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Abstract

Coevolutionary systems have been used successfully in various problem domains involving situations of
strategic decision-making. Central to these systems is a mechanism whereby finite populations of agents
compete for reproduction and adapt in response to their interaction outcomes. In competitive settings,
agents choose which solutions to implement and outcomes from their behavioral interactions express pref-
erences between the solutions. Recently, we have introduced a framework that provides both qualitative
and quantitative characterizations of competitive coevolutionary systems. Its two main features are: (1) A
directed graph (digraph) representation that fully captures the underlying structure arising from pairwise
preferences over solutions. (2) Coevolutionary processes are modelled as random walks on the digraph.
However, one needs to obtain prior, qualitative knowledge of the underlying structures of these coevolution-
ary digraphs to perform quantitative characterizations on coevolutionary systems and interpret the results.
Here, we study a deep connection between coevolutionary systems and PageRank to address this issue. We
develop a principled approach to measure and rank the performance (importance) of solutions (vertices)
in a given coevolutionary digraph. In PageRank formalism, B transfers part of its authority to A if A
dominates B (there is an arc from B to A in the digraph). In this manner, PageRank authority indicates
the importance of a vertex. PageRank authorities with suitable normalization have a natural interpreta-
tion of long-term visitation probabilities over the digraph by the coevolutionary random walk. We derive
closed-form expressions to calculate PageRank authorities for any coevolutionary digraph. We can precisely
quantify changes to the authorities due to modifications in restart probability for any coevolutionary sys-
tem. Our empirical studies demonstrate how PageRank authorities characterize coevolutionary digraphs
with different underlying structures.
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1. Introduction

Coevolutionary systems that are inspired by natural evolutionary processes have been applied extensively
and shown remarkable success in problem areas involving situations of strategic decision-making. These
include simulation tools involving a collection of interacting, adaptive agents to understand conditions for
the emergence of complex, intelligent behaviors in the real-world [1, 2] and algorithms to generate high5

performance agents with minimal preprogrammed knowledge in competitive settings [3, 4].
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jun.he@ieee.org (J. He)

https://doi.org/10.1016/j.artint.2019.103164
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Competitive coevolutionary systems share a common framework and are specified by: (1) The problem
whereby the solutions are the set of all alternatives (strategies in a two-player game) with a pairwise pref-
erence relation indicating the superior alternative. (2) The process whereby the finite population of agents
(each implementing a strategy to play) goes through a process of selection and variation guided only by10

their interaction (game play) outcomes. This framework allows for various design choices and parameters in
strategy representation (finite state machines, neural networks, etc.), variation approaches (recombination
and mutation) to generate new distinct strategies, and selection operations that favours higher performing
strategies for reproduction.

All coevolutionary systems implement a mechanism that requires the population of agents to compete for15

reproduction [5]. This can be double-edged in competitive settings. The system could exploit interactions
to search increasingly superior strategies or succumb to the deleterious effects of using relative fitness evalu-
ations in the search process. These pathologies have been studied [6, 7, 8] and include formal methods [9, 10]
characterizing cyclic coevolutionary dynamics due to the choice of selection mechanism in an evolutionary
game theoretic setting in the framework of continuous dynamical systems.20

Other studies have found that problem structures induced by pairwise relations can affect coevolutionary
search [11]. We [12] have introduced a new framework that specifies and models coevolutionary systems
formally. It uses a digraph representation of coevolutionary problem where the vertex set corresponds to the
strategy set and the arc set captures preferences over all pairs of strategies. Coevolutionary processes are
modelled as discrete time Markov chains operating on the digraph. A distinct population-one coevolutionary25

algorithm corresponds to a specific implementation of random walk on digraphs. Other learning algorithms
involving self play for any problem in the form of a two-player game can be modelled within this framework.
In this manner, complete qualitative characterization of cycle structures underlying coevolutionary problems
as well as quantitative characterizations of coevolutionary processes are obtained.

As in the case of evolutionary algorithms [13], the expected hitting times of the absorbing class for30

coevolutionary Markov chains (CMCs) operating on reducible digraphs can be formulated. However, other
relevant quantitative characterizations can be made since CMCs operate on both reducible and irreducible
digraphs. The stationary distribution of a CMC can be formulated but the associated quantitative analysis
and interpretation of subsequent results require prior knowledge of the digraph’s underlying structure. For
example, the entire probability mass will be concentrated on the absorbing class for a CMC operating35

on a reducible digraph but the immediate consequence is that one would have no knowledge about the
structures underlying the dominated subset of vertices. As such, one might ask if other useful quantitative
characterizations could be obtained that incorporate some knowledge of these digraph structures commonly
found in coevolutionary problems? Our study to address this issue has led us to establish a direct connection
between coevolutionary systems and large network analysis methodologies [14] particularly PageRank (used40

originally to measure webpage importance [15, 16]). In the PageRank formalism, strategies transfer part
of their authorities to those that dominate them at pairwise interactions level and these authorities give
indication of strategies’ performances. Crucially, these authorities are linked to the underlying structures of
the digraph that capture the relationships (connectivities) between strategies that we will derive explicitly.
This allows us to show how PageRank authorities with a suitable normalization are quantity-wise the same45

as the long-term visitation probabilities given by the stationary distribution associated to the CMC that
incorporates a restart operating over the same digraph.

This connection allows us to develop a principled approach to measure and rank the performance of
individual strategies that correspond to the vertex set for any digraph representation of the coevolutionary
problem. In Section 2, we establish several theoretical results supporting this approach. We prove that50

PageRank for any coevolutionary system exists, derive closed-form expressions to calculate PageRank au-
thorities, and quantify their changes due to varying restart probability. Section 3 introduces a benchmark
of coevolutionary digraphs having different structures that is used in the controlled empirical studies to
demonstrate how PageRank authorities provide quantitative characterizations of the digraphs. Section 4
concludes with remarks for future studies.55
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2. Coevolutionary Systems and PageRank

The framework in [12] provides a formal approach to model and construct coevolutionary systems as
random walks on digraphs. We consider a wide range of problems modelled as two-player strategic game
C = (S,R) where S is the set of pure strategies and R corresponds to the dominance relation on S. For any
game C = (S,R), its full underlying structures are captured by a coevolutionary digraph DC = (VS , AR).60

VS is a non-empty, finite vertex set that corresponds to S. AR ⊂ VS × VS is a finite arc set of ordered
pairs of distinct vertices that represents R. The arc (u, v) ∈ AR (uv or u → v) indicates v dominating
u. Note that standard digraph terminology reverses our domination definition [17]. The exposition of this
study makes use of digraph theory, finite Markov chains, and matrix analysis, for which we would follow
the standard notations associated with the primary texts of the respective areas [17, 18, 19]. In general, we65

introduce terms and notations before their first use, or at times, where appropriate, immediately after their
first appearance.

2.1. Structural Characterizations of Coevolutionary Digraphs

There are unique structures underlying coevolutionary digraphs DC that allow us to characterize them.
The underlying graph UG(DC) = (VS , E) of DC is obtained by replacing arcs for all pairs of vertices by70

single edges. It is complete. One characterization relates to edge biorientation, e.g., either the orientation
uv or vu (win-lose) or both {uv, vu} ∈ AR (draw). Let VS(n) be the vertex set with n = |VS(n)| number of
vertices. For n ≥ 2, we obtain two coevolutionary digraph classes: (1) tournament T (VS(n)) ∈ T (VS(n)) as
orientations of UG(DC), and (2) semicomplete digraph SD(VS(n)) ∈ SD(VS(n)) as biorientations of UG(DC)
[17]. T (VS) represents all coevolutionary games with win-lose outcomes and SD(VS) generalizes further by75

allowing draws.
Further characterizations relate to global structures on reducibility (grouping of related vertices) and

connectivity (reachability of vertices). A reducible DC(VS(n)) admits a vertex partition on VS(n) into two
disjoint, nonempty subsets (V 1

S ∩ V 2
S = ∅, V 1

S ∪ V 2
S = VS(n)) whereby V 1

S 7→ V 2
S (each v ∈ V 2

S dominates all
u ∈ V 1

S only). Consider DC(VS(n)) with vertices vi and arcs ai labelled so that ai means vivi+1 for every80

i = 1, 2, 3, . . . , k − 1. A (v1, vk)-path is a (v1, vk)-walk in DC(VS(n)) given by v1a1v2a2v3. . .ak−1vk such
that all vertices are distinct. A k-cycle is Hamilton if it is a closed (v1, vk)-walk (i.e. v1 = vk) of length
k = n on the (v1, vk−1)-path. A digraph is strongly connected (or strong) if for every pair vi, vj ∈ VS(n),
i, j = 1, 2, 3, . . . , n and i 6= j, there exist both (vi, vj)-path and (vj , vi)-path [17]. Coevolutionary digraphs
DC(VS(n)) are either reducible or irreducible. Any irreducible DC(VS(n)) on n ≥ 3 vertices cannot be85

vertex-partitioned, is hamiltonian and strongly connected [12].

2.2. CMCs

We focus on population-one coevolutionary systems with processes described by random walks on di-
graphs. A distinct population-one coevolutionary algorithm corresponds to a specific implementation of
random walk on digraphs, i.e., it is a single population coevolution where at every generation the single90

parent generates and competes with the single offspring for selection. They also naturally represent learning
algorithms based on self play [20]. A standard random walk on a labelled DC starts at a random vertex, and
in each subsequent step, jumps to one of the out-neighbours N+

D (u) = {v ∈ VS\{u} : uv ∈ AR} of the current
vertex u randomly with equal probability. They are modelled as a specific type of discrete time Markov
chain Φ = {Φt : t ∈ N0}, each Φt takes values from the countable state space X = VS(n). By exploiting95

time homogeneity and memory loss [18], we can construct the CMC Φ as the random walk on DC(VS(n))
with initial distribution µ over X and Markov transition matrix P on X satisfying: (1) µ = (µx : x ∈ X),
0 ≤ µx ≤ 1 and

∑
x∈X µx = 1, and (2) P = (P(x, z) : x, z ∈ X), where every row is a distribution with

0 ≤ P(x, z) ≤ 1 and
∑
y∈X P(x, y) = 1. The distribution describing Φ can be obtained from µ and P .

There is an intimate connection between qualitative characterizations of global connectivity structures100

in DC and quantitative characterizations of Φ [12]. A random walk on a reducible DC leads to an absorbing
Φ. In the same manner, an irreducible Φ operates on a strongly connected DC . One can obtain the long-
term limiting distribution of Φ that satisfies the invariant property πP = π. π = (πx : x ∈ X) on X is
the stationary distribution of Φ. Each πx describes the long-term fraction of time spent on x by Φ. For
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absorbing Φ, the probability mass is concentrated on the absorbing class with all other states having zero105

probabilities [21].

2.3. PageRank Authority for Coevolutionary Digraphs

We reformulate the PageRank authority [22] using digraph-theoretic notations to make explicit its link to
digraph structures. Let u, v ∈ VS , the in-neighbourhood of u is N−D (u) = {v ∈ VS\{u} : vu ∈ AR}, and the
out-degree (number of outgoing arcs) of v is d+D(v) = |{(u, v) ∈ AR : v ∈ VS\{u}}|. The PageRank authority110

of u is ϕu = α + (1 − α)
∑
v∈N−

D (u)
ϕv/d+D(v) where α ∈ (0, 1). The parameter α has several interpretations

depending on the context in which PageRank is formulated. Here, it is used for the convex combination of
the free authority that each vertex (node) has and those as a result of connectivity structures to calculate
PageRank authorities [22].

Let vertices in DC(VS(n)) be labelled as v1, v2, v3, . . . , vn. The PageRank authorities are ϕ = [ϕ1, ϕ2, ϕ3,115

. . . , ϕn] (we write ϕvi as the ith element ϕi of ϕ), and given by ϕ = αe+(1−α)ϕM, where e = [1, 1, 1, . . . , 1]
and the matrix M = (mij : i, j ∈ {1, 2, 3, . . . , n}) with mij = 1

d+D(vj)
if j → i, mij = 0 if j 9 i. The influence

of the digraph structure can be seen from non-zero entries of M that corresponds to the domination matrix
associated with DC(VS(n)).

2.4. CMC and PageRank Connection120

Actual PageRank computation requires reformulation as an eigensystem or an equivalent linear system if
ψ is suitably normalized (ψeT = 1) [14]. PageRank is a Markov chain with a primitive probability transition
matrix PPR (non-negative, irreducible matrix having one eigenvalue r = ρ(PPR) on its spectral circle [19]).
Similarly, setting the usual adjustment PPR = αeT s + (1 − α)P where s is a general probability vector
(e.g. uniform 1

ne) [23] makes CMC irreducible and akin to a PageRank on DC(VS(n)), but also crucially125

introduces restart into the coevolutionary process with probability α. P = M if standard random walk is
used. ψ is the solution to ψPPR = ψ. This gives two natural interpretations to ψ: (1) It indicates how
coevolution measures the importance (authority) of individual v ∈ VS(n) and provides the means to rank
them. (2) It gives long-term visitation probabilities over the digraph by coevolutionary search (random
walk).130

We will establish several theoretical results connecting CMC and PageRank, which are reflected by the
relationship between the stationary distributions π and ψα associated with CMC and PageRank (CMC
with restart probability α) [24]. In the following, we provide guarantees on the existence of a PageRank
vector associated with a coevolutionary system and a linear systems formulation that allows us to uncover
several properties related to the coefficient matrix. A lazy random walk with the modified probability135

transition matrix Z = (I + P )/2 is used with stationary distribution π since π = πZ. The claim that π
is the limiting invariant distribution of a CMC operating on a strongly connected digraph DC(VS(n)) that
is aperiodic follows from the Perron-Frobenius Theorem. The modification introduced in the lazy random
walker ensures that Z is aperiodic [25].

Lemma 1. Let DC(VS(n)) ∈ DC(VS(n)) be a coevolutionary digraph. Let P be the probability transition
matrix associated with a CMC operating on DC(VS(n)) and Z = (I +P )/2 its lazy version. The row vector

s is the probability distribution over the set vertices VS(n). Given α ∈ (0, 1) and β = 2α
1−α , the personalized

PageRank vector is the unique solution to the linear system defined as

ψα(s) = αs + (1− α)ψα(s)Z (1)

and can be computed as

ψα(s) = βs
(
βI + (I− P )

)−1
. (2)

Proof: Equation 1 is formulated in [26]. We can rewrite it as

ψα(s)
(
βI + (I− P )

)
= βs (3)

4



where β > 0 (see Appendix A). W = βI + (I− P ) is a strictly dominant diagonal matrix and is invertible140

[27]. �
Let Rn×n be the set of real, square n×n matrices. A ∈ Rn×n is an M-matrix with the form A = cI−B,

where B ≥ 0 = (bij ≥ 0 : 1 ≤ i, j ≤ n) and c ≥ ρ(B) with ρ(·) denoting the spectral radius [28]. ||A||∞ is
the ∞-norm on A and κ∞(A) = ||W||∞||W−1||∞ is the condition number with respect to the ∞-norm for
A [19].145

Lemma 2. Let ψα(s)
(
βI + (I− P )

)
= βs be the formulation of the PageRank problem as a linear system.

The coefficient matrix W = βI + (I− P ) has the following properties:

1. W is an M-matrix.

2. W is nonsingular.

3. The row sums of W are β.150

4. ||W||∞ = 2 + β.

5. W−1 ≥ 0.

6. The row sums of W−1 are 1
β .

7. ||W−1||∞ = 1
β .

8. κ∞(W) = 2+β
β = 1

α .155

Proof: The main idea uses the fact that by definition, W = cI − B is an M-matrix with c = 1 + β and
B = P a stochastic matrix. Various properties can be shown such as inverse-positivity (Theorem 2.3, [28]).
See Appendix A for complete details. �

κ∞(W) in Lemma 2 indicates the sensitivity of the solution to PageRank to perturbations in W. It
quantifies the extent W is ill-conditioned with respect to machine precision when direct computation based160

on Gaussian elimination is used. For a machine precision u, this quantity is taken to be uκ∞(W) (Chapter
3, [29]). For example, uκ∞(W) ≤ 1 would indicate a loss of a single decimal digit of precision for α =
0.1. In practice, iterative methods are used for PageRank computation (see Theorem 2.2 [14] for error
characterizations of these methods).

2.5. CMC and PageRank - Stationary Distributions165

Given the connection between CMC and PageRank, the immediate issues are (1) characterization of
introducing restart in random walks on DC and (2) how changes to α impact the long-term limiting dis-
tribution of CMC. Our theoretical results address these issues qualitatively and quantitatively, for (1)
and (2), respectively. We use recent results from random walks generalized to digraphs in [30]. Let
P be associated with a CMC operating on irreducible DC(VS(n)) ∈ DC(VS(n)) with stationary vector
π = (π1, π2, π3, . . . , πn) where πP = π. Let the diagonal matrix be Π = diag(πi). The normalized digraph

Laplacian is L̃ = Π
1
2 (I− P )Π−

1
2 , with its individual element given by

L̃ij =


1− pii if i = j

−π1/2
i pijπ

1/2
j if (i, j) ∈ A

0 otherwise.

The Green’s function for digraphs Z̃ = L̃+
is the Moore-Penrose pseudoinverse of L̃ with Z̃L̃ = L̃Z̃ = I−J̃ ,

where J̃ = (π1/2)Tπ1/2. The next theorem shows the relationship between PageRank and stationary vectors
of CMC.

Theorem 3. Let π be the stationary vector associated with a CMC operating on an irreducible DC(VS(n)) ∈
DC(VS(n)). The personalized PageRank vector is given by

ψα(s) = s
(
I−Π−

1
2 L̃(βI + L̃)−1Π

1
2
)
. (4)

Furthermore,
lim
β→0
L̃(βI + L̃)−1 = L̃(L̃)+ = L̃Z̃

where β = 2α
1−α and Z̃ = L̃+

is the Moore-Penrose pseudoinverse of L̃. For small values of α (subsequently,
small values of β), the PageRank vector is approximated by the stationary vector, i.e., ψα(s) ≈ π with170

equality (ψ0(s) = π) for any s.
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Proof: Appendix A gives the full proof while we summarize the main ideas here. Using various identities
involving the normalized digraph Laplacian and the generalized identity for the inverse of a sum of matrices
[31], we can rewrite Equation 2 so that

ψα(s) = s
(
I−Π−

1
2 L̃(βI + L̃)−1Π

1
2
)

can be calculated where (βI + L̃)−1 is nonsingular (Theorem 1.2.17, [27]).
We can reformulate the linear system as

ψα(s) = π + β(s− π)
(
βI + I− P

)−1
, (5)

which indicates that ψ0(s) = π for any s as we let α→ 0⇒ β → 0.
We can directly calculate ψ0(s). Let Nβ = β(βI + L̃)−1. We will apply results from [30] (Theorem

1 and Lemma 1) involving identities relating the normalized digraph Laplacian and its Moore-Penrose
pseudoinverse. As β → 0, we have N0 = N0J̃ . Given that J̃ is singular, the solutions to the equality

N0 = N0J̃ are N0 = 0 and N0 = J̃ k
= J̃ , k = 1, 2, 3, . . .. Then, L̃(βI + L̃)−1 = L̃Z̃

(
I − β(βI + L̃)−1

)
reduces to L̃(L̃)+ = L̃Z̃, implying that

lim
β→0
L̃(βI + L̃)−1 = L̃Z̃.

�
Theorem 3 shows a direct relationship between π and ψα(s) as a result of introducing restart in CMC.175

Crucially, the connection between structures in DC and quantities arising from random walks on DC is made
explicit through the digraph Laplacian. For small α > 0, how the long-term fraction of time the random
walker spends on each vertices that is redistributed is represented by the perturbed normalized digraph
Laplacian (βI + L̃)−1. What is the difference between π and ψα(s) due to restart with probability α? The
following results answer this quantitatively.180

Lemma 4. Let a CMC operating on irreducible DC(VS(n)) ∈ DC(VS(n)) be associated with a probability
transition matrix P , stationary distribution π, and the fundamental matrix Z. Correspondingly, the person-
alized PageRank on DC(VS(n)) is a CMC with probability transition matrix PPR and stationary distribution
ψα(s). Then

π −ψα(s) = −ψα(s)
(
I− P

)
Z

= β(π − s)
(
βI + (I− P )

)−1
.

Proof: Applying results from Perturbation theory on finite Markov chains (Theorems 1 and 2, [32]), we
obtain

π −ψα(s) = −ψα(s)(I− P )Z.

We can show that the vector π − ψα(s) is invariant under multiplication of the matrix (I − P )Z, i.e.,

(π−ψα(s))(I−P )Z = π−ψα(s). Furthermore,
(
(I−P )Z

)k
= (I−P )Z, k = 1, 2, 3, . . .. From Equation 5,

we obtain the following

π −ψα(s) = β(π − s)
(
βI + I− P

)−1
.

Multiplying (I−P )Z on both sides of the equality above completes the proof (see Appendix A for details).
�

Corollary 5. For π and ψα(s) associated with CMC on an irreducible DC(VS(n)) ∈ DC(VS(n)), the follow-
ing inequality is given for restart probabilities α1 ≤ α2

||π −ψα1
(s)|| ≤ ||π −ψα2

(s)|| (6)

where α1, α2 ∈ (0, 1).

6



Proof: Let y = π−ψα(s), which consists of entries that are differentiable functions of a real variable α [19].
We can show that ||y(α)|| is monotonically increasing for α in (0, 1). See Appendix A for complete details.185

�

Corollary 6. Associated to each irreducible DC(VS(n)) ∈ DC(VS(n)) is CMC with stationary distribution
ψα(s) for α ∈ (0, 1) and π with the following perturbation bound

||π −ψα(s)||∞ ≤ ||π − s||∞ (7)

with equality when α = 1.

Proof: Since ||(βI + I − P )−1||∞ = 1
β from Lemma 2, we obtain ||π − ψα(s)||∞ ≤ β||π − s||∞ ||(βI + I −

P )−1||∞ = ||π − s||∞. See Appendix A for details. �
In this paper, we adopt a centrality measure approach [14] and take s to be uniform for a global digraph

analysis. For a given norm, ||π−ψα(s)|| is monotonic with α (Corollary 5). ||π−ψα(s)||∞ is upper-bounded
by ||π− s||∞ (Corollary 6). A general upper-bound of ||π−ψα(s)||1 can be obtained for probability vectors
associated with random walks on labelled (isomorphic) tournaments [33, 34], taking into account their
unilateral and directional duals [17, 35] (see Appendix A)

||π1 − π2||1 ≤ 2
(

1− 1

n

)
. (8)

Although characterizing ||π − ψα(s)||1 against changes in α is more useful, tight bounds are difficult to190

obtain (e.g. 2
α ) [22, 23, 36]. We combine a coupling approach [36] with digraph-theoretic arguments to

improve the bound to 2
1−α for irreducible DC (see Lemma 5, Appendix A).

3. Computational Results

We present results from controlled empirical studies on CMCs operating on coevolutionary tournaments
TC(VS(n)) having specific structures [12, 17, 33]. They are selected based on known internal cycle structures195

that let us test current understanding of those structures and evaluate their impact on the visitation proba-
bilities of vertices by the coevolutionary random walkers using quantitative measures we develop earlier. We
also compute differences on PageRank orderings [37] that we describe in detail later. We adapt the standard
Power Method approach [23] to compute the PageRank vectors ψα(s), using the lazy version of the CMCs
with uniform (teleportation vector) s.200

3.1. Generating Coevolutionary Tournaments

The set of coevolutionary digraphs for the experiments includes irreducible, reducible, and random
TC(VS(n)). All irreducible TC(VS(n)) are pancyclic [12]. The vertex-pancyclic TC(VS(n)) with the least
number of 3-cycles [38] can be obtained from the transitive tournaments of order n indexed by its score
sequences and then just reversing the arc v1vn to vnv1. It has a single transitive subtournament induced205

from a maximal, disjoint vertex partition of n− 2 vertices. We will refer to these tournaments as pancyclic
(maximal transitive subtournament). Other vertex-pancyclic (or simply pancyclic) TC(VS(n)) that we use
are those where we further reverse the arc v2vn−1 to vn−1v2.

For reducible cases, we use two approaches to generate reducible TC(VS(n)) with various degrees of cycle
structures in a controlled manner. The first approach exploits known digraph-theoretic structures. Every210

reducible TC(VS(n)) ∈ TC(VS(n)), n ≥ 2 has a strong decomposition V
(
T (1)

)
∪V
(
T (2)

)
∪V
(
T (3)

)
∪· · ·∪V

(
T (l)

)
with a unique ordering T (1), T (2), T (3), . . . , T (l) whereby T (i) 7→ T (j) when i < j for i, j = 1, 2, 3, . . . , l.
T (1)

(
T (l)

)
is the initial (terminal) strong component [12]. We generate reducible TC(VS(n)) with odd

number of components so that each odd-numbered-ith component is a single vertex and even-numbered-ith
component consists of a strong component of known structures, e.g., vertex-pancyclic (maximal transitive215

subtournament) and regular [17].
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The second approach uses a network-growth-based methodology via preferential attachment [12, 39].
A hierarchy of TC(VS(n)) where a control parameter is used to move between two complexity extremes
– irreducible TC(VS(n)) and reducible TC(VS(n)) with prominent transitive structures – can be generated.
We use the same settings in [12]: an initial transitive TC of order ten is used as a seed and attachment220

probabilities P−i =
(
1 + exp(−γ(xi − x)

)−1
of nodes vi are computed with {xi}m1 being the ranks of vi

sorted according to the score sequences, x = m/2, and γ that plays the role of the inverse temperature. We
control the generator to produce reducible TC of order n = m + 1 by introducing at the final iteration a
single dominant node vn.

Finally, random TC(VS(n)) is generated by orienting each edge {vi, vj} ∈ E of its underlying, complete225

graph GC(VS(n), E) randomly with equal probability for each direction. However, a random TC(VS(n)) is
likely to be irreducible (e.g. more than half the chance for a generated random tournament of order five
[33]). Irreducibility test on random TC(VS(n)) can be done using their score sequences following a well-known
result of Moser and Harary (1966) [17].

3.2. Results For ||π −ψα(s)||230

We evaluate both max and one norms and study the impact of the restart probability α on ||π−ψα(s)||
as the structure and size of TC(VS(n)) are varied in a controlled manner. Fig. 1 shows the results for
||π − ψα(s)||∞. For reducible TC(VS(n)), they all have one absorbing state vn so that π = (0, 0, 0, . . . , 1).
Following Theorem 3, ψα(s) is a redistribution of π and amounts to leakages of the probability mass
concentrated on vn. Essentially, the max norm takes the value ||π − ψα(s)||∞ = |πvn − ψvn |. Since there235

are leakages to a maximal subset VS(n)\{vn} of n− 1 vertices, ||π −ψα(s)||∞ for reducible cases would be
larger in comparison with the irreducible cases where there are no leakages.
||π−ψα(s)||∞ becomes larger and gets closer to the upper bound (1− 1

n ) (bold line in Fig. 1) as a result
of increasing number of 3-cycles that leads to fewer transitive components in the reducible TC(VS(n)). This
is achieved by setting the dominated strong component parts with specific cycle structures from pancyclic240

with the least number of 3-cycles in B to regular with the most number of 3-cycles (corollary of Theorem 4,
[33]) in C.

For irreducible cases, both stationary and PageRank vectors will be nonnegative (all entries > 0) so
that ||π −ψα(s)||∞ are substantially lower than (1− 1

n ). Intuition suggests that as the number of 3-cycles
increases, i.e., towards tournaments with regular cycle structures that have maximum number of 3-cycles245

and uniform π [12], ||π − ψα(s)||∞ will decrease. This can be observed by comparing results in D for
pancyclic TC(VS(n)) with the least number of 3-cycles and results in E and particularly in F where random
TC(VS(n)) become increasingly more regular-like as the number of vertices increases (inset of F).

Computational results indicate that ||π − ψα(s)||∞ is monotonic with α (see the higher-valued dotted
lines in Fig. 1 representing results where larger α values are used for reducible and irreducible cases).250

||π − ψα(s)||∞ gets closer to the upper bound ||π − s||∞ ≤ ||πtran − s||∞ = (1 − 1
n ) for the reducible A-C

cases and ||π − s||∞ for the irreducible D-E cases. Although this property was shown explicitly only for
irreducible CMCs in Corollary 5, one can argue from the point of leakages and setting a uniform s that
||π −ψα(s)||∞ is monotonic for reducible CMCs too.

Sharp bounds can be obtained for CMCs operating on TC(VS(n)) with specific structures in D that consist255

of pancyclic (maximal transitive subtournament). We note that ||π−ψα(s)||∞ = |πv1 −ψv1 | ≤ ||π− s||∞ =
|πv1 − 1

n |. This coincides with our intuitive understanding how this structure affects PageRank calculation.
Redistribution affects vertex v1, which shares most of the probability mass with vn. As in [22], the PageRank
authority of v1 is obtained from a single link vn → v1 even though vn has the highest authority.

We can calculate this bound directly using digraph-theoretic arguments (see notes after Corollary 8, Ap-260

pendix A). We have these identities: Hn =
∑n
k=1

1
k (nth Harmonic number),

∑n
i=1Hi = (n+ 1)(Hn+1 − 1)

[40], and E(ηVS(n−2)
) = 1

n−2
∑n−2
i=1 Hi. We apply these identities with m = n− 2, n ≥ 3 on Equation A.9 in

Appendix A to obtain
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Figure 1: ||π − ψα(s)||∞ of CMCs operating on tournaments that are (A) transitive, (B) with pancyclic (maximal transitive
subtournament) components of order 9, (C) with regular components of order 9, (D) pancyclic (maximal transitive subtourna-
ment), (E) pancyclic, and (F) random tournaments of odd order n ∈ [5, 999]. All plots are semilog except the inset of F, which
is log-log. Dotted lines indicate ||π − ψα(s)||∞ for α ∈ [0.05, 0.95] in steps of 0.05. Upper bounds: (1 − 1

n
) (bold lines) and

( a1
a2+Hm+1

− 1
m+2

) (dash-dot lines in D-E).

πv1 =
1

2

(
1−

1
m

∑m
i=1Hi

2 + 1
m

∑m
i=1Hi

)
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=
1

2

(
1−

1
m (m+ 1)(Hm+1 − 1)

2 + 1
m (m+ 1)(Hm+1 − 1)

)
=

a1
a2 +Hm+1

where a1 = m
m+1 and a2 = m−1

m+1 . Then,

||π −ψα(s)||∞ ≤
( a1
a2 +Hm+1

− 1

m+ 2

)
.

For these tournaments with large but finite number of vertices n = m+2, the right-hand side of the inequality265

is dominated by the reciprocal of Hm+1 (since Hm+1 grows logarithmically) and is bounded away from zero
[40]. Equality is obtained only for m = 1 where the right-hand side of the inequality is zero. This corresponds
to the isomorphic pancyclic tournament of n = 3 vertices, which is regular and has ||π −ψα(s)|| = 0.

Fig. 2 shows the results for ||π − ψα(s)||1 for the same set of experiments. The upper-bound ||π −
ψα(s)||1 ≤ 2(1 − 1

n ) is plotted as a bold line while ||π − ψα(s)||1 ≤ 2
1−α

(
1 −

(
πvn − 1

n

))
is plotted as a270

dash-dot line in Fig. 2. For reducible A-C cases with one absorbing state vn, we can verify numerically that
||π − ψα(s)||1 = 2||π − ψα(s)||∞. Any leakage that is measured by the max norm would be redistributed
over all other states. The one norm cumulatively adds these leakages in addition to that given by the
max norm for vn. Crucially, this leakage relationship extends to that between the digraph-theoretic-derived
upper-bounds since ||π −ψα(s)||1 ≤ 2(1− 1

n ) and ||π −ψα(s)||∞ ≤ (1− 1
n ).275

We now turn our attention to experiments involving reducible TC(VS(n)) generated from the network-
growth-based methodology and consider ||π−ψα(s)||∞ only. Fig. 3 shows results where the temperature 1/γ
for the system is increased from A to D. At a lower temperature in A, random orientations of edges generated
as a result of introducing a new node at each iteration of the method are biased towards existing nodes with
higher scores. This leads to more prominent transitive structures in TC(VS(n)), detected by computing its280

Landau’s index ν [12] that gives the number of strong components in TC(VS(n)). ν ranges at [8, 49], [8, 39],
[7, 47] for experiments with the final generated TC(VS(n)) at n = 100, 500, and 1000, respectively. At higher
temperatures, TC(VS(n)) generated in B-D have two strong components only (a single dominant node and a
strong dominated component of n− 1 nodes). A higher ||π −ψα(s)||∞ value is a result of the larger-sized,
strong dominated component drawing out more probability mass away from the absorbing dominant node285

(more leakages).

3.3. Results For PageRanking Coevolutionary Tournaments

The PageRank vector ψα(s) gives the visitation probabilities ψvi that ranks the importance (perfor-
mance) of vertices vi ∈ VS(n) representative of the underlying structure of their pairwise relations in the
coevolutionary digraph DC(VS(n)). We PageRank (index) the importance of these vertices in the same man-290

ner as their score sequence for consistency. Let τ : {ψvi}ni → Znk be the PageRanks of the vertices vi ∈ VS(n)
of DC(VS(n)), with visitation probabilities {ψvi}ni and Znk = {1, 2, 3, . . . , n}. Vertices are PageRanked in the
ascending order from the least important τ(v1) = 1 to the most important τ(vn) = n. Ties are handled in
the usual manner through fractional (average) ranks [41]. In our experiments, we generate tournaments and
strong components of odd orders so that tied ranks can be assigned with the median (integer) value.295

For transitive TC(VS(n)), results show that the ranking of vertices from τ is the same as that of score

sequences
(
d−T (vi)

)n
i

even for high α setting. How about irreducible TC(VS(n)) with prominent transitive
structures? In the case of the pancyclic (maximal transitive subtournament) TC(VS(n)), visitation proba-
bilities are sorted as ψv2 < ψv3 < ψv4 < · · · < ψvn−1

< ψv1 < ψvn , for reasonably low α settings. Unlike
the situation with the stationary probability vector where the two highest ranks are tied since πv1 = πvn ,300

PageRank is able to distinguish between v1 and vn.
If such a structure is embedded within a reducible TC(VS(n)) (as one may encounter in real-world problems

with such complex structures), PageRank can be used to uncover this strong component structure for small-
sized TC(VS(n)) where the issue of scale does not arise although the analysis can be more nuanced. For
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Figure 2: ||π − ψα(s)||1 of CMCs operating on tournaments that are (A) transitive, (B) with pancyclic (maximal transitive
subtournament) components of order 9, (C) with regular components of order 9, (D) pancyclic (maximal transitive subtourna-
ment), (E) pancyclic, and (F) random tournaments of odd order n ∈ [5, 999]. All plots are semilog except the inset of F, which
is log-log. Dotted lines indicate ||π − ψα(s)||1 for α ∈ [0.05, 0.95] in steps of 0.05. Upper bounds: 2(1 − 1

n
) (bold lines) and

2
1−α

(
1−

(
πvn − 1

n

))
at α = 0.05 setting (dash-dot lines in D-F).

example, consider the case whereby the strong component is pancyclic (maximal transitive subtournament).305

Nodes v62 and v63 (inset of Fig. 4A) have the same out-degree globally (d−T (v62) = d−T (v63)) and within the
strong component, the least number of just one outgoing link locally. However, v62 has a higher PageRank
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Figure 3: ||π − ψα(s)||∞ of CMCs operating on reducible tournaments that are generated from a network-growth-based
methodology with γ set to (A) 2.0, (B) 0.1, (C) 0.05, and (D) 0.01. Box plots in blue (bottom), black (middle), and red (top)
represent results where the final generated tournaments are of order 100, 500, and 1000, respectively.

authority than v63. Together both information would indicate that they are part of a strong component
that dominates all other vertices {v1, v2, v3, . . . , v61}. If the strong component is regular, PageRanks are the
same for those vertices (inset of Fig. 4B). Regardless, our setting (uniform s) is to provide a global view310

[14]. For reducible TC(VS(n)), there would be a general increase in visitation probabilities ψvi for vertices
with higher scores and that vertices in the absorbing class have significantly larger values (in Fig. 4, both
tournaments are reducible with a single dominant vertex).

3.4. Results For Differences in Rank Aggregation

It is known that setting α appropriately can improve the convergence rate of the Power Method (Theorem315

5.1 in [23]) to compute PageRanks at the expense of increasing perturbations on PageRank authorities and
subsequently the actual PageRank orderings [37]. We study the impact of α on PageRanks by computing
the differences between PageRanks at baseline α = 0.05 setting and those obtained from using higher α
settings. There are various approaches to calculate this difference through rank aggregation. We use a form
of the Spearman footrule distance [42].320
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Figure 4: Visitation probabilities (PageRank vector) of the CMC with restart on the vertices of reducible tournaments of order
101 (A) with pancyclic (maximal transitive subtournament) components of order 9 and (B) with regular components of order
9. Plots with blue (bottom), black (middle), and red (top) crosses are for the visitation probabilities where α is set to 0.05,
0.15 and 0.25, respectively. Insets show the visitation probabilities where α = 0.25 for one of the strong components. Vertices
are sorted according to their score sequences.

For TC(VS(n)) of odd orders n, we can calculate this distance

dspear(τ1, τ2) =
4

n2 − 1

n∑
i=1

|τ1(vi)− τ2(vi)| (9)

where the normalizing constant is given by the maximum of the sum of absolute differences max d(τ1, τ2) =
n2−1

4 . This can be obtained in the same manner as the Spearman’s rank correlation [41] by calculating the
distance obtained from completely opposed rankings of 1, 2, 3, . . . , n and n, n− 1, n− 2, . . . , 1 that also take
into account directional duals of labelled tournaments [35]. The maximum distance is the same as in the
case of the distance between that of transitive and regular tournaments. We also compute the average rank
difference

davg(τ1, τ2) =
1

n

n∑
i=1

|τ1(vi)− τ2(vi)|. (10)

davg(τ1, τ2) would be a useful comparison with dspear(τ1, τ2) for experiments where the n2 factor could mask
the effect of small rank differences for certain large tournaments.

In general, higher α settings would lead to more perturbations to PageRanks measured by larger d(τ1, τ2)
values (e.g. the bold lines in Fig. 5). However, increasing the size of the generated TC(VS(n)) leads to lower
d(τ1, τ2) values, indicating that changes to PageRanks are localized to certain vertices. For example, this is325

usually v1 for pancyclic (maximal transitive subtournament) TC(VS(n)) in A-B. Beyond specific structures
in TC(VS(n)), our results indicate that the presence of prominent transitive structures (A-B) and those that
forces reducibility (C-D) would localize perturbations of PageRanks to a small number of vertices, leading
to lower d(τ1, τ2) values as TC(VS(n)) increases in size.

4. Discussion and Conclusion330

One important issue dealing with problems in competitive settings is how problem structures can affect
the performance of solutions discovered by iterative means. Under some assumptions, coevolutionary pro-
cesses can be represented as Markov chain models operating on digraphs that capture preference relations
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Figure 5: Differences of PageRanks for coevolutionary tournaments that are irreducible having (A)-(B) pancyclic (maximal
transitive subtournament) structures and reducible having (C)-(D) pancyclic (maximal transitive subtournament) components
of order 9. Plots in (A) and (C) are for dspear(τ1, τ2) and (B) and (D) are for davg(τ1, τ2). Dotted lines show difference from
baseline PageRanks obtained with α = 0.05 to PageRanks obtained from setting higher α ∈ [0.10, 0.90]. Bold lines are the case
where α = 0.95.

between competing solutions to those problems. As a consequence, we are able to establish a direct and
formal connection between the Markov chain model of coevolutionary processes and PageRank operating on335

such digraphs. This lets us develop a principled approach for quantitative characterization of coevolutionary
digraphs. This PageRank characterization of a coevolutionary digraph measures and ranks the performance
of individual solutions.

Our theoretical support involves interdisciplinary studies in large-scale coevolutionary systems, Markov
models of PageRank and digraph theory. We provide guarantees of the existence of PageRank for any340

coevolutionary system. We prove the PageRank vector to be a redistribution of the stationary vector
associated with coevolutionary Markov chains (CMCs) operating on coevolutionary digraphs. This is a
result of introducing restarts in the coevolutionary process. Subsequent changes in the PageRank authorities
due to different probability α can be quantified precisely. We obtain loose theoretical bounds that cover
coevolutionary digraphs of any cycle structure. However, there are cases where we exploit qualitative345

knowledge of digraph structures to obtain sharp bounds. We consider a restricted class of population-one
coevolutionary systems, which covers other learning algorithms involving self play. The advantage is the
coevolutionary digraph captures all underlying structures induced by the pairwise preferences over solutions
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for the problem under consideration. Specific reducible digraphs would cover evolutionary cases as in recent
studies that apply PageRank to evolutionary systems [43].350

Although the main motivation of our study is to address the fundamental challenge arising from perform-
ing quantitative analysis on coevolutionary systems with little prior qualitative knowledge of the problem
structures, our technical contributions are general and can be applied to other problem areas whereby the
model one adopts is a random walk on semicomplete digraphs (an edge can be bioriented) that include the
more specific case of complete oriented graphs. The resulting finite-state Markov chains are non-reversible.355

Most classical results for such models focus on irreducible Markov chains (via the Perron-Frobenius Theo-
rem). Our technical work has used recent results from random walks on digraphs and matrix analysis to
characterize changes to the behavior of the random walk on semicomplete digraphs (through its stationary
distribution) as the parameter that controls the rate of restart is changed, qualitatively and quantitatively.
Furthermore, we empirically study (and argue from a leakage perspective) the case when the underlying360

digraph structure is reducible.
Coevolutionary systems are notoriously difficult to study. One consequence is that different aspects of

these systems are typically, though not always, studied in isolation using a variety of common frameworks.
Even within a single framework, one could apply different methodologies given the interplay between co-
evolutionary systems’ design, problem structures, and dynamics. For example, studies on coevolutionary365

dynamics in an evolutionary game theoretic setting from a continuous dynamical systems framework focus
on population-level analysis with respect to the constituents or mixtures of pure strategies. [9] provided
quantitative characterizations of these dynamics to different regimes (e.g., from simple attractive to periodic
and complex chaotic dynamics) based on numerically generated trajectories as a result of different selection
mechanisms. We [10] introduced the means by which qualitative determination of shadowing property in370

coevolutionary systems can be made based on the notion of structural stability from the dynamical systems
theory. This is of main interest in complex coevolutionary dynamics studies: If one can demonstrate that
the underlying dynamics is characterized by coexistence of both unstable and stable features (one can have
divergence of a noise-affected pseudo-trajectory from the true trajectory, but still the corrupted trajectory
is shadowed by another nearby true trajectory), it would thus make it possible to use numerically generated375

pseudo-trajectories as faithful representations of the complex dynamics. In addition, such theory can provide
links between infinite and finite population models [10].

Another example is the various studies within a pareto coevolution framework. Here, the common aspect
taken is the evaluation of individual coevolving solution using a set of test cases, usually described from the
perspective of pareto dominance in a multi-objective optimization setting. However, unlike the evolutionary380

setting, in pareto coevolution each test case is an objective that has to be optimized. In a typical problem
domain such as games, there could arise situations where there are no obvious dominant subset of solutions
and that coevolutionary search would cycle. [44] introduced a problem generation methodology whereby
specific attributes (e.g., intransitivity) in the test objectives giving rise to complex coevolutionary dynamics
(e.g. cyclic) can be introduced in a controlled manner. [45] developed coevolutionary algorithms that could385

detect and exploit ’gradients’ (pareto covering order) between individual layers or subsets of non-dominated
solutions. [46] comprehensively develop theoretical underpinnings via category and group theory to show
how functional specification for the evaluation of solutions via test cases can be formalized, among others,
to impose a pareto covering order on the solution set, and to study the emergence of geometric organization
on the test set that can be exploited for more informative pareto coevolutionary search (comparison) of390

solutions.
There are other frameworks (e.g., based on machine learning methodologies [47, 48, 49]) but one can

immediately appreciate challenges associated with complete understanding of coevolutionary systems given
the breadth and depth of available frameworks for study. Are there obvious connections between these
frameworks, for example, that of pareto coevolution with the framework of digraph representation of coevo-395

lutionary problems and random walks for coevolutionary processes we introduced earlier in [12]? One close
connection is that the formal methodology to uncover the structure of the pairwise comparison space in [46]
and the qualitative characterization of the underlying structures in coevolutionary digraphs in [12] are both
crucial for the design and analysis of effective pareto coevolutionary search. For any competitive coevolu-
tionary problem, qualitative knowledge of the problem is crucial towards obtaining guarantees that it can be400
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solved because there exist a dominant subset of solutions. Its underlying reducible coevolutionary digraph
would admit a decomposition over the solution set into strong components having an acyclic ordering. When
one by design uses the solution set itself for evaluations in pareto coevolution, the induced pareto covering
order on the solution set (search space) suggests a structure that can be exploited for coevolutionary search
between those pareto layers and eventually the single dominant subset of solutions.405

As a further illustration of the complementary nature of these two frameworks, one can setup an inductive
argument for a program that can perform pseudo-embedding of coevolved solutions:

1. Take a transitive tournament of n ≥ 4 vertices labelled {vi}n1 according to its score sequence with an
ordering s1 < s2 < s3 < ... < sn.

2. Perform a single arc reversal on v1vn to vnv1 to obtain a pancyclic (maximal transitive subtournament)410

tournament.

3. The pancyclic tournament is pseudo-embedded on N2 with the linear realiser L = {()X , ()Y } =
{([v1], [v2], [v3], ..., [vn]), ([vn], [v2], [v3], ..., [v1])}.

We use the notation L = {()X , ()Y } to indicate that the pseudo-embedding can be visualised as a N2-space
spanned along the x-axis by ()X and along the y-axis by ()Y . The specific pancyclic structure whereby the415

subtournament with n − 2 vertices v2, v3, v4, ..., vn−1 is always transitive allows one to setup an inductive
argument and use the above program to do the pseudo-embedding for tournaments of n ≥ 4 vertices. The
inductive step can be visualized as moving the embedded line of points specified by the two ends from
{(v1, vn), (vn, v1)} to {(v1, vn+1), (vn+1, v1)} – in the latter one adds an additional point corresponding to
the vertex that forms the transitive subtournament v2, v3, v4, ..., vn. It would be of interest in future studies420

to examine pseudo-embedding of other strong tournaments, for example, beyond N2-space.
Although we could construct quantitative measures for analysis of coevolutionary processes from [12],

there remains the issue that these measures require prior qualitative knowledge about the structure of the
digraph. Instead, one could take on the perspective of coevolution on what it views as important (how
often it searches) a solution in the space. The quantity of interest is the the stationary distribution of425

the CMC. However, coevolution on reducible digraphs corresponds to an absorbing CMC – the visitation
probabilities will be concentrated entirely on the dominant subset. The other remaining vertices would
have zero probabilities, and in this case, we would have no knowledge about the structures underlying them
(whether they are reducible or irreducible). Even for irreducible CMC, one needs some prior knowledge about
the structure of the digraph to interpret those quantities. PageRank addresses this issue by incorporating430

in its formalism information of the network (digraph) structure that we show explicitly in Section 2.3,
which we further demonstrate via controlled experiments in Section 3.3. Unlike CMC without restart,
PageRank authorities are able to distinguish common structures associated with reducible and irreducible
coevolutionary tournaments of various degree of complexity. Further characterization would require some
additional prior knowledge of the digraph structure, for example, as in the case of characterizing pancyclic435

(maximal transitive subtournaments) tournaments with the knowledge of the two vertices with the most and
least number of incoming arcs. Our empirical results also corroborate with our understanding of random
walks on irreducible tournaments with prominent transitive structures (detailed in full in Corollary 8 and
its subsequent notes in the Appendix section). The prominent transitive structures themselves force most of
the transfer in authorities to be localized to a small subset of vertices when one PageRank these tournaments440

so that the loss of information (that we measure as perturbations of PageRanks) is reduced.
This study is focused on laying down the foundations so that relevant quantitative analysis can be made

although there are real challenges associated with large, real-world coevolutionary systems. On the one
hand, PageRank can be used as a quantitative analysis tool for which new methods to discover and exploit
digraph structures (locally and globally) would be needed to obtain the relevant characterizations for large-445

scale and complex systems. Unlike other problem domains with sparse P [14] for which there exists methods
to speed up computation [23], there are at least half of nonzero entries in P for coevolutionary systems by
definition. On the other hand, PageRank’s dual nature means it can be interpreted as a CMC with restart.
One has algorithmic implementation of the random walk but very little is known about P (e.g., there is
a search space induced by the choice of player representation and genetic operators, but one has no direct450
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access to the solution space). In practice, relatively short runs are taken so that only some small regions
of the search space are visited. More studies on how one can in principle aggregate these runs to build a
relevant picture of the search would be needed.

Our technical approach extends the rich area in the study of random walks generalized to digraphs. In
particular, [26] has introduced a symmetric form of digraph Laplacian to examine links between PageRank455

and other frameworks associated with random walks and electrical networks. This is generalized by [30]
that examines the impact of asymmetry in the digraph Laplacian on random walks operating on a digraph,
in addition to the derivation of quantities such as hitting times associated with it. In comparison, our study
here considers non-reversible CMCs operating on both irreducible and reducible digraphs, in particular,
the class of semicomplete digraph for which an edge of its underlying complete graph can be bioriented460

(having two parallel arcs with opposing directions), and the specific limiting case in the form of a complete
oriented graph for which there is only one arc (a single oriented edge) between each pair of vertices. Our
approach is motivated by insights from digraph and specifically tournament theory for which we can develop
a more natural formalism to study coevolution as random walks on specific digraphs that represent problem
structures that are common to the problem domain (modelled as two-player strategic games). There has465

been recent works, for example in [50] that has developed a full electrical network behind non-reversible
Markov chains by replacing the single resistor with a non-symmetric component. The study does not consider
electrical networks with totally asymmetric components in the form of oriented graphs. [51] derive formulas
for expected hitting times of random walks on graphs in terms of voltages. However, as in our approach,
the underlying core building block in such approaches is the notion of Markov chain. For future studies,470

it would be of interests to consider these alternative frameworks for coevolutionary problems taking on the
form of two-player strategic games whereby the outcomes are probabilistic.
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Appendix A. Complete Proofs for Theoretical Results Listed in Main Texts

Lemma 1. Let DC(VS(n)) ∈ DC(VS(n)) be a coevolutionary digraph. Let P be the probability transition
matrix associated with a CMC operating on DC(VS(n)) and Z = (I +P )/2 its lazy version. The row vector

s is the probability distribution over the set vertices VS(n). Given α ∈ (0, 1) and β = 2α
1−α , the personalized

PageRank vector is the unique solution to the linear system defined as

ψα(s) = αs + (1− α)ψα(s)Z (A.1)

and can be computed as

ψα(s) = βs
(
βI + (I− P )

)−1
. (A.2)

Proof: We can rewrite Equation A.1 as follows

ψα(s) = αs + (1− α)ψα(s)Z

ψα(s)
(
αI + (1− α)I− (1− α)Z

)
= αs

ψα(s)
(
I +

(1− α)

2α
(I− P )

)
= s

ψα(s)
(
I +

(1− α)

2α
(I− P )

)
= s

so that now it can be expressed in the usual matrix form for linear systems

ψα(s)
(
βI + (I− P )

)
= βs (A.3)
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where β = 2α
1−α > 0.

βI + (I− P ) is a strictly dominant diagonal matrix and so is nonsingular (invertible) [27]. This can be
proven as follows. Let W = βI + (I−P ) = (1 + β)I−P . Since P is a row stochastic matrix, then for each
row i,

∑
j 6=i |wij | ≤ 1. But |wii| = 1 + β >

∑
j 6=i |wij | for β > 0. �480

Lemma 2. Let ψα(s)
(
βI + (I− P )

)
= βs be the formulation of the PageRank problem as a linear system.

The coefficient matrix W = βI + (I− P ) has the following properties:

1. W is an M-matrix.

2. W is nonsingular.

3. The row sums of W are β.485

4. ||W||∞ = 2 + β.

5. W−1 ≥ 0.

6. The row sums of W−1 are 1
β .

7. ||W−1||∞ = 1
β .

8. κ∞(W) = 2+β
β = 1

α .490

Proof: The properties of W and their proofs follow a similar exposition in [23]. Let Rn×n be the set of real,
square n×n matrices. A ∈ Rn×n is an M-matrix if it can be written in the form A = cI−B, where B ≥ 0
(i.e., B = (bij ≥ 0 : 1 ≤ i, j ≤ n)) and c ≥ ρ(B) with ρ(·) denoting the spectral radius (Chapter 6, [28]).
Then, we have the following.

1. W is an M-matrix: W = βI + (I− P ) = cI−B where c = 1 + β and B = P . Applying the Perron-495

Frobenius Theorem to the stochastic matrix P , ρ(P ) = ||P ||∞ = 1 (Chapter 8, [19]). Obviously,
c = 1 + β > ρ(P ) = 1 for β > 0. As such, W is an M-matrix.

2. W is nonsingular: This was shown earlier in the proof for Lemma 1.

3. The row sums of W are β: Note that for each row i, wii−
∑
j 6=i wij = (1+β)−1 = β. So, WeT = βeT

where eT is the column vector of ones.500

4. ||W||∞ = 2 + β: Applying the definition of ∞-norm [19], ||W||∞ = max
i

∑
j |wij | = 2 + β.

5. Since W is an M-matrix, then W−1 ≥ 0: This is simply a direct application of Theorem 2.3 in Chapter
6 of [28]. Since W is a nonsingular M-matrix, it is inverse-positive, i.e., W−1 exists and W−1 ≥ 0.

6. The row sums of W−1 are 1
β : We note

WeT = βeT

1

β
eT = W−1eT .

7. ||W−1||∞ = 1
β : Since W−1 ≥ 0 and W−1eT = 1

βeT , then ||W−1||∞ = 1
β .

8. κ∞(W) = 2+β
β = 1

α : The condition number κ for a nonsingular A is ||A|| ||A−1|| [19]. Applying

results in (4) and (7) with β = 2α
1−α , we have

κ∞(W) = ||W||∞ ||W−1||∞

=
2 + β

β

=
1

α
.

�505

Theorem 3. Let π be the stationary vector associated with a CMC operating on an irreducible DC(VS(n)) ∈
DC(VS(n)). The personalized PageRank vector is given by

ψα(s) = s
(
I−Π−

1
2 L̃(βI + L̃)−1Π

1
2
)
. (A.4)
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Furthermore,

lim
β→0
L̃(βI + L̃)−1 = L̃(L̃)+ = L̃Z̃

where β = 2α
1−α and Z̃ = L̃+

is the Moore-Penrose pseudoinverse of L̃. For small values of α (subsequently,
small values of β), the PageRank vector is approximated by the stationary vector, i.e., ψα(s) ≈ π with
equality (ψ0(s) = π) for any s.

Proof: Since L̃ = Π
1
2 (I− P )Π−

1
2 can be rewritten as (I− P ) = Π−

1
2 L̃Π

1
2 ,(

βI + (I− P )
)−1

= (βI + Π−
1
2 L̃Π

1
2 )−1

= (βI)−1 − (βI)−1Π−
1
2
(
I + L̃Π

1
2 (βI)−1Π−

1
2
)−1L̃Π

1
2 (βI)−1

= (βI)−1 − (βI)−1Π−
1
2
(
I + L̃(βI)−1

)−1L̃(βI)−1Π
1
2

= (βI)−1 − (βI)−1Π−
1
2 L̃(βI)−1

(
I + L̃(βI)−1

)−1
Π

1
2

=
1

β

(
I−Π−

1
2 L̃(βI + L̃)−1Π

1
2
)
.

On the second line, we used the generalized identity for the inverse of a sum of matrices (A + UBV)−1 =
A−1 −A−1U(I + BVA−1U)−1BVA−1 where A is nonsingular and U, B, and V are square matrices in510

our case. On the fourth line, we used the identity (I + C)−1C = C(I + C)−1 where for any C, (I + C)−1 is
nonsingular [31].

The personalized PageRank for coevolutionary digraphs is calculated as

ψα(s) = s
(
I−Π−

1
2 L̃(βI + L̃)−1Π

1
2
)

since (βI+ L̃)−1 is nonsingular (by Theorem 1.2.17 in page 54, [27]). What happens when β → 0? We know
the linear system should reduce to the case whereby the solution is the stationary vector π if we assume
that the coevolutionary digraph is irreducible.515

Since Z̃ = L̃+
is the Moore-Penrose pseudoinverse of L̃,

L̃ = L̃Z̃L̃
L̃+ E = L̃Z̃(βI + L̃)

E = βL̃Z̃.

Then,

L̃+ E = L̃Z̃(βI + L̃)

(L̃+ E)(βI + L̃)−1 = L̃Z̃
L̃(βI + L̃)−1 = L̃Z̃ − E(βI + L̃)−1

= L̃Z̃
(
I− β(βI + L̃)−1

)
.

We rewrite the personalized PageRank for coevolutionary digraphs as follows

ψα(s) = s
(
I−Π−

1
2 L̃Z̃

(
I− β(βI + L̃)−1

)
Π

1
2
)

= s
(
I−Π−

1
2 L̃Z̃Π

1
2 + βΠ−

1
2 L̃Z̃Π

1
2 Π−

1
2 (βI + L̃)−1Π

1
2
)

= s
(
I−Π−

1
2 L̃Z̃Π

1
2 + βΠ−

1
2 L̃Z̃Π

1
2
(
βΠ−

1
2 Π

1
2 + Π−

1
2 L̃Π

1
2
)−1)

= s
(
I−Π−

1
2 L̃Z̃Π

1
2
)

+ βs
(
Π−

1
2 L̃Z̃Π

1
2
(
βI + I− P

)−1)
19



= s
(
I−Π−

1
2 (I− J̃ )Π

1
2
)

+ βs
(
Π−

1
2 (I− J̃ )Π

1
2
(
βI + I− P

)−1)
= π + β(s− π)

(
βI + I− P

)−1
where L̃Z̃ = (I− J̃ ). We need to show that s

(
I−Π−

1
2 (I− J̃ )Π

1
2
)

= π and s
(
Π−

1
2 (I− J̃ )Π

1
2
)

= s− π.
First, we obtain by direct calculation that

I−Π−
1
2 (I− J̃ )Π

1
2 =



π1 π2 π3 · · · πn

π1 π2 π3 · · · πn

π1 π2 π3 · · · πn
...

...
...

. . .
...

π1 π2 π3 · · · πn


where J̃ = (π1/2)Tπ1/2. Since s = (si)

n
i=1 with

∑
i si = 1, we can calculate s

(
I − Π−

1
2 (I − J̃ )Π

1
2
)

=
(
∑
i πjsi)

n
j=1 = (πj

∑
i si)

n
j=1 = (πj)

n
j=1 = π.

Second, let s = (s1, s2, s3, . . . , sn) and π = (π1, π2, π3, . . . , πn). Direct calculation shows that s
(
Π−

1
2 (I−

J̃ )Π
1
2
)

= (s1 − π1, s2 − π2, s3 − π3, . . . , sn − πn) = s− π. Note that the product of the row vector s with

the first column of the matrix Π−
1
2 (I− J̃ )Π

1
2 is

(s1, s2, s3, . . . , sn)(1− π1,−π1,−π1, . . . ,−π1)T

= s1(1− π1) + s2(−π1) + s3(−π1) + · · ·+ sn(−π1)

= s1 − π1

whereby the product of s with the ith-column of Π−
1
2 (I− J̃ )Π

1
2 is si − πi.

We have calculated that

ψα(s) = π + β(s− π)
(
βI + I− P

)−1
. (A.5)

Since βI + I− P is nonsingular, then

ψα(s)
(
βI + I− P

)
= π(βI + I− P ) + β(s− π).

Note that when we let α→ 0⇒ β → 0, we obtain

ψ0(s)
(
I− P

)
= π(I− P ) + 0̃

= π(I− P )

where 0̃ is the zero row vector. As such, ψ0(s) = π for any s.520

Can we calculate ψα(s) = s
(
I−Π−

1
2 L̃Z̃

(
I−β(βI+L̃)−1

)
Π

1
2
)

directly? We need to be able to calculate

ψ0(s) also. Let Nβ = β(βI + L̃)−1. This means calculating N0 also. Nβ is nonsingular. Then,

Nβ = β(βI + L̃)−1

βINβ + NβL̃ = βI.

Assume N0 is nonsingular. As β → 0, we have

0N0 + N0L̃ = 0

N0L̃ = 0.

We know L̃ is singular. But for the last equality N0L̃ = 0, the original statement that N0 is nonsingular
would be a contradiction. N0 must be singular.
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We can apply the theoretical result involving several identities relating to the normalized digraph Lapla-

cian [30] and obtain the solution for N0L̃ = 0 as N0 = J̃ k
= J̃ , k = 1, 2, 3, . . . (by repeatedly applying

the identity J̃ 2
= J̃ ) or N0 = 0 (the zero matrix). Here, J̃ L̃ = 0 (by Lemma 1 in [30]) and 0L̃ = 0. We

furnish a direct calculation for J̃ L̃ here since it is sketched only in [30]. Let J be the square matrix of ones
and e the row vector of ones. Then,

J̃ L̃ = (Π
1
2 JΠ

1
2 )(Π

1
2 (I− P )Π−

1
2 )

= Π
1
2 JΠ(I− P )Π−

1
2

= Π
1
2 eTπ(I− P )Π−

1
2

= 0

since π(I−P ) = π−πP = π−π = 0̃ and eT 0̃ = 0 where 0̃ is the zero row vector and 0 is the zero matrix.
However, we can establish what N0 is, directly. First we rewrite the expression (βI + L̃)−1 as follows

(βI + L̃)−1 =
(
βI + (L̃+ J̃ )− J̃

)−1
=
((
L̃+ J̃

)(
I + (L̃+ J̃ )−1(βI− J̃ )

))−1
=
(
L̃+ J̃

)−1(
I + (L̃+ J̃ )−1(βI− J̃ )

)−1
=
(
Z̃ + J̃

)(
I + (Z̃ + J̃ )(βI− J̃ )

)−1
=
(
Z̃ + J̃

)(
I + β(Z̃ + J̃ )− Z̃J̃ − J̃ J̃

)−1
=
(
Z̃ + J̃

)(
β(Z̃ + J̃ ) + (I− J̃ )

)−1
,

using identities (Z̃ + J̃ ) = (L̃ + J̃ )−1 on the fourth line (by Theorem 1 in [30]), Z̃J̃ = 0 and J̃ J̃ = J̃
on the last line (by Lemma 1 in [30]).525

Since Nβ = β(βI + L̃)−1 is nonsingular, then

Nβ = β
(
Z̃ + J̃

)(
β(Z̃ + J̃ ) + (I− J̃ )

)−1
Nβ

(
β(Z̃ + J̃ ) + (I− J̃ )

)
= β

(
Z̃ + J̃

)
.

As β → 0, we have

N0

(
0 + (I− J̃ )

)
= 0

N0 = N0J̃ .

Given that J̃ is singular, the solutions to the equality N0 = N0J̃ are N0 = 0 and N0 = J̃ k
= J̃ ,

k = 1, 2, 3, . . ..
As α→ 0⇒ β → 0, we can then reduce the equation L̃(βI + L̃)−1 = L̃Z̃

(
I− β(βI + L̃)−1

)
as follows

L̃(L̃)+ = L̃Z̃(I−N0)

= L̃Z̃(I− J̃ )

= L̃Z̃,

given that L̃Z̃ = I − J̃ and L̃Z̃L̃ = L̃. The conclusion is the same if we consider N0 = 0. This implies
that

lim
β→0
L̃(βI + L̃)−1 = L̃(L̃)+

= L̃Z̃.
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For small values of α (subsequently small values of β), we can use this approximation

L̃(βI + L̃)−1 ≈ L̃Z̃ = I− J̃ ,

with equality when β = 0. We can approximate the personalized PageRank for irreducible coevolutionary
digraphs as

ψα(s) ≈ s
(
I−Π−

1
2 (I− J̃ )Π

1
2
)

= π

with equality, i.e., ψ0(s) = π, for any s. �

Lemma 4. Let a CMC operating on irreducible DC(VS(n)) ∈ DC(VS(n)) be associated with a probability
transition matrix P , stationary distribution π, and the fundamental matrix Z. Correspondingly, the person-
alized PageRank on DC(VS(n)) is a CMC with probability transition matrix PPR and stationary distribution
ψα(s). Then

π −ψα(s) = −ψα(s)
(
I− P

)
Z

= β(π − s)
(
βI + (I− P )

)−1
.

Proof: The following makes use of results of Perturbation theory applied to finite Markov chains in [32]. Let
πA = π, PA = P , πB = ψα(s), and PB = PPR. The distance between P and PPR is defined as

UAB = (PPR − P )Z

with the fundamental matrix Z = ZA. Applying two theoretical results in [32] (Theorems 1 and 2), we
obtain

ψα(s) = π(I−UAB)−1

ψα(s)−ψα(s)UAB = π

π −ψα(s) = −ψα(s)UAB

= ψα(s)(P − PPR)Z

= −ψα(s)(I− P )Z,

where we use ψα(s)PPR = ψα(s).
We show that the vector π − ψα(s) is invariant under multiplication of the matrix (I − P )Z, i.e.,

(π −ψα(s))(I− P )Z = π −ψα(s). Furthermore,
(
(I− P )Z

)k
= (I− P )Z, k = 1, 2, 3, . . .. First,

(π −ψα(s))(I− P )Z = π(I− P )Z −ψα(s)(I− P )Z

= 0̃−ψα(s)(I− P )Z

= π −ψα(s),

where 0̃ is the zero row vector. Second, using identities L̃ = Π
1
2 (I − P )Π−

1
2 and Z̃ = Π

1
2ZΠ−

1
2 [30], we

obtain (I− P )Z = Π−
1
2 L̃Z̃Π

1
2 . Then,(

(I− P )Z
)(

(I− P )Z
)

= (Π−
1
2 L̃Z̃Π

1
2 )(Π−

1
2 L̃Z̃Π

1
2 )

= (I− P )Z,

where we use L̃Z̃L̃ = L̃. We obtain
(
(I−P )Z

)k
= (I−P )Z, k = 1, 2, 3, . . . by applying the equality above530

repeatedly.
Applying Equation A.5 from the proof section of Theorem 3, we obtain

π −ψα(s) = β(π − s)
(
βI + I− P

)−1
.
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Multiplying (I− P )Z on both sides of the equality

(π −ψα(s))(I− P )Z = β(π − s)
(
βI + I− P

)−1
(I− P )Z

π −ψα(s) = βπ(I− P )Z − βs(βI + I− P )−1(I− P )Z

= 0̃− βs(βI + I− P )−1(I− P )Z

= −ψα(s)(I− P )Z,

where we use Equation A.2 from Lemma 1, which completes the proof. �

Corollary 5. For π and ψα(s) associated with CMC on an irreducible DC(VS(n)) ∈ DC(VS(n)), the follow-
ing inequality is given for restart probabilities α1 ≤ α2

||π −ψα1
(s)|| ≤ ||π −ψα2

(s)|| (A.6)

where α1, α2 ∈ (0, 1).

Proof: First, we rewrite the equation as follows

π −ψα(s) = β(π − s)(βI + I− P )−1

y = (π − s)A−1

where y = π − ψα(s) and A = I + 1
β (I − P ). A−1 is by definition a nonsingular M-matrix and as such is

inverse-positive A−1 ≥ 0 (Theorem 2.3, Chapter 6, [28]) with positive || ? ||. Furthermore, since each row535

sum of A is equal to one, then A is a uniformly strictly diagonally dominant M-matrix and that A−1 is
a row stochastic matrix (Corollary 2 in [52]). We have three cases when: (a) α = 0, (b) α = 1, and (c)
α ∈ (0, 1). We evaluate these cases individually using several results in the proof of Theorem 3.

For (a), Theorem 3 implies that as α → 0 ⇒ β → 0, we have limβ→0 ||π − ψα(s)|| = 0. We can show
this directly here. We rewrite A−1 as

A−1 =
(
I +

1

β
(I− P )

)−1
= I−Π−

1
2 L̃(βI + L̃)−1Π

1
2

since
(
βI + (I− P )

)−1
= 1

β

(
I−Π−

1
2 L̃(βI + L̃)−1Π

1
2
)
.

Let y(0) = limβ→0(π − s)A−1. As α→ 0⇒ β → 0, we obtain

y(0) = lim
β→0

(π − s)A−1

= (π − s) lim
β→0

(I−Π−
1
2 L̃(βI + L̃)−1Π

1
2 )

= (π − s)eTπ

= 0̃

where we use I−Π−
1
2 L̃Z̃Π

1
2 = I−Π−

1
2 (I− J̃ )Π

1
2 = eTπ. So, ||y(0)|| = 0.540

For (b), as α → 1 ⇒ β → ∞, we have limβ→∞ ||π − ψα(s)|| = ||π − s|| since ψ1(s) = s, given
that limβ→∞A−1 = I−1 = I and ψα(s) = sA−1. We can show this directly as follows. Let y(1) =
limβ→∞(π − s)A−1. Then,

y(1) = lim
β→∞

(π − s)A−1

= (π − s) lim
β→∞

A−1
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= π − s.

So, ||y(1)|| = ||π − s||.
For (c), note that y and A consist of entries that are differentiable functions of a real variable β [19]

whereby

dy

dβ
= (π − s)

d

dβ
A−1

=
1

β2
(π − s)A−1(I− P )A−1

since

d

dβ
A =

d

dβ

(
I +

1

β
(I− P )

)
= − 1

β2
(I− P )

and

d

dβ
A−1 = −A−1(

d

dβ
A)A−1

=
1

β2
A−1(I− P )A−1.

We note that

(π − s)A−1(I− P )A−1 =
(
π −ψα(s)

)
(I− P )A−1

= (ψα(s)P −ψα(s))A−1.

Given that limβ→∞A−1 = I, we obtain

lim
β→∞

(π − s)A−1(I− P )A−1 = (π − s)(I− P )

= sP − s.

As α→ 1⇒ β →∞, limβ→∞
∣∣∣∣dy

dβ

∣∣∣∣ = limβ→∞
1
β2 ||sP − s|| = 0.∣∣∣∣dy

dβ

∣∣∣∣ is positive for α ∈ (0, 1) and goes to zero as α→ 1. Furthermore, we know that y(α) is bounded

entrywise with ||y(0)|| = 0 and ||y(1)|| = ||π − s||. Since ||y(α)|| is monotonically increasing in the interval
of α for (0, 1), it follows that ||π −ψα1

(s)| ≤ ||π −ψα2
(s)|| for α1 ≤ α2 where α1, α2 ∈ (0, 1). �545

Corollary 6. Associated to each irreducible DC(VS(n)) ∈ DC(VS(n)) is CMC with stationary distribution
ψα(s) for α ∈ (0, 1) and π with the following perturbation bound

||π −ψα(s)||∞ ≤ ||π − s||∞ (A.7)

with equality when α = 1.

Proof: Since ||(βI + I − P )−1||∞ = 1
β from Lemma 2 and from the property of induced matrix norm [19],

we obtain

||π −ψα(s)||∞ = ||β(π − s)(βI + I− P )−1||∞
≤ β||π − s||∞ ||(βI + I− P )−1||∞
= ||π − s||∞.
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Equality is obtained as α = 1 since ψ1(s) = s. �
Note: Lemma 4 expresses the difference between stationary and PageRank vectors of a CMC explicitly,

which is followed by Corollary 5 that shows for a given vector norms, ||π −ψα(s)|| is directly proportional
to the restart probability α. This can be seen from the expression π − ψα(s) = (π − s)A−1 where A−1 =550 (
I + 1

β (I − P )
)−1

. A−1 is a row stochastic matrix that changes from eTπ (as α → 0) to I (as α → 1).

Although it is not possible to find a general expression of A−1 for α ∈ (0, 1), given that A is a nonsingular
M-matrix that is diagonally dominant, A−1 is diagonally dominant of its column entries (i.e, for B = A−1,
|bii| > |bij |, j 6= i, i = 1, 2, 3, . . . , n) [53]. Furthermore, πA−1 = π from Equation A.5. One can observe
that ||(π − s)A−1|| = ||π − sA−1|| monotonically increases as α → 1. For example, ||(π − s)A−1||1 =555 ∑n
i=1 |πi − si| since si(α) changes from si(0) = πi to si(1) = si. For ||(π − s)A−1||∞, in the case where

|π1 − s1| ≥ |πi − si|, i = 2, 3, 4, . . . , n and assuming uniform s, monotonicity can be observed from changes
in sA−1 from seTπ = π to sI = s.

Appendix B. Theoretical Bounds for One Norm ||π − ψα(s)||1

Appendix B.1. General Bound for Coevolutionary Digraphs560

General bounds can be obtained for any (reducible and irreducible) coevolutionary digraph. A simple
argument would be to take the maximum one norm for probability vectors (0, 0, 0, . . . , 1) and (1, 0, 0, . . . , 0)
as 2 [23]. However, we can improve the bound by considering random walks on labelled or isomorphic
tournaments [33, 34]. A probability vector (a1, a2, a3, . . . , an) associated for a tournament with vertices
consistently indexed according to their score sequences will have for its unilateral and directional dual565

(vertices indexed in the reversed order of their score sequences), (an, an−1, an−2, . . . , a1) [17, 35].
A straightforward digraph-theoretic argument would be to take the one norm between stationary vectors

associated with transitive (πtran = (0, 0, 0, . . . , 1)) and regular (πreg = ( 1
n ,

1
n ,

1
n , . . . ,

1
n )) tournaments

max || ? ||1 = ||πtran − πreg||1

=
(
n− 1

) 1

n
+
(

1− 1

n

)
= 2
(

1− 1

n

)
as the upper bound, that is, for the one norm of probability vectors associated with CMCs operating on
tournaments π1 and π2

||π1 − π2||1 ≤ 2
(

1− 1

n

)
. (A.8)

Appendix B.2. Bounds based on Digraph-Theoretic and Coupling Arguments

The bound given by the inequality in Equation A.8 also reflects the difference for a PageRank random
walker operating on a transitive tournament between two opposite cases: (1) For α = 0, all the probability
mass is concentrated at a single absorbing vertex. (2) For α = 1 (i.e. restarts all the time with a uniform570

teleportation vector), the mass is now uniformly distributed over all vertices. What happens when α is
varied in (0, 1)? In general, one would obtain loose bounds. In [36], a coupling argument is introduced to
provide the relevant bounds, which we improve here.

Let µ and ν be the probability distributions of the random variables X and Y , respectively. Both X and
Y take on values in the state space V. Let (X,Y ) be the pair of the two random variables. Let q be the joint575

distribution of (X,Y ) on V × V, i.e., q(x, y) = P(X = x, Y = y), such that
∑
y∈V q(x, y) = P(X = x) = µx

and
∑
x∈V q(x, y) = P(Y = y) = νy. A coupling of µ and ν refers to the pair (X,Y ) defined on a single

probability space whereby its marginal distributions of X and Y are µ and ν, respectively, i.e., satisfying
P(X = x) = µx and P(Y = y) = νy for all x, y ∈ V [54].

The following result show how to bound the distance between stationary µ = π and PageRank ν =580

ψα(s) distributions of the coupled CMCs {(Xt, Yt) : t ∈ N0}, where {Xt : t ∈ N0} is without restart and

25



{Yt : t ∈ N0} is with restart. Our proof uses a combination of digraph-theoretic and coupling arguments.
We exploit specific structures in irreducible coevolutionary digraphs DC(VS(n)) ∈ DC(VS(n)) to construct
a specific coupling of the two CMCs. Then, we use the equivalent characterizations of variation distance
between the marginal distributions of the coupling (||π − ψα(s)||TV = 1

2 ||π − ψα(s)||1 = minP(X 6= Y ))585

[55] and subsequently bound ||π −ψα(s)||1 with an asymptotic upper-bound of P(X∞ 6= Y∞).

Lemma 7. Let DC(VS(n)) ∈ DC(VS(n)) be an irreducible coevolutionary digraph. Let {(Xt, Yt) : t ∈ N0} be
a coupling of the two CMCs. Associated with CMC {Xt : t ∈ N0} is the probability transition matrix P and
stationary distribution π. Associated with CMC {Yt : t ∈ N0} is the perturbed probability transition matrix
PPR and stationary distribution ψα(s). The lazy random walk versions are considered for both CMCs. The
two stationary distributions satisfy the relation:

||π −ψα(s)||1 ≤
2

1− α
P(X∞ 6= Y∞)

≤ 2

1− α
dα

≤ 2

1− α

where dα = maxP(Xt+1 6= Yt+1, Xt = Yt | restart at t+ 1).
For {Ỹt : t ∈ N0} with no restart (α = 0), there is an optimal coupling {(Xt, Ỹt) : t ∈ N0} such that

||π −ψ0(s)||1 = 0, which implies ψ0(s) = π.

Proof: Let {(Xt, Yt) : t ∈ N0} be a coupling of the two CMCs with the following construction.590

(i) X0 = Y0 is drawn randomly from π.

(ii) The state transitions are as follows: At time step t+ 1, decide with probability 1−α not to restart or
with probability α to restart.

a. If there is no restart, then Xt+1 = Yt+1 always. If Xt = Yt, then Xt+1 = Yt+1 (i.e., both chains
jump to the same vertex) that is chosen randomly according to P . If Xt 6= Yt, then Xt+1 and595

Yt+1 are chosen such that Xt+1 = Yt+1.
b. If there is restart, then Xt+1 6= Yt+1 always if Xt 6= Yt. Otherwise, if Xt = Yt, then Xt+1 is

chosen randomly according to P and Yt+1 is chosen uniformly at random such that Xt+1 6= Yt+1.

For the coupling of the two CMCs, we first show that when there is no restart, Xt+1 = Yt+1 regardless
of the state of the coupled CMCs at time t. Applying Moon’s Theorem [33], an irreducible coevolutionary600

digraph DC(VS(n), A) ∈ DC(VS(n)) is vertex-pancyclic. In particular, any three distinct vertices x, y, z ∈
VS(n) forms a 3-cycle, i.e., cycle of length three. We use the simplified notation xyzx to indicate x →
y → z → x. Let Xt = x and Yt = y. For lazy random walks, if the 3-cycle is xzyx, then arbitrarily set
Xt+1 = Xt = x and Yt+1 = x. Similarly, if the 3-cycle is yzxy, then arbitrarily set Yt+1 = Yt = y and
Xt+1 = y. If Xt and Yt are at the same vertex y, depending on the 3-cycle configuration, then both chains605

either jump to the same vertex z, i.e., Xt+1 = Yt+1 = z (if the 3-cycle is xyzx) or stay at vertex y (if the
3-cycle is yxzy). Similar arguments can be made for the case of Xt = Yt = x.

When there is restart and if Xt = Yt, we choose Xt+1 randomly according to P and then choose Yt+1

uniformly at random such that Xt+1 6= Yt+1. By construction, Xt+1 6= Yt+1 always when Xt 6= Yt. Although
the two transitions are correlated, each of the two CMCs are still using their state transitions independently.610

As such, we have a coupled CMCs {(Xt, Yt) : t ∈ N0} such that their marginal distributions are π and
ψα(s).

We now use the coupling argument introduced in [36] (Theorem 3) for our coupling construction. Let
dt = P(Xt 6= Yt). Since X0 = Y0, P(X0 6= Y0) = 0. Then,

dt+1 = P(Xt+1 6= Yt+1)

= P(Xt+1 6= Yt+1 | no restart at t+ 1)P(no restart)

+ P(Xt+1 6= Yt+1 | restart at t+ 1)P(restart)
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= (0)(1− α) + α
(
P(Xt+1 6= Yt+1, Xt 6= Yt | restart at t+ 1)

)
+ α

(
P(Xt+1 6= Yt+1, Xt = Yt | restart at t+ 1)

)
≤ α

(
P(Xt 6= Yt) + P(Xt+1 6= Yt+1, Xt = Yt | restart at t+ 1)

)
= α

(
dt + P(Xt+1 6= Yt+1, Xt = Yt | restart at t+ 1)

)
.

Since we start with d0 = 0 and taking dα = maxP(Xt+1 6= Yt+1, Xt = Yt | restart at t + 1) with a slight
abuse of notation, as we iterate the bound on dt+1 ≤ α(dt + dα), we obtain d1 = (α)dα, d2 = (α + α2)dα,
d3 = (α+α2+α3)dα, . . . , which follows a geometric progression. We can asymptotically bound d∞ ≤ 1

1−αdα.615

Furthermore, since (X∞, Y∞) is drawn from the stationary distribution of the correlated chains, the marginal
distributions of X∞ and Y∞ are π and ψα(s), respectively. As such, P(X∞ 6= Y∞) = d∞ ≤ 1

1−αdα.
We apply the Coupling Lemma (Lemma 2.19 in [55]) to obtain the variation distance between the two

marginal distributions

||π −ψα(s)||TV =
1

2
||π −ψα(s)||1

= minP(X 6= Y )

to obtain the bound ||π −ψα(s)||1 ≤ 2P(X∞ 6= Y∞) = 2d∞ ≤ 2
1−αdα ≤

2
1−α .

Where there is no restart, the CMC is a copy of {Xt : t ∈ N0}. Let {Ỹt : t ∈ N0} denote such a CMC.
Starting with X0 = Ỹ0 that is drawn randomly from π, there is an optimal coupling {(Xt, Ỹt) : t ∈ N0}620

whereby Xt+1 = Ỹt+1 always. In this case, X0 = Ỹ0, X1 = Ỹ1, X2 = Ỹ2, . . . whereby ||π − ψ0(s)||TV =
minP(X∞, Y∞) = 0, which implies that ψ0(s) = π. �

Corollary 8. Let DC(VS(n)) be the set of irreducible coevolutionary digraphs. Let any DC(VS(n)) ∈ DC(VS(n))
be an irreducible coevolutionary digraph so that the vertices v1, v2, v3, . . . , vn are ordered according to the score
sequence d−T (v1) ≤ d−T (v2) ≤ d−T (v3) ≤ · · · ≤ d−T (vn), where d−T (vi) is the in-degree of vertex vi. Assume the625

digraph having the following structure:

1. The set of vertices VS(n) can be partitioned into three disjoint subsets with {v1}∪VS(n−2)∪{vn} = VS(n),
where VS(n−2) = VS(n)\{v1, vn}, {v1} ∩ VS(n−2) = ∅, and {vn} ∩ VS(n−2) = ∅.

2. {v1} 7→ VS(n−2) 7→ {vn}. That is, v1 → vi for all vi ∈ VS(n−2) and that vi → vn for all vi ∈ VS(n−2).
3. v1 → vi → vn → v1 forms a 3-cycle for all vi ∈ VS(n−2).630

For a coupled CMCs {(Xt, Yt) : t ∈ N0} operating on DC(VS(n)), there is the following bound in distance

||π −ψα(s)||1 ≤
2

1− α

(
1−

(
πvn −

1

n

))
.

Proof: Since X0 = Y0 is drawn randomly from π and that (X∞, Y∞) is drawn from the stationary distribution
of the correlated chains, we can bound d∞ as follows

d∞ ≤
1

1− α
P(X∞ 6= Y∞)

≤ 1

1− α
(
1− P(X∞ = Y∞)

)
≤ 1

1− α

(
1−

∑
vi∈VS(n)

P
(
(X∞ = vi) ∧ (Y∞ = vi)

))

≤ 1

1− α

(
1−

∑
vi∈VS(n)

min{P(X∞ = vi),P(Y∞ = vi)}

)

≤ 1

1− α

(
1−min{P(X∞ = vn),P(Y∞ = vn)}

)
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≤ 1

1− α

(
1−

(
πvn −

1

n

))
.

Our argument proceeds as follows. By construction, (X∞ = Y∞) occurs when there is no restart. (X∞, Y∞)
is drawn from the stationary distribution of the correlated chains with the marginal distributions of X∞
and Y∞ are π and ψα(s), respectively. We can use the bound P

(
(X∞ = vi) ∧ (Y∞ = vi)

)
≤ min{P(X∞ =

vi),P(Y∞ = vi)} for the third inequality [54]. In this manner, P(X∞ = vi) = πvi and P(Y∞ = vi) = ψvi
for all vi ∈ VS(n). For the fifth inequality, given that probabilities range in [0, 1], we could choose the635

vertex that the CMC would most often jump to (i.e., vn) as the upper bound. For the sixth inequality,
min{πvn , ψvn} = ψvn but we can bound the term 1−min{πvn , ψvn} by noting that πvn − 1

n ≤ ψvn ≤ πvn .
Since X∞ is drawn from the stationary distribution π, we need to show that πvi ≤ πv1 ≤ πvn for all vi ∈

VS(n−2). We use a digraph-theoretic argument. We can assume that the subdigraph DC(VS(n−2)) induced
by VS(n−2) is transitive. We apply the Canonical Decomposition of quasi-transitive digraphs (Theorem640

4.8.5 [17]) on DC(VS(n), A) and obtain a strong semicomplete digraph (in this case, a digraph of 3-cycle)
u1 → u2 → u3 → u1 whereby u1 = v1, u3 = vn, and u2 is the contraction of VS(n−2). We can then view the
CMC as a random walk that is jumping clockwise along the direction of u1 → u2 → u3 → u1.

Given that the score sequence d−T (v1) ≤ d−T (v2) ≤ d−T (v3) ≤ · · · ≤ d−T (vn) of DC(VS(n)) orders the vertices
according to its in-degrees, a random walk on this digraph will spend most of the fraction of its time at645

vn. Note that although d−T (vn) = d−T (vn−1) in the case DC(VS(n−2)) is transitive, vn−1 is oriented towards
vn. Furthermore, although for any vi ∈ VS(n−2)\{vn−1}, there could be equal probability (for a standard
random walk) of jumping towards vn−1 and vn, the relation vn−1 → vn ensures that any time the random
walk jumps to vn−1 it must then jump to vn. At other times, the random walk could jump directly to vn
so that on average the random walk spends more fraction of its time in vn. We also note that since vn is650

oriented towards v1 only, every time the random walk jumps to vn it will then jump to v1, in which case
πv1 = πvn . As such, πvi ≤ πv1 = πvn for all vi ∈ VS(n−2). �

Note: For an irreducible coevolutionary digraph DC(VS(n)) having structures described in Corollary 8,
it is possible to compute πvn directly without having to compute the full π. When DC(VS(n)) is pancyclic

with the least number of 3-cycles, we can calculate πvn = πv1 = 1
2 (1 −

∑n−1
i=2 πi) using only hitting times.655

Note DC(VS(n−2)) is transitive. We calculate 1 −
∑n−1
i=2 πi as the fraction of time on average the random

walk spends jumping along the subdigraph DC(VS(n−2)) as it cycles along u1 → u2 → u3 → u1. More
precisely, it is the average of the expected hitting time to vn over starting vertices vi ∈ VS(n−2).

The subdigraph induced by VS(n−2) ∪ {vn} is transitive and that {v1} 7→ VS(n−2). So, we can treat
the random walk on the subdigraph as an absorbing CMC with transient states vi ∈ VS(n−2) and a single
absorbing state vn. Let Evi(τvn) be the expected hitting time starting from vi to vn. We relabel the
vertices as xm, m = n − i, i = 1, 2, 3, . . . , n − 2 (e.g., vertex vn−1 is now x1). It can be shown that
Evi(τvn) = Exm

(τvn) =
∑m
j=1

1
j . In this case, we have

Evn−1
(τvn) = Ex1

(τvn) = 1

Evn−2
(τvn) = Ex2

(τvn) = 1 +
1

2
...

Ev2(τvn) = Exn−2
(τvn) = 1 +

1

2
+

1

3
+ · · ·+ 1

n− 2
.

Let E(ηVS(n−2)
) = 1

n−2
∑n−2
m=1 Exm

(τvn) be the fraction of time on average the random walk spends in VS(n−2)
is as it cycles through u1 → u2 → u3 → u1. E(ηv1) = 1 and E(ηvn) = 1. So the total average time would

be 2 + E(ηVS(n−2)
). We can calculate 1 −

∑n−1
i=2 πi using these fraction of times as the random walk cycles

through u1 → u2 → u3 → u1 as follows

πvn = πv1 =
1

2

(
1−

E(ηVS(n−2)
)

2 + E(ηVS(n−2)
)

)
. (A.9)
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