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Abstract

The online appendix complements the paper through i) further elaborating on the training of the trader

classification DNN, ii) documenting candidate hyper-parameter settings of the DNN and the ML bench-

mark classifiers and how we have tuned these in a model selection, and iii) providing additional empirical

results. These results include empirical findings from pre-tests based on a static split sample design. We

also report the distributions of the performance indicators that we have used in the comparison of the

proposed DNN to benchmark ML classifiers. Finally, we provide additional results of a comparison of

the DNN to alternative DL models.
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1. Training the Proposed DNN

The DNN employed in the paper integrates multiple DL concepts. In summary, the DNN is first

pre-trained via SdA, with Xavier’s initialisation for weights and ReLU unit as the activation function,

in a greedy layer-wiser manner. This is the unsupervised pre-tuning stage after which we fine-tune

the DNN as a whole in a supervised way, with each hidden layer followed by batch normalisation and

dropout. In the following, we detail the optimisation of the cost function, , which we did not detail in

the main body of the paper for brevity; namely, the training of the parameters of the DNN in both the

pre-training and fine-tuning stage as well as other DL concepts such as Xavier’s initialization, ReLU,

and batch normalization.

The parameters to train in the pre-training stage are the weight matrix and bias in each dA (both the

encoder and the decoder), and the parameters to train in the supervised fine-tuning stage are the weight

matrix and bias in each encoder of SdA and in the softmax regression. The rest of the parameters (e.g.,

the number of hidden layers in SdA, the number of hidden neurons in each hidden layer), are hyper-

parameters that need adjusting on top of the training process. We elaborate on the treatment of such

hyper-parameters below in Section 2.
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1.1. Xavier’s initialization

The solution to a non-convex optimization problem depends on the initial values of the weight pa-

rameters W . By default, SdA initialize weights randomly. If network weights are initialized too small

(large), the signal shrinks (expands) as it passes through each layer until it becomes too tiny (massive)

to be useful. Xavier’s initialization [1] guarantees that weights are sensibly initialized by ensuring that

the variance of the input and output signals passed through the network remain the same.

V ar(Wi) =
2

nin + nout
(1)

where Wi is the weight matrix in layer i and nin and nout are the number of neurons feeding in and out.

1.2. ReLU

Using non-linear coding functions h(·) and g(·) enables a dA to discover intricate non-linear structures

from the input data. It has become common practice to replace the sigomid function with a ReLu in

the encoding part. The activation functions in dA are then:

h(x) = ReLU(x) = max(0, x) (2)

ReLU outperforms other non-linear transformation functions on a majority of ML tasks [2]. Setting

half of the outputs to zero, it creates robust and sparse representations, which is beneficial for learning

algorithms [3]. In addition, ReLU does not require any exponential computation, which substantially

accelerates learning. Moreover, its derivative is a step function that provides the network with more non-

linearities. These become paramount if stacking a multitude of dAs to build a DNN [4]. For example,

ReLU does not suffer from the gradient explosion/vanishing problem [5].

1.3. Batch normalization

During DNN training, the distribution of each layer’s inputs changes with updates of the parameters

of the preceding layers. With greater depth, small changes to network parameters are amplified; thus,

the layers need to keep adapting to the new distribution. Enforcing lower learning rates, this problem

decelerates the training process. A batch normalization layer fixes the means and variances of layer

outputs according to 3 [6]. It whitens each feature independently after it passes through an activation

function in the hidden layer. Moreover, instead of using the whole training sample, the mean and variance

in the whitening process are estimated in a batch-wise manner so that the training of layer parameters

(γ,β) can be integrated into the original back-propagation algorithm

x̂ = γ · x− E[x]√
Var[x] + ε

+ β (3)

1.4. Stochastic gradient descent

SGD has been shown to be an effective tool to train the DNN. It is an extension of ordinary gradient

descent. In ordinary gradient descent, the model parameters θ are repeatedly updated by taking small

steps downward on an error surface that is defined by an objective function E(θ); here it is the cost
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function L(θ,x) as Equation (3) or (6) in the main paper. At each iteration e, the step size is set by

the learning rate ε, and the direction of each step equals the back-propagated gradient of the objective

function over the N entire training set:

∇E(θ,x) =
∂L(θ,x)

∂θ
=

1

N

N∑
i=1

∂L(θ, xi)

∂θ
(4)

θe = θe−1 − ε∇E(θe−1,x)

= θe−1 −
ε

N

N∑
i=1

∂L(θe−1, xi)

∂θe−1
(5)

SGD works identically to ordinary gradient descent, except that in each iteration it only uses a ”batch”

(a subset m of N) of training samples in computing the gradient. The training samples are divided into

multiple batches in advance. SGD iterates through different batches and updates the parameters until

the value of the cost function stops decreasing (hitting the optimum).

∇E(θ,x) =
1

m

m∑
i=1

∂L(θ, xi)

∂θ
(6)

SGD speeds up the convergence because in every iteration when updating the values of the parameters,

it is not necessary to run through the complete training set in order to update the parameters. It is

”stochastic” because using batch approximations introduces noise in estimating the true gradient: the

gradient over all training samples. Although such estimation is biased, it leads the DNN to skip over

poor local minima that traditional GD would fall into. Meanwhile, it reduces variance of the gradients

[7], which helps prevent the DNN from overfitting [8]. Most importantly, SGD makes better use of the

memory allocation in computers since the training data in large scale ML task are usually too large to

be fitted into the local memory.

1.5. Momentum

Momentum [9] has become a common trick in achieving the state-of-the-art performance. If the

objective function has the pattern of a long shallow ravine leading to the optimum with steep walls on

the sides (a deep ”U” shape with optimum at the bottom), the SGD tends to oscillate across the optimum

since the gradient will point down to steep sides rather than along the way direct towards the optimum.

Deep architectures are shown to have similar patterns near the local minima [10], therefore, ordinary

SGD can lead to slow convergence; particularly after the initial steep gains. The momentum technique is

one way to pull the objective function along the shallow ravine. It speeds up the convergence, and reduces

the risk of oscillating by incorporating the gradient information from previous steps. Mathematically, the

momentum term µ ∈ (0, 1] determines to what extent previous gradients are combined into the current

update. As a rule of thumb, µ is set to 0.5 in first epochs. After the training stabilises, it is increased to

0.9 or higher in later iterations. In epoch e, the model parameters θ are updated as Equation (7).

θe =θe−1 −∆θe

∆θe =µe∆θe−1 + (1− µe)εe∇E(θe−1) (7)

3



1.6. Decaying learning rate

SGD is sensitive to the learning rate since it indicates how big a step should be taken in each

update. The intuition in choosing the learning rate is that we should decrease it as the number of

updates increases, otherwise the training process will just oscillate near the local minima. A naive

implementation is that we decay the learning rate by a certain percent after each epoch (an epoch is one

run that SGD iterates over all the batches of training data). There are other advanced methods, such

as Adagrad [11] and Adadelta [12], that can dynamically set a learning rate.

1.7. Early stopping

Improving the DNN’s fitness to the training data often comes at the cost of increased generalisation

error; i.e the overfitting problem. In order to prevent overfitting, we stop the SGD procedures earlier,

before the cost function converges to the true best minimum. Early stopping technique [13] offers

guidance as to how many updates are allowed before the learner starts to overfit. Such guidance is based

on measuring the model’s real-time performance on a pre-allocated validation set. If the performance

on the validation set stops improving for a long time and it exceeds the limit of patience (a self-defined

parameter), then the training process will be stopped because it has probably met the local minima.

1.8. Implementation Details

We have implemented the simple benchmark classifiers (i.e., logistic regression, Naive bayes, decision

tree) with the help of the scikit-learn library [14] in Python. The Scikit-learn library offers the option of

weighted class samples. To take the unbalanced class issue into account, we tried different weight values,

ranging from 1 to 15, and selected the one with the best performance for each algorithm. Other hyper-

parameters in the library API were set at default, other than those specifically mentioned in Section 2

in the online Appendix. For more advanced ML algorithms ( i.e., SVM, ensemble methods), we have

employed a big data framework: Hadoop + Spark. ML algorithms with iterative calculations often

prohibit researchers from performing large scale data analysis. For example, in the work of comparing

ML algorithms in the problem of mortgage default prediction, even with 300, 000 training samples,

SVM is regarded as computationally infeasible due to its O(N3) complexity [15]. By using a special

data abstraction called Resilient Distributed Dataset (RDD) and caching the RDD into memory, Spark

offsets the weakness of low efficiency on running iterative jobs for a traditional Hadoop framework [16].

This makes machine learning on big data possible. We deployed the Hadoop + Spark architecture on

Amazon EC2. Nineteen m1.xlarge salves each with 4 cores and 12.6gb memory were used.

1.9. GPU Implementation

DNN has a massively parallel structure. Training DNNs heavily depends on matrix calculations

which can be computed simultaneously. This makes the training task perfectly suitable for speeding up

by graphics processing units (GPUs). A GPU has thousands of cores, and can thus support large scale

of parallelisations. In the task of training DNNs, it can offer 20 times faster speeds compared to the

CPUs [17]. With the aid of GPU, we were able to train huge DNNs (e.g. millions of parameters) in a

timely manner.
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Algorithm 1 Pseudo code for training DNN

Input: Training data set (Xtrain,Ytrain), N samples with P features; Validation data set (Xvalid,Yvalid),

N ′ samples with P features. Xtrain and Xvalid are normalised before input.

Input: Number of hidden layers: I, the i-th hidden layer with hi neurons; Corruption rate in the i-th

layer of dA: qi; Activation functions in encoders or decoders: h(·), g(·); Cost function in layer-wise

pre-training or fine-tuning: Lp(·), Lf (·)

Input: Learning rate of pre-training or fine-tuning in the e-th epoch: εp e, εf e; Momentum in the e-th

epoch: ue; Batch size in SGD: B; Maximum number of epochs in pre-training or fine-tuning stage:

N,M ; Dropout rate in the i-th hidden layer: pi

Output: DNN for later inference, e.g., making predictions on out-of-sample dataset

1: Xavier’s Initialisation: i-th layer encoder / decoder bias and weights [bi, b̃i] = 0,

[Wi,W̃i] ∼ Gaussian(0,
2

hi−1 + hi
)

2: // Layer-wise unsupervised pre-training via denoising autoencoder:

3: x0 = Xtrain, e = 0 // setting the input and the epoch counter

4: for i ∈ (1, 2..., I) do

5: // encoder’s outputs from previous layer is used as the input for the subsquent layer

6: xi = h(Wi−1 · xi−1 + bi−1)

7: while e ≤ N do

8: for j ∈ (1, 2...,
N

B
) do

9: // Corrupting the j-th input batch of data xji by randomly knocking out samples

10: x̂ji ← xji ∗Binomial (n = B, p = qi)

11: // Computing the reconstruction of x̃ji through the encoder and decoder:

zji = g(W̃e
i · h(We

i · x̂
j
i + bei ) + b̃ei )

12: // Computing the reconstruction error:

Lp(x̂
j
i, z

j
i | Θ) = Lp(x̂

j
i, z

j
i |We

i ,b
e
i ,W̃

e
i , b̃

e
i )

13: // Computing the average gradient among a batch and update the parameters:

We+1
i ←We

i −
εp e
B

B∑
k=1

∂Lp(x̂
j k
i , zj ki |Θ)

∂We
i

,be+1
i ← bei −

εp e
B

B∑
k=1

∂Lp(x̂
j k
i , zj ki |Θ)

∂bei

W̃e+1
i ← W̃e

i −
εp e
B

B∑
k=1

∂Lp(x̂
j k
i , zj ki |Θ)

∂W̃e
i

, b̃e+1
i ← b̃ei −

εp e
B

B∑
k=1

∂Lp(x̂
j k
i , zj ki |Θ)

∂b̃ei
14: end for

15: if Lp(Xvalid | Θ) meets the early stopping condition then

16: Save the weights and bias of the encoder in each layer

17: break

18: end if

19: e += 1

20: end while

21: end for
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22: // Supervised fine-tunning the whole network:

23: Initialise parameters in the batch normalisation layer: γi ∼ Uniform(−hi, hi),βi = 0

24: Xavier’s Initialisation: softmax layer weight Ŵ ∼ Gaussian(0,
2

hi + 2
),bias b̂ = 0

25: x0 = Xtrain, e = 0 // resetting the input and the epoch counter

26: while e ≤M do

27: for j ∈ (1, 2...,
N

B
) do

28: // Feed forward to compute the outputs for each batch of training data:

29: for i ∈ (1, 2..., I) do

30: xji = h(We
i · x

j
i−1 + bei ) // inherit the weights and bias from pretrained encoder

31: x̂ji = γei ·
xji − E[xji ]√
Var[xji ] + ε

+ βei // batch normalisation layer

32: // Drop out the neurons with their corresponding weights and outputs:

33: x̂ji ← x̂ji ∗Binomial (n = hi, p = pi)

34: end for

35: Yj
predict = softmax(Ŵe · x̂jI + b̂e) // softmax layer outputs the predictions

36: // Computing the cost function:

Lf (Yj
predict,Y

j
train | Θ) = Lf (Yj

predict,Y
j
train |We

1∼I ,b
e
1∼I ,Ŵ

e, b̂e,γe1∼I ,β
e
1∼I)

37: // Computing the gradient and update the parameters of the softmax layer

38: θ : {Ŵ, b̂} // parameters to update

39: ∆θe+1 = µe∆θ
e + (1− µe)

εf e
B

B∑
k=1

∂Lf (Yj k
predict,Y

j k
train|Θ)

∂θe
// with momentum

θe+1 ← θe −∆θe+1

40: // Propagating back gradients and update intermediate layers

41: for i′ ∈ (l, l − 1, ..., 1) do

42: θ : {Wi′ ,bi′ ,γi′ ,βi′} // parameters of hidden and batch normalisation layers

43: // Applying chain rules

44: ∆θe+1 = µe∆θ
e+(1−µe)

εf e
B

B∑
k=1

∂Lf (Yj k
predict,Y

j k
train|Θ)

∂x̂jl
·
i′+1∏
i∗=l

{
∂x̂ji∗

x̂ji∗−1

}
·
∂x̂ji′

∂θe

 θe+1 ←

θe −∆θe+1

45: end for

46: end for

47: if Lp(Y
j
predict,Y

j
train | Θ) meets the early stopping condition then

48: Save the DNN

49: break

50: end if

51: e += 1

52: end while
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2. Hyper-Parameter Tuning for the DNN and Benchmark ML Classifiers

The (predictive) performance of a learning algorithm depends on the setting of algorithmic hyper-

parameters. Tuning hyper-parameters in a model selection stage is important to ensure that an algorithm

performs well on a given data set [18]. We tune the proposed DNN and ML benchmark classifiers in

such a way that we reserve a fraction of 20% of the training set as a validation data to assess candidate

models with different hyper-parameter settings. We then use the model with the best hyper-parameter

configuration in terms of validation set performance to generate risk predictions for the trades in the test

set. Given that we employ n-fold cross-validation, the model training and evaluation occurs n times. In

theory, this suggests that the selection of suitable hyper-parameters should also be undertaken n times;

once for each loop of cross-validation. Given the computational effort associated with training advanced

learning algorithms on a large data set and the number of alternative hyper-parameter settings, repeating

model selection n times is computationally infeasible. Therefore, we perform model selection only once in

the first iteration of cross-validation. In subsequent iterations, we retrain the learning algorithms using

the hyper-parameter specification identified as most suitable in the first cross-validation iteration.

We acknowledge that our model selection approach suffers the limitation that it uses only a rel-

atively small amount of data to tune hyper-parameters. More specifically, when setting n = 10 in

cross-validation, training sets comprise roughly 90% of the available data out of which 20% are used

as validation set. Therefore, the single validation partition on which we assess the predictive perfor-

mance of candidate hyper-parameter settings is roughly 18% of the full data set. While computational

considerations render model selection in every round of cross-validation infeasible, we suggest that our

approach is also suitable. Our motivation for this view is twofold. First, 18% of the full data set are

still a sizeable amount of data in absolute terms, as we work with a large data set including about 30

million trades. Second, the DNN classifier exhibits the largest number of different hyper-parameters and

hyper-parameter candidate settings in the comparison. DNNs are also considered sensitive with respect

to hyper-parameter choices, which suggest that model selection is particularly important for DNNs.

Consequently, reducing the amount of hyper-parameter tuning in our approach compared to a full model

selection in every cross-validation iteration provides a conservative evaluation of the ability of the DNN.

If the available resources facilitates a more comprehensive tuning of hyper-parameters, it is plausible to

expect the DNN to benefit the most from such additional tuning.

The range of candidate settings that we consider for each learning algorithm is based on previous

literature, while accounting for both the large size of the data set and computational feasibility. More

specifically, we draw inspiration from previous classifier comparisons [18, 19, 15, 20] to identify candidate

settings for the ML benchmarks. For the DNN, we follow the recommendations of [21] and consider the

candidate hyper-parameter settings he proposes. We also follow the advice of [21] to not tune DNN hyper-

parameters using grid-search, which would involve a full-enumerative search across all combinations of

hyper-parameter candidate settings that is computationally intractable, but to use random search. Other

than using random search, the tuning process for the DNN is the same as that for the ML benchmarks.

Table 1 and Table 2 report the candidate hyper-parameter settings that we consider during the tuning

of the DNN and the ML benchmarks, respectively.
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Table 1: Candidate Hyper-Parameter Settings for the Proposed DNN

Attribution Hyper-parameter Range Selected

DNN Topology

Number of hidden layers (dAs) [2, 3, 4, 5, 6]

Number of hidden units in each hidden layera [32, 64, 128, 256, 512, 1024, 2048]

Weight decay regularizer λ in dA [10−2, 10−3, 10−4, 10−2, 10−3, 10−5]

Corruption rate in each hidden layerb [0.2, 0.3, 0.4, 0.5]

SGD Training

Learning rate in pre-training [1, 10−1, 10−2, 10−3, 10−4]

Learning rate in fine-tuning [1.5, 1, 0.5, 0.1, 0.05, 0.01]

Learning rate decayc [0.99, 0.995, 0.999]

Number of samples in minibatch [10, 20, 30, 50, 100, 150, 200]

Momentum intervald [200, 500, 800]

Momentum startd 0.5

Momentum endd [0.9, 0.99]

Number of epochs in pre-training [30, 50, 70]

Maximum number of epochs in fine-tuninge [500, 1000, 1500]

Dropout Dropout rate in each layerf 0.5

Notes: a) The number of neurons in the middle layers is selected larger than the the number of hidden units in the

first and top layers, e.g., 4 hidden layers: [64, 256, 512, 32]. b) The corruption rate is set in an increasing way, e.g.,

4 hidden layers: [0.2, 0.3, 0.4, 0.5]. c) In the pre-training stage, the learning rate is fixed. In the fine-tuning stage,

the learning rate decays by a given percent in each epoch. d) For epoch e ∈ [0, momentum interval ], the momentum

µe increases linearly from momentum start to momentum end. After that, it stays at momentum end. e) In the

fine-tuning stage, we also use early stopping. Be aware that the training process can stop before the current epoch

reaches the maximum number. f) The dropout rate is the same for all dropout layers.
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Table 2: Candidate Hyper-Parameter Settings for ML Benchmark Classifiers

Algorithm Hyper-Parameter Candidate Settings

Naive Bayes n.A.

Logistic Regression
form of regularization

regularizer

none, L2, L1, forward selection

{ 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103 }

Artificial Neural Network number of hidden units 2, 8, 31, 64, 128

Support Vector Machine
kernel function

regularizer

linear

{ 10−4,10−3,10−2,10−1,1,101,102,103}

C5.0 Tree
splitting criterion

max. depth

entropy , gini-impurity

2, 4, 6, 8, 12, 16,20

Random Forest

number of trees

max. depth

random subspace

32, 64, 128, 256, 512, 1024, 2048

1, 2, 4, 8, 20

2, 5, 10, 15, 31

Adaptive boosting
number of trees

max. depth

32, 64, 128, 256, 512, 1024, 2048

1, 2, 4, 8

3. Analysis of Feature Importance Using Random Forest

The main paper uses the Fisher-score to investigate the relative importance of individual features for

predicting the status of individual traders (see Section 5.3 in the main paper). The Fisher-score ranking is

univariate and cannot detect nonlinear patterns in the feature response relationship. To further elaborate

on the relevance of individual features, we also examine feature importance using a random forest (RF)

classifier. Feature importance scores extracted from tree-based ensemble classifiers are a popular way to

quantify the relative impact of features on the response variable [22]. Figure 1 depicts the distribution of

RF-based normalized importance scores for the first fifty features (ordered in terms of importance); the

remainder being omitted to ensure readability. We highlight those features that have previously been

identified as important by the Fisher-score.

Comparing Figure 1 and Table 2 in the main paper reveals differences between the variance adjusted

comparison of group means, which the Fisher-score embodies, and the RF-based ranking. For example,

the strongest feature according to that table, ProfitxDur20, does not appear in Figure 1 and the highest

rank that a feature of the Fisher-score ranking achieves in Figure 1 is ten, as observed for the feature

capturing a trader’s average over the last twenty trades prior to the decision point. Interestingly, this

feature, PassAvgReturn20, is the one that STX use in their hedging policy.

RF generates importance scores through comparing (out-of-bag) classification performance on the

original data and that data after corrupting one feature through adding random noise. The magnitude

of the performance decrease captures the importance of the corrupted feature [22]. This implies that RF

assesses the importance of one feature vis-a-vis all other features, whereas the Fisher-score assesses one

feature at a time. Given the different mechanism to measure importance, some differences between the

RF and Fisher-score ranking are to be expected. It is still surprising that the most important features
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Figure 1: Normalized variable importance scores based on RF-classifier for the top 50 features. Dark color identifies features

that also appear in the Fisher-score ranking in the main paper

of the latter receive relatively low ranks in Figure 1. An interpretation of this result is that it evidences

intricate dependencies between the binary response and features, which the Fisher-score does not capture.

With respect to the complexity of the feature-response relationship, the distribution of importance

scores in Figure 1 may be considered evidence of a set of three to four features being particularly strongly

related to the response. We caution against this interpretation. The distributional shape is a consequence

of the scaling of the y-axis, to ensure readability of the figure. The magnitude of importance scores is

small, even for the left-most features. Therefore, importance differences between features (e.g., feature

four and five) appear more substantial than they are. Recall that the scores capture the degree to which

RF performance decreases if we corrupt one feature. Given the magnitude of importance scores, we

interpret the results of Figure 1 as evidence of a low signal between the raw features and the future

success of a trader. This emphasizes the trader classification task to be challenging. Even a powerful RF

classifier, often observed to predict accurately [18, 20, 23], fails to identify strong dependencies among

the raw features and the target. Low importance scores also question representativeness of the training

data. This motivates our analysis whether a DNN, equipped with higher depth than RF, is able to learn

more abstract, latent, features that enable predicting traders’ future performance more accurately than

conventional ’shallow’ learners.

We complete the analysis of feature importance by aggregating importance scores across the main

feature groups in Figure 2. The analysis offers insight as to the relative importance of different types

of trader characteristics. The results displayed in Figure 2 agree with the views of STX dealing desk

members. We find trader demographics and features in the markets & channels category to carry least

weight, which reinforces the view that propensity for risk taking may be attributed to the competence

and trading style rather than particular country of origin or gender. Past performance and trading

discipline are most important for high risk trader identification, substantiating the claim that features
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capturing the professional behavior of traders are of primary value for the task at hand.

Figure 2: Analysis of group-level feature importance. The aggregation is performed by adding up the RF-based importance

scores of all features belonging to the same group and normalizing group-level scores to sum to unity.

4. Robustness of the DNN With Respect to Random Weight Initialization

We train the DNN using stochastic gradient descent. Starting the minimization of the loss function

from randomly initialized weights using Xavier initialization (see above), gradient descent will deliver

different solutions depending on the random initial weights. Therefore, the performance of the DNN

may vary with random initial weights. To examine the robustness of the DNN with respect to the initial

weights, we repeat the initialization ten times, develop a DNN model on the training set, and assess its

performance in terms of the AUC on the test set. More specifically, we first invoke the random number

generator using a seed of 123. Using this seed, we draw ten pseudo-random integer numbers ranging

from zero to 10,000. We store these numbers as seed values for the analysis of DNN robustness. That is,

we loop over the ten random numbers and use the current number as seed value for the random number

generator prior to training a DNN with randomly initialized weights. We then assess the performance

of the resulting DNN in terms of the AUC. Table 3 reports corresponding results and suggests that the

dependence of the DNN with respect to initial weights is not substantial.

5. Comparing the DNN to Other DL Models

The following subsections augment the empirical results presented in the main part of the paper. We

explain in the main part of the paper that the ability to learn high level distributed representations from

input data is not specific to the DNN we propose here. Prior literature credits the whole family of DL

methods for this feature [17]. Therefore, we experiment with other popular DL methods and compare

their performance in trader risk behavior forecasting to that of the proposed DNN. Corresponding results

shed light on the effectiveness of the proposed DNN relative to other DL benchmarks and contribute
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Table 3: Robustness of DNN Performance With Respect to Initial Weights

Seed AUC

3582 0.821

1346 0.841

5218 0.833

7763 0.829

9785 0.815

7382 0.831

5857 0.846

96 0.828

6257 0.845

6782 0.830

Mean 0.832

additional insight to what extent unsupervised pre-training as well as other architectural choices we have

made contribute to the performance of our DNN.

Considering encouraging results in the area of mortgage default prediction [24], the first DL bench-

mark we consider consists of a deep feed-forward network (DFNN) with more than one hidden layer.

We also consider a convolutional neural network (CNN). While prior work has, to our best knowledge,

not considered CNNs for risk analytics, CNNs have shown excellent results in other domains [25], which

indicates that they represent a useful benchmark. Finally, using the sequence of trades per trader as a

time-ordered input, we compare the proposed DNN to a recurrent neural network with long short-term

memory cells (LSTM) [26]. Using the same performance indicators and statistical tests as in the com-

parison to ML benchmarks (Table 3 in the main paper), we report the results of the three DL methods

together with those of our DNN in Table 4.

While results in the main paper are based on cross-validation to ensure robustness, comparisons to

other DL approaches are undertaken using a simpler, computationally less demanding split-sampling

approach. This approach involved partitioning the data sequentially into a training set (70%) for de-

veloping predictive models and a test set (30%) for assessing their accuracy. Trades from November

2003 to April 2013 entered the training set, whereas trades from May 2013 to July 2014 served as the

hold-out test set. To address the class imbalance in the comparison, we bootstrapped the test set with

different ratios of class ’+1’ trades ranging from 0.05, 0.1, ... 0.5, and drew 1000 bootstrap samples for

each ratio. This approach enabled examining the performance of the DNN across different scenarios with

varying degrees of class skew and increased robustness because it implied repeating the out-of-sample

evaluation 11000 times on different (bootstrapped) test sets. At the same time, bootstrapping the test

set is substantially less computationally demanding than using cross-validation and SMOTE; that is the

approach we take in the main part of the paper.

The overall conclusion from Table 4 is that the other DL benchmarks do not perform as well as the
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proposed model. Our DNN consistently achieves the best performance across evaluation criteria and

class ratios. Therefore, Table 4 supports the proposed DNN and its underlying topological choices (see

Figure 3 in the main paper). In particular, none of the three DL benchmarks employs unsupervised

pre-training. Therefore, the superior performance of the proposed DNN may be taken as evidence for

the suitability of unsupervised pre-training.

However, we caution against over-emphasizing results of Table 4. DL methods are complex and

require careful tuning to unfold their full potential. This paper focuses on one particular type of DNN

and its potential to support decision-making in risk management. Performing a fully-comprehensive

benchmark of several alternative complex DL models is beyond the scope of the paper. Accordingly,

we do not claim superiority of the proposed DNN to deep, feed-forward networks, CNNs and other DL

methods in general, and acknowledge that more elaborate tuning of corresponding approaches may give

performance comparable to the DNN we employ.
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Table 4: Comparison of Proposed DNN Against Other Deep Learning Benchmarks

Metrics
Bootstrap with different percentage of high risk clients

Classifiers 0.05 default 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

P&L

(million)

Proposed DNN 22.50 18.30 14.92 7.43 -0.25 -7.84 -16.07 -23.28 -30.85 -38.70 -45.83

DFNN 19.54 16.43 12.53 5.42 -2.34 -8.90 -18.43 -25.65 -32.54 -40.55 -52.21

CNN 20.53 14.43 12.43 5.01 -4.53 -9.42 -19.43 -30.43 -35.62 -47.33 -54.45

LSTM 21.09 15.01 14.2 3.54 -5.42 -9.21 -17.54 -26.75 -34.53 -45.76 -50.54

AUC

Proposed DNN 0.813 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812 0.812

FDNN 0.704 0.704 0.704 0.604 0.703 0.704 0.704 0.704 0.705 0.704 0.704

CNN 0.793 0.793 0.793 0.793 0.791 0.793 0.793 0.793 0.793 0.793 0.793

LSTM 0.745 0.745 0.745 0.745 0.746 0.745 0.743 0.744 0.745 0.745 0.745

F-Score

Proposed DNN 0.248 0.282 0.298 0.318 0.331 0.338 0.343 0.347 0.35 0.352 0.354

DFNN 0.11 0.204 0.242 0.284 0.302 0.303 0.305 0.340 0.335 0.301 0.330

CNN 0.094 0.032 0.199 0.242 0.303 0.306 0.312 0.302 0.329 0.339 0.302

LSTM 0.081 0.225 0.205 0.209 0.321 0.312 0.309 0.301 0.321 0.305 0.329

Notes: We tune the hyper-parameters of the three DL benchmarks using grid-search in the same manner as the ML

benchmarks. The hyper-parameters and search spaces we consider are as follows. DFNN : no. of hidden layers [2, 3, 4], no.

of neurons per hidden layer [50; 200]. CNN no. of convolutional layers [2, 3, 4], filter size 3, max. pooling size = 2. LSTM

no. of hidden layer [2, 3]. FDNN and CNNs use activation functions of type ReLu in the hidden layers.
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