduced considerably. Considering the results in

Figure 7. Hand-measured map and predefined navigation routine.

Figure 6. Typical objects in the simple experiment setting.

Zhang et al. 9

terms of computational time, it is logical to use the pro-

posed method for real-time LfD navigation tasks.

The case study on “Barcelona Robot Lab Dataset”

The Barcelona Robot Lab Dataset (this data set is available

at http://www.iri.upc.edu/research/webprojects/pau/data

sets/BRL/index.php) is applied in this section to further

evaluate the performance of the proposed navigation para-

digm. This data set is intended to benchmarking algorithms

for robust outdoor navigation in robotics community covers

10,000 m2 of the UPC Nord Campus in Barcelona and

include multiple sensor information. The interested data

in this article are a time-stamped sequence of action/motion

command from the odometry, impressively rich three-

dimensional (3-D) laser data, and the sequential stereo

images obtained with the custom-built 3-D scanner. Since

the trajectories (i.e. the demonstrations) of days 1 and 2 are

different, it is not convenient to train the HTM network

with the data of day 1 and test the HTM with those of day

2. In this article, we only used the day 1 data to validate our

navigation method. The training set is comprised of the

data obtained at the odd sampling time (ts ¼ 1,3,5, . . . , n;

n ¼ 649, where ts is the sampling time and n is the total

number of data), that is, the training data are selected every

two sampling time; in addition, the data corresponding to

the motion command switches have to be included in the

training set. The stereo images are the inputs of VHTM, the

velocities are from the odometry, and the depth is extracted

from the stereo images within the ROI 128� 96 (the size of

original image is 1280 � 960). After the HTM network is

trained, the online motion prediction process, similar to the

first experiment, is executed for every sampling time. The

difference between this online experiment and the first one

is that the image and depth data are not captured in real-

time form. We send the stereo images and related depth

data to the HTM network frame by frame according to the

time stamp. With this configuration, the robustness of our

proposed navigation method can be further examined.

Figure 10(a) and (b) shows the predicted motion commands

compared with the practical commands of data sets. It can

be found that there exist errors between the predicted and

practical commands which are different from the results in

Figure 8. Since, in the first experiment, all the data are used

to train and only a part of data are selected as the training

set in this experiment, the sequential commands predicted

based on the partial demonstration data generate the errors.

However, the time interval for training data is short, and

especially, the data corresponding to the motion command

switches sometimes follow the data grabbed at the odd time

sample. This makes the training set almost the continuous

data. In online experiment, most motion commands and

stereo images have been used in training procedure, and

Figure 8. Offline evaluation results of the predicted actions.

Figure 9. Navigation routine in online evaluation.

Table 2. Offline evaluation results for VHTM.

Object
Desired image

category (encoded)

Actual image category (encoded)

Test data set 1 Test data set 2 Test data set 3 Test data set 4

Open door 0111000000000000 0111000000000000 0111000000000000 0111000000000000 0111000000000000
Closed door 0011100000000000 0011100000000000 0011100000000000 0011100000000000 0011100000000000
Chair 0001110000000000 0001110000000000 0001110000000000 0001110000000000 0001110000000000

VHTM: vision hierarchical temporal memory.

10 International Journal of Advanced Robotic Systems

http://www.iri.upc.edu/research/webprojects/pau/datasets/BRL/index.php
http://www.iri.upc.edu/research/webprojects/pau/datasets/BRL/index.php

the input data sent to HTM networks are recalled from the

data set one by one and not the practical data acquired from

the real sensors which lack the parameters of sensor uncer-

tainty. Therefore, the calculated robot poses according to

the motion commands have small accumulated errors. The

mean and variance for the translational and rotational com-

mands are �tran ¼ 0.0077, stran ¼ 1.08 and �rot ¼ �0.24,

srot¼ 0.021, respectively. These errors have little influence

on the robot pose estimation, which is illustrated in

Figure 11. The predicted navigation routine (dash-dot line

with circle marker) is close to the demonstrated robot poses

(dash line with cross marker). Table 3 lists the precision

and recall rates of our proposed method compared to PIRF-

Nav 2.0 algorithm.22 For the PIRF-Nav 2.0, we used the

first motion command to calculate the initial robot pose and

then estimated the next pose according to the next motion

command and stereo image data. The errors between the

estimated pose by using two different methods and practi-

cal pose computed from the motion commands of day 1

data set are obtained. With these errors, mean and variance

for robot pose can be calculated, as shown in Table 3. The

recall rate is the average detection rate at the loop-closure

Figure 10. The errors between the practical and predicted motion commands.

Zhang et al. 11

parts which is marked in Figure 12. For our proposed

method, loop-closure recognition is implemented by

VHTM module. From the comparison results, it can be

found that the recall rate of our proposed method is a little

bit higher than PIRF-Nav 2.0 with the similar robot pose

precision. These results state that our proposed LfD navi-

gation can also be applied for an outdoor complex

environment.

Discussion

Anomaly detection

There is an important issue to be considered in the online

evaluation. If the predicted actions deviate from those

expected, the robot likely fails in the autonomous tasks,

such as the navigation of our experimental environment.

This situation is referred to in the terms of NuPIC as an

anomaly. It is valuable to detect anomalies in real time for

many applications. CLA takes the anomaly likelihood

computed from an anomaly score, a powerful anomaly

detection analysis approach, to address this problem.23

The anomaly likelihood enables the CLA to provide a

metric representing the degree to which each record of

the input sequence is predictable. It is relative to the data

stream rather than an absolute measurement of abnormal

behavior and is thus a critical reference to detect whether

the pattern with a high anomaly score is actually anom-

alous. Anomaly likelihood creates an average of the error

score and then compares the current average error to a

distribution of what the average error has been over the

past data stream. This allows us to identify anomalies

based on probability. As shown in Figure 13, if the anom-

aly likelihood is in the green section, this suggests that the

record is normal. If it is in the red section, the record

shows an abnormal value, which indicates that the pattern

is a novel one not seen in any sequence. The yellow sec-

tion indicates that the pattern is somewhat unusual and

that we do not have high confidence. In our application,

we consider a pattern anomalous if its likelihood is in the

yellow section. Based on the concept of anomaly detec-

tion, we calculated the anomaly likelihood for each pre-

dicted action in the online navigation experiment. If the

anomaly likelihood of any action is above a predefined

probability threshold PTh_ano (0.90 in our experiment, i.e.

the probability or accuracy of the green section is 90%,

which is equivalent to a 1.65s tolerance interval for a

normal distribution), we designed a simple action retrieval

strategy, that is, recalling the remembered action

sequence stored in Nav-HTM to replace that which has

Figure 11. Online evaluation results of the robot poses.

Table 3. Our proposed results compared to PIRF-Nav 2.0.

Method

Robot pose precision Recall (%)

Mean Variance LC 1 LC 2

HTM-based
navigation

(�0.481, �0.490,
�0.509)T

(0.0817, 0.0816,
0.0852)T

91.3 90.7

PIRF-Nav 2.0 (0.378, 0.383,
0.710)T

(0.174, 0.167,
0.206)T

89.1 87.6

HTM: hierarchical temporal memory; LC: loop closure.

Figure 12. The loop-closure parts of day 1 data set.

Figure 13. Anomaly likelihood curve.

12 International Journal of Advanced Robotic Systems

a higher anomaly likelihood. The retrieved action is

treated as the prediction for the next time.

We did not detect any abnormal predicted actions in the

online navigation experiment above. To validate the per-

formance of the proposed action retrieval strategy, we

added an impulse noise with an amplitude of 15 on the

65th predicted translational speed. The anomaly likelihood

for this predicted action is 0.954, which is over 0.90. We

replaced this anomalous speed with the stored speed and

sent it back to Nav-HTM as the prediction for the next time.

With this replacement procedure, the following predicted

actions after the 65th sampling time were correctly main-

tained. Because the CLA prediction mechanism in our

experiment is one step ahead, we only retrieved one pre-

dicted action. If a multistep ahead prediction mechanism is

adopted, the number of action retrievals is determined by

the number of prediction steps and anomaly likelihoods.

New image encoder

In the present study, we used the earlier generation of HTM

implementation to design a VHTM network so that the

obtained images could be recognized or classified as a

special category, and we further encoded the categories.

However, some disadvantages exist for this implementa-

tion mechanism. The learning algorithm of the old gener-

ation HTM is a partial CLA, which only includes the key

CLA components, that is, spatial and temporal pooling, and

has simpler learning dynamics. Additionally, the old gen-

eration HTM has no concept of encoders, no completed

structure of cells, and only one-cell-per-column network.

All of these factors negatively impact the learning perfor-

mance, making this process only suitable for solving the

pattern recognition problem. Hence, the VHTM is not an

image encoder but rather a classifier system. Additionally,

it is a complex programming implementation to incorpo-

rate two different generations of HTM under different com-

piling platforms. In our experiments, we transferred large

parts of the old generation HTM code to the new HTM

compile platform. However, the compiling platform trans-

formation decreases the computational efficiency.

To address the problems above, it is necessary to design

a new encoder to convert the image data to SDR. In our

previous work,24 we attempted to use a visual vocabulary

technique to encode the images. Unfortunately, it cannot

always maintain the sparse distributed property. A promis-

ing work is from Rinkus’ research.25 He proposed a hier-

archical sparse distributed coding and quantum computing

technique, which has been successfully used to solve the

visual processing problem. The future work of our present

study can be directed to address how to integrate Rinkus’

work into the current CLA algorithm.

Biological evidence for action prediction. The actions incorpo-

rated into the perceived inputs are able to contribute to

predict the future consequences of the current actions. This

is an important cognitive function in the perception–action

integration system, which has been examined by Knoblich

and Flach.26 They also proved that this type of prediction

becomes more accurate when one obtains the knowledge

from one’s own actions rather than those of others. Their

research provides the biological evidence to support the

action prediction mechanism of HTM and its application

for robot navigation tasks. However, the current HTM only

implements a simple consequence prediction. It provides a

sequence of predicted actions, including one-step or multi-

step predictions, but does not consider the potential infor-

mation behind these predictions. From a biological

viewpoint, the present version of HTM does not link the

perceptual input with the action system to predict the future

outcome of actions,26 that is, it does not explain the percep-

tion of intentionality for goal-related actions27 or imple-

ment the understanding of the intention hidden in the

sequential predicted actions.28 Additionally, how the pre-

dicted actions guide the future perception process is not

considered. Therefore, both of these two issues above will

be the topics of our future work.

Conclusion

This study is the first attempt to explore the perception–

action integration from the view of HTM, which mimics

the substantial functions of the human neocortex. The main

concept is that sequential perceptual information combined

with motion data simultaneously contributes to predicting

one-step future actions. The perceived images were first

sent to a VHTM network to obtain corresponding cate-

gories. The categories were then incorporated with depth

and motion data to be encoded as a sequence of 1-D SDR

vectors. By using spatial and temporal pooling dynamics of

CLA, the sequential vectors were treated as the inputs to

train the Nav-HTM network; after the training, the Nav-

HTM stored the transitions between the perceived images,

depth, and motion so that the future actions could be

predicted.

Acknowledgment

The authors thank the NuPIC open-source project and all the

contributors of the NuPIC codes.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

work was supported by the National Natural Science Foundation

of China under grant number 61203338.

Zhang et al. 13

References

1. Schaal S. Is imitation learning the route to humanoid robots?

Trends Cogn Sci 1999; 3(6): 233–242.

2. Argall BD, Chernova S, Veloso M, et al. A survey of robot

learning from demonstration. Rob Auton Syst 2009; 57:

469–483.

3. Billard A, Calinon S, Dillmann R, et al. Robot programming

by demonstration. In: Handbook of Robotics. Berlin, Heidel-

berg: Springer, 2008, pp. 1371–1394.

4. Nehaniv CL and Dautenhahn K. Like me? Measures of cor-

respondence and imitation. Cybernetics and Systems 2001;

32: 11–51.

5. De Rengervé A, D’Halluin F, Andry P, et al. A study of two

complementary encoding strategies based on learning by

demonstration for autonomous navigation task. In: Proceed-

ings of the tenth international conference on epigenetic

robotics (EpiRob2010), Lund university cognitive studies,

Lund University, 2010, Vol. 149, pp. 105–112.

6. Billing E, Hellstrom T, and Janlert LE. Simultaneous recog-

nition and reproduction of demonstrated behavior. Biol Ins

Cognit Arch 2015; 12: 43–53.

7. Choi S, Lee K, and Oh S. Robust learning from demonstration

using leveraged Gaussian processes and sparse-constrained

optimization. In: IEEE international conference on robotics

and automation, ICRA, 16 May 2016 – 21 May 2016, Stock-

holm, Sweden, 2016, pp. 470–475.

8. Billing EA, Svensson H, Lowe R, et al. Finding your way

from the bed to the kitchen: reenacting and recombining sen-

sorimotor episodes learned from human demonstration. Front

Robot AI 2016; 3: 9–25.

9. Bagnell JA, Bradley D, Silver D, et al. Learning for autono-

mous navigation. Robot Autom Magaz IEEE 2010; 17: 74–84.

10. Silver D, Bagnell JA, and Stentz A. Learning from demon-

stration for autonomous navigation in complex unstructured

terrain. Int J Robot Res 2010; 29: 1565–1592.

11. Yu CC and Wangi CC. Multi-step learning to search for

dynamic environment navigation. J Inform Sci Eng 2014;

30: 637–652.

12. Perez-Higueras N, Caballero F, and Merino L. Learning robot

navigation behaviors by demonstration using a RRT* plan-

ner. In: Lecture Notes in Computer Science (Including Sub-

series Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), 2016, pp. 1–10. Springer Verlag.

13. Suleman KMU and Awais MM. Learning from demonstra-

tion in robots using the shared circuits model. IEEE Trans

Auton Mental Develop 2014; 6: 244–258.

14. Konidaris G, Kuindersma S, Grupen R, et al. Robot learning

from demonstration by constructing skill trees. Int J Robot

Res 2012; 31: 360–375.

15. Kurzweil R. How to create a mind: the secret of human

thought revealed. Penguin Books, 2013.

16. Hawkins J, Ahmad S, Purdy S, et al. Biological and Machine

Intelligence (BAMI), 16 April 2016. http://numenta.com/bio

logical-and-machine-intelligence/

17. Hawkins J. On intelligence. New York: Times Books, 2004.

18. Huang YS and Wang YJ. A hierarchical temporal memory

based hand posture recognition method. IAENG Int J Comput

Sci 2013; 40: 87–93.

19. Du Y, Wang W, and Wang L. Hierarchical recurrent neural

network for skeleton based action recognition. In: Proceed-

ings of the IEEE conference on computer vision and pattern

recognition (CVPR), 2015, pp. 1110–1118.

20. Rozado D, Rodriguez FB, and Varona P. Extending the

bioinspired hierarchical temporal memory paradigm for sign

language recognition. Neurocomputing 2011; 79: 75–86.

21. Ahmad S. Sensorimotor inference algorithm. https://github.

com/numenta/nupic.research/wiki/Sensorimotor-Inference-

Algorithm (accessed 2014, 11 Novovember 2014).

22. Kawewong A, Tongprasit N, and Hasegawa O. PIRF-Nav

2.0: Fast and online incremental appearance-based

loop-closure detection in an indoor environment. Robot

Auton Syst 2011; 59: 727–739.

23. Ahmad S and Purdy S. Real-Time Anomaly Detection for

Streaming Analytics. ArXiv e-prints 1607. http://adsabs.har

vard.edu/abs/2016arXiv160702480A (2016, 1 July 2016).

24. Zhang X, Zhang J, Rad AB, et al. A novel mapping strategy

based on neocortex model: pre-liminary results by hierarch-

ical temporal memory. In: Presented at the IEEE Interna-

tional Conference on Robotics and Biomimetics (ROBIO),

2012, pp. 476–481.

25. Rinkus GJ. SparseyTM: event recognition via deep hierarch-

ical sparse distributed codes. Front Comput Neurosci 2014; 8:

160–203.

26. Knoblich G and Flach R. Predicting the effects of actions:

interactions of perception and action. Psychol Sci 2001; 12:

467–472.

27. Monroe AE, Reeder GD, and James L. Perceptions of

intentionality for goal-related action: behavioral description

matters. PLoS One 2015; 10: e0119841.

28. Blakemore SJ and Decety J. From the perception of action to

the understanding of intention. Nat Rev Neurosci 2001; 2:

561–567.

14 International Journal of Advanced Robotic Systems

http://numenta.com/biological-and-machine-intelligence/
http://numenta.com/biological-and-machine-intelligence/
https://github.com/numenta/nupic.research/wiki/Sensorimotor-Inference-Algorithm
https://github.com/numenta/nupic.research/wiki/Sensorimotor-Inference-Algorithm
https://github.com/numenta/nupic.research/wiki/Sensorimotor-Inference-Algorithm
http://adsabs.harvard.edu/abs/2016arXiv160702480A
http://adsabs.harvard.edu/abs/2016arXiv160702480A

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

