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Abstract: 

Solar energy is becoming one of the most attractive renewable sources. In many cases, due to 

a wide range of financial or installation limitations, off-grid small scale micro power panels 

are favoured as modular systems to power lighting in gardens or to be integrated together to 

power small devices such as mobile phone chargers and distributed smart city facilities and 

services. Manufacturers and systems’ integrators have a wide range of options of micro-scale 

photo voltaic panels to choose from. This makes the selection of the right panel a challenging 

task and risky investment. To address this and to help manufacturers, this paper suggests and 

evaluates a novel approach based on integrating empirical lab-testing with short-term real 

data and neural networks to assess the performance of micro-scale photovoltaic panels and 

their suitability for a specific application in specific environment. The paper outlines the 

combination of lab testing power output under seasonal and hourly conditions during the year 

combined with environmental and operating conditions such as temperature, dust 

accumulation and tilt angle performance. Based on the lab results, a short in-situ 

experimental work is implemented and the performance over the year in the selected location 

in Kuwait is evaluated using deep learning neural networks. The findings of this approach are 

compared with simulation and long-term real data. The results show a maximum error of 23% 

of the neural network output when compared with the actual data, and a correlation values 

with previous work within 87.3% and 91.9% which indicate that the proposed approach could 

provide an experimental rapid and accurate assessment of the expected power output. Hence, 

supporting the rapid decision-making process for manufacturers and reducing investment 

risks.  

 

Key words: Solar energy; system manufacturing;  photovoltaic; micro-scale; neural networks; 

urban environment; smart cities. 

1. Introduction:  

The drive to reduce carbon emission and global pollution has attracted many countries to 

adopt renewable energy as a future energy strategy. As a result, Kyoto Protocol which 
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entered into force in 2005, extending the 1992 United Nations Framework Convention on 

Climate Change (UNFCCC), had made an obligation on participating countries to reduce 

greenhouse gas emissions, as indicated by Hopwood (2016) and Balibar (2017). Reducing 

greenhouse gas emissions is becoming absolutely necessary considering the multitude of 

scientific papers that have confirmed climate change in many regions of the planet (Seager et 

al., 2007; Fan and Thomas, 2013; IPCC, 2013; Fu and Feng, 2014; Ávila et al., 2015; Bandoc 

and Prăvălie, 2015; Prăvălie et al., 2019a). 

More recently, in Paris COP21 (Rajgor, 2016), a universal global climate agreement based on 

individual national contributions has been reached with the main objective is to address 

global temperature to be well below 2°C above pre-industrial levels. It also demands for zero 

net emissions of greenhouse gases by the second half of this century. According to Prăvălie 

and Bandoc (2018), solar photovoltaic is more polluting when considering CO2/kWh grams 

that result from the complete solar power production cycle in comparison to wind, CSP, 

nuclear and hydro energy. However, photovoltaic technology is still one of the most 

attractive technologies toward reducing carbon emission in comparison to coal, oil and gas 

due to its relatively low cost and simplicity to the user and the possibility of developing 

micro-generation and distributed design as well as large scale systems. For many reasons of 

technical, financial, safety, installation or legal nature, the off-the-grid independent micro 

scale systems are normally attractive for many applications. This stand-alone technology has 

its own appetite by systems’ integrators and manufacturers due to the modular lower 

investment requirements and simpler installation procedures. 

Researchers have shown that adaptation of solar energy is linked to household income and 

wealth (Guta, 2018), hence in many rural areas around the world, micro-scale technology is 

ideal for installation due to its simplicity and stand-alone application. Solar photovoltaic 

technology is capable of fitting a wide range of requirements with high levels of scalability 

from milli-watt to almost giga-watt range. However due to many geographical and climate 

factors, the amount of solar energy production varies in its magnitude and intensity (IEA, 

2018). Photovoltaic solar energy technologies have been investigated for a significant period-

of-time and research is now moving to a wide range of installation configurations such as 

over canals, reservoirs, parking spaces, driveways, roads and possibly on highways (Nasir, 

Hughes and Calautit, 2017). 

The most common photovoltaic technologies can be categorised as the crystalline family and 

the thin film family. The crystalline family includes Crystalline Silicon (cSi), 

Monocrystalline Crystal Silicon and Polycrystalline Crystal Silicon which represent about 85% 

of the global market with module efficiency from 15%.  The thin film market available 

technologies are subdivided into three main sub-families: Amorphous (a-Si) and Micromorph 

silicon (a-Si/lc-Si), Cadmium-Telluride (CdTe), Copper-Indium-Diselenide (CIS) and 

Copper-Indium-Gallium-Diselenide (CIGS). However, thin film photovoltaic modules have 

about 15% of world photovoltaic market with an efficiency starting from 10% (Miao et al., 

2018).  

To estimate the expected output from solar panels, several mathematical models and 

approaches have been investigated and compared in literature.  The approaches are normally 

mathematical-based, such as the ones presented by Pindado and Cubas (2017), Xu et al. 

(2018) and Prăvălie et al. (2019b), where performance of solar panels is calculated via solar 

irradiation at specific location and efficiency of the photovoltaic system. This is a low cost 

and rapid approach to estimate the cost and performance. Other techniques use experimental 

https://en.wikipedia.org/wiki/United_Nations_Framework_Convention_on_Climate_Change
https://en.wikipedia.org/wiki/United_Nations_Framework_Convention_on_Climate_Change
https://en.wikipedia.org/wiki/Greenhouse_gas
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models of 1:1 scale systems of lab or outdoor environment, such as Klucher (1979), Asl-

Soleimani et al. (2001),  Sharaf-Eldin et al. (2016), Maghami et al. (2016) and Elibol et al. 

(2017). Such systems are useful in calculating many parameters of the actual components and 

estimating the actual energy generated in a specific location. Others use a combination of 

both approaches such as Abdelghani-Idrissi et al. (2018) and Jamil and Bellos (2019), where 

mathematical modelling and scientific experiment on 1:1 scale system is developed. However, 

the experimental studies not only could be expensive and complex, but will need significant 

time (at least one year) to collect the data needed to understand the performance. Even with 

such approach, the results will be varied due to weather conditions and other environmental 

factors.  Hence most of the available databases use an average reading over several years 

such as NASA Surface Meteorology and Solar Energy (NASA, 2018). 

Methodologies for the estimation of the hourly global solar radiation have been well 

investigated by many researchers including Davies and McKay (1989), Gueymard (1993) and  

Kaplanis (2006). The main aim is to estimate solar radiation and daylight illuminance to 

evaluate expected hourly power output with the necessary invertors and control systems. A 

recent paper (Li and Lou, 2018) has presented an extensive review of solar irradiance and 

daylight illuminance modelling and sky classification. In Lou et al. (2017), the 15 standards 

adopted by International Commission of Illuminance (CIE) are discussed and a methodology 

for Sky classification by accessible climatic indices are presented. The  approach has 

successfully  identified 83.2% of partly cloudy and clear skies scenarios, and further 62.7% 

of the 15 CIE Standard Skies for Hong Kong.  

Other factors such as dust accumulation and temperature of the panels could significantly 

change the performance.  Gholami et al.(2018) noticed that dust accumulation caused the 

reduction of power produced by photovoltaics. This clearly indicates that weather conditions 

and climate change have influence on the efficiency of photovoltaics. They elaborated that a 

drop of 25% of transmission coefficient of photovoltaic power is lost due to the effect of dust 

gathering over solar cells. In addition, Touati et al. (2017) went further to test the effect of 

climate on generating power using photovoltaic cells. A power production efficiency 

comparison is made between a Mono-Crystalline and an Amorphous cell in relation to dust 

accumulation. It had concluded that an Amorphous cell is out preform a Mono-Crystalline 

cell in power production under this specific weather condition. 

The efficiency of solar cells in energy production is a major area for researchers. Many 

experimentations had endeavoured to evaluate the performance for photovoltaic panels under 

a variety of influencing parameters and presented
 
emphasis on the photovoltaic optical 

properties (Dupeyrat et al., 2011). The techniques suggested are either to experimentally 

install and monitor photovoltaic panels over longer periods of times or using simulation 

software based on general assumptions and theoretical analysis. Other researchers such as 

Fthenakis (2004) and Díaz (2013) have gone further to address the issue of photovoltaic 

manufacturing and materials and its effect on life cycle performance. Furthermore, Cañete et 

al. (2014) have investigated different photovoltaic equipment performance on an open-air 

environment. In addition, Elbreki et al. (2016) have used the same measures to test 

photovoltaic performance, while  Lude et al. (2015) have studied a variety of photovoltaic 

types technologies which has been  utilised in Kuwait Energy Park to investigate power 

production efficiency to find a suitable one which can overcome Kuwait climate 

circumstances for a wider installation.  In relation to renewable energy, Prăvălie et al. (2019b) 

have presented spatial assessment of solar energy potential at global scale including  Kuwait  
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and the Arabian Peninsula, where in Kuwait the annual global horizontal irradiation (GHI) 

ranges between 2035.9 and 2221.8 kWh/m
2
.   

In addition to solar potential in the region, there are other renewable resources that could be 

harnessed, such as wind. The wind power density, as indicated by Bandoc et al. (2018), is 

about 300 to 400 W/m
2
, which is an average value in comparison to other areas around the 

world.  Both wind and solar energy have a huge potential in that region, however, solar 

photovoltaic technology seems to be an easier to install and use.  

In general, each approach has its own drawback. The experimental approach is expensive and 

takes significant time to get the necessary data. Even with this, environmental conditions 

could change year upon year (e.g. temperature levels, clouds, rain, dust, pollution, etc.). The 

mathematical modelling and computer simulation approach is a low cost approach and takes 

shorter period of time to get the results.  However, a wide range of assumptions will be 

needed. There are standard methods to test solar panels for heating and actinic effects. 

Independent third party testing and certification is normally performed and when combined 

with manufacturer’s quality management system, this should provide assurance to systems 

manufacturers and users.  Although databases such as the Photovoltaic Geographical 

Information System of the European Commission (PVGIS, 2018) can be used to estimate the 

output of systems, what we have found that systems manufacturers would prefer to do their 

own testing to evaluate the specific technology they are using. The drive to reduce the cost 

and rapidly response to market, makes the systems manufacturers and integrators keen to 

rapidly test, on case by case basis, most products and designs.  When a system manufacturer 

is faced by a decision to choose from several panels on performance basis, the requirements 

normally could go beyond the standard certification in order to optimise the design to a 

specific location. Hence, this paper will address such scenario using a case study from 

Kuwait, which is characterised by hot weather. Currently, many micro-scale and off-grid 

products are being sold for a wide range of applications in Middle East and Africa, and there 

is a demand to optimise their own design and manufacturing. 

Based on the above discussion, this paper combines the strengths of the two approaches, 

namely experimental and simulation, in a novel and new approach which utilises neural 

networks for self-learning. The lab testing utilises empirical work on small scale models 

using an architectural test-rig, named the Heliodon, which is a commonly used to evaluate the 

light angle based on the time of the day and the month of the year at any latitude on earth. 

Then the suggested methodology could be calibrated using real values of solar power levels 

and temperatures with support from neural networks to provide potentially more accurate 

prediction of performance.  

2. Methodology and Experimental Work 

2.1 Methodology 

In this paper, a manufacturer is faced with the problem of selecting one of two suitable 

micro-scale solar panels for a product: a polycrystalline and Amorphous photovoltaic panels 

as shown in Figure 1.  There is a need to evaluate which type could be more efficient in order 

to be integrated in hot countries and to produce a better power per m
2
 for their device given 

that both meets the minimum specifications needed and have comparable cost per square 

meter. 
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Figure 1: The solar panels used for the test, polycrystalline (left) and Amorphous (right). 

 

Figure 2: The Methodology implemented in this research work. 

Figure 2 presents the methodology implemented in this research work. The lab testing 

involves the use of a standard Heliodon test-rig, see Figure 3, which is normally used by 

architects to evaluate architectural models by simulating the year’s months at different times 

of the day at different latitudes. 
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Figure 3: The innovative approach uses the Heliodon test rig. 

The Heliodon apparatus Figure 3 contains around table and seven cylindrical bars represents 

the 12 months of the year. A spot light hocked onto each cylindrical bar that used as the sun 

during the day. All cylindrical bars are attached into a big circle with time marked as hourly 

basis from dawn to dusk for a particular month of the year. The Heliodon apparatus is 

designed originally for use in architectural projects, to evaluate on small scale the influence 

of the light and shadow on building design.  By rotating a main frame which the months-

solar-paths (rings) are connected to, the latitude of the location can be altered. The main 

frame is attached to a dial which shows the degrees of latitude for variety of locations on the 

globe. The selection of any month will change the angle of the solar radiation on the panel. 

Rotating the rings that are related to each month will simulate the time from sunrise to sunset. 

The temperature of the panels is controlled via electric heaters to study also the effect of the 

temperature on the efficiency.  

Stage 1 of the methodology, see Figure 2, involves a comparative study between the 

performance of the selected photovoltaic panels of the product, where the temperature and 

angles of the panels will change to comparably examine which one performs better under 

different temperature ranges and angles. The selected panel (Stage 2) will then be used in 

Stage 3 to evaluate the design features of the product. In this case, the performance of  three 

tilt angles will be assessed: vertical (90
o
),   horizontal angle (0

o
) and 50

o
 angle. The three 

angles are chosen  based on a design selection process to manufacture and deploy a product 

in Kuwait’s environment. Such features will be evaluated in relation to power output and 

sand accumulation in sandy or dusty environment. Stage 4 will assess the performance of the 

panel for the three selected tilt angles with fixed south facing azimuth angle.  Following the 

assessment of the yearly power output per hour and month (Stage 4), Stage 5 involves testing 

the panel in situ  to calibrate the lab data using deep learning neural networks (Stage 6). Stage 

7 involves validation of the data by comparing the results with other known data for 

validation.   
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2.2 Experimental work 

For this case study the micro-scale panels will be tested in Kuwait, Table 1 summarises the 

conducted tests with approximate location of 30° N; 47.7° E.  The experimental work is first 

performed to compare between Amorphous and Polycrystalline panels, see Figure 4. This is 

simply to investigate if the results of the system are comparable to the findings of any 

specifications and other researchers’ work. The first test is to compare the power of the two 

types with changing the tilt angle (slope).  The second general test is to check which type is 

less or more sensitive to temperature. The two tests are presented in Table 1 (tests 1 and 2).  

Based on the results, as will be explained in the following sections, the Amorphous type was 

selected for the rest of the work.  Following the selection of the Amorphous panel, the 

manufacturers had three options of design for tilt angle of 90 degrees, 0 degrees and 50 

degrees.  This was based on three design ideas that will be tested for future manufacturing 

and deployment. For this, a test-rig is used as shown in Figure 4 to evaluate the performance.  

 

 

Figure 4: The small scale model to the test the panels (a), the model painted matt black (b) 

and  the experimental work with the building model in situ (c). 

Kuwait parameters (latitude of 30 degrees) are used on the test rig and sand from a real sand 

storm in Kuwait is used to spray the three panels in the three configurations (pitched roof 50
o
, 

wall 90
o
 and floor 0

o
) to see the sand accumulation on the three angles. The sand storm test is 

presented in test 3 of Table 1. Following this, south facing (Azimuth =0) installation is tested 

to see the difference in performance in the lab test. 
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Table 1: The experimental work conducted. 

Test 

No 

Description  Aim 

1 Lab testing of tilt angle and power 

out of Amorphous and 

Polycrystalline panels. 

Testing the sensitivity of the power output to 

the tilt angle, hence identifying the most 

suitable of the two types. 

2 Lab testing of the effect of 

temperature on Amorphous and 

Polycrystalline panels. 

Testing the effect of temperature variation on 

the two most common types of photovoltaic 

panels. 

3 Lab testing of sand storm effects 

on three (tilt angles). 

Identifying the type of installation and the 

effect of the tilt angle on sand build-up.  

4 Lab testing of solar energy 

patterns at latitude of 30 degrees 

(Kuwait). 

Studying the solar patterns at Latitude of 30 

degrees (Kuwait), south facing. 

5 In situ real testing in Kuwait Solar 

energy patterns at latitude of 30 

degrees (Kuwait). 

Studying the performance in situ to calibrate 

the system. 

The three photovoltaic panels in Figure 4 for the three configurations are connected to a shunt 

resistor that produces the maximum power at room temperature and kept fixed during the 

experiments to simulate a fixed load on the system. A volt-meter was connected to the solar 

panels, and in this case the produced power can be calculated using: 

  
  

 
  ,         (1) 

where    is the power (W),    is the measured voltage (v) and   is the fixed resistance (Ω). 

Also temperature sensors (thermocouples) are used to measure the temperature at the back of 

the panels. Electric heaters are used to heat the panels to a specific uniform temperature. 

Based in which, the energy produced can be calculated by: 

     ,      (2) 

where   is the energy in kWh,    is the power in kW and t is time in hours (h). 

Hence from (1) and (2),     
  

    
  .        (3)  

Assuming the solar panel area is   in   , hence the energy per    (  ) will be: 

                                        
  

     
 ,     (4) 

where    is in kWh/  . 
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2.2 Deep Learning Neural Networks 

To predict the behaviour of the solar panels in situ, a supervised  Back-Propagation Neural 

Network is used for deep learning for this research work. This has the advantage of learning 

from experience and develop non-linear relationship between input variables. During 

supervised learning the input stimulus is applied which results in an output response, which is 

compared with the desired output  (i.e. the target response). If the actual response differs from 

the target response, the neural network generates an error value. The error E is then used to 

calculate the adjustment that should be made to the networks synaptic weights, so that the 

actual output matches the target output. For the selected neural network in Matlab (Amin et 

al., 2008) ,  Levenberg-Marquardt algorithm (Mathworks, 2019) is used as one of the most 

common algorithms is supervised neural networks.  

  
 

 
∑        

       (5) 

where    desired or target response for ith unit and    actually produced response for ith unit. 

 

3. Results 

3.1 Tilt Angle (slope) and Power/Voltage 

From Figure 5 it can be observed that the Amorphous panels are less sensitive to the tilt angle 

in comparison to the polycrystalline.  The power in general is less for the same light intensity 

and the power drops much faster for the polycrystalline, but more gradual (lower slope) for 

the Amorphous. From Figure 5, it can be concluded that the Amorphous panel is 

outperforming the polycrystalline and hence the Amorphous will be used for the further tests 

in this paper.  

 

Figure 5: The effect of tilt angle (slope) on the power output in mW  (a) and relative power (5) 

output for Amorphous and Polycrystalline panels (b). 
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3.2 Temperature and Power output 

Figure 6 presents the results of the effect of temperature on the Amorphous and 

Polycrystalline panels. It can be observed that the Amorphous solar panel (thin film) is 

less sensitive to temperature and is much better performing than the polycrystalline.  The 

Amorphous panel power has dropped 33% between 25 degree to 70 degrees, while the  

Polycrystalline has dropped 57% for the same range of temperatures.  In this case, the 

Amorphous panel outperforms the polycrystalline by about 30% of relative power output. 

The difference in the heating and cooling at the same temperature shows more diversion 

at the same temperature for the Polycrystalline panel in comparison to the Amorphous 

panel.  Figure 6-a presents the measured power and Figure 6-b presented the normalised 

power for each solar panel separately.  

 

Figure 6: The effect of temperature on Amorphous and Polycrystalline solar panels. 

 

 

 

 

3.3. Sand storm effects on three tilt (slope) angles 

Figure 7 presents the effect of the sand storm simulation in a lab environment on the 

power output for the pitched surface, wall and floor. The Amorphous panels have been 

selected as the benchmark to conduct the rest of the tests due to its comparative high 

performance. The accumulation of desert sand or dust was monitored during the system 

testing in Kuwait as well as using simulated lab test with  sand and dust brought specially 

from Kuwait and sprayed in an enclosed environment to see the accumulation phenomena.  

In relation to sand storm and the effect on the panels, as expected, the horizontal or floor 

panel (slope of 0°) has accumulated the maximum sand which reduces the energy 

production significantly (Figure 7-c). The vertical wall panel (slope of 90°) shows the 

least difference (Figure 7-b). It has been found that the floor is the most sensitive to a 

20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

Normalised power output for each panel type 

Amorphous

Polycrystalline

20 30 40 50 60 70 80 90 100

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Power output of panels vs temperature 

Amorphous

Polycrystalline

(a) (b)Temperature (oC) Temperature (oC)

Po
w

er
 o

u
tp

u
t 

(m
W

)

Po
w

er
 o

u
tp

u
t 

(%
)



Post-Print Version: Eisa Almeshaiei, Amin Al-Habaibeh, Bubaker Shakmak, Rapid evaluation of micro-scale photovoltaic solar energy systems using empirical methods combined with 
deep learning neural networks to support systems’ manufacturers, Journal of Cleaner Production, 2019, 118788, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2019.118788. 
(http://www.sciencedirect.com/science/article/pii/S0959652619336583) 

11 

stand storm. The pitched roof (slope = 50°) is also very sensitive except from one angle 

during June, which could be related to the reflective nature of the sand particles at 

specific angle. But in general, walls solar panels are much more stable for sandy weather 

(with no cleaning).  

 

Figure 7: The effect of sand storm on Amorphous solar panels output.  

3.4 Solar energy patterns at latitude of 30 degrees (Kuwait) –South facing 

Figure 8 presents the solar output from locations of latitude of 30 degrees (Kuwait). It has 
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wall and floor panels are more sensitive to the shadow during June, while the pitched roof 

produces the maximum output in June despite the fact it is not an optimised angle. According 

to NASA (2018), the optimised angle theoretically should be about 55° in winter but in 

summer should be much less (about 15°).  
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Figure 8: Solar output at latitude of 30 degrees (Kuwait) –south facing, where power is in 

mW (a) and normalised (b). 

Figure 9 presents a comparison between December (winter) and June (summer). The results 

for the pitched roof clearly show that in summer the power output has higher values, but in 

December the energy at 50 degrees seems to be better suited for winter and hence the power 

just before sunset seems to be higher than in summer. The wall provides better performance 

in winter than summer mainly because the sun is more facing the wall and the shadow is 

reduced. Figure 10 presents the total energy produced in a year using the model, the floor had 

the maximum output followed by the wall and the pitched roof respectively for the given 

angles.   Figure 10-a presents the potential annual energy output for the three slope angles.  It 

is clear that floor panels are much better than wall or angled panels. However, due to the sand 

test, the 50 degrees is selected due to its performance. Based on the Photovoltaic 

Geographical Information System of the European Commission (PVGIS, 2018), the average 

hourly data can be obtained for Kuwait. Comparing the south facing data for the three 

configurations with the data from the website, the correlation coefficient is documented in 

Figure10-b.  Note that the 50
o
 has the highest correlation coefficient when compared with the 

real data. Based on the above discussion, the manufacturers have selected the 50 degree 

configuration for the final product design as a compromise. 

 

Figure 9: Solar output at latitude  of 30 degrees (Kuwait) for months of December (winter) 

and June (summer) in mW. 
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Figure 10: Comparative results of  annual potential energy production (Kuwait scenario) (a) 

and the correlation coefficient between hourly data from The European Commission website 

(Photovoltaic Geographical Information System (PVGIS), European Commission, 2018) and 

the experimental lab work of Kuwait (latitude 30 degrees) (b). 
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3.5 Results of experimental work in Kuwait 

The same model has been installed in-situ  in Kuwait, see Figure 11, for testing in  July of 

2018.  Figure 11-a presents the model at location, Figure 11-b presents the power output in 

(mW) during one of the days in July as hourly average and Figure 11-c presents the hourly 

average temperature. Data acquisition systems are used to log the data every 10 minutes to 

capture the variation in performance in voltage and temperature.  Based on the average 

hourly output for one typical day in July, a neural network is implemented to predict the 

average hourly for every month for the whole year to calibrate the lab tests, as in Figure 8.  

The neural network, Figure 12, has used the July lab data for training while July in-situ data 

as a target for the neural networks. The neural networks had also the relevant variables, 

namely the hour and month of each input, the tilt angle (
o
) of the panel, environmental 

temperature, efficiency of the photovoltaic panel (%) at the associated temperature and 

0

0.5

1

1.5

2

2.5

3

Relative energy produced per year  (kWhr)

E
n
e
rg

y 
(k

W
.h

r)

(a) Roof (b) Wall (c) Floor

0.94 0.87 0.86
Correlation 
Coefficient

With real data

(a)

(b)



Post-Print Version: Eisa Almeshaiei, Amin Al-Habaibeh, Bubaker Shakmak, Rapid evaluation of micro-scale photovoltaic solar energy systems using empirical methods combined with 
deep learning neural networks to support systems’ manufacturers, Journal of Cleaner Production, 2019, 118788, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2019.118788. 
(http://www.sciencedirect.com/science/article/pii/S0959652619336583) 

14 

finally the solar radiation at location calculated per as hourly average from The European 

Commission website  (PVGIS, 2018). 

 

 

Figure 11: The experimental work that we performed in Kuwait (a) and the solar panel output 

and temperature (b). 

3.6 The Neural Networks Implementation   

For the supervised neural network used for deep learning, Levenberg-Marquardt algorithm  is 

implemented using Matlab with the ‘trainlm’ function. The neural network has 7 inputs as 

outlines in Figure 12. The neural network has a learning rate of 1 ×10 
-7 

, a momentum of 1 

×10 
10

 , a target error of      , transfer functions of sigmoid for the hidden layer with 10 

hidden nodes and linear function for the output layer, see Figure 12. 

 

(a) (b) 

5 10 15 20 24

0

0.1

0.2

0.3

0.4

0 5 10 15 20 24
30

40

50

60

70

Time (hour)

Hourly average power and temperature levels during one day on 30 July 2018

P
o

w
e

r 
(m

W
)

Te
m

p
e

ra
tu

re
 (

  C
)

o

(b)

(c)



Post-Print Version: Eisa Almeshaiei, Amin Al-Habaibeh, Bubaker Shakmak, Rapid evaluation of micro-scale photovoltaic solar energy systems using empirical methods combined with 
deep learning neural networks to support systems’ manufacturers, Journal of Cleaner Production, 2019, 118788, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2019.118788. 
(http://www.sciencedirect.com/science/article/pii/S0959652619336583) 

15 

 

Figure 12: The function fitting neural network implemented  in this research work and the 

input types to calibrate lab data to predict in-situ performance.   
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Figure 13: July data is used for training the neural networks and the lab-data and other 

associated data is used to test the neural networks. 
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Figure 14: The predicated output of the neural networks during the year as average daily 

performance. 

To further  validate the neural network output for the months that were not covered in-situ, 

the results of the neural network are comapred in terms of correlation with other emprical 

research (Bou-Rabee and Sulaiman, 2015) for the whole year and  simulation (Ali et al., 2017) 

in Kuwait, as shown in Figure 15. The results show correlation figures of 87.3% and  91.9% 

for the experimetal and simulation respectivly.  

 

Figure 15: Comparison of the correlation between the neural network output and the 

experimental results and simulation with correlation between 87.3% and 91.9%. 
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testing for temperature and lab testing for angle has been found to provide a quick assessment 

of the general behaviour of the panels used in relation to their sensitivity for the two 

conditions (i.e. angle and temperature).  

In general, in order to get reliable data performance of solar photovoltaic panels, in-situ 

testing will be needed to accurately quantify the actual output due to the wide variables that 

influence the performance. Many researchers have argued this and have attempted to 

experimentally examine the long term performance of photovoltaic panels. Research projects 

such as Bou-Rabee and Sulaiman (2015) and Zhao et al. (2019) have installed photovoltaic 

panels to actually measure the output over considerable times. This would require significant 

time in a specific location and huge investment. Others have combined experimental work 

with mathematical modelling of weather data to predict the short term performance (Li et al., 

2019).  

Researchers have also used neural networks to predict and assess the behaviour of 

photovoltaic solar panels. For example, Dhimish, et al., (2018) have compared between fuzzy 

logic and RBF ANN network for photovoltaic fault detection while Kaid, et al. (2018) have 

used adaptive neuro fuzzy inference approach to predict the failure diagnostic of in-situ 

photovoltaic cells. Deep learning has been implemented by Wu and Wang (2018) for real 

time energy management and control strategy of micro-grid. Simulation has also been 

performed (Ali et al., 2017) to evaluate the prformance. Some work has also been done on 

microhydro-photovoltaic-hybrid system, where for example Fenfack et al. (2009) have 

investigated the sizing a small hydro-photovoltaic-hybrid system for rural electrification in 

developing countries. Nevertheless, limited work has been done on predicting performance 

based on small scale photovoltaic panels for stand-alone systems.  

When examining the previous research, it is found to be difficult to utilise the technology for 

small-scale photovoltaic products due to the market drive and the need to select the most 

suitable components and specifications. In this paper the authors have combined several 

techniques for the rapid assessment of components’ suitability.  

Figure 2 has presented the methodology to select the photovoltaic technology for micro-scale 

based performance in relation to temperature and tilt angle (Figure 5 and Figure 6). Based on 

that, the Amorphous type was selected. The slope angle and sand and dust accumulation was 

also tested (Figure 7).  The yearly relative panel output for Kuwait is tested in Figures 8 and 9 

with overall performance based on tilt angle is presented in Figure 10. In-situ testing in 

Kuwait is presented in Figure 11. Supervised neural network is used to feed the lab data, the 

tilt angle, the month, environmental temperature, temperature efficiency of the solar panel 

and solar radiation at location as described in Figure 12.  

The analysis of the neural networks has presented a reasonable agreement with actual data 

measured which has indicated that the suggested approach can be reasonably implemented to 

predict long term performance from a short-term lab testing with the use of neural networks. 

When data is compared with simulated and real data of other research, as in Figure 15, and 

the results show close correlation. Based on the results of Figures 13 and 15, the suggested 

approach is found to be effective in predicting the general performance trends as well as the 

average values. 
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The results indicate a strong correlation between larger scale photovoltaic solar systems and 

micro-scale solar energy systems, which policy makers in Kuwait, and other countries in the 

Gulf region, could take into consideration when considering policy decisions in relation to 

distributed solar energy systems. However, further research is needed to perform cost-benefit 

analysis (CBA) between micro-scale systems and larger scale photovoltaic systems to 

evaluate its effectiveness to the end user and its effect on the grid.  

 

5. Conclusion 

Photovoltaic technology is becoming one the most attractive technologies for installation in 

different locations around the world. Micro-scale standalone off-the-grid systems are 

becoming very common due to ease of installation and reduced investment costs.  

Manufacturers find it to be difficult to select  the best option of micro-scale photovoltaic 

panels for their systems. This paper has outlined a novel approach that combines a rapid lab 

data testing with short-term in-situ assessment and deep learning neural networks to predict 

the hourly average power output for every month of the year. The results show that the power 

estimation error for the neural networks, when compared the estimated data with the real data, 

to be between 0.4% and 23%. The correlation with real data could reach between 87.3% and 

91.9%. Hence the suggested approach has shown considerable level of success to predict the 

long term behaviour of micro-scale off-the grid panels using a rapid approach for locations 

around the world. This paper has focused on Kuwait as a case study. However, the 

methodology is generic and can be used in other areas and regions. Although depending on 

the region, other factors such as humidity, dust and local shadow could play an important role 

in the results. The results also indicate that the proposed approach could provide relative 

accurate assessment of expected power output experimentally with possibility to scaling up 

the technology based on the real situation in hands. The advantage of the proposed system is 

that a comparative energy output and performance could be obtained in a short period of time. 

A small scale prototypes of the urban environment could be built and hence the optimum 

location for the panels could be selected. The future work will focus on testing the results in 

different locations around the world to see the effect of the environmental conditions on the 

performance of the neural networks.  
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