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Abstract—Joint energy consumption and trading management
is still a major challenge in smart (micro-) grids. The main
goal of solving such problems is to flatten the aggregate power
consumption-generation curve and increase the local direct power
trading among the participants as much as possible. Here, an
inclusive formulation for energy management and trading of a
Micro/Nano-grid (M/NG) is proposed. Subsequently, a holistic
solution to jointly optimizing the internal energy consumption
management and external local energy trading for a smart grid
including several M/NGs is provided. As the problem is com-
putationally intractable, the proposed approach involves three
hierarchical stages. Firstly, a game-theoretic online stochastic
energy management model is provided with a reinforcement
learning solution by which the M/NGs can schedule their power
consumptions. Secondly, an effective incentive-compatible double-
auction is formulated by which the M/NGs can directly trade with
each other. Thirdly, the central controller develops an optimal
power allocation program to reduce the power transmission loss
and the destructive effects of local energy trading. The simulation
results validate the efficiency of the proposed framework.

Index Terms—Double-auction, energy consumption manage-
ment, energy trading, micro/nano-grids, reinforcement learning.

I. INTRODUCTION

IT is well known that traditional power systems are unable
to efficiently respond to the growing demand for energy [1].

This motivates the study and adoption of smart Micro/Nano-
grids (M/NGs), which are autonomous small-scale power sup-
ply networks with distributed generation (including both con-
ventional and renewable energy generators and storage units
such as plug-in electric vehicles) and consumption (the local
electrical loads from residential, commercial, and industrial
consumers). The M/NGs are capable of meeting the growing
energy demand by sustaining the renewable energy resources
(RERs) in a reliable, efficient, and economical manner [2].

As the electric power cannot be stored in a large scale, a
significant part of the efforts in the smart grids are to match
the power supply trend to the load demand trend and fully
utilize the available capacity of the energy sources [3]. This is
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challenging because the load demand is highly time-varying
and hard to predict. Besides, emerging the RERs under the
outstretch of the use of distributed energy generation policies,
results in volatility and unpredictability of the supply side.
This is the point of weakness and prevents wide investment
on the renewable power generation and increases the number
of M/NGs. As a result, the power system has a low load factor
and is underutilized most of the time, while it is necessary to
increase the generation capacity to supply the high demand at
a short time peak demand [4].

To sustain the RERs and benefit from these green resources,
it is necessary to provide an effective joint supply and demand
sides energy management strategy between the prosumers
(producer-consumer) capable of local direct energy sharing.
There are various research directions for the energy consump-
tion scheduling and trading approaches [5]–[18].

A. Related Work

A dynamic pricing and energy consumption scheduling
program in the micro-grid was investigated in [5], where the
service provider acts as a broker between the utility company
and customers by purchasing electric energy from the utility
company and selling it to the customers. In order to overcome
the challenges of implementing such program under various
sources of uncertainties, reinforcement learning algorithms
was developed. Wang and Huang studied the interactions
among interconnected autonomous micro-grids in [6], and de-
veloped a joint energy trading and scheduling strategy. Another
energy trading framework based on the repeated game was
proposed in [7], that enables each micro-grid to individually
and randomly choose a strategy with probability to trade the
energy in an independent market so as to maximize his/her
average revenue. In [8]it is shown that the on-site wind power
generation of high-rise buildings can potentially support all
the electric vehicles in the city. Considering that the charging
demand of EVs usually does not align with the uncertain wind
power, the coordination of electric vehicle charging with the
locally generated wind power in a micro-grid of buildings
using a Markov decision process was investigated.

In [9], energy trading between smart grid prosumers and a
grid power company was studied. The problem was formu-
lated as a single-leader, multiple-follower Stackelberg game
between the power company and multiple prosumers. A de-
centralized energy trading algorithm that can be executed by
the entities in a real-time fashion was presented in [10]. To
deal with uncertainty issues, a probabilistic load model and
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a robust framework for renewable generation were proposed
in this work. Designing adaptive learning algorithms to seek
the Nash equilibrium (NE) of the constrained energy trading
game among individually strategic players with incomplete
information was discussed in [11]. In this game, each player
used the learning automaton scheme to generate the action
probability distribution based on his/her private information
for maximizing his own averaged utility. In [12], a decen-
tralized energy trading framework was implemented enabling
the independent system operators to incentivize the entities
toward an operating point that jointly optimize the cost of load
aggregators and profit of the generators, as well as the risk of
shortage in the renewable energy generation. To address the
uncertainties in the renewable resources, they applied a risk
measure called conditional value-at-risk (CVaR) with the goal
of limiting the likelihood of high renewable energy generation
shortage with a certain confidence level.

Bahrami et al. studied the users’ long-term load scheduling
problem in [13] developing an online load scheduling learning
algorithm based on the actor-critic method to determine the
users’ Markov perfect equilibrium (MPE) policy. The authors
of [14] investigated auction mechanisms for energy trading in a
smart multi-energy district, in which the district manager sells
electricity, natural gas, and heating energy to users as well as
trading with outer energy networks. According to feed-in-tariff
of photovoltaic (PV) energy, a system model of energy sharing
management (ESM) was introduced in [15], which included
the profit model of micro-grid operator (MGO) and the utility
model of PV prosumers. In [16] an energy-sharing model with
price-based demand response was analyzed for micro-grids
of peer-to-peer PV prosumers. A dynamical internal pricing
model was formulated for the operation of energy-sharing
zone, which was defined based on the supply and demand
ratio (SDR) of shared PV energy.

An energy storage (ES)-equipped ESM was developed in
[17] to facilitate the energy sharing of multiple PV prosumers.
In this work, the autonomous PV prosumers were formed as
an energy-sharing network, and the energy-sharing activities
were categorized as direct and buffered sharing. A day-ahead
scheduling model of the ESM was built using stochastic
programming to increase the operation profit and improve the
net power profile of the energy-sharing network considering
various types of uncertainties. The authors of the paper [18]
formulated a micro-grid energy trading game, in which each
micro-grid trades energy according to the predicted renewable
energy generation and local energy demand, the current battery
level, and the energy trading history. They presented a rein-
forcement learning based energy trading scheme that applied
the deep Q-network (DQN) to improve the utility of the micro-
grid for the case with a large number of the connected micro-
grids. In [19], the consensus alternating direction method of
multipliers (ADMM) algorithm is used to apply a novel cost
allocation policy in peer-to-peer electricity markets. In this
work the market participants have knowledge about the ISO
charges prior to the negotiation process enabling them to
anticipate on the network trade cost.

B. Our Contributions

However, there is still a lack of jointly designing energy
management and trading (EMT) mechanism to effectively
balance the uncertain supply fluctuations of the uncertain load
demands. To the best of our knowledge, this paper is the first
one in providing an EMT mechanism for the M/NG concern-
ing with maximizing the usage of local RERs, autonomous
direct energy trading with high efficiency, and minimizing the
power transmission losses, while characterizing the M/NGs’
equipment in detail. The main contributions are:

Establishing a joint energy consumption and trading
management: To promote sustainable development, i.e., using
the available generating capacity more efficiently, we enhance
the demand side management (DSM) technique, a tool for
load shaping that can redistribute (shifting some amount
of) the energy demand over a certain period, to match the
renewable power generation pattern. A novel supply-bidding
price function mechanism is designed which couples the
prosumers’ actions, encouraging them to cooperatively take
optimal decisions in the online EMT. A post-decision state
(PDS) reinforcement learning mechanism is developed as the
best response to the formulated distributed game-theoretic
DSM, to tackle the uncertainty in the resources for the system
operation.

Designing a novel hybrid iterative double-auction: In
different time, the prosumers may behave as sellers or buyers
depending on the electricity trading price and their net power
profiles. Sellers make profit by selling their surplus of energy
stored in storage devices such as electric vehicle batteries.
Buyers can save on their energy bill by buying energy from
their neighbors, instead of the grid, at a lower price, which
also decreases the load on the grid. As in the proposed
autonomous EMT framework the electricity trading price have
no predetermined1 standard value and is affected by many
circumstances at a specific time (e.g., amount of supply and
demand and the prosumers’ preferences), an auction model
has been used to clear the electricity market. A self-interested
simple, flexible, and scalable market auction has been designed
to guarantee the individual benefit and the global system
efficiency simultaneously. The proposed double-auction mech-
anism is practical as it has all the necessary features, i.e.,
incentive compatibility (IC), individual rationality (IR), and
budget balance (BB) [21].

Formulating a distributed optimal power allocation: Dur-
ing the local energy trading, substantial reverse power flow
from the prosumers to the substation can cause the voltage
magnitude of some of the households to exceed the upper
limit of the allowed voltage variation. This is referred to
as the voltage-frequency rise problem. The probability of
facing this problem increases when more users decide to
inject their excess generation via the main feeder into the
grid. This increases the loss and reduces the power quality
[22]. Therefore, the ability of users to route their excess
power directly to their neighbors reduces the probability of
voltage-frequency rises. At the final stage of the proposed

1Determining a predetermined fixed sell/buy price can reduce the interest
in the power trading among the M/NGs [20].



0278-0046 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2019.2945280, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 3

EMT mechanism, an optimal power allocation is formulated
by which the prosumers deliver/receive energy to/from the
nearest neighbor in order to minimize the energy transmission
cost.

Notation: Throughout the paper, | · | denotes the cardinality
operator, [a]+ = max{a, 0}, E[·] denotes the expectation
operator, I(·) is the indicator function equal to one if is the
case and equal to zero otherwise, and Cartesian product of the
set is denoted by ×.

II. SYSTEM MODEL

Consider a smart grid with a set K of |K| = K
M/NG prosumers. Here, a prosumer can be a single resi-
dential/commercial/industrial entity (nano-grid), or a group
of components that act as a single demand response entity
(micro-grid) operating at both grid-connected and islanded
modes. Each prosumer k ∈ K potentially comprises of set
Ak of |Ak| = Ak power consumers (appliances), set Jk of
|Jk| = Jk distributed storage (DS) units (e.g., backup-battery-
banks (BBBs) and plug-in electric vehicles (PEVs)), and set
Mk of |Mk| = Mk conventional (fossil fuel) generators and
RER facilities (e.g., wind turbines, PV panels, and tidal en-
ergies) as well as an appropriate two-way power transmission
and communication lines connected with the other prosumers
and the main grid. Further, each prosumer has an energy man-
agement unit (EMU) responsible for managing, controlling,
and monitoring the operation of all the prosumer’s assets and
sharing the energy resources with the other prosumers or the
main grid, if needed. Also, there is an independent system
operator (ISO) responsible for coordination, monitoring, and
supervision of the prosumers’ interactions together and with
the main grid.

The overall energy consumption management and power
trading horizon (scheduling window) is denoted by H ,
{1, 2, · · · , H}, where H = |H| is the number of time-
slots with equal lengths2. We assume that the sequence of
time-slots h, ∀days = {0, 1, 2, · · · } is predetermined in
a deterministic manner and repeated every day, i.e., h =
mod(day, H),∀days ≥ 0. To avoid ambiguity, hereafter, we
use index h ∈ H for a time-slot in general and use index τ
specifically for the current time slot at which the operations
are made. The main challenges of the EMU to take optimal
decisions are the uncertainty about the load demand, electricity
market prices, and renewable generation in the upcoming time
slots h > τ . So, to improve the performance, at the beginning
of the current time slot τ , each EMU updates its belief on the
state of the load demand and generated power of its own assets
(represented in Section III) and the price behavior (through
the learning mechanism formulated in Section IV) with the
gradual revealed demand/generation/price information over the
period Hτ = {τ, · · · , H} ⊆ H. At first, the EMU of each
prosumer k ∈ K should characterize its assets as follows:

2The duration of a period can be 5, 15, or 60 mins, based on the time
resolution at which the energy dispatch or the demand response decisions are
made.

A. Power Consumers (Appliances)

In general, the power consumers of prosumers k are clas-
sified into four categories Ak = Anfk ∪ A

lf
k ∪ A

mf
k ∪ Ahfk ,

namely, non-flexibleAnfk , low-flexibleAlfk , mid-flexibleAmfk ,
and high-flexible Ahfk appliances. This classification is based
on the ability/flexibility to set the time and power consumption
rate of the electrical appliances and the total energy demand to
finish the obligated task. The non-flexible appliances (such as
refrigerator and television) are not schedulable as they need
to work with their nominal schedule with a predetermined
power/time of consumption. So, there is no authority to
manage their operations and they must consume the power
immediately. Low-flexible appliances have less strict operation
schedule in the sense that one can only manage the start point
of their operation time. On the other hand, for the mid-flexible
appliances, both the power consumption rate and the operation
time can be altered and interrupted. Unlike previous appliances
which need essential fixed energy demand for their task, in the
high-flexible class of appliances the tasks can be performed
with less energy or the whole task can be postponed to another
scheduling window.

For each appliance a ∈ Alfk ∪ A
mf
k ∪ Ahfk of prosumer

k, we denote its power consumption at slot h by xk,a(h)
and its consumption profile through one scheduling window
H by xk,a , [xk,a(1), · · · , xk,a(H)]. Further, the operation
state at slot τ is denoted by sτk,a , (rk,a(τ), dk,a(τ)), where
rk,a(τ) is the number of remaining time slots to complete
the current task and dk,a(τ) = (βk,a − rk,a(τ)) − τ is
the number of time slots for which the current task can be
delayed, both updated at slot τ − 13. Each appliance a ∈ Ak
should accomplish its work within its own allowed scheduling
window Hk,a , {αk,a, · · · , βk,a} ⊆ H, where αk,a is the
declared time for operation of the appliance and βk,a is the
deadline by that the task of the appliance a must be finished.
The total load demand of the non-flexible appliances (called
the base-load) of prosumer k at slot h is denoted by lnfk,b(h).
However, depending on the preferences of the prosumer, an
appliance can be put into the non-flexible category in one day
and as other categories in another day.

Low-flexible appliances: Washing and drying machines are
examples of low-flexible appliances. Delaying their operations
incurs significant dissatisfaction level, which is modeled by an
incommodity cost with a non-decreasing and convex function
f lf (·). These appliances consume a fixed amount of energy
at each slot. Further, once the operation of these appliances
are started, they must continuously work until their tasks
is finished. The incommodity obtained from scheduling the
operation of these appliances depends on the operation time
and defined as Clfk,a(xk,a) =

∑βk,a
h=αk,a

δlfk,a(h)f lf (xk,a(h) −
xdesk,a(h)), with the desired power consumption xdesk,a(h) de-
clared for slot h before the scheduling program and time
dependent non-negative non-decreasing coefficients δlfk,a(h).

Mid-flexible appliances: These kinds of appliances (such
as water pump) are more flexible in the sense that they
may consume a fixed or regulated power and their opera-

3See [13], [23] for the detailed description of updating the state of different
appliances over time.
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tion can be interrupted. For these appliances, both delaying
the operation time and the number of interruptions impose
some inconveniences. So, we propose the incommodity cost
Cmfk,a (xk,a) =

∑βk,a
h=αk,a

δmfk,a (h)fmf (xk,a(h) − xdesk,a(h)) +

δ́mfk,a g
mf (

∑βk,a
h=αk,a

γk,a(h)), where fmf (x) and gmf (x) are
some non-decreasing convex functions. The auxiliary variable
γk,a(h) captures the number of interruptions (i.e., γk,a(h) = 1
if appliance a of prosumer k is turned on at slot h.), δmfk,a (h)
is a time dependent non-negative non-decreasing coefficient,
and δ́mfk,a is a fixed coefficient.

High-flexible appliances: These kinds of appliances (such
as pool pump) have regulated power consumption and
non-vital energy need. The incommodity Chfk,a(xk,a) =

δhfk,af
hf (Emaxk,a −

∑βk,a
h=αk,a

xk,a(h)) obtained via the operation
of these appliances depends only on the total power con-
sumption at the end of the deadline βk,a, where δhfk,a is a
fixed coefficient and Emaxk,a is the maximum desired energy
the prosumer needs to be consumed by appliance a.

To schedule the appliances of prosumer k, his EMU is faced
with the following constraints:

xk,a(h) = 0, ∀ h /∈ Hk,a, a ∈ Alfk ∪ A
mf
k ∪ Ahfk ,

xmink,a ≤ xk,a(h) ≤ xmaxk,a , ∀ h ∈ Hk,a, a ∈ Amfk ∪ Ahfk ,

xk,a(h) = xratk,a · γk,a(h), ∀ h ∈ Hk,a, a ∈ Alfk ∪ A
mf
k ,

βk,a∑
h=αk,a

γk,a(h) = 1, ∀ a ∈ Alfk ,

βk,a∑
h=αk,a

γk,a(h) ≥ 1, ∀ a ∈ Amfk ,

βk,a∑
h=τ+1

xk,a(h) = Edesk,a − Eτk,a, ∀ a ∈ Alfk ∪ A
mf
k ,

Emink,a − Eτk,a ≤
βk,a∑
h=τ+1

xk,a(h) ≤ Emaxk,a − Eτk,a, ∀ a ∈ Ahfk

(1)

where Eτk,a =
∑τ
h=αk,a

xk,a(h), xmink,a and xmaxk,a are respec-
tively minimum and maximum power rate of high-flexible
(and possibly mild-flexible) appliances, xratk,a is the rated power
consumption of low-flexible (and possibly mid-flexible) ap-
pliances, Edesk,a is the desired fixed amount of energy the
appliance a ∈ Alfk ∪ A

mf
k must consume before the deadline

βk,a, which for appliances a ∈ Ahfk it is in the tolerable range
[Emink,a − Emaxk,a ].

The first line of (1) implies that none of the appliances
can consume power out of its scheduling windows Hk,a,
the fourth line ensures that the low-flexible appliances have
a continuous working period, and the fifth line allows the
mid-flexible appliances to have discrete power consumption
pattern. At slot τ , the possibility of applying the DSM
policies on the appliances is determined based on the state
sτk,a(rk,a(τ), dk,a(τ)) of each appliance a updated through the
two last lines of (1). To evaluate the potential possibility of
DSM, the EMU divides all the appliances into two groups
denoted by the sets Aactk and Apask according to their states. For
example, all the non-flexible appliances are always in group
Apask , while low/mid/high-flexible appliance are in group Apask

when βk,a − τ < rk,a(τ) + 1 (i.e., dk,a(h) < 1) or when a
mid-flexible appliance start working, it moves to this list. By
updating the state sτk,a(rk,a(τ), dk,a(τ)) of each appliance a,
the EMU rearranges the appliances which can be scheduled
in group Aactk and the load must be supplied into group Apask .
Further, those challenging appliances which are not sent their
state signal are considered to be in the set of off appliances
Aoffk for capturing the uncertainty of the load demand.

B. DS Units

Devices with storing capability have an important role in the
EMT program. The DS units do not only help to balance the
operation of networks with high RER penetration, but also they
contribute to an overall improvement of the system efficiency
and smoothing of the frequency and voltage fluctuations [24].
To use the potential of each DS unit j ∈ Jk in the EMT
program, the EMU is subject to the following constraints:

βk,j∑
h=τ+1

(
ηck,jx

c
k,j(h) +

xdk,j(h)

ηdk,j

)
= Edesk,j − (Ek,j(τ) + E0

k,j),

Ek,j(τ) = Ek,j(τ − 1) + ηck,jx
c
k,j(τ)−

xdk,j(τ)

ηdk,j
,

Emink,j ≤ Ek,j(h) ≤ Emaxk,j , ∀ h ∈ Hk,j , Elbk,j ≤ Edesk,j ≤ Eubk,j ,
xck,j(h) · xdk,j(h) = 0, ∀ h ∈ Hk,j ,
xck,j(h) + xdk,j(h) = 0, ∀ h /∈ Hk,j (2)

where Ek,j(τ), E0
k,j , Emink,j , and Emaxk,j are the energy level at

the end of slot τ , initial energy level, minimum acceptable
energy level, and the storage capacity, respectively. Hk,j ,
[αk,j , · · · , βk,j ], with αk,j and βk,j denoting the first and last
slots the DS unit j is available4 to the EMU of prosumer
k, and coefficients ηck,j , η

d
k,j ∈ (0, 1] denote charging (with

rate xck,j(h) ≥ 0) and discharging (with rate xdk,j(h) ≥ 0)
efficiencies, respectively. Usually, there is a desirable energy
level Edesk,j each unit needs to consume before becoming
unavailable to the EMU. For example, a PEV owner needs
his PEV to have some level of energy for his trip before the
departure at slot βk,j , or sometimes it is necessary for the
BBB to have some initial backup energy level before starting
the next scheduling horizon. Such requirements are satisfied
through the first dynamic equation in (2). The energy level
evolution of the DS unit follows the second line of (2) and the
energy level bounds and the tolerable deviations are provided
in the third line. Further, the fourth and fifth lines imply that
the DS unit cannot be charged and discharged at the same
time and cannot be charged/discharged when is unavailable to
the EMU, respectively. In particular, if we are going to use
a DS unit only as a power resource (like the RERs), we can
just let Edesk,j = 0 and we have xck,j(h) = 0 and xdk,j(h) > 0. In
this case, the second line of (2) denotes that the part xdk,j(τ)

ηd
k,j

is subtracted from the energy level Ek,j(h) of the DS unit at
each slot h. we can consume all the energy stored in the DS
unit according to the first dynamic equation in (2) by letting
Emink,j = 0.

4For appliances such as PEVs which also have their own individual tasks,
βk,j is the deadline similar to that in Section II-A.
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To maximize the lifetime of DS unit, it is necessary
to consider a cost function Cdsk,j(x

c
k,j(h), xdk,j(h), Ek,j(h)) =

ψrk,jf
ds
(
xck,j(h)+xdk,j(h)

)
+ψfk,jg

ds
(
Ek,j(h)−Ek,j(h−1)

)
+cfixk,j

for its operation, with some non-decreasing convex functions
fds(·) and gds(·), and some non-negative weights ψrk,j and ψfk,j .
The first term is the cost due to the charging/discharging rate,
the second term is the cost due to the fluctuation of energy
level, and cfixk,j is the fixed investment and maintenance cost.

C. Power Resources

The future generation of RERs on the M/NG level will
rely on the wind turbines and photovoltaic technologies [24].
So, we assume the prosumers have access to such energy
sources somehow, and there is possibility for some prosumers
to reserve diesel generators.

Diesel generator: The output of generator m ∈Mdg
k ⊆Mk of

prosumer k for slot h is denoted by P dgk,m(h) with the following
minimum Pmink,m and maximum Pmaxk,m generation limit:

Pmink,m ≤ P dgk,m(h) ≤ Pmaxk,m (3)

The common cost function for the conventional generators is
the quadratic cost function Cdgk,m(P dgk,m(h)) = am(P dgk,m(h))2 +

bmP
dg
k,m(h) + ck,m, with non-negative coefficients am and bm,

and a fixed operational cost ck,m [25].
Photovoltaic panel: The PV power generators of the pro-

sumer k are denoted by m ∈Mpv
k ⊆Mk. Assuming operation

at maximum power point tracking (MPPT), the output power
P pvk,m(h) of the PV unit m of prosumer k is [26]:

P pvk,m(h) = ηpvk,m ·A
pv
k,m ·R

pv
k,m(h) (4)

where ηpvk,m is the PV panel efficiency, Apvk,m is the panel
area, and Rpvk,m(h) = Ici(h) · Rmaxsi is the solar irradiation at
slot h, with the clearness index Ici(h) and the extraterrestrial
solar radiation Rmaxesi . The extraterrestrial solar radiation is
approximated as Rmaxesi = Isc(1 + 0.033 cos(360t/365)) sinα(h),
with sinα(h) = sinφ sin γ + cosφ cos γ cosω(h), where Isc
is a solar constant, t is the day of a year, α(h) is the
altitude of the sun, φ is the latitude, γ is the declination
of the sun, and ω(h) is the hour angle [27]. The clearness
index Ici(h) at each slot h denotes an index that any ex-
traterrestrial solar radiation tolerates by the natural factors
such as cloud and temperature. Using Beta distribution, the
probabilistic fluctuation of the clearness index is described as
pci(Ici(h)) =

(
Γ(a+b)/Γ(a)Γ(b)

)
[Ici(h)]a−1[1−Ici(h)]b−1, with

a =
(
(µsr)2(1 − µsr)/(σsr)2

)
− µsr, b = a(1 − µsr)/µsr, and

gamma function Γ(·), where µsr and σsr are the mean value
and standard deviation of solar radiation supply computed
according to the weather historical data, respectively [27].

Wind turbine: Let Mw
k ⊆ Mk denote the set of all wind

turbines belonging to prosumer k. The power output of each
turbine m ∈ Mw

k is calculated based on the wind speed
and the wind turbine power coefficient obtained from the
basic expression Pwk,m(h) = ρ/2 · ηwk,m · Awk,m · [vk,m(h)]3,
where ρ is the air density, ηwk,m is the power coefficient,
Awk,m is the swept area of the wind rotor, and vk,m(h) is
the wind speed (m/s) at the site of turbine m [26]. Since

the wind generation output varies with wind speed, a prob-
abilistic fluctuation analysis of wind speed can effectively
handle the uncertainty of the wind generation. The wind speed
fluctuations can be characterized using Weibull distribution
pw(vk,m(h)) = (a/b)(vk,m(h)/b)a−1 exp(−(vk,m(h)/b)a), with
a = (σw/µw)−1.086 and b = µw/Γ(1 + a−1), where, µw and
σw are the mean value and standard deviation of wind speed
based on the observed value, respectively [27]. Accordingly,
the output power of wind turbine m corresponding to its rated
power P ratk,m (kW) is described as:

Pwk,m(h) =


fw(vk,m(h)), vink,m ≤ vk,m(h) ≤ vratk,m

P ratk,m, vratk,m < vk,m(h) ≤ voutk,m

0, otherwise

(5)

where fw(vk,m(h)) = P ratk,m[(vk,m(h))3 − (vink,m)3]/[(vratk,m)3 −
(vink,m)3] is the cubic function which yields the wind power
[28], or we can let fw(vk,m(h)) = P ratk,m(vk,m(h)/vratk,m)3 ac-
cording to [8], where vink , voutk , and vratk are the cut in, cut
out, and rated speed (m/s) of wind turbine m of prosumer k,
respectively.

III. PROBLEM FORMULATION

In the online deterministic formulation of the EMT problem,
there are three uncertainty sources; 1) the upcoming load de-
mand of appliance a ∈ Aoffk of the prosumer and its scheduling
capability (i.e., if they are in group Aactk or group Apassk ), 2) the
total generated power from the RERs at the upcoming slots,
and 3) the electricity market selling/buying price which are
challenging problems. In this section, we handle 1) and 2) and
formulate the global social welfare maximization problem, and
provide a game-theoretic reinforcement learning mechanism to
tackle 3) in the next section.

At slot τ , the EMU of prosumer k has no information about
the type and state of appliances a ∈ Aoffk , since the actual load
of these appliances and their operation time are not known
in advance. So, it is impossible to deterministically group
the appliances a ∈ Aoffk into non-schedulable group Apask or
schedulable group Aactk . To address the lack of information,
one can collect the operation time/amount historical data
record of each appliance for estimating the probability papk,a(h)

that each appliance a ∈ Ak sends the state signal at each
time slot h > τ . The conditional probability papk,a(h|τ) that the
appliance a ∈ Aoffk goes on in an upcoming time slot h > τ ,
given that it has been off before the current time slot, τ , is
[10]:

papk,a(h|τ) =
papk,a(h)

1−
∑τ
t=1 p

ap
k,a(t)

(6)

The most conservative decision results from considering the
worst-case scenario, in which the electric appliances that send
a demand signal in the upcoming time slots h > τ , are all
located in group Apassk , i.e., must consume power immediately.
Accordingly, the total base-load of prosumer k at slot h is
updated as lk,b(h) = lnfk,b(h) + lpask,b (h) + loffk,b (h), where lpask,b (h)

is the load caused by moving appliance a from group Aactk to
group Apask (when dk,a(h) = 0), and the expected worst-case
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electric demand loffk,b (h) is calculated as:

loffk,b (h) =
∑

a∈Aoff
k

xratk,a

[ h∑
t=max{τ+1,h−$k,a+1}

papk,a(t|τ)

]
(7)

where parameter $k,a = rk,a(0) and xratk,a are the operation
duration and the rated power consumption of the appliance a ∈
Aoffk that goes on in upcoming time slot h > τ and operate im-
mediately with the probability

∑h
t=max{τ+1,h−$k,a+1} p

ap
k,a(t|τ)

[10].
To tackle the RER generation uncertainty, using PV model

(4), wind generation model (5), and the historical data records,
we can forecast the joint uncertainty power output bound
[Pmink,rer(h), Pmaxk,rer(h)] of all the RER units of prosumer k at each
slot h. However, providing an EMT strategy by taking into
account all possible scenarios P rerk (h) =

∑
m∈Mpv

k
P pvk,m(h) +∑

m∈Mw
k
Pwk,m(h) ∈ [Pmink,rer(h), Pmaxk,rer(h)] is very conservative

and possibly inefficient. One can consider an adaptive robust
model by defining the uncertainty space for the joint genera-
tion profile P rer

k (τ) = [P rerk (τ), · · · , P rerk (H)] of the RER units
of prosumer k at slot τ through the upcoming slots Hτ as [29]:

Prerk (τ) = {P rer
k (τ)|P rerk (h) ∈ [Pmink,rer(h), Pmaxk,rer(h)],

h ∈ Hτ ,
∑
h∈Hτ

Pmaxk,rer(h)− P rerk (h)

Pmaxk,rer(h)− Pmink,rer(h)
≤ ∆k(τ)} (8)

where [0 (least-conservative) ≤ ∆k(τ) ≤ |Hτ | (most-conservative)]
is the confidence level parameter which should be optimized
by prosumer k [10]. To encourage the prosumers to have
good power generation evaluations and reasonable offers to the
system by implementing the robust model (8), the ISO charges
them by the unit price ρgs(h) ($/MW) for the generation
shortage in time slot h. According to the cost imposed by
prosumer k due to the power shortage becomes5:

Crerk (P rer
k (τ)) =

∑
h∈Hτ

ρgs(h)[P rerk (h)− P̆ rerk (h)]+ (9)

where P̆ rerk (h) is the actual renewable generated power. It is
clear from (9) that the least-conservative decision, ∆k(τ) =

0 (i.e., offering P rerk (h) = Pmaxk,rer(h)), can impose the most
possible penalty to prosumer k.

So, the aggregate cost imposed on prosumer k at slot h is
defined as:

Ck(h) =
∑
a∈Alf

k

Clfk,a(xk,a) +
∑

a∈Amf
k

Cmfk,a (xk,a)

+
∑

a∈Ahf
k

Chfk,a(xk,a) +
∑
j∈Jk

Cdsk,j(x
c
k,j(h), xdk,j(h), Ek,j(h))

+ Cdgk,m(P dgk,m(h)) + Crerk (P rer
k (h)) (10)

Further, prosumer k is subject to the following power balance
constraints to maintain the stability of the power system at
each slot:

xslk (h) + xbyk (h) = lapk (h) + ldsk (h)− Pk(h) (11)

where xslk (h) < 0 and xbyk (h) ≥ 0 are the total power to be sold
(due to the power surplus) and to be bought (due to the power

5Without loss of generality, we have not considered the investment, oper-
ation, and maintenance costs of the RERs.

deficit), respectively. The aggregate power consumption by all
appliances a ∈ Ak of prosumer k is denoted by lapk (h), the net
charge (≥ 0) or discharge (< 0) profile of all the DS units
j ∈ Jk by ldsk (h), and the aggregate generated power from all
the available sources m ∈Mk by Pk(h). Accordingly, the total
revenue prosumer k acquires from the energy trading is:

Rk(h) = ρsl(h)[Pk(h)− ldsk (h)− lapk (h)]+

− ρby(h)[lapk (h) + ldsk (h)− Pk(h)]+ − Ctrk (h) (12)

where ρsl(h), ρby(h), and Ctrk (h) are the selling price, the buy-
ing price, and the transmission cost, respectively. Accordingly,
the global social welfare maximization problem can be defined
as:

max
∑
h∈H

W iso(h) =
∑
h∈H

∑
k∈K

(
Rk(h)− Ck(h)

)
,

subject to: (1)− (3), (11), and P rer
k (h) ∈ Prerk (τ), ∀ k ∈ K,

variables: {xk,a(h), γk,a(h), xck,j(h), xdk,j(h), xslk (h), xbyk (h),

P dgk,m(h), P rerk (h), ρgs(h), ρby(h), ρsl(h)}, ∀ k ∈ K (13)

The EMT problem in (13) is a mixed-integer nonlinear non-
convex NP-hard optimization problem. Centrally solving this
problem by the ISO bears major challenges such as; 1)
imposing a huge communication and computational burden
to the ISO, 2) putting into danger the prosumers’ privacy as
all the prosumers’ information must be available to the ISO,
3) reducing the reliability of the system due to creating the
critical single point of failure6, 4) reducing the incentives for
the prosumer to participate in the EMT program as the ISO
decides on the traded power and selling/buying prices with the
possibility of cheating and reducing the prosumers’ revenue.

IV. PROPOSED DISTRIBUTED-HIERARCHICAL
FRAMEWORK

To tackle the existing challenges, we decompose problem
(13) into three hierarchical sub-problems, i.e., the DSM prob-
lem (as the internal problem) and the energy trading and power
allocation problems (as external problems).

A. Optimal DSM

To separate the internal DSM part of problem (13), it is
necessary for the ISO to provide the prosumers with some
supply-function bidding, representing the lower and upper
bound of the transactions selling/buying prices. To encourage
the prosumer for maximum possible local energy trading, it
is reasonable to consider the highest/lowest buying/selling
price for procuring/selling power from/to the main grid. Ac-
cordingly, it is expected that the lowest transaction cost is
achieved when all the prosumers’ load demands are satisfied
locally. The supply function as a strategic variable allows
to adapt better to changing the market conditions (such as
uncertain and stochastic load demand and renewable power
generation) than committing to keeping a price or quantity
fixed. That is because no matter what the value of the supply

6A single point of failure (SPOF) is a part of system that, if it fails, will
stop the entire system from working. So, in the centralized solution, if the
ISO (which is the SPOF) fails, the whole system stops working.
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deficit/surplus is, the ISO can apply the supply function bid to
the prosumers to clear the deficit/surplus [30]. It also respects
practical informational constraints in the power network, as a
properly-chosen parameterized supply function controls the in-
formation revelation [31]. Our model also prevents prosumers
from selling more power at slots with very low demand by
reducing the selling price and vice versa. So, each prosumer
can approximate his individual effectual price ρeffk (h) as:

ρeffk (h) = ρk(h) + fwsp(
∑
k∈K

xslk (h) +
∑
k∈K

xbyk (h)),

ρk(h) = [υk(h)/xnetk (h)]ρmcp(h) + [(1− υk(h))/xnetk (h)]

[ρbyiso(h)I(xbyk (h)) + ρsliso(h)I(xslk (h))] (14)

where fwsp(·) is a supply-function bidding, υk(h) is the portion
of energy directly traded with the other prosumers, ρmcp(h) is
the local electricity trading price (called the market clearing
price (MCP)), and ρbyiso(h) and ρsliso(h) are the prices of buying
and selling power from/to the ISO, respectively. We know
that if

∑
k∈K x

sl
k (h) =

∑
k∈K x

by
k (h), then, there is no need

for the ISO to trade power with the wholesale market, which
subsequently affects the prosumers’ payments. The actual
value of ρeffk (h) is not known to prosumer k in advance
and depends on the scheduling and trading decisions of all
the prosumers and the realizations of random events (e.g.,
the power generation from RERs and the load demand). For
example, when the RER power generation is high and most
of the prosumers have surplus energy, two factors reduces
the chance of selling power with high price for all the
prosumers as xslk (h) < 0 increases. 1) The supply-function
bidding fwsp(·) reduces. 2) The chance of trading power with
high MPC price ρmcp(h) reduces and the chance of trading
power with low prices ρbyiso(h) and ρsliso(h) increases as υk(h)

reduces. These factors encourage the prosumers to store the
surplus energy in their DS units as much as possible and
sell it in another time. This behavior helps smoothing the
power consumption/trading curves and alleviating the voltage
and frequency fluctuation problems. So, the natural choice to
model these interactions is the game theory. As in the game-
theoretic model the best response is the dominant strategy
(or strategies) which produces the most favorable outcome
for the prosumers [32], we assume that each prosumer k has
access to information xnet−k (h) =

∑
n∈K/k

(
xsln (h)+xbyn (h)

)
and

decides to best respond to it, resulting to an equilibrium [33].
Accordingly, we can define the DSM objective function of
each prosumer k at slot h as:

Cdsmk (Sk(h)) = ρeffk (h)[xslk (h)+xbyk (h)+xnet−k (h)]+Ck(h) (15)

where Sk(h) ∈ Shk is the state of prosumer k at slot h de-
termined according to [sτk,a(rk,a(τ), dk,a(τ))]a∈Ak and xnet−k (h),
the state of the charge of the DS units, the power produced
from the power resources, and the prosumer attitude (e.g.,
belief on the worthiness of price ρmcp(h)). The feasible state
set Shk = Ak × Jk × Mk × Pk is constructed of Ak (feasible
state of appliances according to constraints in (1)), Jk (feasible
state of the DS units according to constraints in (2)), Mk

(feasible state of the power resources according to constraint
(3), (11), and P rer

k (h) ∈ Prerk (τ)), and Pk (feasible state of

the effectual price (14) according to the personal historical
data of the customer k’s payment). To take the best response,
the constraints in (1) and (2) temporarily couple the prosumer
decision through the scheduling horizon H. So, the challenge
is to understand how a current action/state will affect the
future profits, meaning that, for scheduling the equipment, the
prosumer must infer (trade-off) that consuming/buying/selling
power in the current slot is more profitable or the next slots.
On the other, the decision making only depends on the belief
of the effectual price ρeffk (h) and the state Sk(h), while it is
independent of the time slot index. We propose using post-
decision state reinforcement learning for each prosumer to
foresee the change of the effectual price, learn his action, and
determine the best response over the time [5]. A good way
to model this task is with Markov decision processes (MDP),
which is the dominant approach in the reinforcement learning
theory [34].

As a decision maker, each prosumer chooses an energy
consumption function E hk at each time-slot h among the set
of energy consumption functions Ehk = {Ek,1, Ek,2, · · · , Ek,Ek}.
Then, the actual energy consumption profile of prosumer k
which is constructed of concatenating all the decision variables
{xk,a(h), γk,a(h), xck,j(h), xdk,j(h), P dgk,m(h)}, i.e., Xk(h), is cal-
culated based on the energy consumption function E hk and the
prosumer’s state Sk(h), i.e., Xk(h) = E hk (S h

k ).
The prosumer k decides its energy consumption function

E hk based on the observation of its state S h
k ∈ Shk . We denote

prosumer k’s stationary policy that maps its state sets Shk to
the action sets Ehk by πk : Shk → Ehk , i.e., E hk = πk(S h

k ).
Accordingly, the prosumer aims to solve the following MDP
learning problem which aims to minimize the expected long-
term (discounted) cost in the upcoming time slots [35]:

min
πk:Sh

k
→Eh

k

E
[ ∞∑
h=τ

γhkC
dsm
k (S h

k )
]

(16)

where the discount factor 0 ≤ γhk ≤ 1 can be used to
characterize a wide range of the prosumers’ behavior and
the expectation is with respect to the demand and generation
uncertainties in the upcoming time slots. When γhk is close
to zero, the prosumers are myopic, i.e., they aim to minimize
their short-term cost without considering the consequences of
their short-term policy on their future cost and vice versa.
In the previous section, we provided a mechanism for the
prosumers to estimate (and update) their load demand and
generated power for the next slots. In order to exploit this
available information for improving the learning accuracy and
speed, we develop PDS learning algorithm to exploit the
available information about the system which is revealed slot-
by-slot [5]. We define prosumer k’s PDS as the state where
the known information is reflected based on prosumer k’s
decision on E hk , but the unknown information is not reflected.
Accordingly, we denote prosumer k’s PDS at time-slot h by
S̄ h
k (Xk(h + 1), h + 1, E hk ) ∈ Shk . To solve the MDP problem

(16), the state transition probability from S h
k to S h+1

k is:

p(S h+1
k |S h

k , E
h
k ) =

∑
S̄h
k
∈Sh
k

pkn(S̄ h
k |S

h
k , E

h
k )pun(S h+1

k |S̄ h
k )

(17)
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where pkn(·) and pun(·) denote the known and unknown prob-
abilities, respectively [5]. The optimal PDS policy π̄k

∗(S̄ h
k )

can be well defined by using the optimal action-value function
Q∗ : Shk × Ehk → R, which satisfies the Bellman optimality
equation7:

Q∗(S h
k , E

h
k ) = r(S h

k , E
h
k ) + γ

∑
Śh
k
∈Sh
k

p(Ś h
k |S

h
k , E

h
k )V ∗(Ś h

k )

(18)
where V ∗(Ś h

k ) = minEh
k
∈Eh
k
Q∗(Ś h

k , E
h
k ), ∀S h

k ∈ Shk is the
optimal state-value function and r(S h

k , E
h
k ) is the reward

observed for the current state S h
k [36]. As the action-state

space in our stochastic MDP problem is potentially huge
(continuous), to guarantee the convergence, one can apply
a recursive equation with a suitable learning rate (step-size)
αk(h) to approximate the value of Q function as follows [37]:

Q(S h
k , E

h
k )← (1− αk(h))Q(S h

k , E
h
k ) +

αk(h)
[
r(S h

k , E
h
k ) + γhk max

Éh
k
∈Eh
k

Q(Ś h
k , É

h
k )
] (19)

where max
Éh
k
∈Eh
k

Q(Ś h
k , É

h
k ) is an estimate of the optimal

future value. A detailed analysis for choosing optimal (step-
size) αk(h) for different MDPs are drawn in [38]. Using the
Bellman optimality equation and (19), the state value functions
of prosumer k’s state, the PDS, and the optimal PDS policy
becomes:

V̄ ∗(S̄ h
k ) = γhk

∑
Śh
k
∈Sh
k

pun(Ś h
k |S̄ h

k , E
h
k )V ∗(Ś h

k )

V ∗(S h
k ) = min

Eh
k
∈Eh
k

[
Cdsmk (S h

k ) +∑
S̄h
k
∈Sh
k

pkn(S̄ h
k |S

h
k , E

h
k )V̄ ∗(S̄ h

k )
]

π̄k
∗(S̄ h

k ) = arg min
Eh
k
∈Ek

[
Cdsmk (S h

k ) +

∑
S̄h
k
∈Sh
k

pkn(S̄ h
k |S

h
k , E

h
k )V̄ ∗(S̄ h

k )
]

(20)

where, as we show in Section V, by exploitation of the
known parts of probability pkn(·) and updating the information
about S h

k the learning accuracy and speed are improved
compared to the conventional Q-learning algorithm [37]. In
the adopted learning method, the exploration parameter ε of
ε-greedy is adaptively chosen corresponding to the temporal-
difference error observed from value-function backups, which
is considered as a measure of the prosumer’s uncertainty about
the environment. Balancing the ratio between exploration and
exploitation, i.e., choosing appropriate ε, is one of the most
challenging tasks in the reinforcement learning with great
impact on the prosumer’s learning performance. In one hand,
too long exploration prevents the prosumer from maximizing
short-term reward because the selected exploration actions
may yield negative reward from the environment. On the

7It is a necessary condition for optimality associated with the dynamic
programming methods. It writes the value of a decision problem at a certain
point in time in terms of the payoff from some initial choices and the value
of the remaining decision problem that results from those initial choices. This
breaks a dynamic optimization problem into simpler sub-problems [36].

other hand, exploiting uncertain environment knowledge pre-
vents maximization of long-term reward since the selected
actions may remain suboptimal. This problem is well known
as the dilemma of exploration and exploitation [34]. The
desired behavior is to have the prosumers more explorative
in situations where the knowledge about the environment is
uncertain, i.e. at the beginning of the learning process, which
is recognized by large changes in the value function. Then,
the exploration rate should be reduced as the prosumer’s
knowledge becomes certain about the environment, which
can be recognized as very small or no changes in the value
function. As an alternative we can adopt an adaptive value-
difference-based ε-greedy exploration, according to a Softmax-
Boltzmann distribution of the value-function estimates similar
to that in [39].

B. Optimal Energy Trading

After scheduling the internal energy consumptions (i.e., the
DSM part), the prosumers with xnetk (h) = xslk (h) + xbyk (h) < 0

and xnetk (h) > 0 participate in the energy trading stage as
the sellers and buyers, respectively. The ISO as an auctioneer
classifies them into set S of S = |S| sellers and set B of
B = |B| buyers. At this stage, each potential seller s ∈ S sends
the quantity of energy xsls (h) that it intends to supply and its
reservation bid ρsls to the auctioneer (ISO). The reservation
bid sent by the potential sellers corresponds to the minimum
price at which the seller is willing to sell its offered amount of
energy. On the other side, each potential buyer b ∈ B proposes
a bid ρbyb and the quantity it requests, denoted by xbyb (h) to the
auctioneer. As the MPC price ρmcp(h) and its lower and upper
bounds [ρbyiso(h) − ρsliso(h)] depend on the prosumers’ actions,
for optimally determining the parameters ρsls and ρbyb , one can
develop a game-theoretic competition among the prosumers
similar to [23]. However, the proposed trading structure must
have the following necessary economic properties to be a
legitimate double auction mechanism:

1) Truthfulness or incentive compatibility (IC): The bidders
cannot benefit from bidding different from their true valuation,
i.e., cheating always harms. 2) Individual rationality (IR):
Bidders get non-negative utilities, i.e., the sellers are paid
no less than what they ask for and buyers do not pay more
than their bids. 3) Budget-balance (BB): The total amount
paid to the sellers is no more than the total amount received
from the buyers. This prevents the auctioneer, who runs the
auction, from losing money. 4) Efficiency or social welfare:
The aggregate profit acquired by the prosumers from partici-
pating in the energy trading market. To achieve the maximum
efficiency, the power should be sold to the buyers at the lowest
price and bought from the sellers at the highest price, while
minimizing the number of losers. In [21], it is shown that
it is impossible for an auction mechanism to maximize the
social welfare whilst being IR, IC, and BB at the same time.
So, for the auctioneer to maintain the BB property in an
IR and IC mechanism, it is necessary to compromise on the
optimality of the social welfare as the IR and IC properties are
essential. Thus, in this paper, we aim to retain features IR, IC,
and BB, while achieving high (but not maximum) efficiency.
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To satisfy the mentioned properties, we develop our hybrid
double-auction mechanism as follows:

1) The sellers are ordered in an increasing order of their
reservation price ρsl1 < ρsl2 < · · · < ρslS ; 2) the buyers are
ordered in a decreasing order of their reservation bids ρby1 >

ρby2 > · · · > ρbyB ; 3) if two sellers (respectively, buyers) have
equal reservation prices (bids), they are aggregated into one
single virtual seller (or buyer); 4) we consider the ISO as a
virtual buyer/seller with the lowest buy ρbyiso(h) and the highest
sell ρsliso(h) prices, make the balance in the energy trading
marker (e.g., trade with the losers and supply the aggregate
excess demand if

∑
b∈B x

by
b (h) +

∑
s∈S x

sl
s (h) > 0 or buy the

aggregate surplus of energy if
∑
b∈B x

by
b (h)+

∑
s∈S x

sl
s (h) < 0)

by procuring/selling some power from/to the wholesale market
at the deficit/surplus of energy.

Following this sorting process, the supply curve (sellers’
bids [ρsls ]s∈S as a function of their energy amounts [xsls (h)]s∈S)
and the demand curve (buyers’ bids [ρbyb ]b∈B as a function
of their load demands [xbyb (h)]b∈B) can be generated. These
two curves intersect at a point that corresponds to a given
seller L and buyer M with bids ρbyM ≥ ρslL . This intersection
point is easily computed using routine numerical and graphical
techniques [40]. Once we determine the seller L and a buyer
M at the supply and demand intersection point, double auction
theory implies that L − 1 and M − 1 buyers will practically
participate in the market and directly trade with each other (as
they are the winners). Here, as shown in [41], we must exclude
seller L and buyer M from the market so as to guarantee
that the total supply and demand will match while ensuring a
strategy proof and truthful auction mechanism. To determine
the trading price (i.e., the MCP), once the intersection is
identified, one can select any suitable point (payment rule)
within the interval [ρslL , ρ

by
M ] [41]. In our case, one can simply

set ρmcp(h) = (ρslL + ρbyM )/2 [20]. Once the trading price and
the winners are found, different approaches can be applied to
find the quantity of energy traded between each of the L− 1

participating sellers and M − 1 participating buyers [40]. We
propose to apply the technique of [41], in which the entire
traded volume is divided in a way to maintain the truthfulness
of the auction. Using this approach, the total amount qs(xsls (h))

sold by any seller s, for a given strategy vector is:

qs(x
sl
s (h)) :={

xsls (h), if
∑L−1
s=1 |x

sl
s (h)| ≤

∑M−1
b=1 xbyb (h)

[xsls (h)− σs]+, if
∑L−1
s=1 |x

sl
s (h)| >

∑M−1
b=1 xbyb (h)

(21)

where σs = [
∑L−1
s=1 |x

sl
s (h)| −

∑M−1
b=1 xbyb (h)]+/(L − 1) repre-

sents the fraction of the oversupply that is allotted to seller
s. The mechanism in (21) implies that whenever the total
demand at the auction’s outcome exceeds the supply, then
every seller would sell all of the energy that it introduced
into the market. However, when the total supply exceeds
the total demand, all the sellers receive an equal share of
the oversupplied amount. Nonetheless, if for a seller s1, we
have σs1 > |xs1sl(h)|, the seller does not sell any energy as
per the second case in (21). So, for other sellers we have
σs = [

∑L−1
s=1 |x

sl
s (h)| −

∑M−1
b=1 xbyb (h)− |xs1s (h)|]+/(L− 2). This

scheme will be repeated as long as each seller sells a non-

negative quantity [42]. Further, the fraction σs of each winner
seller and all the power xsls (h) of the loser sellers (e.g., sellers
with index s ≥ L) is sold to the virtual buyer (i.e., the ISO)
at the price ρbyiso(h) < ρmcp(h). For the buyers, we have the
same procedure, except the fraction σb and the power of all
the losers (e.g., buyers with index b ≥M) is bought from the
ISO at the price ρsliso(h) > ρmcp(h).

Remark 1. It is worth mentioning that, when the surplus/deficit
energy of some prosumers are not significant (especially the nano-
grids), one can easily develop a coalition among them, similar to
work in [43]. Further, when the number of the M/NGs in the market
is very large, one can split up the main market into several smaller
sub-markets with still the same efficiency and features (IC, IR, BB,
and high efficiency) according to the analysis in [44].

Proposition 1. The proposed auction mechanism has all the prop-
erties IC, IR, BB, and high efficiency. The proof is removed due to
the space limitation, while it is routine and the same as the works in
[20], [40], [45].

C. Optimal Power Allocation

Once the trading amounts (from Section IV-A) and their
corresponding prices (from Section IV-B) are determined, each
seller will be indifferent to who buys his energy because his
profit only depends on the energy quantity sold and the settled
price. So, we can let the ISO determine who sells energy to
whom in an efficient manner to minimize the transmission
cost (e.g., power transmission loss). So, let qsb(h) denote the
amount of energy provided by seller s ∈ S to buyer b ∈ B at
slot h. Accordingly, we define the number of transmitter units
(the inter-connector hops8) between seller s to buyer b by `sb

and we denote the multi-hop transmission cost per each hop
by chp

9. Let ptc denote the fixed transmission cost per kWh

of energy. Then, the global transmission cost minimization
problem at each slot h becomes:

min
qsbs ,s∈S,b∈B

Ctrans(h) =
∑
s∈S

∑
b∈B

ptcqsb(h)`sbchp

s.t. 0 ≤ qsb(h) ≤ xsls (h),
∑
s∈S

qsb(h) = xbyb (h),∑
b∈B

qsb(h) = xsls (h) (22)

where, the ISO is located in both sets S and B, as it is the
virtual buyer/seller. The first constraint ensures that the power
allocated to sell by seller s to each buyer b cannot exceed
the total surplus power xsls (h), the second constraint ensures
that the buyer b receives all his needed energy, and the third
constraint ensures that the seller s sells all his surplus energy.
The linear optimization problem (22) can be easily solved by
some well-known optimization techniques [47]. However, if
the number of prosumers is very large, one can develop a game
theoretic mechanism between the sellers, by which, each seller

8Each hop reflects a transition of energy value and its associated information
from one node to another [46].

9In our framework we can consider chp as the cost of sell power to a buyer
through other intermediate prosumers’ infrastructures (with `sb be a function
of number of intermediate prosumers.) or the ISO’s infrastructure (with `sb
be a function of distance between the seller and the corresponding buyer).
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Algorithm 1 The EMT Mechanism: Repeat for h = 1, · · · , H .
1: I. Load Demand and RER Generation Estimation: Executed by each

prosumer k
2: Estimate the state of appliances a ∈ Aoffk and put them into non-

schedulable Apask or schedulable Aactk groups according to (7).
3: Define the uncertainty space for the joint RER generation profile as

(8) using (4), (5), and the historical data records.
4: II. The DSM Stage: Executed by each prosumer k
5: Receive xnet−k (h) from the ISO.
6: Use (14) to approximate effectual price ρeffk (h).
7: Set discount factor γhk .
8: Choose the exploration parameter ε (e.g., similar to that in [39]).
9: Choose optimal step-size αk(h) (e.g., similar to that in [38]).

10: Determine the state Sk(h) ∈ Shk according to appliances’ states and
constraints, load demand, power resources, and the effectual price.

11: Update the PDS S̄ h
k (Xk(h+ 1), h+ 1, E hk ) ∈ Shk using new data

about the state Sk(h) revealed at each slot h.
12: Approximate the value of Q function using (19).
13: Use (18), the value of Q function and (20) to determine the optimal

stationary policy πk : Shk → E
h
k .

14: Determine the energy consumption function E hk ∈ E
h
k based on

Sk(h) and E hk = πk(S h
k ).

15: Determine consumption profile Xk(h) = E hk (S h
k ) accordingly.

16: Calculate xnetk (h) and declare it to the ISO.
17: If xnetk (h) 6= 0 go to the energy trading stage,
18: Else Stop the algorithm.
19: III. The Energy Trading Stage:
20: The ISO as an auctioneer classifies prosumer k into set S of sellers if

xnetk (h) < 0 or set B buyers if xnetk (h) > 0.
21: All the sellers s ∈ S send their quantity of energy xsls (h) that they

intend to supply and their reservation bid ρsls to the ISO.
22: All the buyers b ∈ B send their quantity of energy xbyb (h) that they

intend to buy and their proposed bid ρbyb to the ISO.
23: Develop the hybrid double-auction mechanism in Section IV-B to

determine the trading price (i.e., the MCP) ρmcp(h) = (ρslL + ρbyM )/2.
24: Determine the total amount of sold power qs(xsls (h)) by any seller s

using (21).
25: Determine the total amount of purchased power qb(x

by
b (h)) by any

buyer b similar to (21).
26: The fraction σs (σb) of each winner seller (buyer) and all the power

xsls (h) (xbyb (h)) of the loser sellers (buyers) is sold to the ISO at the
price ρbyiso(h) < ρmcp(h) (ρsliso(h) > ρmcp(h)).

27: IV. The Power Allocation Stage: Executed by the ISO
28: The ISO solves (22) and determines qsb(h).
29: The rest of energy transactions are done directly with the ISO.

s can determine qsb(h), ∀ b ∈ B in a decentralized manner,
similar to the work in [48].

Eventually, the whole energy management and trading
process are performed as; 1) Each prosumer k predicts and
schedules the energy consumption/production time/amount of
its equipments through the optimal DSM mechanism Section
IV-A and determines xnetk (h). 2) If xnetk (h) > 0(< 0), the
prosumer enters to the optimal energy trading mechanism
Section IV-B as a seller(buyer) and infers the effectual price
ρeffk (h) at which he will sell(buy) energy. 3) By the optimal
power allocation mechanism Section IV-C, it is independently
determined which seller s sell how much energy to which
buyer b, i.e., qsb(h). This process is elaborated in Algorithm
1, and the whole smart micro/nano-grid model is depicted in
Fig. 1.

V. NUMERICAL RESULTS

For evaluating the learning capability of the prosumers, we
have considered 10 M/NGs each having 100 appliances ran-
domly chosen between low/mid/high-flexible appliances and

market clearing price of Pennsylvania-New Jersey-Maryland
Interconnection (PJM) electricity market similar to the data in
[49]. Each low/mid-flexible appliance has two possible actions
(on and off) and the power consumption of each high-flexible
appliance is quantized into 10 consumption (action) levels. The
states of the appliances and the DS units are also assumed
to have 100 different conditions which are updated at each
slot (15 min) according to constraints (1) and (2). For the cost
function of the equipment and ISO, simple quadratic functions
are adopted, e.g., f lf (x) = fmf (x) = gmf (x) = fhf (x) =

fds(x) = gds(x) = fwsp(x) = x2. As a benchmark, we
assume that when there is no EMT mechanism in the system,
the prosumers consume power once needed, sell/buy power
only to/from the main grid, and cannot effectively manage
the charge/discharge schedule of the DS units. Each seller is
assumed to has a surplus between 50 kWh and 150 kWh
that can be sold. The reservation prices of the sellers are
chosen randomly from a range of [20, 60] cents per kWh,
while the reservation bids of the buyers are chosen randomly
from a range of [10, 70] cents per kWh. The demand of
each buyer is chosen randomly within a range of [45, 200]
kWh. The cost per energy sold is set to ptc = 5 cents, `sb is
chosen randomly from 1 to 10, and chp is chosen randomly
from 5 to 10 cents for all s ∈ S. All statistical results are
averaged over all possible random values for the different
parameters (prices, bids, demand, etc.) using a large number
of independent simulation runs.

For analyzing the DSM part of the proposed EMT program,
the behavior of a randomly chosen prosumer is depicted
in Fig. 2. For the learning mechanism, we have considered
the discount factor γ = 0.9, the step-size α = 0.2, and
the exploitation-exploration rate ε = 0.1 for iteration (19).
As we can see, the prosumer tries to consume low power
at slots with high effectual prices (14) and self-generated
powers, and consume more power at slots with low effectual
prices and high self-generated powers. Further, the prosumer
discharges the DS unite to sell power at the peak load demand
at which the selling price is high, and charge them at the
low-demand slots at which the buy price is low. In another
simulation with 20 sellers and 20 buyers, the consequences
of this consumption behavior are shown in Figs. 3(a) and (b).
In these results, the aggregate cost and the utility level of
each prosumer for one time-slot after the convergence of the
learning algorithm are normalized to one. Fig. 3(a) presents
the negative costs (profits) and utility levels of 20 sellers. As is
clear, participating in the proposed EMT framework increases
the profit of all the sellers compared to those when there is no
EMT program. However, as denoted, the utility levels of all
the sellers are reduced. This is due to shifting the consumption
time/amount of some appliances to other time-slots, which
imposes some discomfort to the end users. The same rule is
always applied to the buyers’ behavior. According to Fig. 3(b),
the buyers should make a trade-off between reducing their
payment and their utility level.

The effects of changing the parameters of the proposed
learning framework on the convergence speed and level are
analyzed in Fig. 4(a) for tuning the exploitation-exploration
rate ε of a buyer b ∈ B, and Fig. 4(b) for tuning the discount
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Fig. 1. Block diagram model of the proposed energy management and trading framework.
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Fig. 2. The prosumer power consumption pattern with/without the EMT and
the effectual price parameter.

factor γ of a seller s ∈ S. In Fig. 4(a), we can see that as the
buyer sets smaller ε at each slot, the PDS algorithm adopts
random actions with smaller probability and achieves a lower
average payment by more searching the Q-function (19). That
means, adopting smaller values for ε lets the PDS algorithm
use the available and updated information more efficiently.
The discount factor γ determines the importance of the future
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Fig. 3. Comparison of the aggregate costs and utility levels of the prosumers
with/without applying the proposed EMT mechanism; a) Sellers evaluation,
b) Buyers evaluation.

rewards. A factor of 0 makes the prosumer myopic (or short-
sighted) by only considering the current reward, while a factor
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Fig. 5. Comparison between the performance of; a) The proposed PDS
reinforcement learning and, b) The conventional Q-learning.

approaching 1 makes it strive for a long-term high reward. In
Fig. 4(b), we can see that when the seller is myopic (sets lower
γk), he achieves a lower average reward. This is because the
seller does not consider the impact of his current actions on
the future states of the equipment and the acquired rewards.

To justify using the PDS learning instead of the conventional
Q-learning techniques, Figs. 5(a) and (b) are depicted. As
illustrated by these figures, the PDS learning mechanism
converges much faster and achieves a higher average utility
level compared with the conventional Q-learning methods. So,
although the PDS learning method imposes a more computa-
tional burden on the system, it is worth using that, as the
proposed framework is online and fully distributed.

Given the outcome of the DSM part, Figs. 6(a) and (b)
show the competition between 8 sellers and 6 buyers. In Fig.
6(a), the intersection point demonstrates that seller 4 and buyer
3 determine the trading price (MCP). The total amount sold
by the participating sellers (seller 1 to 3) must be equal to
the one bought by the participating buyers (buyer 1 and 2)
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Fig. 7. Comparison of the average utility per seller resulted from the proposed
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at the MCP. As the total procured power by the winning
sellers is 203 kWh and the total demand of the winning buyers
is 126 kWh, each seller must sell his over-supply fraction
(203 − 126)/3 = 25.6667 kWh to the ISO with a lower price
than the MCP ρmpc(h). The revenue of the sellers for selling
power with a higher MCP price and the frugality of the buyers
for buying power with a lower MPC price compared with
the ISO’s high selling price ρsliso(h) and low buy price ρbyiso(h)

are demonstrated in Fig. 6(b). Clearly, other losing prosumers
acquire no revenue/frugality, since they trade all their energy
with the ISO. Therefore, we can conclude that the acquired
benefit from local energy trading is proportional to the number
of market participants and the traded amount, as denoted in
Fig. 7. From the results of this figure, we can see that the
most profitable scenario for a seller is the condition with the
least sellers and the most buyers. The reason for this is that
the competition extremity between the sellers for supplying
power is reduced.

The cost of transmitting power from some sellers to their
buyers are illustrated in Fig. 8 for both with/without the EMT-
optimal power allocation scenarios. The results reveal that
by letting the ISO decide which seller sells power to which
buyers, the power loss and transmitting costs are reduced
significantly. This is because the ISO dispatches the surplus
power of each seller to his nearest buyer neighbors to also
reduce the destructive effects such as voltage-frequency rise
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problems.
Finally, the performance comparison results between the

three different mechanisms for energy consumption manage-
ment and trading framework is depicted in Fig. 9. As is
clear from the operation time results, the centralized method
in solving (13) is not practical in the real-time real world
applications. This is because in a practical smart grid model
we may have thousands of prosumers sending their private
information to the central controller which can violate the
privacy of the prosumers as well as increasing the operational
time significantly. However, the aggregate cost imposed on the
prosumers as the results of the DSM program is the lowest for
the centralized method. This is because the centralized solu-
tions (i.e., Centralized and Cen-Auc) converge to the global
optimal point, while our mechanism converges to the vicinity
of this point as it is autonomous and distributed. In terms of the
transaction revenue, Cen-Auc is the most attractive scenario
for the prosumers. In this case the DSM program is run at
the central controller effectively and then the prosumers are
allowed to trade directly with the other participants who have
higher trading prices than the ISO (i.e., the centralized case).
This can reduce the prosumers motivation for participating in
the EMT program as they have to sell/buy energy to/from the
ISO with a pre-determined values.

In terms of transmission cost, our proposed framework
has the lowest expense factor as it tries to trade energy
as locally as possible. However, in the centralized method
all the energy are sold/bought directly from the ISO with
increase in the transmission cost significantly. Cen-Auc has
lower transmission cost than the centralized method as the
prosumers are allowed to trade directly after the DSM program
ends. But still the cost is higher than that of our method as the
third stage (i.e., optimal power allocation) is not performed in
this case. In terms of motivations for implementing the RER
facilities, our method is the best one and acquires the highest
revenue for the prosumers. This is because in the proposed
method the prosumers can manage the RER power generation
and autonomously decide whether they want to produce and
sell the power with a preferred price or store it for a better
(higher) price at the later slots. In the other cases they have no
right to act autonomously. However, in the case of Cen-Auc,
the RER utilization factor is slightly higher than the centralized
case as the prosumers are allowed to declare their bides and
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Fig. 9. Performance comparison between the centralized solution of (13),
the centralized solution of (13) with auction ability (i.e., Cen-Auc case), and
the proposed EMT framework.

have a chance to trade directly.

VI. CONCLUSIONS

A detailed characterization and formulation of the M/NGs’
components have been provided in this paper. For the first
time, a novel distributed hierarchical online method has been
proposed by which the M/NGs can schedule their power con-
sumption, efficiently manage their produced power, and trade
the surplus/deficit energy with their neighbors and the ISO to
make the profit. Further, an optimal power allocation has been
introduced to reduce the power loss and the destructive effects
(e.g., voltage and frequency rise problems) of the local energy
trading as much as possible. Extensive numerical simulations
have been carried out and verified that all the prosumers benefit
from participating in it.
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“Energy management system for a renewable based microgrid with a
demand side management mechanism,” in Computational intelligence
applications in smart grid (CIASG), 2011 IEEE symposium on. IEEE,
2011, pp. 1–8.

[27] A. Sobu and G. Wu, “Optimal operation planning method for isolated
micro grid considering uncertainties of renewable power generations and
load demand,” in Innovative Smart Grid Technologies-Asia (ISGT Asia),
2012 IEEE. IEEE, 2012, pp. 1–6.

[28] N. K. Paliwal, R. Mohanani, N. K. Singh, and A. K. Singh, “Demand
side energy management in hybrid microgrid system using heuristic
techniques,” in Industrial Technology (ICIT), 2016 IEEE International
Conference on. IEEE, 2016, pp. 1910–1915.

[29] D. Bertsimas, E. Litvinov, X. A. Sun, J. Zhao, and T. Zheng, “Adaptive
robust optimization for the security constrained unit commitment prob-
lem,” IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 52–63,
2013.

[30] P. D. Klemperer and M. A. Meyer, “Supply function equilibria in
oligopoly under uncertainty,” Econometrica: Journal of the Econometric
Society, pp. 1243–1277, 1989.

[31] N. Li, L. Chen, and M. A. Dahleh, “Demand response using linear
supply function bidding,” IEEE Transactions on Smart Grid, vol. 6,
no. 4, pp. 1827–1838, 2015.

[32] M. J. Osborne and A. Rubinstein, A course in game theory. MIT press,
1994.

[33] A.-H. Mohsenian-Rad, V. W. Wong, J. Jatskevich, R. Schober, and
A. Leon-Garcia, “Autonomous demand-side management based on
game-theoretic energy consumption scheduling for the future smart

grid,” IEEE transactions on Smart Grid, vol. 1, no. 3, pp. 320–331,
2010.

[34] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[35] Y. Shoham and K. Leyton-Brown, Multiagent systems: Algorithmic,
game-theoretic, and logical foundations. Cambridge University Press,
2008.

[36] R. Bellman, Dynamic programming. Courier Corporation, 2013.
[37] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.

3-4, pp. 279–292, 1992.
[38] E. Even-Dar and Y. Mansour, “Learning rates for q-learning,” Journal

of Machine Learning Research, vol. 5, no. Dec, pp. 1–25, 2003.
[39] M. Tokic and G. Palm, “Value-difference based exploration: adaptive

control between epsilon-greedy and softmax,” in Annual Conference on
Artificial Intelligence. Springer, 2011, pp. 335–346.

[40] D. Friedman and J. Rust, The double auction market: institutions,
theories, and evidence. Westview Press, 1993, vol. 14.

[41] P. Huang, A. Scheller-Wolf, and K. Sycara, “Design of a multi–unit
double auction e–market,” Computational Intelligence, vol. 18, no. 4,
pp. 596–617, 2002.

[42] W. Saad, Z. Han, H. V. Poor, and T. Başar, “A noncooperative game
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vs. multi-hop–energy efficiency analysis in wireless sensor networks,”
in 18th Tlcommunictions Forum, TELFOR, 2010.

[47] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization.
Athena Scientific Belmont, MA, 1997, vol. 6.

[48] N. Yaagoubi and H. T. Mouftah, “A distributed game theoretic approach
to energy trading in the smart grid,” in Electrical Power and Energy
Conference (EPEC), 2015 IEEE. IEEE, 2015, pp. 203–208.

[49] M. Latifi, A. Khalili, A. Rastegarnia, and S. Sanei, “Fully distributed
demand response using the adaptive diffusion–stackelberg algorithm,”
IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2291–
2301, 2017.

Milad Latifi received the M.Sc degree in com-
munication engineering from Malayer University,
Hamedan, Iran, in 2017. His research interests in-
clude advanced signal processing, adaptive filtering,
cooperative learning, multi-agent networking, and
adaptive optimization. Mr. Latifi is a student member
of the IEEE.

Amir Rastegarnia completed his PhD degree in the
electrical engineering at the University of Tabriz,
Tabriz, Iran, in 2011. In 2011, he joined the Depart-
ment of Electrical Engineering, Malayer University,
as Assistant Professor. His current research interests
are theory and methods for adaptive and statistical
signal processing, distributed adaptive estimation, as
well as signal processing for communications. He is
a Member of IEEE.



0278-0046 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2019.2945280, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 15

Azam Khalili received the PhD degree in electrical
engineering from the University of Tabriz, Tabriz,
Iran, in 2011. In 2011, she joined the Department of
Electrical Engineering, Malayer University, as As-
sistant Professor. Her current research interests are
theory and methods for adaptive filtering, distributed
adaptive estimation, as well as signal processing for
communications. She is a Member of IEEE.

Wael M. Bazzi received the graduated degree from
the American University of Beirut (AUB), Lebanon,
in 1996, the ME degree from AUB, in 1999 and
the PhD degree from the University of Waterloo,
Canada, in 2001. He is currently an associate profes-
sor with the American University in Dubai. His re-
search interests include wireless communication and
networks, especially the optimization and modeling
aspects of communication networks and systems.

Saeid Sanei (SM05) received his PhD in signal pro-
cessing from Imperial College London, UK. He has
been a member of academic staff in Iran, Singapore,
and the UK. He has published three monograms,
a number of book chapters, and over 320 papers
in peer reviewed journals and conference proceed-
ings. His research interest is in adaptive filtering,
cooperative learning, multi-way, multimodal, and
multichannel signal processing with applications to
biomedical, audio, biometrics, and communication
signals and images. He has served as an Associate

Editor for the IEEE Signal Processing Letters, IEEE Signal Processing
Magazine, and Journal of Computational Intelligence and Neuroscience.


