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The milk oligosaccharides were studied for two species of the Carnivora: the 

American black bear (Ursus americanus, family Ursidae, Caniformia), and 

the cheetah, (Acinonyx jubatus, family Felidae, Feliformia). Lactose was the 

most dominant saccharide in cheetah milk, while this was a minor 

saccharide and milk oligosaccharides predominated over lactose in American 

black bear milk. The structures of 8 neutral saccharides from American 

black bear milk were found to be Gal(β1-4)Glc (lactose), 

Fuc(α1-2)Gal(β1-4)Glc (2’-fucosyllactose), Gal(α1-3)Gal(β1-4)Glc 

(isoglobotriose), Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc (B-tetrasaccharide), 

Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3)]Glc (B-pentasaccharide), 

Fuc(α1-2)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc (difucosyl 

lacto-N-neotetraose), 



Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc (monogalactosyl 

monofucosyl lacto-N-neotetraose) and 

Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc. Structures of 5 acidic 

saccharides were also identified in black bear milk: 

Neu5Ac(α2-3)Gal(β1-4)Glc (3’-sialyllactose), 

Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3)[Fuc(α1-2)Gal(β1-4)GlcNAc(β1-6)]Gal(β1

-4)Glc (monosialyl monofucosyl lacto-N-neohexaose), 

Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3)[Gal(α1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1

-4)Glc (monosialyl monogalactosyl lacto-N-neohexaose), 

Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3){Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β

1-6)}Gal(β1-4)Glc (monosialyl monogalactosyl monofucosyl 

lacto-N-neohexaose), and 

Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3){Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3

)]GlcNAc(β1-6)}Gal(β1-4)Glc (monosialyl monogalactosyl difucosyl 

lacto-N-neohexaose).  A notable feature of some of these milk 

oligosaccharides is the presence of B-antigen (Gal(α1-3)[Fuc(α1-2)]Gal), 

α-Gal epitope (Gal(α1-3)Gal(β1-4)Glc(NAc)) and Lewis x  

(Gal(β1-4)[Fuc(α1-3)]GlcNAc) structures within oligosaccharides. By 

comparison to American black bear milk, cheetah milk had a much smaller 

array of oligosaccharides. Two cheetah milks contained 

Gal(α1-3)Gal(β1-4)Glc (isoglobotriose), while another cheetah milk did not, 

but contained Gal(β1-6)Gal(β1-4)Glc (6’-galactosyllactose) and 

Gal(β1-3)Gal(β1-4)Glc (3’-galactosyllactose). Two cheetah milks contained 

Gal(β1-4)GlcNAc(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc 

(lacto-N-neohexaose), and one cheetah milk contained 

Gal(β1-4)Glc-3’-O-sulfate. Neu5Ac(α2-8)Neu5Ac(α2-3)Gal(β1-4)Glc 

(disialyllactose) was the only sialyl oligosaccharide identified in cheetah milk. 

The heterogeneity of milk oligosaccharides was found between both species 

with respect of the presence/absence of B-antigen and Lewis x. The variety of 

milk oligosaccharides was much greater in the American black bear than in 

the cheetah. The ratio of milk oligosaccharides-to-lactose was lower in 

cheetah (1:1-1:2) than American black bear (21:1) which is likely a reflection 

of the requirement for a dietary supply of N-acetyl neuraminic acid (sialic 



acid), in altricial ursids compared to more precocial felids, given the role of 

these oligosaccharides in the synthesis of brain gangliosides and the 

polysialic chains on neural cell adhesion. 
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Introduction 

 

Lactose (Gal(β1-4)Glc) has long been considered the predominant saccharide 

in the milks of eutherian mammals [1], and its synthesis is believed to 

regulate milk volume via osmotic effects in the secretory vesicles of 

lactocytes [2]. However, in the milks of several species of the order Carnivora, 

oligosaccharides predominate over lactose [3]. For example, the milks or 

colostra of members of the Caniformia, such as bears [4-8], raccoon [9], seals 

[10-13], white-nosed coati [14], striped skunk [15] and mink [16] contain 

substantial amounts of oligosaccharides in addition to a lesser amount of 

lactose, while lactose predominates over oligosaccharides in milks or colostra 

of domestic dogs [17, 18], spotted hyena [19], African lion [20] and clouded 

leopard [20]. We, therefore, hypothesized that the milks of Caniformia other 

than the domestic dog contain more oligosaccharides than lactose, while the 

milks of Felidae contain more lactose than oligosaccharides, even though the 

physiological significance is unknown [3, 9]. The domestic dog is an exception 

to this, as its milk saccharide ratio more closely aligns with that of 

Feliformia than Caniformia [17, 18], but this may be associated with the 

domestication process and/or reliance on artificial and human-prescribed 

diets. To examine further this hypothesis we examined the milks of two 

additional carnivores, a member of the Caniformia (American black bear) 

and of the Felidae (cheetah) in this study.  

     The milk oligosaccharides have been studied in several bear species 

including, Ezo brown bear [4], Japanese black bear [5, 8], polar bear [6, 7] 

and giant panda [21], while those of American black bear have not been 

characterized. However, American black bear milk has been hypothesized to 



be rich in oligosaccharides based on its greater colorimetric response to 

non-specific sugar assays such as phenol-sulfuric and picric acid assays than 

enzymatic lactose methods [22, 23]. A significant feature of bear milk 

oligosaccharides is the presence of A (GalNAc(α1-3)[Fuc(α1-2)]Gal), B 

(Gal(α1-3)[Fuc(α1-2)]Gal) or H (Fuc(α1-2)Gal) antigens, depending on the 

bear species, and α-Gal epitope (Gal(α1-3)Gal(β1-4)GlcNAc) in the non 

reducing end, as well as Lewis x (Gal(β1-4)[Fuc(α1-3)]GlcNAc) [4-8]. In the 

milks of Feliformia, the milks of African lion and clouded leopard contain 

A-tetrasaccharide (GalNAc(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc) [20], while spotted 

hyena has B-tetrasaccharide (Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc) [19]. The 

milks of spotted hyena and clouded leopard contain isoglobotriose 

(Gal(α1-3)Gal(β1-4)Glc) [19, 20]. The acidic milk oligosaccharides of the 

Caniformia, for those species which have been studied, contain only Neu5Ac 

sialic acid, whereas milk oligosaccharides of two felids (African lion and 

clouded leopard) contained only Neu5Gc [3, 20]. Most of the milk 

oligosaccharides of Caniformia species contain lactose, lacto-N-neotetraose 

(Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc) and lacto-N-neohexaose 

(Gal(β1-4)GlcNAc(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc as core units, 

while in Felidae milk oligosaccharides contain only lactose as a core unit [3, 

9, 19, 20]. The diversity of milk oligosaccharides is usually greater among 

Caniformia than in Feliformia. 

     In this study, we observed similar differences between the American 

black bear, a caniform, and the cheetah, a feliform, as well as the differences 

among species of each taxonomic group. We also discuss the possibility that 

the observed differences in the relative proportion of oligosaccharides to 

lactose are related to developmental state at birth among carnivorans. 

 

Materials and Methods 

Milk samples 

American black bear milk 

 

Milk (colostrum) samples were obtained from wild American black bears in 

the Poconos Mountains of Pennsylvania in January 1984, as part of a 



long-term study of black bear biology by the Pennsylvania Game 

Commission [24], Milk were collected 0-2 days postpartum as described by 

Oftedal et al. [22]. Milk was manually expressed from the lactating bears 

after they were chemically immobilized with about 440 mg ketamine 

hydrochloride and 220 mg xylazine hydrochloride per 100 kg body weight; 

they were also injected with oxytocin (30-40 IU) and their nipples cleaned 

with distilled water. Milk was expressed from one or more nipples, but 

samples from individual nipples were kept separate. Individual samples 

were frozen in air-tight vials at -20℃ and remained frozen until thawed for 

pooling and extraction (see below). Due to the small volume of colostrum 

obtained from individual nipples, we pooled five-colostrum samples 

representing one nipple sample per bear. The ID numbers of these bears, 

assigned by the Pensylvania Game Commision, were 3411, 4018, 5406, 5463 

and 6495. 

     The carbohydrate fraction was extracted at the Smithsonian National 

Zoological Park, Washington DC and brought to Obihiro University of 

Agriculture and Veterinary Medicine. 

 

     The carbohydrate fraction was extracted at the Smithsonian zoological 

institution and brought to Obihiro University of Agriculture and Veterinary 

Medicine. 

 

Milk samples 

Cheetah milk (colostrum) 

 

     The milks were opportunistically collected from three captive cheetahs 

of wild origin, housed at the Breeding Centre for Endangered Arabian 

Wildlife Centre (United Arab Emirates). The cheetah required 

immobilisation for medical intervention. Anaesthesia was induced using a 

combination of 0.05mg/kg of medetomidine and 2-3mg/kg of ketamine, they 

were also injected with 20-25IU of oxytocin during the procedure. The milk 

was manually expressed from each cleaned nipple and pooled into one vial. 

In cheetah 1 CM(a): The milk (10 mL) was collected at one day post partum 



in March 2006 for cheetah 2 CM(b): milk (21 mL) was collected at two days 

post partum in November 2006, and for the third cheetah CM(c): milk (10 

mL) was collected at one day post partum in 2009. The samples were stored 

at -20 ℃  and remained frozen until thawing for extraction of the 

carbohydrate fractions. 

 

Materials 

 

     Fuc(α1-2)Gal(β1-4)Glc (2’-fucosyllactose), Neu5Ac(α2-3)Gal(β1-4)Glc 

(3’-SL) and Neu5Ac(α2-8)Neu5Ac(α2-3)Gal(β1-4)Glc (disialyllactose) were 

purchased from Sigma (St. Louis, MO, USA). 

Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc (Galili pentasaccharide) and 

Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3)[Gal(α1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1

-4)Glc (monosialyl monogalactosyl lacto-N-neohexaose) were separated from 

both mink and striped skunk milk [15, 16]. B-Tetrasaccharide, 

Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc (monogalactosyl 

monofucosyl lacto-N-neotetraose), 

Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3){Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β

1-6)}Gal(β1-4)Glc (monosialyl monogalactosyl monofucosyl 

lacto-N-neohexaose) and 

Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3){Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3

)]GlcNAc(β1-6)}Gal(β1-4)Glc (monosialyl monogalactosyl difucosyl 

lacto-N-neohexaose) were purified from Japanese black bear milk [5, 8]. 

Fuc(α1-2)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc (difucosyl 

lacto-N-neotetraose) was purified from Ezo brown bear milk [4]. 

Gal(α1-3)Gal(β1-4)Glc (isoglobotriose), Gal(β1-3)Gal(β1-4)Glc 

(3’-galactosyllactose) and Gal(β1-6)Gal(β1-4)Glc (6’-galactosyllactose) were 

separated from caprine colostrum [25]. Lacto-N-neotetraose, 

lacto-N-neohexaose and Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3)Glc 

(B-pentasaccharide) were purchased from Seikagaku Co. (Tokyo, Japan). 

Gal(β1-4)Glc-3’-O-SO3 was separated from dog milk [17]. 

 

Isolation of neutral milk oligosaccharides from American black bear milk 



 

The milk samples were thawed, pooled and extracted with four volumes of 

chloroform/methanol (2:1, v/v). The emulsion was centrifuged at 4℃ and 

4,000 Xg for 30 min, and the lower chloroform layer and denatured proteins 

were discarded. The methanol was removed from the upper layer by rotary 

evaporation, and the lyophilized residue was designated as the carbohydrate 

fraction. 

     After the carbohydrate fraction was divided into three portions, one 

portion was dissolved in 2 mL of water and the solution passed through a 

BioGel P-2 column (＜45 μm, 2.5 × 100 cm, Bio-Rad Laboratories, Hercules, 

CA) that had been calibrated with 2 mg each of galactose (monosaccharide), 

lactose (disaccharide), and raffinose (trisaccharide). The gel was washed 

with 0.1 HCl and 0.1 M NaOH before use. Elution was done with distilled 

water at a flow rate of 15 mL/h, and fractions of 5 mL were collected. 

Aliquots (0.5 mL) of each fraction were analyzed for hexose with 

phenol-H2SO4 [26] and for sialic acid with periodate-resorcinol [27]. Peak 

fractions were pooled as shown in Fig. 1 and freeze-dried. The saccharides in 

the peak fraction, designated as BB-1 to BB-8 (see Fig. 1), were checked by 

thin layer chromatography using acetone/2-propanol/0.1 M lactic acid (2:2:1, 

v/v/v) as a developing solvent. Detection of the spots was done by spraying 

with 5% H2SO4 in ethanol and heating. Gel filtration was repeated three 

times with the other two portions of the carbohydrate fraction. 

     The components in BB-4 to BB-8 were separated by high-performance 

liquid chromatography (HPLC). The Hitachi 7,000 series HPLC system 

(Tokyo) consisted of an autosampler L-7,200, a column oven L-7,300, a pump 

L-7,100, and an evaporation light scattering detector SEDEX-75 with a 

system controller D-7,100. The HPLC stationary phase was a 7 μm 

Hypercarb column (100 × 4.6 mm i.d.; Thermo Fisher Scientific), and the 

mobile phase comprised acetonitrile in distilled water run at 40℃. The LC 

gradient was delivered at 1.0 mL/min and consisted of an initial linear 

increase from 5% to 30% acetonitrile over 80 min. The chromatograms are 

shown in Fig. 2. The components in BB-4-1 to BB-4-6 (from BB-4, see Fig. 2), 

BB-5-1 and BB-5-4 (from BB-5), BB-6-1 to BB-6-3 (from BB-6), BB-7-1 to 



BB-7-3 (from BB-7), and BB-8-1 to BB-8-3 (from BB-8) were each collected, 

concentrated by rotary evaporation, and subjected to 1H-NMR spectroscopy 

and MALDI-TOF MS. When NMR produces an identical “fingerprint” 

pattern to a known oligosaccharide with known NMR results, then it is not 

essential to follow up with mass spectroscopy [5, 8]. 

 

Isolation of acidic oligosaccharides from American black bear milk 

 

The components in peak BB-2 of the gel chromatogram (see Fig. 1) which 

reacted positively with both periodate-resorcinol (630 nm) and phenol-H2SO4 

(490 nm) were dissolved in 2 mL of 50 mmol/L Tris 

hydroxyaminomethane-HCl buffer solution (pH 8.7) and subjected to anion 

exchange chromatography on a DEAE-Sephadex A-50 column (2.0 × 35 cm; 

GE Healthcare, Uppsala, Sweden), which was equilibrated and eluted with 

the same solution. Elution was done at a flow rate of 15 mL/h and fractions 

were analyzed for hexose using the phenol-H2SO4 method [26]. Figure 3 

shows that the ion exchange chromatography separated the BB-2 fraction 

into three peaks. The components in the second peak, designated as BB-2-2, 

were pooled, lyophilized, dissolved in 2 mL of water, and passed through a 

column (2.0 × 35 am) of BioGel P-2 to remove salts as described above. 

     The components in BB-2-2 were then subjected to HPLC on a TSK gel 

Amide-80 column (4.6 × 250 mm, pore size 80 Å, particle size 5 μm; Tosoh, 

Japan) (chromatogram in Fig. 4). The HPLC was performed by using mobile 

phase 80% and 50% (vol/vol) acetonitrile (CH3CN) in 15 mmol/L potassium 

phosphate buffer (pH 5.2) denoted as buffer A and B, respectively. Elution 

was done using linear gradient from buffer A to buffer B with the following 

condition: buffer A = 100%, B = 0% at 0 min; A = 50%, B = 50% at 15 min; and 

A = 0%, B = 100% at 80 min at 60℃ and flow rate of 1 mL/min. The eluates 

were monitored by measuring the absorbance at 195 nm. The peaks 

designated as BB-2-2-1 to BB-2-2-17 (Fig. 4) were each pooled, concentrated 

by rotary evaporation, and subjected to 1H-NMR spectroscopy and 

MALDI-TOF MS to determine their structures. 

 



Isolation of milk oligosaccharides and lactose from cheetah milk 

 

     The milk samples were mixed with four volumes of 

chloroform/methanol (2:1, v/v) and stirred. The solution was then centrifuged 

at 3,500 rpm for 30 min and the upper layer collected. The methanol was 

evaporated off with a rotary evaporator and the residue dissolved with a 

small amount of water for transport to the laboratory for analysis. 

     The carbohydrate fractions were shipped to Obihiro University of 

Agriculture and Veterinary Medicine, and then freeze-dried. Each (CM(a), 

CM(b) and CM(c)) of the carbohydrate fractions were dissolved in 2 mL of 

water and separated by gel filtration on BioGel P-2 column (2.5 × 100 cm) as 

similar to that of bear milk carbohydrate. The CM(b) was divided into two 

equal volume of the solution and subjected to the gel filtration twice. These 

carbohydrate fractions were separated as in Fig. 5. The saccharides in each 

pooled fraction were detected by thin layer chromatography as above. The 

saccharides in the fraction of CM(a)-4, CM(b)-4, CM(c)-2, and CM(b)-2 were 

characterized by 1H-NMR spectroscopy. The neutral oligosaccharides in 

fractions CM(a)-3, CM(b)-3, CM(c)-3 and CM(c)-4 were separated and 

purified by HPLC with Hypercarb column as above (chromatograms in Fig. 

6). The separated components were characterized by 1H-NMR. 

     The fraction CM(a)-1 was dissolved in 2 mL of 50 mM 

Tris-hydroxyaminomethane-HCl buffer (pH 8.7) and subjected to anion 

exchange chromatography using a DEAE Sephadex A-50 column (1.5 X 35 

cm) equilibrated with the same buffer (chromatogram in Fig. 7). The 

unadsorbed components were eluted with 250 mL of the buffer, after which 

elution was continued using a linear gradient of 0 – 0.5 M NaCl in the buffer. 

Elution was done at a flow rate of 15 mL/h and fractions were analyzed for 

hexose. The peak fractions (CM(a)-1-1, CM(a)-1-2, CM(a)-1-3) were pooled, 

concentrated, and passed through a column (2.0 × 35 cm) of BioGel P-2 to 

remove salts. The components in the adsorbed fraction CM(a)-1-3-4 (see Fig. 

7) were separated and purified by HPLC with Amide-80 column as above 

(chromatogram in Fig. 8). The separated components were characterized by 

1H-NMR. 



 

1H-NMR spectroscopy 

 

Nuclear magnetic resonance spectra were recorded in D2O (99.96 atom D%; 

Sigma-Aldrich, Milwaukee, WI) at 500 or 600 MHz for 1H-NMR with a JEOL 

ECP-500 Fourier transform-NMR (Jeol, Tokyo, Japan) or a Varian INOVA 

600 specrometer (Varian Inc, Palo Alto, CA) operated at 293.1 K. Chemical 

shifts are expressed as change relative to internal 3-(trimethyl)-1-propane 

sulfuric acid, sodium salt, but measured by reference to internal acetone (δ = 

2.225). 

 

Mass spectrometry 

 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF MS) was performed on the oligosaccharide fractions, using 

Autoflex Ⅱ  TOF/TOF mass spectrometer (Brucker Daltonics, Bremen, 

Germany). Lyophilized oligosaccharide fractions were dissolved in 5 μL of 

milli-Q water. The oligosaccharide solution was mixed with an equal volume 

of 10 mg/mL. SDHB (Brucker Daltonics), which is a mixture of 

2,5-dihydrobenzoic acid and 2-hydroxy-5-methoxybenzoic acid, saturated in 

milli-Q water, spotted on a MTP 384 target plate ground steel TF (Bruker 

Daltnics), and dried. Mass spectra were obtained using a pre-installed 

method, RP＿0-2 kDa (a reflector positive ion mode focusing on the mass 

range up to 2 kDa). Peptide calibration standard Ⅱ (Bruker Daltonics) was 

used for external calibration of the mass spectrometer. 

 

Results 

 

Characterization of neutral saccharides of American black bear milk 

 

The crude carbohydrate fraction from American black bear milk separated 

into several peaks during gel filtration on BioGel P-2 (Fig. 1). The fractions 

in each peak were pooled. As the second peak, designated BB-2, reacted 



positively with periodate – resorcinol, it was concluded that the components 

in this peak contained sialic acid. The components in BB-4 to BB-8 were 

subjected to HPLC using a Hypercarb column, and the resulting peaks were 

designated as shown in Fig. 2. The separated peak components obtained by 

HPLC were characterized by 1H-NMR spectroscopy. 

 

Identification of galactose 

 

Thin layer chromatography showed that fraction BB-9 contained galactose. 

 

Identification of lactose 

 

As the 1H-NMR spectrum (chemical shifts in Table 1) of BB-8-1 was identical 

to that of lactose, the saccharide in this fraction was characterized to be 

Gal(β1-4)Glc. 

 

Identification of 2’-fucosyllactose 

 

As the 1H-NMR spectra (chemical shifts in Table 1) of BB-7-2 and BB-7-3 

were identical to the published data [19] for authentic 2’-FL, the 

oligosaccharide in these fractions was characterized to be 

Fuc(α1-2)Gal(β1-4)Glc. 

 

Identification of isoglobotriose 

 

The 1H-NMR spectrum (chemical shifts in Table 1) of BB-7-1 showed that 

this fraction contained two oligosaccharides. As the chemical shifts of one 

oligosaccharide were identical to those of BB-7-2, it was characterized to be 

2’-FL. As the other chemical shifts of another oligosaccharide (BB-7-1-2) 

were identical to the published data for isoglobotriose [19, 25], it was 

characterized to be Gal(α1-3)Gal(β1-4)Glc. 

 

Identification of B-tetrasaccharide 



 

The 1H-NMR spectrum (chemical shifts in Table 1) of BB-6-1 was identical to 

the published data for B-tetrasaccharide [5, 28] separated from Japanese 

black bear milk; it was therefore characterized to be 

Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)Glc.  

 

Identification of B-pentasaccharide 

 

Since the 1H-NMR patterns of BB-5-1 and BB-5-2 were identical, it was 

concluded that these two peaks contained the same saccharide, which 

separated into α- and β-anomer isomers during the Hypercarb column 

chromatography. As the 1H-NMR spectra of BB-5-1 and BB-5-2 (chemical 

shifts in Table 1) were identical to the published data for that of authentic 

B-pentasaccharide [5, 28], the oligosaccharide in these peaks was 

characterized to be Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3)]Glc. 

 

Characterization of difucosyl lacto-N-neotetraose 

 

The MALDITOF MS of this fraction had the ions of 1022.355 and 1038.325 of 

[M+Na] and [M+K], respectively, indicating a monosaccharide composition of 

[Hex]3[HexNAc]1[deoxyHex]2. 

     The 1H-NMR spectrum (Supplementary Fig. 1, chemical shifts in Table 

1) had the H-1 shifts of α(1-2) linked Fuc, α-Glc, α(1-3) linked Fuc, β(1-3) 

linked GlcNAc, β-Glc and two β(1-4) linked Gal at δ 5.278, 5.219, 5.116, 4.710, 

4.662, 4.513 and 4.438, respectively, H-4 of β(1-4) linked Gal, which was 

substituted at OH-3, at δ 4.144, H-5 of α(1-2) linked Fuc at δ 4.252, and H-6 

of α(1-2) and α(1-3) linked Fuc at δ 1.265 and 1.236, respectively, and NAc of 

β(1-3) linked GlcNAc at δ 2.025. The H-1 shift of α(1-2) linked Fuc at δ 5.278 

showed the presence of Fuc(α1-2)Gal(β1-4)GlcNAc, while the H-1 shift of 

α(1-3) linked Fuc at δ 5.116 showed the presence of 

Gal(β1-4)[Fuc(α1-3)]GlcNAc [4]. From these observations, the 

oligosaccharide in BB-4-1 was characterized to be 

Fuc(α1-2)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc (difucosyl 



lacto-N-neotetraose). 

 

Characterization of monogalactosyl monofucosyl lacto-N-neotetraose 

 

The MALDITOF MS of this fraction had the ion of 1038.322 of [M+K], 

indicating a monosaccharide composition of [Hex]4[HexNAc]1[deoxyHex]1. 

     The 1H-NMR spectrum (chemical shifts in Table 1) had the H-1 shifts of 

α-Glc, α(1-3) linked Gal, α(1-3) linked Fuc, β(1-3) linked GlcNAc, β-Glc and 

two β(1-4) linked Gal at δ 5.219, 5.143, 5.138, 4.710, 4.662, 4.535 and 4.433, 

respectively, H-4 of β(1-4) linked Gal, which was substituted at OH-3 by 

α(1-3) linked Gal, at δ 4.204, H-5 of α(1-3) linked Gal at δ 4.193, H-4 of 

another β(1-4) linked Gal, which was substituted at OH-3 by β(1-3) linked 

GlcNAc, at δ 4.159, H-6 of α(1-3) linked Fuc at δ 1.180, and NAc of β(1-3) 

linked GlcNAc at δ 2.022. From these observations and the similarity for the 

published data [4-6], the oligosaccharide in BB-4-2 was characterized to be 

Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β1-3)Gal(β1-4)Glc (monogalactosyl 

monofucosyl lacto-N-neotetraose). 

 

Identification of Galili pentasaccharide 

 

The MALDITOF MS of this fraction had the ions of 892.293 of [M+Na], 

indicating a monosaccharide composition of [Hex]4[HexNAc]1. 

     As the 1H-NMR patterns of BB-4-5 and BB-4-6 were identical, it was 

concluded that these two peaks contained the same saccharides. The 

1H-NMR spectrum (Supplementary Fig. 2, chemical shifts in Table 1) had 

the H-1 shifts of α-Glc, α(1-3) linked Gal, β(1-3) linked GlcNAc, β-Glc and two 

β(104) Gal at δ 5.219, 5.145, 4.704 and 4.701, 4.663, 4.553 and 4.437, 

respectively, H-5 of α(1-3) linked Gal at δ 4.194, H-4 of β(1-4) linked Gal, 

which was substituted at OH-3 by α(1-3) linked Gal, at β 4.186, H-4 of β(1-4) 

linked Gal, which was substituted at OH-3 by β(1-3) linked GlcNAc, at δ 

4.157, and NAc of β(1-3) linked GlcNAc at δ 2.034. As the spectrum was 

essentially similar to the published data for Galili pentasaccharide [6, 15, 16], 

the oligosaccharide in this fraction was characterized to be 



Gal(α1-3)Gal(β1-4)GlcNAc(β1-3)Gal(β1-4)Glc. 

 

Analysis of fractions BB-4-3, BB-4-4, BB-5-3, BB-5-4, BB-6-2, BB-6-3, BB-8-2 

and BB-8-3 

 

As clearly resolved chemical shifts were not observed in the 1H-NMR of 

fractions BB-4-3, BB-4-4, BB-5-3, BB-5-4, BB-6-2, BB-6-3, BB-8-2, the 

saccharides in these fractions were not characterized in this study. It was 

assumed that the unresolved 1H-NMR spectra were due to insufficient 

material. It was concluded from its 1H-NMR spectrum that the component in 

BB-8-3 was not a saccharide. 

 

Analysis of fraction BB-3 

 

The oligosaccharides in this fraction were not studied in this study because 

of insufficient material. 

 

Analysis of fraction BB-1 

 

It was assumed that this fraction contained glycoproteins/glycopeptides; 

these were not characterized in this study. 

 

Characterization of acidic oligosaccharides of American black bear milk 

 

Fraction BB-2 separated into three peaks during ion exchange 

chromatography, as shown in Fig. 3. The first peak was thought to contain a 

mixture of high molecular neutral oligosaccharides, which were not 

investigated. The components in the second peak, designated as BB-2-2, 

were further separated by HPLC as shown in Fig. 4. The oligosaccharides in 

BB-2-2-1 to BB-2-2-16 were characterized by 1H-NMR. It was assumed that 

the third eluted fraction, designated as BB-2-3 contained disialyl or more 

highly sialylated oligosaccharides; these were not characterized. 

 



Identification of 3’-sialyllactose 

 

As the 1H-NMR spectrum (chemical shifts in Table 2) of BB-2-2-1 was 

identical to that of authentic 3’-SL [19], it was characterized to be 

Neu5Ac(α2-3)Gal(β1-4)Glc. 

 

Characterization of monosialyl monofucosyl lacto-N-neohexaose 

 

The MALDITOF MS of this fraction had the ions of 1548.280 and 1586.281 of 

[M+K] and [M+2K-H], respectively, indicating a monosaccharide composition 

of [Neu5Ac]1[Hex]4[HexNAc]2[deoxyHex]1.  

     The 1H-NMR spectrum (chemical shifts in Table 2) had the H-1 shifts of 

α(1-2) linked Fuc, α-Glc, β(1-3) linked GlcNAc, β-Glc, β(1-6) linked GlcNAc, 

and three β(1-4) linked Gal, at δ 5.308, 5.219, 4.723, 4.666, 4.597, 4.542, 

4.455 and 4.433, respectively, H-4 of β(1-4) linked Gal, which was substituted 

at OH-3, at δ 4.151, H-5 and H-6 of α(1-2) linked Fuc at δ 4.225 and 1.230, 

respectively, and NAc of β(1-3) and β(1-6) linked GlcNAc at δ 2.051 and 2.064, 

respectively. The spectrum had the H-3 axial, H-3 equatorial and NAc shifts 

of α(2-6) linked Neu5Ac at δ 1.724, 2.667 and 2.027, respectively. As this 

pattern was essentially identical to that of the published data [11] for 

monosialyl monofucosyl lacto-N-neohexaose, this oligosaccharide 

(BB-2-2-6-1) was characterized to be 

Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3)[Fuc(α1-2)Gal(β1-4)GlcNAc(β1-6)]Gal(β1

-4)Glc. 

     However, the 1H-NMR spectrum of this fraction had many other 

chemical shifts which arose from other saccharides in this fraction. It was 

concluded that one of these contained α(1-3) linked Fuc, as the spectrum had 

the H-1 and H-6 at δ 5.129 and 1.175, respectively. 

 

Characterization of monosialyl monogalactosyl lacto-N-neohexaose 

 

The MALDITOF MS of this fraction had the ions of 1564.292 and 1602.272 of 

[M+K] and [M+2K-H], respectively, indicating a monosaccharide composition 



of [Neu5Ac]1[Hex]5[HexNAc]2. 

     The 1H-NMR spectrum (chemical shifts in Table 2) had the H-1 shifts of 

α-Glc, α(1-3) linked Gal, β(1-3) linked GlcNAc β-Glc, β(1-6) linked GlcNAc 

and three β(1-4) linked Gal at δ 5.219, 5.145, 4.726, 4.668, 4.641, 4.545, 4.455 

and 4.433, H-5 of α(1-3) linked Gal at δ 4.196 and H-4 of β(1-4) linked Gal, 

which was substituted at OH-3 by α(1-3) linked Gal, at δ 4.183. The 

spectrum had H-4 of β(1-4) linked Gal, which was substituted at OH-3 by 

β(1-3) linked GlcNAc, at δ 4.149, and NAc of β(1-3) and β(1-6) linked GlcNAc 

at δ 2.051 and 2.062, respectively. This also had the H-3 axial, H-3 equatorial 

and NAc shifts of α(2-6) linked Neu5Ac at δ 1.725, 2.667 and 2.027, 

respectively. As these 1H-NMR chemical shifts were essentially similar for 

the published data for monosialyl monogalactosyl lacto-N-neohexaose [15, 

16], the oligosaccharide in BB-2-2-8 was characterized to be 

Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3)[Gal(α1-3)Gal(β1-4)GlcNAc(β1-6)]Gal(β1

-4)Glc. 

 

Characterization of monosialyl monogalactosyl monofucosyl 

lacto-N-neohexaose 

 

The MALDITOF MS of this fraction had the ions of 1710.214 and 1748.218 of 

[M+K] and [M+2K-H], respectively, indicating a monosaccharide composition 

of [Neu5Ac]1[Hex]5[HexNAc]2[deoxyHex]1. 

     The 1H-NMR spectrum (Supplementary Fig. 3, chemical shifts in Table 

2) had the H-1 shifts of α-Glc, α(1-3) linked Gal, α(1-3) linked Fuc, β(1-3) 

linked GlcNAc, β-Glc, β(1-6) linked GlcNAc and three β(1-4) linked Gal at δ 

5.219, 5.142, 5.115, 4.724, 4.668, 4.640, 4.526, 4.455 and 4.432, respectively, 

H-5 of α(1-3) linked Gal at δ 4.197 and H-4 of β(1-4) linked Gal, which was 

substituted at OH-3 by α(1-3) linked Gal, at δ 4.160. The spectrum had H-4 

of β(1-4) linked Gal, which was substituted at OH-3 by β(1-3) linked GlcNAc, 

at δ 4.143, H-6 of α(1-3) linked Fuc at δ 1.179, and NAc of β(1-3) and β(1-6) 

linked GlcNAc at δ 2.051. This also had the H-3 axial, H-3 equatorial and 

NAc shifts of α(2-6) linked Neu5Ac at δ 1.725, 2.668 and 2.027, respectively. 

As these 1H-NMR chemical shifts were essentially similar to the published 



data for monosialyl monogalactosyl monofucosyl lacto-N-neohexaose [8, 29], 

the oligosaccharide in BB-2-2-9 was characterized to be 

Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3){Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc(β

1-6)}Gal(β1-4)Glc. 

 

Characterization of monosialyl monogalactosyl difucosyl lacto-N-neohexaose 

 

The MALDITOF MS of this fraction had the ions of 1858.156 and 1894.122 of 

[M+K] and [M+2K-H], respectively, indicating a monosaccharide composition 

of [Neu5Ac]1[Hex]5[HexNAc]2[deoxyHex]2. 

     The 1H-NMR spectrum (chemical shifts in Table 2) had the H-1 of α(1-2) 

linked Fuc, α(1-3) linked Gal, α-Glc, α(1-3) linked Fuc, β(1-3) linked GlcNAc, 

β-Glc, β(1-6) linked GlcNAc and three β(1-4) linked Gal at δ 5.283, 5.245, 

5.219, 5.107, 4.723, 4.668, 4.612, 4.583, 4.445 and 4.434, respectively, H-5 of 

α(1-3) linked Gal at δ 4.225 and H-4 of β(1-4) linked Gal, which was 

substituted at OH-3 by α(1-3) linked Gal, at δ 4.266. The spectrum had H-4 

of β(1-4) linked Gal, which was substituted at OH-3 by β(1-3) linked Gal, at δ 

4.147, H-5 and H-6 of α(1-2) linked Fuc at δ 4.330 and 1.292, respectively, 

H-6 of α(1-3) linked Fuc at δ 1.247, and NAc of β(1-6) and β(1-3) linked 

GlcNAc at δ 2.055 and 2.051, respectively. This also had the H-3 axial, H-3 

equatorial and NAc of α(2-6) linked Neu5Ac at δ 1.725, 2.668 and 2.027, 

respectively. As these 1H-NMR chemical shifts were essentially similar to the 

published data for monosialyl monogalactosyl difucosyl lacto-N-neohexaose 

[8], the oligosaccharide in BB-2-2-10 was characterized to be 

Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3){Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3

)]GlcNAc(β1-6)}Gal(β1-4)Glc. 

 

Analysis of fractions BB-2-2-3, BB-2-2-4, BB-2-2-5 and BB-2-2-7 

 

The saccharides in these fractions were not characterized because they 

yielded unresolved 1H-NMR spectra. It was assumed that this was due to 

insufficient material. 

 



Analysis of fractions BB-2-2-11, BB-2-2-12, BB-2-2-13, BB-2-2-14, BB-2-2-15, 

BB-2-2-16 and BB-2-2-17 

 

Clearly resolved 1H-NMR spectra were not obtained for the saccharides in 

these fractions because of their high molecular weights. 

 

Characterization of neutral saccharides and lactose sulfate of cheetah milk 

 

The carbohydrate fraction from three cheetah milk separated into several 

peaks, designated CM(a)-1 to CM(a)-6, CM(b)-1 to CM(b)-7, and CM(c)-1 to 

CM(c)-9, during gel filtration on BioGel P-2 (Fig. 5). Since the components in 

CM(a)-3 to CM(a)-6, CM(b)-2 to CM(b)-7 and CM(c)-3 o CM(c)-9 did not react 

positively with periodate – resorcinol they were considered to be neutral 

oligosaccharides. The saccharides in CM(a)-5, CM(b)-6 and CM(c)-2 were 

characterized by 1H-NMR. The oligosaccharides in the fractions of CM(a)-4, 

CM(b)-5 and CM(c)-7 were further purified by HPLC as pooled in Fig. 6. 

 

Identification of lactose 

 

The 1H-NMR spectra (chemical shifts in Table 3) of the saccharides in 

CM(a)-4 and CM(b)-4 were identical with that of Gal(β1-4)Glc, these are 

lactose. The 1H-NMR spectrum of fraction CM(c)-4 showed that this 

contained a contaminant as well as lactose; it was therefore purified by 

HPLC with a Hypercarb column. After the purification, the 1H-NMR 

spectrum was identical with that of lactose. 

 

Identification of isoglobotriose 

 

The 1H-NMR spectra (Chemical shifts in Table 3) of the saccharides in 

CM(a)-3-1 and CM(c)-3-1 were identical with that of Gal(α1-3)Gal(β1-4)Glc 

[19, 25], these are isoglobotriose. 

 

Identification of 6’-galactosyllactose and 3’-galactosyllactose 



 

The 1H-NMR spectrum (chemical shifts in Table 3) of CM(b)-3-1 showed the 

presence of two saccharides in this fraction; a major and a minor. The 

spectrum had the anomeric shifts of α-Glc, β-Glc, β(1-6) linked Gal and β(1-4) 

linked Gal at δ 5.221, 4.668, 4.484 and 4.459, respectively. As this pattern 

was similar to that of 6’-galactosyllactose (6’-GL) [25], the major saccharide 

in this fraction was characterized to be Gal(β1-6)Gal(β1-4)Glc. 

     The spectrum, in addition, had the small H-1 shifts of β(1-3) linked Gal 

and β(1-4) linked Gal at δ 4.612 and 4.510, and the characteristic H-4 shift of 

β(1-4) linked Gal, which was substituted by β(1-3) linked Gal, at δ 4.197. 

From these observations and the similarity for the published data [30], the 

minor saccharide in this fraction was characterized to be 

Gal(β1-3)Gal(β1-4)Glc (3’-galactosyllactose, 3’-GL). 

 

Identification of lacto-N-neohexaose and lactose 3’-O-sulphate 

 

The 1H-NMR spectrum (chemical shifts in Table 3) of CM(c)-2 showed the 

presence of two saccharides in this fraction; a major and a minor. The 

spectrum had the anomeric shifts of α-Glc, two β(1-3) linked Gal, β-Glc, two 

β(1-6) linked Gal, and three β(1-4)linked Gal at δ 5.219, 4.704 and 4.701, 

4.667, 4.644 and 4.637, and 4.480, 4.471 and 4.428, respectively. The 

spectrum had the characteristic H-4 of β(1-4) linked Gal, which was 

substituted by β(1-3) linked GlcNAc, at δ 4.146, and NAc shifts of β(1-3) and 

β(1-6) linked GlcNAc at 2.031 and 2.061, respectively. As this pattern was 

similar to that of lacto-N-neohexaose [31], the major saccharide in this 

fraction was characterized to be 

Gal(β1-4)GlcNAc(β1-3)[Gal(β1-4)GlcNAc(β1-6)]Gal(β1-4)Glc. 

     The spectrum (chemical shifts in Table 3), in addition, had the H-1 shift 

of α-Glc and β(1-4)Gal at δ 5.228 and 4.568, and characteristic down field 

shifts of H-3 and H-4 of β(1-4) linked Gal at δ 4.334 and 4.295, respectively. 

As this pattern was similar to the published data [17] of 

lactose-3’-O-sulphate, the minor saccharide in this fraction was 

characterized to be Gal(β1-4)Glc-3’-O-SO3. 



     As the 1H-NMR spectrum of CM(b)-2 had essentially similar shifts with 

those of the major saccharide in CM(c)-2, this fraction contained 

lacto-N-neohexaose, too. However, there were no shifts caused by 

lactose-3’-O-sulphate in this fraction. 

 

The saccharide in CM(a)-2 was not characterized in this study, as the clear 

NMR spectrum was not obtained. 

 

Characterization of sialyl saccharide of cheetah milk 

 

The fraction CM(a)-1 separated into the unadsorbed fractions, designated 

CM(a)-1-1 and CM(a)-1-2, and the adsorbed fractions, designated as 

CM(a)-1-3 and CM(a)-1-4 during the ion exchange chromatography on 

DEAE-Sephadex A-50 as shown in Fig. 7. The fraction CM(a)-1-3 was 

separated into CM(a)-1-3-1 to CM(a)-1-3-6 during HPLC on an Amide-80 

column (Fig. 8), and the component in the separated peaks were 

characterized by 1H-NMR. 

 

Identification of disialyllactose 

 

The 1H-NMR spectrum (chemical shifts in Table 3) of CM(a)-1-3-4 had the 

anomeric shifts of α-Glc, β-Glc and β(1-4) linked Gal at δ 5.223, 4.661 and 

4.522, respectively, showing that the core structure is Gal(β1-4)Glc. The 

spectrum had the chemical shifts of H-3 axial at δ 1.739, H-3 equatorial at δ 

2.776 and 2.676, and NAc shifts of Neu5Ac at δ 2.066 and 2.029, showing the 

presence of two Neu5Ac residues. The signal intensity of the shift at δ 1.739 

corresponded to two protons. As the 1H-NMR pattern was essentially similar 

to that of authentic disialyllactose, the oligosaccharides in CM(a)-1-3-4 was 

characterized to be Neu5Ac(α2-8)Neu5Ac(α2-3)Gal(β1-4)Glc. 

 

As the concentrations of oligosaccharides in CM(a)-1-1 and CM(a)-1-2 were 

small, these were not characterized in this study. As the clear 1H-NMR 

spectra were not obtained for CM(a)-1-3-1, CM(a)-1-3-2, CM(a)-1-3-3, 



CM(a)-1-3-5 and CM(a)-1-3-6, these were not characterized in this study. The 

components in CM(a)-1-4 were not studied in this study. 

 

Discussion 

 

The ratio of oligosaccharides to lactose in Caniformia and Feliformia  

 

From the profiles obtained by gel filtration of the carbohydrate fraction (see 

Fig. 1 and 5), we conclude that milk oligosaccharides predominate over 

lactose in American black bear milk, while lactose is the predominant 

saccharide in cheetah milk. Based on relative peak area of the gel 

chromatograms, the ratio of milk oligosaccharides to lactose was estimated 

to be 21:1 in American black bear milk (0-2 days postpartum), as compared 

to 1:1.1, 1:1.1 and 1:2.1 in the milks of the three cheetahs (CM(a), CM(b) and 

CM(c), respectively) at 1-2 days postpartum.  

Per our current and previous estimates, the ratios of milk oligosaccharides to 

lactose among Caniformia are as follows: a) 52:1 in milk of Japanese black 

bear (37 days post partum), b) 32:1 in milk of raccoon, c) 21:1 in milk of 

American black bear (0-2 days postpartum), d) 13:1 in milk of polar bear at 

27 months postpartum, e) 10:1 in milk of giant panda at 13 days post partum, 

f) 7:1 in milk of striped skunk at 20-48 days post partum, g) 5:1 in milk of 

mink at 15 days postpartum, h) 4:1 in milk of high arctic harbor seal, i) 2:1 in 

milk of white-nosed coati at 17 days postpartum, and finally, j) 1:6 in milk of 

domestic dog at 13 days postpartum. By contrast, among Feliformia, the 

ratio is a) 1:1 in colostrum of spotted hyena at 2 days post partum, b) 1:1 in 

colostrum of clouded leopard, c) 1:1 – 1:2 in milk of cheetah at 0-2 days 

postpartum, and d) 1:2 in milk of African lion at 127 days postpartum. These 

ratios are consistent with previous observations that milk oligosaccharides 

predominate over lactose in the milks of most species of the Caniformia, 

while lactose is the predominant saccharide in the milks of the Feliformia 

[3]. 

     However, comparison of the ratio of milk OS to lactose has not been 

performed with milks at the same lactation stage for these species, because 



the available data are limited for each species. The variation of milk OS to 

lactose during the course of lactation has been observed in the case of 

humans. It has been reported that the OS concentration is 22 ~ 24 g/L in 

colostrum and 12 ~ 13 g/L in mature milk, respectively [32]; namely the ratio 

is around 1 : 4.6 in colostrum and 1 : 2.6 in mature milk. This suggests that 

this ratio may vary during the course of lactation and inter-specific 

comparisons should be conducted with milk samples from the same lactation 

stage. 

 

The biological significance of oligosaccharides (OS) proportion 

 

The biological significance of the differing proportions of lactose, acidic and 

neutral oligosaccharides observed among mammals is not certain. The 

hypothesis that oligosaccharides serve an anti-bacterial and prebiotic 

function in neonatal digestive tracts, and thus should be selected for in social 

species with larger group size and more avenues for social transmission of 

pathogens [33], does not appear to apply to carnivorans, as highly social lions 

and dogs have the lowest, not highest, OS:lactose ratios, whereas high 

OS:lactose ratios are found in predominantly solitary carnivorans, such as 

raccoons, bears, mink and striped skunk (see above).  

    An alternative approach is to examine, via mass assessment, postnatal 

development of the body, or specific organs, in relation to adult mass. For 

example, brain mass at birth, expressed relative to adult mass, is considered 

a measure of the degree of neonatal maturity [34]. In order to maximize 

useful data, we examined total mass at birth of neonates, expressed as a 

percentage of maternal mass, with the assumption that a smaller neonate at 

birth will in general be less developed than larger neonates. Using 

species-specific data assembled by Oftedal and Gittleman [35], the birth 

mass percentage of cheetahs (0.48) was considerably higher than American 

black bears (0.29), and this difference also holds at a familial level Felidae 

(cats) (mean=1.60 ± standard deviation (SD) 0.80, n=13) vs Ursidae (bears) 

(mean=0.30 ± 0.08 SD, n=4. Thus, these patterns are consistent with our 

predictions: altricial ursids have high OS:lactose ratios (10:1 – 51:1) 



compared to more precocial felids (1:1 to 1:2, see above). 

     Our data were sufficient to examine patterns among other caniform 

and feliform families. For example, three Caniform families known to have 

high OS:lactose ratios (Mephtitidae, Mustelidae, Procyonidae) have 

relatively high but varied birth mass percentages (averaging 2.67 ± 0.45, 

n=2; 2.05 ± 1.26, n=13; and 4.03 ± 3.08, n=4; respectively). Thus, their milks 

are higher in oligosaccharides than would be predicted from birth mass 

percentages. Further research is needed on both physiological maturity and 

postnatal development to determine correlations to milk oligosaccharide 

composition. 

     Unlike other Caniform species studied, lactose predominates over 

oligosaccharides in the milk of domestic dogs [17]. The neonatal dog is rather 

immature and does not open its eyes until around 10 days of age, but 

calculating the proportional size of puppies relative to the adult body weight 

is complicated by the extreme variation in size represented by the different 

breeds of dogs. For example, puppies of giant breeds such as the English 

Mastiff may represent <1% of adult BW, whereas toy breeds such as Papillon 

may be >5% of adult BW at birth [36, 37, 38]. Using Oftedal and Gittlemen’s 

data for dogs, a medium size dog has a neonatal weight representing 1.67% 

of maternal weight, aligning with our hypothesis that OS:lactose are lower 

in species with higher proportional mass at birth. However, the 

domestication of this species by humans may have influenced its lactational 

physiology, and may have reduced the concentration of oligosaccharides in 

milk relative to other Caniforms. To clarify this, future studies are needed to 

characterize the milk of non-domesticated canid species including wolf, fox 

and bush dog.  

 

Specific oligosaccharide structures found in milk of the American black bear 

and related Caniformia 

 

The neutral as well as acidic milk oligosaccharides in American black bear 

milk, characterized in this study, are shown in Fig. 9. It was concluded that 

the significant feature of these oligosaccharides is the presence of B 



(Gal(α1-3)[Fuc(α1-2)]Gal), H (Fuc(α1-2)Gal), α-Gal epitope 

(Gal(α1-3)Gal(β1-4)GlcNAc), B Lewis x 

(Gal(α1-3)[Fuc(α1-2)]Gal(β1-4)[Fuc(α1-3)]GlcNAc), Lewis y 

(Fuc(α1-2)Gal(β1-4)[Fuc(α1-3)]GlcNAc) or α-Gal Lewis x 

(Gal(α1-3)Gal(β1-4)[Fuc(α1-3)]GlcNAc) in the structure. B-pentasaccharide, 

monosialyl monogalactosyl difucosyl lacto-N-neotetraose, monogalactosyl 

monofucosyl lacto-N-neotetraose, and monosialyl monogalactosyl 

monofucosyl lacto-N-neohexaose, which have B Lewis x or α-Gal Lewis x, 

have also been found in the milk of Japanese black bear milk [5, 8]; this 

likely reflects the homology of milk oligosaccharides between these bear 

species. However, galilipentasaccharide, difucosyl lacto-N-neotetraose, 

monosialyl monogalactosyl lacto-N-neohexaose, and monosialyl monofucosyl 

lacto-N-neohexaose were not detected in Japanese black bear milk [5, 8]. As 

galilipentasaccharide and monosialyl monogalactosyl lacto-N-neohexaose, 

are most likely precursors in the synthesis of monogalactosel monofucosyl 

lacto-N-neotetraose and monosialyl monogalactosyl monofucosyl 

lacto-N-neohexaose, respectively. These two oligosaccharides may exist in 

Japanese black bear milk but in such trace amounts that we did not detect 

them. Difucosyl lacto-N-neotetraose has been found in Ezo brown bear milk 

[4], while monosialyl monofucosyl lacto-N-neohexaose and monosialyl 

monogalactosyl lacto-N-neohexaose have been detected in milks of harbor 

seal, and mink and stripped skunk, respectively [11, 15, 16]. 

Galilipentasaccharide has also been found in the milk of polar bear, mink 

and striped skunk [6, 15, 16]. Thus, it is likely that there is homology in milk 

oligosaccharides between American black bear and other Ursidae species, 

and also between this black bear and other Caniformia species. In our 

previous study of milk oligosaccharides of Ezo brown bear, Japanese black 

bear and polar bear, the oligosaccharides, whose core units were 

lacto-N-neotetraose or lacto-N-neohexaose, always contained Lewis x 

excepting for one polar bear [4-8]. As some oligosaccharides did not contain 

Lewis x in their structures in this study, this may be a difference between the 

American black bear and other Ursidae. It is assumed that this must have 

been caused by the relatively weak activity of α3fucosyltransferase in 



lactating mammary glands of this American black bear compared to that of 

other bear species. All oligosaccharides other than those containing lactose 

core unit had only type Ⅱ  (Gal(β1-4)GlcNAc) but not type Ⅰ 

(Gal(β1-3)GlcNAc). This is a consistent feature of all other studied 

Caniformia including the Ursidae [3, 39]. 

 

Specific oligosaccharide structures found in milk of the cheetah and related 

Feliformia 

 

The characterized cheetah milk oligosaccharides are shown in Fig. 10.  

Isoglobotriose was detected in milk of animals 1 and 3, but was not found in 

that of animal 2. 3’-GL and 6’-GL were detected in the milk of animal 2, but 

not in those of 1 and 3. The milks or colostra of many Caniformia species 

contain isoglobotriose, but not the milks of dog, raccoon, seals and African 

lion [3, 40]. Lactose 3’-O-sulphate was detected only in milk of animal 3. 

Among Carnivora milk, this has been found only in dog milk [17]. 

Lacto-N-neohexaose was detected in the milks of animals 2 and 3, but not in 

that of animal 1. Thus, the heterogeneity of these oligosaccharides was 

observed in milk among the individual cheetahs. In the milks of Felidae, 

which had been studied before, all oligosaccharides had only lactose as a core 

unit [19, 20]. Thus the presence of lacto-N-neotetraose is the first case that 

the milk oligosaccharides contain another core unit than lactose in the 

Felidae. The milk of Carnivora including Felidae usually have the 

oligosaccharides containing A, B or H antigens in the non-reducing end [3, 

29], but these were not detected in these cheetah milks. This must be due to 

the lack of α2fucosyltransferase activity in cheetah mammary glands, at 

least early in lactation, because H antigen is the precursor for the 

biosynthesis of A or B antigens. 

     With respect of the variation of milk oligosaccharides within a species, 

it is well known that human milk oligosaccharides vary depending on donor’s 

secretor or Lewis blood group. Namely, non secretor donor’s milk does not 

contain the oligosaccharides containing non reducing α(1-2) linked Fuc 

residue such as Fuc(α1-2)Gal(β1-4)Glc (2’-FL), 



Fuc(α1-2)Gal(β1-3)GlcNAc(β1-3)Gal(β1-4)Glc (LNFP- Ⅰ ) or 

Fuc(α1-2)Gal(β1-3)[Fuc(α1-4)]GlcNAc(β1-3)Gal(β1-4)Glc (LNDFH-1), etc, 

because of the non expression of FUT2, even though these are dominant 

saccharides in secretor donor’s milk [32, 41]. In addition, Lewis negative 

donor’s milk do not contain the oligosaccharides containing α(1-4) linked Fuc 

residue such as Gal(β1-3)[Fuc(α1-4)]GlcNAc(β1-3)Gal(β1-4)Glc (LNFP-Ⅱ ) 

and LNDFH-1, etc, by the non expression of FUT3 [32, 41]. However, it is 

thought that the individual variation of the oligosaccharides in cheetah milk 

clarified in this study should be different from that of human donors. It is 

speculated that the individual variance of the oligosaccharides among these 

cheetahs are caused by the presence/absence of α or β-galactosyltransferase, 

sulfonyltransferase or β3N-acetylglucosaminyltransferase on lactating 

mammary glands, unlike the presence/absence of FUT2 or FUT3 in human. 

Whether the variation of the milk oligosaccharides can be classified into 

groups may be clarified after additional samples of cheetah milk are studied. 

     Disialyllactose (Neu5Ac(α2-8)Neu5Ac(α2-3)Gal(β1-4)Glc) was found in 

the cheetah milk. In our previous studies of the Felidae, 

Neu5Gc(α2-3)Gal(β1-4)Glc was found in milk of African lion and clouded 

leopard [20], while Neu5Ac(α2-3)Gal(β1-4)Glc was not detected. The 

colostrum of spotted hyena contained Neu5Ac(α2-3)Gal(β1-4)Glc, but not 

Neu5Gc(α2-3)Gal(β1-4)Glc [19]. It appears that the presence/absence of 

Neu5Ac or Neu5Gc in milk sialyloligosaccharides varies among species of the 

Felidae, while only Neu5Ac has been found in milk or colostrum of species of 

the Caniformia. 

 

Specific milk oligosaccharides: are they important for artificial feeding of 

neonates? 

 

Despite the recognition that the aggregate amount of oligosaccharides in 

milk may exceed that of lactose, and the proliferation of information about 

the neutral and acidic oligosaccharide structures found among carnivoran 

milks, there is still little certainty about the physiological, nutritional, 

immune-defense or developmental necessity of these constituents for 



neonates (but see discussion of sialic acid, above). Studies are complicated by 

the need to be species-specific and the uncertainty about the extent to which 

findings are applicable to other, even closely related species. Although milk 

replacers continue to be produced by various manufactures for dogs and cats, 

it is unlikely that these products match the oligosaccharide profiles of dog or 

cat milk, let alone the profiles of the milks of other zoo animals and wildlife 

for which they are employed. It is not known if this creates health or 

developmental problems. However, given that strong selective evolutionary 

pressures have apparently maintained the synthesis of a great diversity of 

oligosaccharide structures in carnivoran milks, especially in taxa with 

immature neonates, it seems likely that the oligosaccharides are important 

to neonatal development. 

     Among endangered species captive breeding programs, the artificial 

rearing of neonates occurs for a range of reasons, but primarily following 

maternal ill-health or poor mothering. For example, the cheetah is often 

reared on milk replacer formulated for domestic canine or feline 

requirements, but often uses bovine milk as its basis [42, 43]. But the ratio of 

milk oligosaccharides to lactose and also the profile of the oligosaccharide in 

milk differ between cow and these Carnivora species. Bovine mature milk 

contains only trace amount of oligosaccharides [40], suggesting that some 

artificial oligosaccharides should be incorporated in milk replacers used for 

carnivore species. 
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Figure legends 

 

Fig. 1   Gel chromatogram of the carbohydrate fraction from American 

black bear milk on a BioGel P-2 column (2.5 × 100 cm). Elution was done 

with distilled water at a flow rate of 15 mL/h and fractions of 5.0 mL were 

collected. Each fraction was monitored by the phenol-H2SO4 method at 490 

nm (solid line) and the periodate-resorcinol method at 630 nm (broken line). 

 

Fig. 2   High performance liquid chromatography of the neutral 

oligosaccharide fractions BB-4, BB-5. BB-6, BB-7 and BB-8 separated from 

the carbohydrate fraction of American black bear milk by gel 

chromatography (Fig. 1). The Hitachi 7,000 series HPLC system (Tokyo) 

consisted of autosampler L-7,200, a column oven L-7,300, a pump L-7,100, 



and an evaporation light scattering detector SEDEX-75 with a system 

controller D-7,100. The stationary phase was a 7 μm Hypercarb column (100 

× 4.6 mm i.d.; Thermo Fisher Scientific), while the mobile phase was 

acetonitrile in distilled water run at 40℃. The LC gradient was delivered at 

1.0 mL/min and consisted of an initial linear increase from 5% to 30% 

acetonitrile over 80 min. 

 

Fig. 3   Anion exchange chromatography of BB-2 (Fig. 1) separated from 

American black bear milk carbohydrate by chromatography on BioGel P-2. A 

DEAE-Sephadex A-50 column (2.0 × 35 cm) equilibrated with 50 mmol/L. 

Tris hydroxyaminomethane-HCl buffer (pH 8.7) was used. Elution was done 

with 250 mL of the buffer. The flow rate was 15 mL/h and fractions of 5 mL 

were collected. They were monitored by the phenol-H2SO4 method. 

 

Fig. 4   High performance liquid chromatogram of fraction BB-2-2 (see Fig. 

3). The HPLC was done using Shimadzu LC-10 ATVP pump (Shimadzu, 

Tokyo, Japan) on a TSK-gel Amide-80 column (4.6 × 250 mm, pore size 80 Å, 

particle size 5 μm; Tosoh, Tokyo, Japan). It was performed by using mobile 

phase 80% and 50% (vol/vol) acetonitrile (CH3CN) in 15 mmol/L potassium 

phosphate buffer (pH 5.2) denoted as buffer A and B, respectively. Elution 

was done using linear gradient from buffer A to buffer A with the following 

condition: buffer A = 100%, B = 0% at 0 min; A = 50%, B = 50% at 15 min; and 

A = 0%, B = 100% at 80 min at 60℃ and flow rate of 1 mL/min. The eluates 

were monitored by measuring the absorbance at 195 nm. 

 

Fig. 5.  Gel chromatograms of the carbohydrate fractions from three 

cheetah’s milk on a BioGel P-2 (2.5 × 100 cm). 

 

Fig. 6.  High performance liquid chromatography of the neutral 

oligosaccharides fractions (a) CM(a)-3, (b) CM(b)-3 and (c) CM(c)-3 separated 

from cheetah milk by gel filtration (see Fig. 5) using a 7 μm Hypercarb 

column (100 × 4.6 mm i.d.: Thermo Fisher Scientific). 

 



Fig. 7.   Anion exchange chromatography of CM(a)-1 (Fig. 6) separated from 

cheetah milk carbohydrate by chromatography on BioGel P-2. A 

DEAE-Sephadex A-50 column (2.0 × 35 cm) equilibrated with 50 mmol/L Tris 

hydroxyaminomethane-HCl buffer (pH 8.7) was used. The unadsorbed 

components were eluted with 250 mL of the buffer, after which elution was 

continued using a linear gradient of 0 – 0.5 M NaCl in the buffer. The flow 

rate was 15 mL/h and fractions of 5 mL were collected. They were monitored 

by the phenol-H2SO4 method. 

 

Fig. 8.   High performance liquid chromatography of CM(a)-1-3 (see Fig. 3) 

using a TSK-gel Amide-80 column (4.6 × 250 mm, pore size 80 Å, particle 

size 5 μm; Tosoh, Tokyo, Japan).  

 

Fig. 9.   Structures of the American black bear milk oligosaccharides 

characterized in this study 

 

Fig. 10   The characterized structures of cheetah milk oligosaccharides. 

 

 

Supplementary Fig. 1   1H-NMR spectrum of the oligosaccharide in BB-4-1. 

 

Supplementary Fig. 2  1H-NMR spectrum of the oligosaccharide in BB-4-5 

 

Supplementary Fig. 3  1H-NMR spectrum of the oligosaccharide in BB-2-2-9 

 


