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Abstract Condition-based monitoring is used as part of predictive maintenance to collect
real-time information on the healthy status of a vessel engine, which allows for a more
accurate estimation of the remaining life of an engine or its parts, as well as providing a
warning for a potential failure of an engine part. An engine failure results in delays and
down-times in the voyage of a vessel, which translates into additional cost and penalties.
This paper studies a spare part management problem for maintenance scheduling of a vessel
operating on a given route that is defined by a sequence of port visits. When a warning
on part failure is received, the problem decides when and to which port each part should
be ordered, where the latter is also the location at which the maintenance operation would
be performed. The paper describes a mathematical programming model of the problem, as
well as a shortest path dynamic programming formulation for a single part which solves
the problem in polynomial time complexity. Simulation results are presented in which the
models are tested under different scenarios.
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1 Introduction

Spare part management deals with the procurement and ordering of the components of equip-
ments used in manufacturing or service industries, in order to keep equipment in operating
condition (Kennedy et al. 2002). The treatment of spare parts in most manufacturing systems
is different to that in traditional inventory management as they are neither intermediate nor
final products to be sold to end users. In particular, the insufficiency or unavailability of
spare parts can lead to long machine downtimes or disruptions in the relevant production
or service system. Moreover, storing extra spares may incur significant carrying costs, their
degradation, or other warehousing issues. In addition, demand prediction in spare part man-
agement is more difficult than that of finished products. If classical forecasting methods are
used without taking into account the information about the condition of the system in which
spare parts are used, it will be difficult to produce a high quality demand forecast.

Any spare part being used in a given operation follows a two-stage process before break-
down. The first stage is the time interval between the start time of the operation to the
identification of a fault, and the second stage is from fault identification to failure time. The
latter is sometimes referred to as the failure delay-time, and denoted the P-F interval (Wang
et al. 2009).

A good spare parts policy should prescribe an action so as to be able to deal with a
potential failure of the operation, and depends on the condition of the equipment used and
the maintenance policy used (Ilgin and Tunali 2007). A maintenance action can typically be
classified as corrective maintenance and preventive maintenance. Furthermore, preventive
maintenance can be time-based maintenance, condition-based maintenance and predictive
maintenance. In the corrective policy, the equipment is used until failure, and is either repaired
or replaced once it breaks down. The time-based preventive maintenance policy corresponds
to a periodic reviewof the condition of the equipment, atwhich point a repair or amaintenance
action is decided on, as appropriate. In predictivemaintenance, the condition of the equipment
is continuously monitored using real-time information from sensors that monitor the status
of the equipment, and replacement or repair decisions are made accordingly. In preventive
maintenance, if an inspection is carried out during the delay-time, the fault may be detected
and repaired. In contrast, the predictive policy requires that the failures are detected at the
earliest possible time,which allowsmore time for reaction.With the availability ofCondition-
Based Monitoring (CBM) systems, inventory levels are lower as the procurement process is
triggered only by the identification of a potential failure, and if the delay-time is longer than
the part lead-time, then there is no need to stock a spare.

Recent progress and developments in monitoring devices have increased their take-up in
various industries, resulting in a shift from preventive to predictive maintenance policies. An
application in the auto-mobile industry, for example, has seen the use of condition-monitoring
tools, which analyze chemical compounds in engine oil, and if necessary, provide an alert
to indicate the need for oil replacement. This is in contrast to the more traditional means of
monitoring based on, for example, vehicle mileage (see Rigol 2011).

A more relevant industry where the use of CBM is expected to bring significant benefits
is maritime logistics. According to the Review of Maritime Transport Report (UNCTAD,
2015), the global seaborne shipments have increased by 3.4% in 2014, while world gross
domestic product (GDP) increased marginally by 2.5% at the same year. One significant
source of delay within the sector is unforeseen breakdowns in the hauling system of the
vessels (e.g., the engine), which potentially result in long service times and deviating from
the schedule on which the vessel is expected to operate, implying financial penalties. Ship
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owners tend to outsource most of their maintenance and procurement activities to third
parties, who provide them with a more flexible maintenance environment and spare part
procurement. Whilst commercial ships undergo maintenance as part of mandatory surveys
every 2.5 years on average (Eruguz et al. 2017) where major repair operations are carried
out, the responsibility for maintenance between the periodic surveys lies with the owner. For
unpredictable activities, employing a CBM system for critical parts of the engine will provide
a platform that allows benefiting from advance information in maintenance scheduling and
spare part management.

Although spare part management and CBM control activities have previously and indi-
vidually been studied, their integration with logistics management to improve the ordering
policy and maintenance scheduling has not yet been given full attention in the literature. The
present paper aims to contribute to this area of research. In particular, we study a spare part
ordering and maintenance scheduling problem arising in the maritime sector, where a CBM
system is used to monitor the condition of a vessel engine and its parts. The particular setting
assumed here is of liner shipping in cargo maritime operations, where vessels follow regular
trade routes on fixed schedules that are normally designed at the tactical level of planning,
e.g., three to six months (Wang et al. 2014). In this case, a vessel journey is a sequence of port
visits where timetables are published that include the planned arrival and departure times to
each port. The number of port calls made by an individual vessel varies with the type of cargo
carried and the trade route, among other factors, but can range from direct services from one
port to another to routes with significantly many calls (see, e.g., Wang and Meng 2012) for a
particular route from a global liner shipping company that includes 27 ports altogether. For
further details on liner shipping operations, the reader is referred to Meng et al. (2013). It is
assumed that the real-time information provided by the CBM system provides an indication
as to the failure time of one or several parts of the ship engine. The relevant optimization
problem is to use this information to decide on the time and location of spare part orders,
where the latter also corresponds to the location of the maintenance operations. The objective
is to minimize the total cost that includes any penalties for delays or downtimes arising from
potential failures, as well as the procurement and maintenance costs.

The rest of the paper is organized as follows: in the next section we briefly review the
relevant literature. Section 3 presents a formal definition and a mathematical formulation of
the problem. For a special case of the problem with a single part in Sect. 3.3, we describe
a dynamic programming algorithm. Section 4 provides numerical examples and simulation
analysis to compare various scenarios. Section 5 presents the conclusions.

2 Overview of the relevant literature

This section presents a brief literature review on preventive and predictive maintenance
scheduling. We will not attempt to review the area of maintenance and spare parts, as the
literature on this topic is rich, and instead we refer the reader to the reviews by Paz and Leigh
(1994) on maintenance policies, issues and techniques, by Kennedy et al. (2002) on spare
part inventories, and Prajapati et al. (2012) on condition-based maintenance.

Most studies related to integrated maintenance operations and spare part management
assume a preventive policy, and consequently aim to optimize inspection intervals and order
quantities. Among these, Deris et al. (1999) model the periodic maintenance scheduling
problem for a fleet of ships using constraint based reasoning and solve it using a genetic
algorithm. Xie andWang (2008) combine a continuous review ordering policy (s, S) with an
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inspection period for condition-based preventive maintenance. A joint optimization problem
involving the order quantity, the order interval and the inspection interval for spare parts is
introduced by Wang et al. (2009), who present a general approach integrating simulation
with a genetic algorithm to identify a near-optimal strategy. Wang (2012) describes a joint
optimization problem including both the inventory control of the spare parts and the mainte-
nance inspection interval. The problem assumes a stochastic demand, for which the author
describes a stochastic dynamic programmingmodel for finding optimal solutions over a finite
time horizon. A joint maintenance and spare parts ordering problem is introduced in Panagi-
otidou (2014). Finally, Gan et al. (2015) study a joint optimization problem of maintenance,
buffer inventory, and the number of spare parts arising in a production system, and describe
a genetic algorithm.

As for the literature on predictive maintenance, Sundberg (2003) discuss the opportuni-
ties of using CBM in maritime industry from a managerial standpoint. A cohesive model for
managing maintenance operations and spare part inventory for a single production system is
described by Rausch (2008) that uses condition based maintenance and Bayesian analysis.
Elwany and Gebraeel (2008) develop a sensor-driven decision model for component replace-
ment and spare parts inventory. They use a degradation modeling framework for computing
the remaining-life distributions within the inventory decision models. Reimann et al. (2009)
describe a scheduling algorithm which makes use of CBM data to determine when mainte-
nance should be performed, and use a simulation model to compare the cost of predictive and
correctivemaintenance policies. Liao and Rausch (2010) address a joint production and spare
part inventory control strategy driven by CBM for a piece of manufacturing equipment. They
use constrained least squares approximation in conjunction with simulation-based optimiza-
tion within a two-step heuristic to determine the optimal base-stock level of spare parts. Louit
et al. (2011) calculate conditional reliability function based on a well-known proportional
hazard model to calculate the remaining useful life for spare parts to propose condition based
stock-holding decisions, where the decision variable is the time to order a spare for an equip-
ment whose condition is being monitored. Koochaki et al. (2011) study maintenance policies
at a plant-wide level and investigate the effectiveness of condition based maintenance. They
develop a simulation model to explore the effects of costs and equipments availability as well
as line efficiency. They show that CBM yields the best performance in loosely coupled pro-
cesses, but adversely affect production line efficiency with tightly coupled processes due to
the increase in the blockage of equipments. Zanjani and Nourelfath (2014) study coordinated
spare part inventory and operations planning problem for a third party maintenance provider
faced with strict due dates for delivering repaired equipment. They describe a mathemati-
cal programming model to minimize the procurement, inventory, and late delivery costs by
finding the optimal number of maintenance jobs and the order quantities in a periodic prob-
lem. Camci (2015) discusses condition-based maintenance scheduling for geographically
distributed assets, models it as a variant of a traveling repairman problem and describes a
genetic algorithm.

2.1 Contribution highlights

In this work, we study a spare part ordering problem arisingwithin a logistics system inwhich
the demandpoint (i.e., the vessel) is not stationary. This implies that the the problemparameter
values depend on the position of the demand point at a given point in time. We contribute
to the literature of maintenance scheduling models by (i) addressing a practical problem in
the maritime sector in which maintenance policies and logistics operations are integrated,
(ii) presenting mathematical programming formulations that yield optimal solutions to the
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problem for single and multiple parts, and (iii) quantifying the benefits of using a CBM
system in terms of overall cost and in relation to system parameters including lead-time and
remaining-life.

3 Problem statement

The problem studied in this paper is motivated by a practical situation arising in the maritime
sector and is related to spare part procurement for a vessel engine. In particular, we consider
a single vessel operating on a predefined route, whose engine is equipped with CBM sensors.
The sensors continuously monitor and transmit vibration data from the critical parts of the
engine to a central location. We assume that the vibration data is analyzed using signal
processing techniques in order to detect any malfunction, which, in turn, is used to predict
the remaining-life of the part.

The vessel must complete a given route that consists of K segments or legs, where each
leg is defined between two successive ports on the route. The vessel is also given a schedule,
which prescribes the scheduled arrival time for each port that a vessel must visit. Any delay
in the arrival time results in penalty costs to the ship operator. The standard transit time
on each segment of the route, and the service times for loading/unloading and for ordinary
maintenance at each port are assumed to be known and constant.

During the voyage on each segment of the route, if the data transmitted from the CBM
system indicates that the engine part is not in a healthy condition and a potential failure is
detected, it provides a warning, which triggers an action for procurement of the part. The
system also prescribes the remaining-life of the part. Engine parts are usually expensive,
for which reason ship owners tend to avoid stocking spare parts (e.g., in warehouses or on-
board). Instead, spare parts are ordered when needed. In traditional inventory management
terminology, the spare part ordering policy here is lot-for-lot for each part, and follows a
(S, S − 1) inventory policy in which the inventory position S and the reorder point, S − 1,
differ only by a single unit. Such policy is generally applicable to critical parts which exhibit
Poisson demand (see Louit et al. 2011).

We assume that, when a spare part is ordered, it can only be delivered to any one of the
unvisited ports on the given route. Whilst, in practice, direct delivery of parts to a vessel is
possible (e.g., using air transport), the cost of this operation is likely to be prohibitive, for
which reason we exclude such possibilities here. Maintenance operations are usually carried
out at ports after the relevant part(s) have been received. Each port has a different cost for
receiving the part and for carrying out the maintenance service. We assume that each part
has a lead-time that is known and constant, but differs from one port to the other given the
geographically dispersed locations of the ports.

When a part is ordered for delivery to a particular port on the route, one of the two following
situations arise:

1. The vessel arrives at the port before the part fails, receives maintenance at the port,
and resumes the voyage as normal. The time that vessels spend at the port includes
maintenance time, and any waiting for the spare part to be delivered to the port if it has
not yet arrived, i.e., down-time.

2. The part fails en-route before the vessel reaches the designated port to which the part has
been ordered, at which point a redundant system on the vessel will be activated to keep
the ship moving, but at a slower sail speed.
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Fig. 1 The time-space diagram of the illustrative example

The ship owner incurs three types of costs related to ordering and maintenance: (i) delay
penalty cost due to speed reduction in the presence of failure, (ii) down-time cost which
corresponds to additional time spent in a port to wait for a spare part and for maintenance,
and (iii) the fixed maintenance and the procurement cost.

The spare part management and maintenance scheduling problem we model in this paper
arises when a warning is issued by the CBM system, and involves, for each part that is likely
to fail, deciding on the time at which the part should be ordered, and the port to which the part
should be delivered. The objective is to minimize the costs associated with delay and waiting
times on the port for spare part delivery, as well as those of spare part procurement and
maintenance. The problem hinges on a trade-off between the cost components in deciding
where to order and pick-up the spare parts. In particular, the order for the new part can be
made for delivery to the first port to be visited immediately after the warning, but this may
result in a large amount of down-time if the lead-time is long. Alternatively, the order can be
made for delivery to one of the subsequent ports on the route, but this carries with a risk of
the part failing in the meantime, as a result of which the vessel will travel at low speed until
the selected port. The latter will result in delay costs. In addition, the procurement costs are
different. In the light of the trade-offs, the decision of which port should be chosen for part
delivery and maintenance is not obvious.

Figure 1 illustrates an example of the described problem in the form of a time-space
network, where a vessel is to visit five ports shown by 1, 2, 3, 4 and 5, in the given order,
starting from a location indicated by 0. The times at which the vessel is scheduled to arrive
at each port are shown in the horizontal axis, and the route itself is shown by the sequence of
black arcs in the figure, according to which the vessel is scheduled to arrive at port 1 at time
t1, port 2 at time t2, and so on.

The example assumes that a warning is received at time t0 for a particular engine part,
which also indicates the time t̄0 at which the part is due to fail. If a new part is to be ordered
at time t0, a decision is to be made on which port the part should be delivered to, assuming
that there is l units of lead-time for the part from the time of placing an order. If port 2 is
chosen, then the part will fail en-route, and the ship will follow the trajectory shown by the
(blue) dotted arcs after time t̄0, on which it will travel at a reduced speed until port 2. The ship
will then resume with a normal speed after maintenance at this port, but this is at the expense

123



Ann Oper Res (2019) 272:323–353 329

of A1 units of time lost due to slower sailing speed and an additional A2 units waiting for
spare time to arrive at port 2. If, however, the part is ordered to be delivered at port 3, then
the vessel will arrive there with slower speed along the trajectory shown by the (red) dashed
arcs. As a result, it will only be delayed by A3 units of time, and avoid waiting for the part as
the part will already have been delivered to this port by the time the ship arrives there. The
speed of the ship will revert back to normal upon leaving port 3.

As this example shows, even though a part is ordered to a later port in the sequence and
this ship travels slower for a longer period of time, this may overall result in less total delay,
as the red trajectory shows.

The warnings on the health status of the engine are received during the voyage at each
segment of the trip. For this reason, we model and solve the problem as and when it arises,
and, as a consequence, treat it within a rolling horizon framework. Such a treatment requires
that optimal decisions regarding the selection of spare part pick-up or maintenance port are
made after a warning has been issued by the CBM system. In other words, the problem is
repeatedly solved whenever a warning is received over a leg, which we will refer to as the
phase in which the problem is solved.

3.1 Notation and problem modeling

We now present the formal notation that will be used to model the problem. Let P =
{0, . . . , K } be the set of ports and let L = {(0, 1), . . . (K − 1, K )} be an ordered set of route
segments in which each element corresponds to the leg that connects port (i − 1) ∈ P to
port i ∈ P . We therefore have that |L| = |P| − 1 = K . Let P ′ = P\{0} be the index set of
route segments, where the transit time on each leg (i − 1, i) is shown by τi . We assume that
the engine has |N | parts, where the status of each part is individually monitored. Each part
has a lead-time, procurement cost and a salvage value that will be introduced in more formal
terms below.

The itinerary prescribes a scheduled arrival time ti to each port i ∈ P and a scheduled
service time si at that port. The maintenance time is included within the berthing and service
time, and is not explicitly modeled for reasons of notational simplicity. Each time unit of
delay from the scheduled arrival time into port i ∈ P incurs a penalty cost wi . Similarly,
each extra time unit that the ship stays at port i in addition to the normal service time costs
pi . Any maintenance service for the part replacement at port i ∈ P incurs fi units of cost.
Table 1 presents the notation for all the parameters used.

We model the time of warning received on a leg k ∈ P ′ of the journey as a fraction ξ

of its length (i.e., distance), for each part j ∈ N . The remaining-life of part j ∈ N is the
distance between the point of warning and the point at which the part is predicted to fail,
which corresponds to the time r j that can be calculated assuming normal (constant) speed
of the vessel. In case of a failure, the speed is reduced by a factor of α < 1 for the reasons
explained earlier. Using these parameters, the increase in transit time on a leg in case of a
failure can be calculated as shown in Remark 1 below.

Remark 1 If the engine part fails at ξ fraction of leg (k − 1, k), then the transit time of the
vessel on that leg will be prolonged by δ time units, where

δ =
(
1 − α

α

)
(1 − ξ)τk . (1)

One can easily verify Eq. (1) by employing simple rules concerning the relationships between
time, distance and speed. As an example, consider a leg with standard transit time of τ = 100
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Table 1 Input parameters

Parameter Description

K Total number of legs (planning horizon)

N Set {1, . . . N } of parts being monitored with a CBM system

P Set {0, 1, . . . K } of ports
P ′ Index set of trip segments where P ′ = P\{0}
si Service time at port i ∈ P
τk Transit time of leg (k − 1, k) with standard speed where k ∈ P ′
ti Scheduled arrival time at port i ∈ P

(Note that ti = ti−1 + τi−1,i + si−1)

l j i Lead time to deliver part j ∈ N to port i ∈ P
c ji Procurement cost of part j ∈ N at port i ∈ P
fi Fixed maintenance cost at port i ∈ P
r j Remaining life of the part j ∈ N from the time at which a warning is received

wi Delay cost per time unit at port i ∈ P
pi Penalty cost rate for the extra time spent for the spare part at port i ∈ P
ξ Fraction of the distance from the first of a leg to the point at which a warning is

received in that leg for one ore more part(s) (0 < ξ < 1)

α The ratio of the reduced ship speed over the normal shipping speed (α < 1)

units and with a zero remaining-life. Suppose that a warning is received and the part fails
when the vessel has traversed 60% of the length of the leg (ξ1 = 0.6), at which point the
speed is reduced to 80% of normal speed (α = 0.8). The total delay in such a circumstance
is δ = 1−0.8

0.8 (1− 0.6)100 = 10 time units, given that the remaining part of the journey after
the failure point is traveled in 40

0.8 = 50 instead of 40 time units.
A warning may arise at point ξ of leg � ∈ L during the voyage relating to one or more

parts, leading to a decision problem regarding the choice of the port at which spare part should
be delivered. Subsequent warnings may also come from the other parts, either on the same
leg or subsequent legs, for which the corresponding decision process is repeated with respect
to previously made decisions. We denote each optimization problem by PM(k, ξ) which
corresponds to a warning received at fraction ξ of the distance traveled at leg (k − 1, k).
Hence, in our model the optimization problem will be solved in a rolling framework for as
many times as the warnings received.

Let W (k, ξ) be the set of parts for which a new warning at ξ fraction of leg (k − 1, k)
is received. Let A(k, ξ) be the set of parts for which warnings have already been received
in previous legs or in leg (k − 1, k) before the point ξ , and been scheduled to ports to be
delivered after leg (k − 1, k). We define a binary decision variable Y ji that equals 1 if an
order for part j ∈ N is placed for it to be delivered to port i ∈ P , and 0, otherwise. Let
Bi be an intermediate decision variable denoting any extra time that the vessel waits for the
arrival of the spare part to a port i ∈ P , and let Di be any delay accumulated by the vessel,
in comparison to the original schedule, by the end of leg (i − 1, i) , i ∈ P ′. We drop the
superscripts (k, ξ) in writing the decision variables for the the sake of notational simplicity.

Vectors �o = (o1, . . . , oN ), �ξ = (ξ1, . . . , ξN ) and �d = (d1, . . . , dN ) correspond to status
of open orders. They respectively retain the legs and fractions at which orders are placed, and
subsequently delivered. In particular, o j denotes the leg number on which the latest order has
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Table 2 Auxiliary parameters for mathematical modeling

Symbol Definition

φ
(k,ξ)
i Total remaining standard transit time from the warning point ξ of leg (k − 1, k),

k ∈ P ′, to port i ∈ P, i ≥ k

τ̄
(k,ξ)
j i Part of standard transit time of leg (i − 1, i) which will be traveled under failure of

part j ∈ N due to the warning received at point ξ of leg (k − 1, k) if the part is
not replaced until port i

v
(k,ξ)
j i Salvage value of part j ∈ N whose warning is received at point ξ of leg (k − 1, k)

in port i

W (k, ξ) The set of parts whose warnings are received at the current point on voyage (ξ
portion of leg (k − 1, k))

A(k, ξ) The set of parts whose warnings are already received before the current point on
voyage (ξ portion of leg (k − 1, k)) and their delivery ports are from/after port k

�o Vector of leg numbers that orders have triggered

�d Vector of ports to which deliveries are scheduled

B̃ Vector of calculated down-times

D̃ Vector of calculated delays

* At each phase, k, only elements ((B̃k , D̃k ) . . . (B̃K , D̃K )) are updated and the
indices prior to k remain unchanged

been placed for part j while d j denotes the port to which the order of part j will be delivered.
They are updated continuously at each warning point and leg. A tabulated summary of the
additional notation is given in Table 2.

These parameters are mathematically defined below,

φ
(k,ξ)
i =

⎧⎨
⎩

(1 − ξ)τk +
i∑

s=k+1
τs if i ≥ k

0 otherwise,
(2)

and

τ
(k,ξ)
j i =

⎧⎪⎨
⎪⎩

τi if φ
(k,ξ)
i−1 ≥ r j

φ
(k,ξ)
i − r j if φ

(k,ξ)
i−1 ≤ r j < φ

(k,ξ)
i

0 if r j ≥ φ
(k,ξ)
i .

(3)

Calculations in Eq. (3) are straightforward: In the first case, if the remaining-life of part
j at the point of warning is not greater than the total distance from its warning point to port
(i − 1), then it will fail before leg (i − 1, i) and the entire distance τi of this leg will be
traveled at reduced speed. As for the last case, if the remaining-life of part j at the point of
warning is greater than the remaining distance to port i , then the vessel can travel to i without
failure. In the intermediate cases, the difference between the total distance from the warning
point to port i and the remaining-life of the part, gives us the part of standard transit time of
leg (i − 1, i) which will be traveled under the failure of part j .

We model the salvage value of a part j as a function of its remaining-life at each port. For
purposes of mathematical modeling, we normalize the salvage values to be between (0, 1) as
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below,

v
(k,ξ)
j i =

⎧⎨
⎩

(
r j−φ

(o j ,ξ j )

i

)

r j
if φ

(o j ,ξ j )

i < r j
0 otherwise.

(4)

The salvage value is input to the model in order to schedule delivery of the part as late as
possible, particularly if there are multiple optimal solutions. The normalized setting we have
used in (4) is particularly useful for when there is lack of real data on salvage values.

3.2 Mathematical programming formulation

Using the notation defined in the previous section, we provide below a mixed integer formu-
lation of the optimisation problem PM(k, ξ ) defined above.

PM(k, ξ ) : Minimize
K∑
i=k

⎡
⎣ fi Xi +

⎛
⎝ ∑

j∈W (k,ξ)

(c ji + v
(k,ξ)
j i )Y ji

⎞
⎠ + wi Di + pi Bi

⎤
⎦ (5)

subject to

K∑
i=k

Y ji = 1 ∀ j ∈ W (k, ξ) (6)

Xi ≥ Y ji ∀ j ∈ W (k, ξ),∀i ≥ k
(7)

Xi = 1 if ∃ j ∈ A(k, ξ)|d j = i
(8)

δ j i = τ̄ j i

(
1 − α

α

)
∀ j ∈ A(k, ξ)|i ≤ d j

(9)

δ j i = 0 ∀ j ∈ A(k, ξ)|i > d j

(10)

δ j i = τ̄ j i

(
1 − α

α

)(
1 −

i−1∑
t=k

Y jt

)
∀ j ∈ W (k, ξ) (11)

Dk−1 = D̃k−1, (12)

Bk−1 = B̃k−1, (13)

Bi = max

{
max

j∈A(k,ξ)|d j=i

{[
�A

ji

]+}
, max
j∈W (k,ξ)

{[
�W

ji

]+}} ∀i ∈ P, i ≥ k (14)

Di = Di−1 + Bi−1 + max
j∈W (k,ξ)∪A(k,ξ)

δ j i ∀i ∈ P, i ≥ k (15)

Di , Bi ≥ 0 ∀i ∈ P, i ≥ k (16)

Y ji ∈ {0, 1} ∀i ∈ P, i ≥ k, j ∈ W (k, ξ).

(17)

In model PM(k, ξ ), the decision variables Y ji are defined only for the parts for which a
warning has been received at the current point in time, namely parts in the setW (k, ξ). Parts
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in set A(k, ξ) (open order) or in N\ (A(k, ξ) ∪ W (k, ξ)) (healthy parts) are not considered
in the above formulation.

The objective function (5) consists of three cost components including those of delay,
fixed maintenance cost and augmented procurement cost considering salvage value of the
replaced parts. It also incorporates any extra waiting times at pick-up ports as a result of
the decisions made at fraction ξ of leg (k − 1, k) for spare parts together with the state of
the system resulting from the earlier decisions. Constraints (6) ensure placing a new order
and scheduling a maintenance for any warning received. Constraints (7) and (8) enforce the
model to combine orders by calculating a fixed maintenance cost for the selected ports either
from the new warning or from the previous decisions. Equations (9)–(11) calculate the total
delay resulting from speed reduction over leg (i − 1, i) due to failure of part j , assuming all
other parts function as normal. At each leg that the problem is executed, the total delay and
down-time vectors are retained as vector variable D̃ and B̃. Constraints (12)–(13) update the
value of cumulative delay and the down-time prior to the current leg, k. Constraint (14) uses
two new auxilary variables �A

ji and �W
ji for time calculations defined as follows:

�A
ji := l j i − φ

(o j ,ξ j )

i (18)

−
i∑

t=o j

st (19)

− min

(
max
j∈N τ̄ j,o j , φ

(o j ,ξ j )
o j

)(
1 − α

α

)
(20)

−
k−1∑

t=o j+1

max
j∈N τ̄ j t

(
1 − α

α

)
(21)

−
i∑

t=k

max
j∈W (k,ξ)∪A(k,ξ)

δ j t (22)

−
k−1∑
t=o j

B̃t −
i−1∑
t=k

Bt . (23)

�W
ji := l j i Y ji − φ

(k,ξ)
i (24)

−
i∑

t=k

st (25)

− min

(
max
j∈N τ̄ j,k, φ

(k,ξ j )
k

)(
1 − α

α

)
(26)

−
i∑

t=k+1

max
j∈W (k,ξ)∪A(k,ξ)

δ j t (27)

−
i−1∑
t=k

Bt . (28)

In particular, �A
ji is the amount of extra waiting at port i for delivery of part j which has been

ordered at phase o j , is calculated as the difference between its lead-time to port i , and the
elapsed time from the warning point to that port which includes standard transit time from the
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warning point to port i , φ
(o j ,ξ)

i in (18), the total service times on these legs in (19), additional
transit time due to the speed reduction at the warning leg shown in (20), and subsequent
legs prior to the current leg in (21), and in the legs afterwards until i , in (22); and finally the
down-times within these legs before port i , (23). The down-time �W

ji arising from the set of
parts in the new warning set at point (k, ξ) in the current leg is calculated in a similar way
except that the terms related to down-time and delays prior to leg (k − 1, k) is dropped [see
(24)–(27)].

Constraint (14) calculates the additional waiting time for spare parts at port i ∈ P ′ as the
maximum possible down-time arising either from previously placed orders (�A

ji ), or from

any order placed in the current leg (�W
ji ). The reason for the use of the operator max over all

parts in this constraint is to ensure that the time calculation takes into account the spare part
last received at port i ∈ P ′. Equation (15) calculates the total delay due to speed reduction
or any additional waiting for spare parts from the beginning of the journey to leg (i − 1, i)
at port i . Constraints (16) and (17) define the variable domains.

Model PM(k, ξ ) presented above is in the form of a nonlinear mixed integer programming
formulation, where the nonlinearities are due to Eqs. (15) and (14). In what follows, we
present a linearization that allows the formulation to be solved using a commercial integer
linear programming solver.

We first linearize equation (15) using the following set of constraints,

Di = Di−1 + Bi−1 + ηi ∀i ∈ P, i ≥ k (29)

ηi ≥ δ j i ∀ j ∈ A(k, ξ) ∪ W (k, ξ), i ∈ P, i ≥ k (30)

ηi ≤ δ j i + (1 − zij )M ∀ j ∈ A(k, ξ) ∪ W (k, ξ), i ∈ P, i ≥ k (31)∑
j∈A(k,ξ)∪W (k,ξ)

zij = 1 ∀i ∈ P, i ≥ k (32)

zij ∈ {0, 1} ∀ j ∈ N , i ∈ P, (33)

whereM is a sufficiently large number. In constraint (29), ηi is used in place of the expression
within the max operator in (15). Therefore, it must be greater than all the individual terms
for which their maximum is sought, which is modeled by constraint (30). Contraints (31)–
(33) ensure that only one of the inequalities in (31) is active with the use of the binary zij
variable defined for each j ∈ A(k, ξ) ∪ W (k, ξ) and i ∈ {k, . . . , K }. Together with (30),
they ensure that ηi will be equal to only one of the values in the argument of max operator
in (15). Using similar arguments, the expression (14) can be linearized using the following
set of constraints:

Bi ≥ �A
ji ∀ j ∈ A(k, ξ), i ∈ P, i ≥ k (34)

Bi ≥ �W
ji ∀ j ∈ W (k, ξ), i ∈ P, i ≥ k (35)

Bi ≤ �A
ji + (1 − uij )M ∀ j ∈ A(k, ξ), i ∈ P, i ≥ k (36)

Bi ≤ �W
ji + (1 − uij )M ∀ j ∈ W (k, ξ), i ∈ P, i ≥ k (37)

Bi ≤ Mui0 ∀i ∈ P, i ≥ k (38)

ui0 +
∑

j∈A(k,ξ)∪W (k,ξ)

uij = 1 ∀i ∈ P, i ≥ k (39)

ui0, u
i
j ∈ {0, 1} ∀ j ∈ N , i ∈ P, i ≥ k. (40)
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Fig. 2 Illustration of the binary
tree approach of combining the
variables

The one difference with the linearization of constraints (14) is constraint (38), used to forbid
infeasible solutions which will occur if the values of �A

ji or �
W
ji are negative for all j . In such

cases, (38) and (39) will set Bi equal to zero.
In the next section, we look at a special case of the problem that results in a simpler and

a more efficient solution method.

3.3 Single part management and maintenance scheduling

In this section, we consider a special case of the problem with a single engine part (N = 1)
within the rolling framework described in the previous section. In this case, the problem is
triggered when a warning is received from the CBM system on leg (k − 1, k), in which case
a spare part order is placed to be picked-up at one of the ports i ∈ {k, k + 1, . . . , K }, and
no new order is placed until the outstanding order is picked-up. In other words, at most one
open order may exist at each time. Provided that a warning is received from the CBM system
during the first leg, then K different decisions can bemade during this phase. Similarly, K −1
different decisions can be made during leg (1, 2) provided that the decision in leg (0, 1) is
port 1 and a new warning is received during the second leg; otherwise there will be an open
order in the second leg and no decision to make. A hierarchy of the tree of decisions that can
be made are depicted in Fig. 2.

Let gki denote the total cost of delay, spare part waiting, procurement and maintenance
which arises when warning is received at ξ k portion of leg (k − 1, k), and where the decision
is that the spare part is scheduled to be picked up at port i , where i ∈ P ′ and i ≥ k. It is
possible to compute the gki values in a post processing stage as follows,

gki =
⎧⎨
⎩
0, if no warning and i = k
∞, if no warning and i �= k
fi + c1i + pi Bk

i + ∑K
t=k wi Dk

i , if ∃ a warning at ξ ∈ (0, 1), i > k,
(41)

where

Dk
i =

[
(1 − ξ k)τk +

i∑
t=k+1

τt − r1

]+ (
1 − α

α

)
, k, i ∈ P ′, i ≥ k, (42)
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t
t1 t2 t3

D1
3

B1
3

Fig. 3 The time-space diagram of the example: at the first leg spare part order is placed for port 3

Table 3 Parameters for the
illustrative example

k 1 2 3

fk 0 0 0

c1k 100 110 90

pk 40 45 38

wk 10 15 12

sk 10 10 10

τk 100 100 100

l1k 200 130 280

ξk 0.7 0.9 0.8

and

Bk
i =

[
l1i −

(
(1 − ξ k)τk +

i∑
t=k+1

τt

)
− Dk

i −
i∑

t=k

st

]+
, k, i ∈ P ′, i ≥ k. (43)

The following is an illustrative example presenting an application of the concepts developed
above.

Example 1 Consider a route as shown in Fig. 3. Suppose that a warning is received for a
single part (shown by the index 1) during leg (0, 1) at point ξ1 = 0.7 of the route. Suppose
that the transit time is equal to 100 time units for all legs (i.e., τi = 100, i = 1, . . . , 4), the
remaining-life of the part (r ) is 170 time units and the lead-time of the part procurement for
port 3 is 280 time units. All the parameters are given in Table 3.

We show the steps for calculation of g13.

g13 = f3 + c13 + p3B
1
3 + (

w1D
1
1 + w2D

1
2 + w3D

1
3

)
= 0 + 90 + 38B1

3 + (
10D1

1 + 15D1
2 + 12D1

3

)
= 0 + 90 + 38 × 5 + (10 × 0 + 15 × 0 + 12 × 15)

= 460,

where

D1
1 = 0

D1
2 = 0

D1
3 = 15 = (30 + 100 + 100 − 170)

(
1− 0.8
0.8

)
,
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g1K
g1K−1g12 g1i

g11

g2K
g2K−1

g2i

g22

g3K
g3K−1

g3i

Fig. 4 Shortest path network representation

and

B1
3 = [

l13 − ((1 − ξ1)τ1 + τ2 + τ3) − D1
3 − (s1 + s2 + s3)

]+
= [280 − (230) − (15) − (30)]+

= 5.

3.3.1 Shortest path formulation

The optimization problem for a single-part can be solved on a graph with K +1 nodes, where
the distances between any pair of nodes on the graph are given by the gki values that represent
the cost of picking up a part at port i given a warning is received at phase k at point ξ k . The
network is given in Fig. 4. The distance from node k and i is given by gk+1

i . The shortest
path from node 0 to node K in this network is equal to the minimum cost for the problem.

Let Gi be the length of the shortest path from node 0 to node i . Then,

G0 ≡ 0, (44)

Gi = min{0≤k<i}{Gk + gk+1
i }, i ∈ P. (45)

Remark 2 In the rolling framework at phase k = k̄, only ξ k̄ is observed at node k̄ − 1 of
the network, and all gk̄i are calculated and known while all other gki are calculated assuming
there is no warning ∀k > k̄.

We now present a number of definitions to show the existence of a special policy that can
be used for the single part.

Definition 1 A function φ is discretely convex iff βφ(x) + (1− β)φ(y) ≥ min
w∈N (z)

φ(w) for

0 < β < 1 where z = βx + (1− β)y and N (x) = {w ∈ D : ||w − x || < 1} (Yüceer 2002).
The following properties hold if the fixed ordering andmaintenance cost ci and the lead-times
l1i for all i ∈ P ′ are stationary or non-increasing over the ports.

Remark 3 A non-decreasing (non-increasing) piecewise function over a discrete set is dis-
cretely convex.

Remark 4 A non-negative linear combination of discretely convex functions is convex.

Lemma 1 gki is a discretely convex function over i .

Proof Dk
i is non-decreasing and Bk

i is non-increasing in i for a stationary lead-time, l1i = L ,
and therefore, they are discretely convex due to Remark 3. Hence, gki is convex due to Remark
4 and the non-negativity of wi and pi , ∀i ∈ P ′. �
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Proposition 1 There is an optimal i∗ which minimizes gki such that g
k
i∗+1 ≥ gi∗ and gki∗−1 ≥

gi∗ .

Proof Due to the convexity of the function gki in i , once it starts to increase, then the
optimal port cannot be obtained at larger values of i ∈ P ′, i ≥ k. Moreover, since Bk

i
is non-increasing in i ∈ P ′ and it is constantly zero after a certain i+, where i+ ≤
max

{
i, i ≥ k : l1i >

(
(1 − ξ k)τk + ∑i

t=k+1 τt

)
− ∑i

t=k st
}
using (43). It then suffices

to confine the search region of finding optimal spare part pick-up point to i < i+. Thus, arcs
(k − i) for ∀i > i+ are pruned, that is to say a myopic approach will identify the optimal
port. �
Corollary 1 There exists a myopic maintenance policy.

The implication of Corollary 1 is that the optimal port for spare part pick-up is among a
limited number of ports ahead of the warning point on the route.

We now discuss further special cases of the single-part problem and discuss the required
modifications to the formulation so that it remains valid for these cases. For each of the cases,
the costs gki would need to be modified in the shortest path formulation.

• If reducing speed from the beginning of a leg is not allowed, it suffices to set wi for all
i ∈ P ′ equal to a large number, which will make the appearance of such decisions highly
unlikely in an optimal solution due to the minimization operator used in the recursion
(45).

• If waiting time for spare part (down-time) is not allowed then such solutions can be
penalized by setting the value of pk to ∞.

• If the lead-time l1i and the remaining-life r1 are stochastic, then the network representa-
tion of the problem will remain as the shortest path formulation but where the arc costs
are stochastic.

4 Numerical experiments

In this section we provide a numerical analysis based on simulated data for both the single
and multiple part problem. The main objective of the experiments is to quantify the benefits
of using a CBM system on costs, indicative of the value of having advance information.
Tests are conducted under different scenarios as determined by varying values of the system
parameters, which are explained below.

All tests are conducted on an instance of a vessel route with 30 legs, i.e.,P = {0, . . . , 30}.
The additional parameters are set as follows. For each port i ∈ P , the unit delay cost is
set equal to wi = 1 and the unit penalty cost of waiting for a spare part is set randomly
from the interval pi ∈ [10, 30]. Transit times are drawn from a uniform distribution in the
interval [80, 200], and the service time at each port i ∈ P ′ is randomly set from the interval
si ∈ [15, 25], which translates into a scheduled arrival time at each port as explained earlier.
The failure warning points ξ are generated from a uniform distribution in (0, 1) for each
leg with 50% probability for parts in healthy status. We have generated 10 realizations for
warning points and present the results averaged over 10 runs. In the absence of real data, the
lead-time and remaining-life time values are generated as a function of the average transit
time as one of {0, τ̄ , 2τ̄ , 3τ̄ }, so that the units are compatible. The rate of speed reduction
is selected from the set α = {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. The fixed unit maintenance/order
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Fig. 5 The flowchart of the simulation approach

cost fi is randomly chosen from the uniform interval [35, 65]while the procurement cost c ji
of each part is randomly selected from the interval [5, 10] for each j ∈ N and i ∈ P ′.

The mathematical programming model is embedded in a Monte-Carlo simulation of the
engine parts malfunctions. Each engine part may give at most one warning (if in healthy
status) in a leg. In the extreme case, if all of the parts give warnings at each leg and are fixed
in the nearest port, then at most |L| × |N | optimization models will be solved within the
entire simulation. All maintenance and replacement activities are performed only at ports,
hence we define each leg of the route as a problem phase. At the end of each phase, all
previously made decisions are fixed, and the problem is re-solved for the subsequent leg on
the journey. Figure 5 depicts the abstract flowchart of our model implementation from which
our numerical results are obtained.
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All the experiments were conducted on a personal computer with 2.30GHz of CPU and
2GB of RAM. The model was coded in C++ using Concert Technology, using CPLEX
12.6 as the solver. As each instance was solved in a matter of a few seconds, we do not
report detailed computational times here. We present the results in two main sections, first
concerning a single part, and then with multiple parts.

4.1 Performance measures

In order to investigate the behavior of the system for maintenance decisions, the following
average performance indicators are used: (i) number of warnings (#wn) and number of ports
where maintenance is performed which we refer to as setups, (ii) number of legs traveled
from the warning point to the delivery port, i.e., order-to-delivery (od), (iii) total deviation
percentage from the schedule (dev%), (iv) number of down-times (#dt) and (v) its ratio
to total scheduled journey time (rdt). All values reported below are the averages over the
10 realizations. We discuss the sensitivity of these performance measures to the rate α of
reduction of speed, the lead-time l and the remaining-life r .

4.2 Experiments with a single part

We have generated our problem instances for different values of lead-time (l), remaining-life
at the warning point (r ), and reduction in speed (α). A total of l × r × 10× α = 4×4×10×6
= 960 problem instances were simulated and solved for the single part problem. Optimal
solutions could be produced by using the DP algorithm described in Sect. 3.3 with O(K )

complexity order at each decision point, although for our purposes it sufficed to use CPLEX
12.6. The average results are given summarized in Table 4which include the five performance
measures. In particular, the first two columns show the lead-time and remaining-life values,
and the two remaining columns show two different rates of speed reduction. We discuss the
findings below:

• # of warnings/setups In the single part case, the number of setups equals the number of
warnings.As the frequency ofmaintenance increases, the number of setups also increases.
Hence, for lower values of the lead-time and the remaining-life, there are more setups
so #wn is decreasing in r for all lead-times (l) and decreasing in l for all remaining-life
(r ) values. In addition, increasing values of α result in smaller delays and consequently
fewer maintenance interventions; hence, #wn is decreasing in α for all r and l values
(see Figs. 6a, 7a, 8a, 9a).

• Order-to-delivery This measure is sensitive mostly to the lead-time with an increasing
trend in l as seen in Figs. 6b, 7b, 8b, 9b. However, it is decreasing in α because the
higher the value of α, the smaller the delay cost, for which reason it is preferable to
perform maintenance operations at later ports on the route. The results suggest that the
order-to-delivery measure is bounded above by the lead-time value. It is also increasing
in r , and for the larger values of r it converges to the lead-time for all values of α (see
Fig. 9d).

• Delay percentage Larger values of r imply less travel made with reduced speed. For
larger values of α lower delays are observed due to the reduced speed. It is therefore
not surprising that the values in the columns dev% show a decreasing pattern in r and α

irrespective of lead-times. On the other hand, larger lead-time values result in increased
possibility of down-times which are subsumed in the delays [see Eq. (15)], for which
reason dev% values are increasing in l (see also Figs. 6c, 7c, 8c, 9c). The magnitude
of delays without a CBM system is significantly higher than the case where there is a
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Table 4 Simulation result for different lead-time, remaining-life and α values

r α = 0.3 α = 0.4
#wn od dev% rdt #dt #wn o − d dev% rdt #dt

l = 0 0 14 0.478 47.4 0 0 14 0.5 30.4 0 0

τ̄ 13 0.532 0.7 0 0 13 0.5 0.5 0 0

2τ̄ 11 1.048 0 0 0 11 1 0 0 0

3τ̄ 9 1.572 0 0 0 9 1.6 0 0 0

l = τ̄ 0 13 0.556 54.7 3 3 13 0.6 38.9 2.9 3

τ̄ 12 0.958 13.2 3.2 4 11 1.1 10.8 1.9 3

2τ̄ 10 1.34 0 0 0 10 1.3 0 0 0

3τ̄ 9 1.978 0 0 0 9 2 0 0 0

l = 2τ̄ 0 12 0.786 71.4 5.7 3 11 1 54.3 3.4 3

τ̄ 10 1.398 34.9 4.4 3 10 1.6 28.6 1.3 1

2τ̄ 9 1.855 8.9 1.3 2 9 1.9 7.2 0.9 2

3τ̄ 7 2.285 0 0 0 7 2.3 0 0 0

l = 3τ̄ 0 11 1.09 88.3 4.8 3 10 1.4 63.8 2.4 2

τ̄ 9 1.681 53.8 3.8 3 9 1.9 41 2.1 2

2τ̄ 7 2.337 24.2 2.7 2 7 2.4 16.8 1.7 2

3τ̄ 6 2.765 2.8 0.3 1 6 2.8 1.9 0.3 1

r α = 0.5 α = 0.6

#wn od dev% rdt #dt #wn o − d dev% rdt #dt

l = 0 0 14 0.478 20.3 0 0 14 0.5 13.5 0 0

τ̄ 13 0.532 0.3 0 0 13 0.6 0.2 0 0

2τ̄ 11 1.048 0 0 0 11 1 0 0 0

3τ̄ 9 1.572 0 0 0 9 1.6 0 0 0

l = τ̄ 0 12 0.775 29.6 1.5 2 12 0.9 21.4 0.7 1

τ̄ 11 1.131 8 0.9 2 10 1.2 6.3 0.4 1

2τ̄ 10 1.357 0 0 0 10 1.4 0 0 0

3τ̄ 9 1.978 0 0 0 9 2 0 0 0

l = 2τ̄ 0 10 1.225 39.5 1.6 2 10 1.4 29.3 0.5 1

τ̄ 9 1.638 20.8 0.7 1 9 1.8 15.2 0.3 1

2τ̄ 9 1.97 5.4 0.6 1 8 2 3.6 0.3 1

3τ̄ 7 2.285 0 0 0 7 2.3 0 0 0

l = 3τ̄ 0 9 1.638 48.9 0.7 1 9 2 36 0.7 1

τ̄ 8 2.051 28.7 1.2 2 7 2.3 19.5 0.3 1

2τ̄ 7 2.558 13.4 0.7 1 6 2.6 9.1 0.2 1

3τ̄ 6 2.801 1.5 0.2 1 6 2.8 1.1 0.2 1

r α = 0.7 α = 0.8

#wn od dev% rdt #dt #wn o − d dev% rdt #dt

l = 0 0 14 0.478 8.7 0 0 14 0.5 5 0 0

τ̄ 13 0.552 0.1 0 0 13 0.6 0.1 0 0

2τ̄ 11 1.055 0 0 0 11 1.1 0 0 0
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Table 4 continued

r α = 0.7 α = 0.8

#wn od dev% rdt #dt #wn o − d dev% rdt #dt

3τ̄ 9 1.599 0 0 0 9 1.6 0 0 0

l = τ̄ 0 11 0.979 15 0.4 1 11 1.1 9.3 0 0

τ̄ 10 1.236 4.2 0.4 1 10 1.3 2.7 0 0

2τ̄ 10 1.357 0 0 0 10 1.4 0 0 0

3τ̄ 9 1.978 0 0 0 9 2 0 0 0

l = 2τ̄ 0 10 1.592 20.6 0.2 1 9 1.7 12.3 0 0

τ̄ 9 1.8 10.4 0.4 1 9 2 7 0.1 1

2τ̄ 8 2.01 2.4 0.1 1 8 2.1 1.5 0 0

3τ̄ 7 2.285 0 0 0 7 2.3 0 0 0

l = 3τ̄ 0 7 2.209 22.4 0.2 1 7 2.4 13.2 0.1 1

τ̄ 7 2.435 13.6 0.2 1 6 2.6 8.3 0 0

2τ̄ 6 2.678 6.2 0 1 6 2.7 3.8 0 0

3τ̄ 6 2.82 0.8 0.2 1 6 2.9 0.7 0 1

CBM system in place. In particular, even under large lead-times (l = 3τ̄ ), the average
deviations from the schedule in the absence of a CBM system are equal to 47.4, 30.4,
20.3, 13.5, 8.7 and 5 (for r = 0), respectively, for α = 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8,
and are largely reduced to 2.8, 1.9, 1.5, 1.1, 0.8 and 0.7 (for r = 3τ̄ ), respectively, when
a CBM system is in place. An interesting observation is that when r > l then the delays
can be prevented and are insensitive to α. For instance all delay deviations in Fig. 6c are
distinct for varying α and l values, while they converge to zero for l = 0 and for all α, as
shown in Fig. 7c because (r =)τ̄ > l(= 0). Similarly, and as seen in Figs. 8c (r = 2τ̄ )
and 9c (r = 3τ̄ ), the first two and the first three values of l result in zero delay for all α
values because r > l. Therefore, if a failure can be predicted more than l time units prior
to its failure, it is possible even in theory that any delay can be avoided.

• Down-times The order-to-delivery intervals are increasing in r , as expected, given that
larger values of r make it reasonable to schedule the delivery of the spare part to later
ports on the route. The average number of down-times, #dt , and the ratio of total down-
times to total travel time, rdt , tend to have a non-increasing pattern in r and l although
there may be exceptions (e.g., comparing r = 0 and r = τ̄ for α = 0.5, l = 3τ̄ : 0.7 vs.
1.2). These, however, are not unusual results because down-times are included in total
delays and when the delays are compared in such cases we find that there is a significant
reduction. The results suggest that it might be preferable to have longer down-times as
opposed to delays arising from speed reduction, in order to reduce the total delay.

Figures 6, 7, 8 and 9 correspond to the results given in Table 4, where each figure cor-
responds to a specific value of remaining-life. In each figure, graph (a) shows the average
number of setups; graph (b) illustrates the average number of legs traveled in the warned
status; graph (c) presents the average total deviation percentage from the schedule, namely
delay%, and (d) shows the total down-time as a percentage of total travel time. The horizontal
axis in all of the graphs corresponds to the lead-time which is calibrated in terms of average
transit times of legs. The trends of all performance measures are plotted for all α values
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Fig. 6 Sensitivity of the performance measures to lead-time and α for r = 0

with different colors and marks. The scenario with r = 0 shown in Fig. 6 corresponds to
the situation in which there is no CBM system in place, and where a part fails immediately
at the time of the warning. A comparison of the four plots in this figure highlights the role
of the CBM system in improving the system performance. For instance, in the absence of a
CBM system, the total delay % in the extreme case of α = 0.3 can be up to 90% (see Fig. 6c)
while the corresponding values for r = τ̄ , r = 2τ̄ and r = 3τ̄ are almost 50, 25 and 5%,
respectively (see Figs. 7c, 8c, 9c).

One other interesting point is the insensitivity of all performance measures to α when the
remaining-life at thewarning point is sufficiently large, as can be seen in Fig. 9. In otherwords,
if there is a very reliable CBM system capable of predicting part break-down sufficiently
long in advance,1 then delays and down-times can –to a great extent– be prevented. As the
discussion above suggests, the delay is more sensitive to α when the lead-time is greater
than the remaining-life. When the remaining-life and the lead-time are in the same order of
magnitude, the delay is relatively less sensitive to the value of α. In those cases, lower values
of α lead to more maintenance and procurement interventions needed to prevent significant
delay costs.

4.3 Experiments with multiple parts

This section extends the numerical analysis to five parts, for which the remaining-life values
at the point of warning are set as (r1, . . . , r5) = (τ̄ , τ̄ , 2τ̄ , 3τ̄ , 4τ̄ ). In order to investigate the
effect of remaining-life, we set r j = 0 for one value of j at a time whilst keeping the other

1 Maximum lead-time seems to be sufficient.
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Fig. 7 Sensitivity of the performance measures to lead-time and α for r = τ̄
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Fig. 8 Sensitivity of the performance measures to lead-time and α for r = 2τ̄
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Fig. 9 Sensitivity of the performance measures to lead-time and α for r = 3τ̄

values intact. The same lead-time values are considered for all parts for all the ports, namely
l j i = l for j ∈ N , i ∈ P ′ where l = κτ̄ where κ ∈ {0, 1, 2, 3, 4}. In this case, two values of
α ∈ {0.4, 0.7} are used. The rest of the parameters are as described for the single-part case,
resulting in a total of l×r ×10×α = 5×6×10×2 = 600 problem instances altogether, where
we perform 10 runs of the simulation for each instance.

In addition to the performance measures described in the previous section, we also intro-
duce two others, namely, the number #Lw of legs in which any warnings are received, and
the number #stp of setups. In contrast to the single part case, the number of setups is not
equal to the number of warnings in the multiple part system. The number of legs traveled in
the warned status (order-to-delivery) are specified for each part separately using od j labels
j ∈ {1, . . . 5}. Similarly, number of warnings for each part are presented separately via #wn j ,
j ∈ {1, . . . 5} labels in Tables 5 and 6. Below we discuss each of our performance measures.

• Number of warnings, setups, and legswithwarningsThe number ofwarnings are decreas-
ing in l (for all values of remaining-life) and α. This is due to the fact that for shorter
values of the lead-time the parts are replaced quicker, but might fail again given that the
warnings are generated irrespective of remaining-life. Similarly, the number of legs in
which new warnings are received is also decreasing in l for both α values while #stp
and #Lw do not follow any increasing or decreasing pattern in l or α. The trends of
these measures are illustrated in Figs. 10a and 11a. Looking at the individual number of
warnings for each part separately in columns #wn j , j ∈ {1, . . . , 5} we observe that the
number of warnings for the parts with larger values of r is lower than that of the other
parts.
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Fig. 10 Sensitivity analysis of the performance measures for a 5-part system with 30 legs and α = 0.4

• Order-to-delivery Looking at the data in columns od1 . . . od5 in Tables 5 and 6 we find
that the order-to-delivery values of the parts with a small remaining-life are low. In
particular the parts with zero remaining-life will be replaced quicker than others. It is
worthwhile to mention that, similar to the single part system, the od1 . . . od5 values are
bounded above by the lead-time values. In Figs. 10b and 11b the order-to-delivery values
of parts with positive remaining-life are compared to those assuming zero remaining-life,
namely when no CBM information is available for that part. For instance the dashed plot
with legend od01 corresponds to the order-delivery of part 1 if there is no CBM system
in place for this part. Parts 5 and 4 (the brown and the green plots) have the greatest
remaining-life values (when they are positive), therefore their od values are either less
sensitive or insensitive to the lead-time.

• Delay percentage Similar to the observations in the single part system, we also observe
here that the delay percentage is decreasing in l and α for each group of the remaining-life
values as shown in Tables 5 and 6.
An interesting observation here is that the effectiveness of the CBM system for a part
with shorter remaining-life may be more than that of a part with longer remaining-life.
For instance, the delay % is zero for a part with a zero lead-time when α = 0.4 and
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Fig. 11 Sensitivity analysis of the performance measures for a 5-part system with 30 legs and α = 0.7

when all the remaining-life values are positive. When r2 = 0, r3 = 0, r4 = 0, r5 = 0,
however, the delays are 25.7, 28, 27.6, 27.7%, respectively. Overall, it is preferable to
have advance information for each part as otherwise the delays will increase (see column
dev% in Tables 5 and 6).
Figures 10c and 11c depict the comparison of average delay percentages when all the
remaining-life values are positive (dev+) for cases where parts j = 5, 4, 3, 2 lack a CBM
system (dev0j ), or when no CBM system exists for any of the parts (dev0).

• Down-times Similar to the single part system, the average total down-time does not follow
a monotone pattern over the lead-time values or α (see Figs. 10d, 11d). The reasoning for
the single part case is also valid here, namely to incur more down times so as to reduce
the overall delay.

5 Conclusions

In this study we have introduced, formulated and studied a spare part management problem
arising in the maritime sector in which the failure of an engine part can be predicted by
using a CBM system, which in turn is used to optimally schedule ordering of spare parts
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and maintenance. We have described a mathematical programming model of this problem
for the case of multiple parts, and a dynamic programming algorithm for the special case of
a problem with a single part.

Our study showed that the use of a CBM system for the engine parts failure can lead to
significant reduction in the delay and improve punctuality. The reduction in cost is highly
dependent on the accuracy of the prediction made for the time to failure, which manifests
itself in the form of the remaining-life of a part, as well as the lead-time. The implication
from the results with a single engine part is that if a failure can be predicted in advance, or
a possible failure does not significantly reduce the speed of the ship, it is better to postpone
the maintenance or repairs. In contrast, if the remaining-life of a part or the lead-time is
short, or if the speed reduction after a failure is significant, then a myopic policy is optimal
where maintenance is scheduled at the closest port on the route following the location at
which the warning is received. A numerical investigation of the problem with multiple parts
revealed that, unless the optimization of the spare parts is done jointly for all parts, then
the effectiveness of the CBM system will remain limited, regardless of the quality of the
prediction for a single part.
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