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Abstract 

Buildings consume high energy for space and water heating, and thereby contribute largely to 

greenhouse gas emission. Improving thermal insulation of building’s walls can significantly 

reduce energy consumption for space heating as well as decrease greenhouse gas emission. 

However, prior to the retrofitting of a building it is required to evaluate the current level of 

wall insulation, as over insulation will increase the cost of insulation and decrease the 

expected energy savings; and hence causing a lengthy payback period. Infrared thermography 

is a very effective tool in evaluating building’s thermal performance when a reasonable 

temperature gradient exists between indoor and outdoor environment. This paper presents a 

novel design which involves using low-resolution infrared camera with single point heating 

system from which the thermal conductivity and thermal insulation of building’s wall can be 

categorised and estimated. An experimental study has been conducted on different sample 

wall sections and Artificial Neural Network is used to analyse the infrared images of walls for 

categorisation based on the level of wall insulation. The result shows 88% overall accuracy in 

categorizing the wall types based on their level of insulation from a set of infrared images.  

Keywords: Insulation; U-value; Artificial intelligence; Neural Network; Infrared 

Thermography.  

 

1. Introduction 

Worldwide energy demand is increasing with the economic and population growth (OECD, 

2011); however, the energy production is still largely  dependent on fossil fuel (BP, 2018). 

Burning of fossil fuel releases a massive amount of greenhouse gases, which results in an 

increased risk of climate change. The UK government initially set the target of limiting 

greenhouse gas emission at 20% of the 1990’s level by 2050 to support the pledge of The 

Paris Agreement (Committee on Climate Change, 2016) and now the target is revised net zero 

greenhouse gas emission by 2050 (Department for Business Energy & Industrial Strategy, 

2019). Domestic sector is the second highest energy-consuming sector in the UK after 

transport sector; and space and water heating is responsible for 80% of the energy 

consumption in this sector (BEIS, 2018). Therefore, it is necessary to develop strategies for 

reducing the energy consumption due to space heating in residential buildings. Retrofitting of 

an existing building with improved wall insulation can reduce heat loss through the building’s 

walls and consequently energy consumption for space heating.  However, before the 
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retrofitting, it is necessary to identify the current level of insulation, presented by  the U-value 

of the building’s wall. 

 

 The designed U-value of a building’s wall is calculated as the reciprocal of the summation of 

thermal resistances of different layers of the wall (Gaspar, Casals and Gangolells, 2016). 

   
 

   
  
  

 
  
  

         

                                      (1) 

Here,   is the U-value of the wall;    is the thermal conductivity of the materials in different 

layers of the wall;   is the thickness of the wall layers;    and    are the thermal resistance of 

air at internal surface and external surface respectively. From the theoretical values of the 

thermal conductivities of wall layers and their thickness, the designed U-value of a building’s 

wall can be estimated. However, over  long periods of time,  the material properties of wall 

layers degrade and it could lead to a difference between the designed and in-situ U-values  as 

high as 153% due to the inaccurate knowledge of the wall stratigraphy (Evangelisti et al., 

2015). Therefore, in-situ U-value estimation is required, particularly, for the old buildings, as 

the other method tends to overestimate the U-value (Lucchi, 2017). It can be done by 

conducting laboratory test on the samples collected by drilling the walls. However, it results 

in making holes in the wall. There are several devices available to measure U-values of  test 

specimen in laboratory; however, these often differ as high as 30% from the in-situ U-value 

(Doran, 2001). There are two non-invasive methods currently exist for in-situ U-value 

measurement namely Heat Flux Meter (HFM) method and Infrared Thermovision Technique 

(ITT). The net heat flux through a building’s wall is proportional to its U-value and the 

temperature gradient between indoor and outdoor environment; hence, the U-value can be 

determined by measuring the heat flux, indoor temperature and outdoor temperature using a 

heat flux meter and temperature sensors respectively (Gaspar, Casals and Gangolells, 2016). 

A heat flux meter contains a sensor body with known thickness and thermal conductivity, and 

by measuring the temperature difference between two sides of that sensor body the heat flux 

is determine (Campbell Scientific, 2012). To obtain a reasonable accuracy in this method 

more than 10
o
C difference between indoor and outdoor temperature is required, as at low 

temperature difference the heat flux through the wall falls below the sensible range of heat 

flux meter (Ficco et al., 2015). Moreover, it requires at least 72 consecutive hours of data 

acquisition  (Nardi, Sfarra and Ambrosini, 2014). And it is sometimes difficult to place the 
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sensors at a suitable place in an occupied house, which results in inaccurate estimation of U-

value (Li et al., 2015). For example,  Baker (2008) used HFM methods to measure U-value of 

traditional Scottish buildings; however, their work was limited to painted walls only as it may 

damage the wallpaper. Heat flux meter attached to a wall actually measures the heat flux 

through itself from room environment than through the wall; and hence it would be better to 

place the heat flux meter inside the wall or plastered on the wall surface (Desogus, Mura and 

Ricciu, 2011). However, this process may damage the wall. In addition, statistical inference 

using Bayesian analyses was introduce by some researcher (Biddulph et al., 2014 and Gori et 

al., 2017) to enhance the performance of heat flux; however, it still requires to satisfy the 

condition of maintaining 10
o
C thermal gradient and having 72 hours of data acquisition. ITT 

method estimates the U-value as a ratio of total thermal power and the temperature difference 

between indoor and outdoor environment, where the thermal power is determined by 

summing up the heat dissipated from external surface of a building’s wall by means of 

convection and radiation (Albatici and Tonelli, 2010). The indoor and outdoor temperature 

are measured from an infrared image, which is captured with a partially open window in the 

wall for a very short period during the time of image capture. ITT is faster method than HFM; 

however, it requires the measurement to be performed at night, preferably in overcast 

condition to avoid effect of solar radiation, and it also requires more than 10
o
C temperature 

difference between indoor and outdoor environment (Albatici, Tonelli and Chiogna, 2015).  

Significant efforts have been made to compare U-value measured using ITT method with that 

of HFM method. For example, Fokaides and Kalogirou (2011) found U-value estimated using 

ITT method is very close to that of HFM method. Nardi, Sfarra and Ambrosini (2014) found 

ITT methods has as low as 2% difference with U-value measured in HFM method if the 

experiment is done on overcast condition. However, for sunny days the difference goes as 

high as 37%. In case of the experimentation using guarded hot box in laboratory, the ITT 

method shows 3% to 7% deviation from designed U-value whereas, for HFM method it is 

around 10% (Nardi et al., 2015). As the material properties of the test specimen used in 

laboratory experiments is not subject to degradation, the designed U-value is the benchmark 

in this case. Therefore, it can be stated that ITT method has better accuracy over HFM 

method. The reliable estimation of in-situ U-value is difficult in real buildings because of 

many constraints such as, installing instruments, extended period of monitoring time, 

dependency on season, dependency on weather condition and presence of sunlight. Infrared 

thermography is a robust technology used in many cases to evaluate the thermal performance 

of buildings. It has been used for thermal bridge detection (Kylili et al., 2014), (Asdrubali, 
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Baldinelli and Bianchi, 2012), heat loss estimation through doors (Al-Habaibeh, Medjdoub 

and Pidduck, 2012), detection of energy related defects in buildings (Fox et al., 2014), 

evaluating energy performance of buildings (Al-Habaibeh and Siena, 2012) and so on. 

Furthermore, thermography has the versatility in measuring large building area as well as 

capability to point out imprecation in building’s wall (Danielski and Fröling, 2015). Artificial 

intelligence has been successfully used for thermal characterisation of wall (Sassine, 2016) 

and detection of thermal diffusivity of insulating materials (Chudzik, 2012).  Therefore, 

combining artificial intelligence with infrared thermography could overcome the limitations 

of estimating in-situ U-value for building’s wall. This paper proposes a novel approach of 

categorisation of buildings’ wall based on the U-value by combining thermal images of walls 

and artificial intelligence with the application of point heat. 

 

2. Methodology 

An uninsulated wall has a relatively high U-value and most of the applied heat will pass 

through it. Conversely, an insulated wall has a low U-value and most of the applied heat will 

disperse over the internal surface.  The difference in the thermal response, while applying a 

point heat in the internal side of a test wall for a certain period, can be observed by 

monitoring the wall using a low-resolution infrared camera.  

  

 

Figure 1: (a) schematic diagram of experimental set up, (b) the architecture of a typical ANN 

The schematic diagram of the experimental set up is shown in Figure 1(a). The thermal profile 

generated from the infrared images is used to train an Artificial Neural Network (ANN) for 

the categorisation of wall type. A typical ANN architecture is shown in Figure 1(b). ANN 

consists of neurons organised in layers which mimic the thought process of human brain. The 
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core of a neuron in ANN contains a transfer function preceded by weights and bias. ANN can 

be trained to learn the features in a data set and based on the learning it can predict the output 

of a similar unknown input. The training is an iterative process and during the training the 

weights and biases in the neurons are updated based on a cost function. The objective of the 

cost function is to minimise the error gradient. In this way, the ANN maps the relationship 

between input and output data set and learn the feature in the data. The automated learning 

process of neurons is the main advantage of ANN over statistical methods to explain the 

complex and nonlinear relationship. However, it leads to the risk of overfitting as well (Tu, 

1996). This is because an ANN arbitrarily selects the initial weights and biases in neurons and 

that leads to producing different output every time. The simple way to overcome this problem 

is to train the network several times and the mean value of the ANN performance give a 

generalised solution (Beale, Hagan and Demuth, 2017). The experiment is conducted twice on 

each wall type so that the data obtained from the first run of the experiment could be used for 

training the ANN and the data obtained from the second run of experiment can be used to test 

the network performance. The ANN is trained 25 times and the average performance is 

considered at the network’s performance.  

 

3. Experimental work 

The experimental work was conducted on four different wall samples made of brick, brick 

with external insulation, concrete block and concrete block with external insulation. 

EcoTherm board with a thickness of 100 mm was chosen as the external insulation for the 

tested walls. A plastic box, fitted with a glow plug at the front side and IRISYS 1002 infrared 

camera at the back side, was used at the internal side of the tested wall. The glow plug acts as 

a point heat source and the infrared camera was set to capture 16x16 pixel infrared images at 

five seconds interval for about an hour. The glow plug’s tip temperature as well as the 

ambient temperature were recorded with a k-type thermocouple and NI USB-TC01 data 

acquisition system at one second interval.  
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Figure 2: (a) and (b) experimental work on a sample wall. 

Figure 2(a) and Figure 2(b) show the experimental work on one of the samples. The sample 

walls are represented as B1, B2, B3 and B4 for the first run of experiment and C1, C2, C3 and 

C4 for the second run of experiment. The schematic view of the sample walls are shown in 

Figures 3(a) to Figure 3(d) and their properties are presented in Table 1.  The U-value of the 

sample walls are calculated using equation (1) where the values of    and    is considered as 

0.13 and 0.04 respectively (Anderson, 2006). The thermal conductivity of the brick wall is 

taken as 0.27 W/mK (Antoniadis et al., 2012), the thermal conductivity of the concrete block 

is considered as 1.5 W/mK (ISO 10456, 2007) and the thermal conductivity of the Ecotherm 

is assumed as 0.022 W/mK (EcoTherm insulation, no date). 

 

 

Figure 3: (a) schematic view of samples B1and C1, (b) B2 and C2, (c) B3 and C3 and (d) B4 and C4. 
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Table 1: Properties of wall sample used in the experiments.  

Sample 

No 

Material  Thickness 

(mm) 

Thermal 

Conductivity 

(W/mK) 

U-value 

(W/m
2
K) 

B1 & C1 Brick 100 0.27 1.86 

B2 & C2 Brick insulated externally with Ecotherm 100+100 

=200 

0.27 & 0.22 1.01 

B3 & C3 Concrete block  95 1.5 4.29 

B4 & C4 Concrete block insulated externally with 

Ecotherm 

95+100 = 

195 

1.5 & 0.22 1.45 

 

4. Results and Discussion 

Samples B4 and C4 have lower U-values than sample B3; therefore, it is expected that the 

temperature profile of B4 and C4 will be higher than that of B3. The temperature profile of 

C4 is found clearly higher than that of B3 in Figure 4(a). However, the temperature profile of 

B4 is marginally higher than that of B3 in figure 4(b), because the ambient temperature was 

higher during the time of conducting experiment on B3 than on B4.  

 

Figure 4: Temperature profiles of (a) sample B3 and C4, (b) B3 and B4 

It is also found that the rate of temperature increase with time is higher in samples B4 and C4. 

Therefore, it is assumed that ambient temperature has a significant influence on the thermal 

profile and derivative of thermal profile is a key parameter to identify the characteristics of 

the thermal profile. Considering these assumptions, three modified profiles namely T
a
, T

b
 and 

T
ab

 are developed, which are presented in equations (2), (3) and (4) 
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                                                  (4) 

Here           is the original temperature value at pixel (i,j,k) of the infrared image,         
  is 

the modified temperature value of pixel (i,j,k) of the infrared image,         
  is the cumulative 

temperature difference at pixel (i,j,k),         
   is the cumulative temperature difference of 

profile T
a
 and   

    is the external temperature at the time of capture of the corresponding 

infrared image.  

 

Figure 5: Profiles of T
a
(a) sample B3 and C4, (b) B3 and B4 

 

Figure 6: Profiles of T
b
(a) sample B3 and C4, (b) B3 and B4 

Figure 5(a) shows the profiles T
a
 of sample B3 and C4 which shows the expected behaviour 

of the insulated wall’s profile which is clearly higher than that of the uninsulated wall. Figure 
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5(b) shows the same profiles of samples B3 and B4, and it presents a better discrepancy 

between insulated and uninsulated profiles than that of profile T in Figure 4(b). Figure 6(a) 

shows the profiles T
b
 of sample B3 and C4 which shows the expected behaviour of having 

insulated wall’s profile higher than that of uninsulated wall; however, it is not as clearly 

disguisable as in Figure 4(a) and 5(a).  

 

Figure 7: Profiles of T
ab

(a) sample B3 and C4, (b) B3 and B4 

Figure 6(b) shows the same profiles of sample B3 and B4, and it shows clearer discrepancy 

between insulated and uninsulated profiles than that of profile T and T
a
 in Figure 4(b) and 

5(b) respectively. Figure 7(a) shows the profile T
ab

 of samples B3 and C4, which do not 

represent any clear distinction. Figure 7(b) also does not represent clear distinction between 

T
ab 

profiles of sample B3 and B4. A visual comparison of different profiles of the uninsulated 

wall sample (B3) with two other insulated wall samples (C4 and B4) do not provide an unique 

solution regarding which profile will show most distinguishable characteristics between 

insulated and uninsulated walls. Therefore, these visual comparisons of different profiles are 

extended to 56 randomly chosen points from the infrared images of above eight wall samples. 

Furthermore, if the temperature profile of the insulated wall is expected to show higher 

variability than that of the uninsulated wall, the standard deviation of the temperature profile 

of the insulated wall must be higher than that of the uninsulated wall. Therefore, the standard 

deviation of wall profiles may convey significant information about the characteristics of the 

wall type. Hence, the standard deviations of all those profiles of the previously mentioned 56 
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points are considered for analysis.  The results of the analysis of the standard deviations are 

listed in Table 2 which includes the percentage of cases where the temperature profile of an 

insulated wall is higher than that of an uninsulated wall. 

Table 2: Result of visualisation and standard deviation analysis. 

 Profile Standard deviation of profile 

T 57% 86% 

T
a
 65% 75% 

T
b
 71% 86% 

T
ab

 47% 80% 

 

It has been found form Table 2 that the standard deviations of profile T and T
b 

have the 

highest cases where the profile of an insulated wall is higher than that of an uninsulated wall 

of about 86%. The reason for this is probably can be explained that both profiles T and T
b
 

have similar dispersion, as the standard deviation represents the dispersion of data. 
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Figure 8: Percentage error of categorisation 

The standard deviation of profile T
ab

 has the second highest cases of having higher profile for 

insulated wall followed by profile T
b
. Based on this, the standard deviation of T

b
 and standard 

deviation of T
ab

 are selected for ANN analysis. A feed-forward neural network with softmax 

layer was programmed using of MATLAB to categorise the wall types with profile T
b
, the 

standard deviation of profile T
b
 and the standard deviation of profile T

ab
 as the input 

parameters and wall types as the output parameters.   

 Figure 8 (a), (b) and (c) represent the percentage error in categorising the samples C1 C2, C3 
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other profiles. The probable reason for this is that the standard deviation represents the 

dispersion in the thermal profile more significantly than the profile itself. Profile T
a
 was 

developed by deducting the ambient temperature from the original temperature profile, which 

has reduced the variation that characterises the temperature profile; and hence the percentage 

error in the categorisation.  It has been also found from Figure 8(b) that ANN with 20 neurons 

in the hidden layer gives the lowest total error of 12% and the error in detecting C1, C2, C3 

and C4 are found to be 31%, 14%, 2% and 0.33% respectively. 

   

 

5. Conclusion 

Retrofitting of residential buildings with improved wall insulation could significantly reduce 

the energy consumption for space heating. However, in-situ measurement of U-value of walls 

should be considered before retrofitting as over insulation leads to longer payback perioids 

with more cost and less energy savings. Also this may lead to overheating of building which 

may forfeit the benefits of retrofitting. The existing methods of U-value estimation have some 

limitations. Therefore, a novel approach is proposed to categorise the insulation of the walls 

of buildings based on the U-value by combining thermal image and ANN with the application 

of point heat source. The inclusion of point heat source in the design ensures the presence of 

adequate thermal gradient and makes it robust enough to use in all seasons. The results of the 

presented experiments prove the suitability of feed forward neural network in categorisation 

of wall insulation and analysing the thermal profiles developed from the thermal images. An 

ANN with 20 neurons in the hidden layer achieved 88% overall classification accuracy with a 

minimum accuracy of 69% for any particular wall type.  
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