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ABSTRACT Learning a task such as pushing something, where the constraints of both position and force
have to be satisfied, is usually difficult for a collaborative robot. In this work, we propose a multimodal
teaching-by-demonstration system which can enable the robot to perform this kind of tasks. The basic idea
is to transfer the adaptation of multi-modal information from a human tutor to the robot by taking account
of multiple sensor signals (i.e., motion trajectories, stiffness, and force profiles). The human tutor’s stiffness
is estimated based on the limb surface electromyography (EMG) signals obtained from the demonstration
phase. The force profiles in Cartesian space are collected from a force/torque sensor mounted between the
robot endpoint and the tool. Subsequently, the hidden semi-Markov model (HSMM) is used to encode
the multiple signals in a unified manner. The correlations between position and the other three control
variables (i.e., velocity, stiffness and force) are encodedwith separate HSMMmodels. Based on the estimated
parameters of the HSMM model, the Gaussian mixture regression (GMR) is then utilized to generate the
expected control variables. The learned variables are further mapped into an impedance controller in the joint
space through inverse kinematics for the reproduction of the task. Comparative tests have been conducted to
verify the effectiveness of our approach on a Baxter robot.

INDEX TERMS Robotic control, stiffness and force adaptation, multimodal learning, physical human-robot
interaction.

I. INTRODUCTION
Robots are increasingly expected to become intelligent
enough to automatically adapt to future industrial applica-
tion scenarios, where small batch production, personalized
demand and short cycle are the basic requirements that need
to be well satisfied [1]. Unfortunately, due to a number of
problems nowadays’ robots are far beyond of this expecta-
tion. One of the core problems behind this is how to enable a
robot to efficiently learn a skill when dealing with a specific
task [2], [3]. Traditional robotic programming techniques
are often time consuming, low efficiency and high labor
cost, making it not suitable for the usage for the learning of
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robotic skills. One possible and promising way is to transfer
skills to the robots by using machine learning and artificial
intelligence approaches, which has recently attracted much
attention in the field of robotics. For example, robots could
be enabled to learn skills from humans, other real-world/
simulated robots, or even by watching videos [4], etc.

Among these approaches, teaching-by-demonstration
(TbD) is considered as an effective and efficient way for
robots to directly learn skills from humans [5], [6]. In a
typical TbD system, the robot can imitate the human tutor’s
behaviour/action after the human tutor demonstrates how to
perform a task, which is quite different from the traditional
ways. One great advantage of TbD is that an expert (e.g.,
a mechanical engineer or a software developer) is no longer
strongly demanded in a production line for the programming
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FIGURE 1. The overview of the proposed approach. It consists of a two-phase
learning-reproduction architecture: in the learning phase, multimodal sensor signals
collected from human demonstration are encoded, in order to learn control variables
that can account for a specific task. In the reproduction phase, the robot is then
required to perform the task based on the learned multimodal control variables.

of the robot since TbD can low technical barriers and an
ordinary worker could efficiently program the robot through
demonstration [7], [8].

In order to facilitate human-robot interaction and collab-
oration, a number of light-weight robotic platforms (e.g.,
Baxter and Sawyer from Rethink Robotics) have been very
recently developed. These robots are designed and man-
ufactured with the purpose that humans can directly and
friendly interact or collaborate with the robots. The output
forces/torques are usually restricted into a proper range for
the concern of safety. However, it is strange to find that
to perform a task which looks like a easy one (e.g., push-
ing a button) seems sometimes not easy at all for a light-
weight robot (e.g., Baxter). This may be due to the limited
output forces, but more importantly the lack of adaptability
which is, however, necessary for the tasks that require the
consideration of force/stiffness constraints [9], [10]. This
paper aims to provide a promising TbD solution to this
problem.

One advantage of TbD is that human factors are taken
into account, by integrating the flexibility and adaptability of
humans into the human-in-the-loop robotic systems [11]. For
now, however, a number of problems needed to be addressed
before its real applications in industry, one of which should

be the development of approaches enabling robots to per-
form tasks in a human-like manner, in order to improve the
robotic adaptability as stated above. Here, we use the term
human-like referring to that robotic arms share the similarity
of the adaptability of human limb muscle control strateg-
ies [12], [13]. This work aims to take one step towards this
goal by developing a multimodal PbD system. The encoding
of multimodal sensor signals has been verified effective in
a number of task requirements, e.g., precision motion con-
trol [14]. Specifically, the multimoddal data considered in
this work includes robotic endpoint states (i.e., position and
velocity), EMG signal extracted from human arm, and force
data collected from the force sensor mounted between the
endpoint and the tool.

The presented approach is shown in Fig. 1. It basically
consists of two parts: Learning and Reproduction. In the
learning part, the collected data are used to estimate the
model parameters. And in the reproduction part, the robot per-
forms the same task as demonstrated with the learned knowl-
edge. Specifically, our approach enables the robot to learn
task information from humanmultimodal demonstration. The
experiment result shows that the multimodal learning can
achieve a better performance than using single modality when
dealing a task with position and force constraints like pushing
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some objects. The details of our approach will be present in
Section III.

II. RELATED WORK
Generally, most work in the field of TbD has concentrated
on the transfer of motion features from humans to robots
through kinematics demonstration. This strategy has been
successfully applied to several tasks where force constraints
have small influences on the execution performance of the
demonstrated tasks. When regarding in-contact tasks [15],
however, stiffness/force regulation needs to be considered
in addition to position constraints. Several papers have
recently reported their methods on the regulation of stiffness/
force in the process of human-robot skill transfer (see,
e.g., [16]–[19]). Generally, like humans motor learning [20],
variable impedance control is also needed for robots to satisfy
both position and force constraints, in order for compliant
adaptation to different task requirements.

Typically, the gains in the impedance controller are reg-
ulated by representing them with the use of a function
approximator. The approximator is initialized with constant
gains and then refined with reinforcement learning techniq-
ues [21]–[23]. It usually needs many trials to ultimately learn
the proper stiffness profiles. In [15], [24], the stiffness matrix
is estimated over the collected set of demonstrated force
profiles, where the stiffness adaptation highly depends on the
distribution of the force along relevant directions.

In this paper, we propose a more natural way for the real-
ization of stiffness adaptation by estimating the human tutor’s
limb stiffness based on the EMG signals and then transferring
the stiffness to the robot arm. The human arm endpoint
stiffness can be traced online by using a computationally
efficient Cartesian stiffness estimation model [25], [26]. The
EMG-based impedance control strategy has been instigated
and successfully applied to a number of robotic systems (see,
e.g., [13], [27]). Here, we directly collect the EMG data from
the human tutor’s upper limb for stiffness estimation along
with kinematics demonstration, without the need of a learning
process of obtaining proper stiffness profiles.

For the encoding of the demonstration data, Dynamic
Movement Primitive (DMP) is a widely used approach. In our
previous work [28], [29], we developed a DMP framework
for the representing of the motion and the stiffness simultane-
ously. However, DMP models each variable separately, with-
out considering the correlation information between different
variables. Instead, probabilistic algorithms such as Hidden
Markov Model (HMM) can be used to represent the corre-
lation by encoding a joint-probability density function over
the demonstration data. In [30], a HMM-based approach is
proposed with the combination of Gaussian Mixture Regres-
sion (GMR) to generate the control variables via regression.
In [31], Hidden Semi-MarkovModel (HSMM) is further used
instead of theHMMmodel, in order to improve the robustness
of the robotic system against external perturbations in tempo-
ral space. In [15], the HSMM-GMR model is further used to
model motion as well as force data for in-contact tasks.

Inspired by the work [15], [30], [31], in this paper
we further extend the HSMM model by adding another
joint-probability density function for the modelling of the
distribution between position and stiffness. This extended
information is based on the fact that the demonstration pro-
files from human about force, velocity and stiffness, as well as
their co-relationwith the positions, are all crucial for the robot
to learn. Therefore, such learned model is further integrated
into a EMG-based variable impedance control strategy as
a unified skill representation model. thus enabling to inte-
grate EMG-based variable impedance control strategy into
the unified skill representation model. GMR is as well used
to generate the expected control variables, which are then
properly mapped into an impedance controller.

III. METHODOLOGY
A. EMG-BASED STIFFNESS EXTRACTION
First, the raw EMG signals collected from the human tutor’s
arm are processed to extract an enveloping, which is used
to reflect the co-activation level of the muscles. Generally, a
moving average process and a low-pass filter are employed
to obtain the enveloping. Based on the co-activation level,
the human tutor’s arm endpoint stiffness can be estimated by
using a commonly-used perturbation procedure [27], during
which several trials with various arm conditions are per-
formed to identify the mapping between the position dis-
placement of the human arm endpoint and the restoring force
applied onto the endpoint. Once the endpoint stiffness matrix
is determined, during demonstration the human arm endpoint
stiffness can be obtained in a real time manner. Finally,
the human endpoint stiffness needs to be mapped into the
robot impedance controller in the joint space. In order tomake
the robot work functionally, the amplitudes of the stiffness
profiles are restricted within a proper range of stiffness val-
ues. Here, we do not providemuch description about this part,
please see [13], [27] for more details.

B. HSMM-GMR MODEL DESCRIPTION
Considering a set of observations collected from the demon-
strations, i.e., {xm, ẋm, km,Fm}Mm=1, where x and ẋ represent
the position and velocity of the robot endpoint, respectively;
k the robot endpoint stiffness described above, and F the
force collected from the force sensor mounted onto the robot
endpoint.

First, HSMM is used to model the demonstration data.
Then, GMR is used to generate the expected control variables
based on the estimated parameters of the HSMM model.

1) DATA MODELLING WITH HSMM
The HSMM model is usually parametrized by:

2 = {{ai,j}Kj=1,j 6=i, πi, µ
D
i , 6

D
i ,µi,6i}

K
i=1 (1)

where K is the model states. πi is the initial probability of the
ith state. aij represents the transition probability from state
j to i. µDi and 6D

i are means and variances, respectively,
modelling the K Gaussian parametric duration distributions.
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µi and 6i represent mean vectors and covariance matrices of
the K joint observation probabilities, respectively.

The ith state duration probability density function is
defined as

pDi (t) = N (t;µDi , 6
D
i ) (2)

with t = 1, . . . , tmax , where tmax is the maximum allowed
duration of a HSMM state which can be determined by

tmax = γ
Tmax
K

(3)

where Tmax is the samples of these demonstrations. γ is a
scaling factor that is usually set 2 such that state duration
probability density function can be well modelled even if EM
converges poorly [31].

The observation probability at each time step t for the ith
state is defined by

pi(zt ) = N (zt ;µi,6i) (4)

with 1zt = [xTt ẋTt ]
T , 2zt = [xTt kT ]T and 3zt =

[xTt FT ]T are the concatenation of the observed variables at
each time step t , corresponding to the three sets of obser-
vations, i.e., {xm, ẋm}Mm=1, {xm, km}

M
m=1, and {xm,Fm}Mm=1,

respectively.
For simplicity, then, the mean vector µi and the covariance

matrix 6i of each of these concatenations are separately
represented as 

1µi =

[
µxi

µẋi

]

16i =

[
6xx
i 6xẋ

i

6ẋx
i 6ẋẋ

i

] (5)

and 
2µi =

[
µxi

µki

]

26i =

[
6xx
i 6xk

i

6kx
i 6kk

i

] (6)

and 
3µi =

[
µxi

µFi

]

36i =

[
6xx
i 6xF

i

6Fx
i 6FF

i

] (7)

The three sets of {µi, 6i} are used to parametrize the joint
Gaussian distributions P(x, ẋ), P(x, k), and P(x,F), respec-
tively. Namely, these three joint Guassian distributions are
modelled in parallel (see Fig. 2). The parameters of the
HSMMmodel, i.e.,2 are estimated based on the demonstra-
tion data.

FIGURE 2. Graphical representation of the basic idea of the multimodal
robotic learning strategy, in which three joint Gaussian distributions are
used to encode the multimodal signals. The three HSMM models are
trained separately in this work.

2) TASK REPRODUCTION WITH GMR
We compute the expected control variables with the GMR
model. Their expectations are computed according to the
current HSMM state given the reference position:

ẋ∗t =
K∑
i=1

hi,t [µẋi +6
ẋx
i (6xx

i )−1(xt − µxi )] (8)

k∗ =
K∑
i=1

hi,t [µki +6
kx
i (6xx

i )−1(xt − µxi )] (9)

F∗t =
K∑
i=1

hi,t [µFi +6
Fx
i (6xx

i )−1(xt − µxi )] (10)

where hi,t represents the brief distribution of the K th
HSMM state. It should be noted that the model parame-
ters {µi, 6i, hi,t } should be different for each corresponding
HSMM-GMM model since different modal data have been
taken as input into the different models for training. Here, for
simplicity they are written in the same format.

And hi,t are computed by

hi,t = P(st = i; z1:t ) =
ai,t∑K
κ=1 aκ,t

(11)

The denotation ai,t represents the forward variable of the
HSMM model and computed by

ai,t =
K∑
j=1

min(tmax ,t−1)∑
d=1

aj,t−daj,ipDi (d)

t∏
s=t−d+1

N (xs;µxi , 6
xx
i ) (12)

with initiation in each sate:

ai,1 = πiN (x1;µxi , 6
xx
i ) (13)
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FIGURE 3. The HSMM-GMR skill learning diagram. The HSMM model parameters µ, 6 and h are offline estimated to form the information pool. During
the reproduction phase, the desired stiffness, velocity and force are computed based on the GMR model. The computed variables are then fit into the
joint impedance controller through inverse Kinematics. Finally, the computed torques are sent to the robot joints which are enabled under the torque
control mode.

where x1 represents the starting point of the robot endpoint
position trajectory. Please see [30] and [31] for more details
of the HSMM-GMR model.

To summarize, once the reference positions xt and the
estimated parameters of the HSMM’s states are obtained,
the expected velocities, stiffness profiles and force can be
calculated by 8, 9 and 10, respectively.

C. IMPEDANCE CONTROLLER
In this work, the robot arm is controlled under the torque
control mode with an impedance controller in joint space.
Here, we use a commonly used controller, the formation of
which consists of four parts:

τ cmd = K j(q∗ − qmsr )+ D(q̇
∗
− q̇msr )

+ JTF∗ + τ dyn(q, q̇, q̈) (14)

where q∗ and qmsr are the desired and the measured joint
angles during the phase of task reproduction; q̇∗ and q̇msr are
the desired and the measured joint velocities.K j andD are the
joint stiffness and damping coefficients, respectively. J is the
Jacobian matrix of the robot arm. F∗ is the desired endpoint
force obtained from 10. τ dyn(q, q̇, q̈) represents the dynamical
model of the arm compensating for the forces, i.e., the gravity,
the inertia and the Coriolis forces. The dynamical term can
be usually identified by several techniques such as adaptive
control, and assumed known in our work when the robot
is controlled under the torque control mode. τ cmd is the
generated torque applied to the robot joint. The whole control
diagram is shown in Fig. 3.

The measured joint angles qmsr and velocities q̇msr are
directly obtained from the interface provided by the robot
manufacturer. The desired joint angles q∗ are computed
through inverse kinematics based on the desired endpoint
position. The desired joint velocities q̇∗ are computed by:

q̇∗ = J+ẋ∗ (15)

where J+ represents the pseudo-inverse Jacobian matrix, and
it is defined by:

J+ = JT · inv(JJT + 0.001I) (16)

with one unit matrix I .
The joint stiffness matrix K j is computed in accordance

with the robot endpoint stiffness:

K j = JT diag(ki)J (17)

Finally, the joint damping matrix D can be determined by

D = diag(di) (18)

with

di = σi
√
ki (19)

where σi are predefined constant coefficients.

IV. EXPERIMENTAL VALIDATION
A. DESCRIPTION
We test our approach on the Baxter robot. The robot arm can
be controlled under the torque model with impedance adapta-
tion. An EMG device (MYO armband) is used for collecting
the EMG signals from the human tutor’s arm during the
demonstration phase. A six-axis force sensor (ATI Mini-45)
is mounted between the endpoint of one of the robot arms and
the tool for collecting the force signals.

The experimental system for the human demonstration is
shown in Fig. 4. During demonstration, the EMG signals
are collected with the MYO armband and then sent through
Blutooth to a computer for processing. The interaction force
signals are collected and amplified by the collection board,
then sent to the same computer. The processed stiffness and
force data are then sent to the host computer through UPD
protocol, and then simultaneously recorded along with the
robot sate variables. During the reproduction phase, only
the host computer is needed and the generated joint torque
commands are directly sent to the robotic joint actuators.
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FIGURE 4. (a) Graphical reinterpretation of the experimental system. During demonstration, multimodal signals (the robot state variables, human arm
EMG signals and the interaction force between the robot and the environment) are simultaneously collected. All the needed variables are recorded at
the same sampling rate on the host computer. (b) The experimental setup during the multimodal demonstration phase. The robot endpoint movement
trajectories, the EMG signals and the force data are recorded simultaneously during skill demonstration. Note that the first object (stapler) is fixed
onto the desk, while the second object (bottle) is placed on the desk without any constraint.

The experimental procedure follows three basic phases
including:

i)Demonstration: Firstly, the human tutor demonstrates the
robot to perform a pushing-pushing tasks for several times
(see Fig. 4), under the built-in kinematics teaching mode
provided by the robot manufacturer. During demonstration,
the robot endpoint posture is recorded, plus the force data
and the human arm endpoint stiffness profiles. Note that the
human tutor’s hands hold on the robot endpoint during the
pushing-pushing process.

ii) Model learning: Then, the demonstration data (i.e.,
the set {xi, ẋi, k,Fi}, i = 1, 2, 3) are used to fit the HSMM
model for the estimation of the model parameters. The
main code we used is the implementation freely provided
by Dr. S. Calinon’s group1 [32], [33]. The orientations are
not considered in this work and therefore fixed during the
experiment.

iii) Reproduction: Finally, the robot reproduces the task
under the variable impedance controller with the control vari-
ables (position, stiffness and force) generated by the GMR
model.

B. EXPERIMENTAL SETTINGS
There are total 15 sets of demonstration data collected for the
pushing-pushing task. The sample rates for the EMG signals
and the force are set as 100 Hz and 200 Hz, respectively.
During the reproduction phase, the orientation is fixed as

1https://gitlab.idiap.ch/rli/pbdlib-matlab/

TABLE 1. The settings for the three test conditions.

[π , 0, 0]rad , and the stiffness parameters in orientation are
set as [20, 20, 20]Nmrad .

The tasks reproduction is conducted under the following
three conditions:
Condition 1: with EMG and force. The robot reproduces

the task with both variable impedance control and force feed-
forward. In this case, the learned stiffness profiles are used as
variable gains in the impedance controller.
Condition 2: with EMG, without force. The robot performs

the task under the variable impedance controller with the
learned control variables but without the force term, which
means that the robot is controlled under a force-free mode.
Condition 3: with force, without EMG. The robot repro-

duces the task with force feedforward and impedance con-
troller but with constant gains. The stiffness parameter in z
axis is fixed as a constant value.

In summary, as shown in Table 1, the first condition is
set to validate the proposed control strategy. The second test
condition is to show the performance of the control strategy
with only EMG signals, while the third condition is to show
that with only force but without the utilization of the EMG
data.
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FIGURE 5. The position trajectories in the robot end-effector x , y and z axis respectively. The positions (green lines) are generated based the
demonstration ones (gray dots).

FIGURE 6. (a)-(c) show the velocity trajectories in x , y and z axis respectively. The velocities (green lines) are computed by GMR model based the
demonstration ones (gray dots). (d)-(f) are the learned velocity trajectories with respect to the position trajectories with the fitted Gaussian models.

C. RESULTS AND DISCUSSION
The learned position trajectories and the computed velocity
trajectories by GMRmodel with respect to the demonstration
data are shown in Fig. 5 and Fig. 6, respectively. And the
learned velocity profiles with respect to the position trajec-
tories are shown in Fig. 6(d)-(f). The computed stiffness in z
axis with respect to the demonstration ones is shown in Fig. 7.
A typical example of the measured position and force (z axis)
trajectories with respect to the demonstrated ones are shown
in Fig. 8. The visual inspection shows that the robot achieves
the best performance under Condition 1, compared with the
other two conditions.

We perform the reproductions for several times under each
of these test conditions. Under condition 1, the robot is
able to smoothly execute the task, and no obvious variance
is observed under this condition. The robot fails to push
down the two objects under Condition 2 (see the red lines

in Fig. 8(b) and (c)), this can be explained by the low force
applied onto the robotic endpoint. Under test Condition 3,
the task is successfully performed by the robotic arm even
obtaining a bit better performance of position tracking. This
is because that the robot manipulator has a better capability
of dealing with external perturbations when controlled with
high impedance.

Under constant stiffness control mode, however, the robot
is not able to reproduce the adaptability of the force to the
task situation as demonstrated and as the learned one. Large
variance in force is observed under condition 3 (see the black
line in Fig. 8 as an example). Note that the second object (i.e.,
the bottle) is not fixed in our experiment. In this case, the rigid
robot arm trends to push it away when contacting with the
bottle, resulting in the sudden changes of the force profile
[see Fig. 8(b)]. It suggests that condition 3 may easily cause
unstable interactions between the robot and its environment.
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FIGURE 7. The stiffness profiles with respect to (a) position and (b) time
step in z axis. The red oval areas represent the fitted Gaussian models.

The force remaining constant from 140 to 160 time steps may
be explained by that there was not enough time for the force
sensor to response when the unstable interaction happened.
It should be easy to understand that the robot arm with con-
stant high stiffness keeps robust to the external perturbation
despite of the unstable interaction, and thus the position of the
robotic endpoint in z direction can almost follow the desired
one [see Fig. 8(c) 120-160 time steps].

There is a small mismatch in time coordination between the
stiffness and the force, which may be explained by the non-
synchronously collecting of the EMG force signals during
demonstration, and by separately training of the stiffness and
the force data. Note that the measured force profiles are not
only determined by the learned stiffness but also the learned
force (see the controller, i.e., Eq. 14). Therefore, even in
the stable interaction (the fist pushing) the observed robot
behaviour should be different. We can also see that from 8(b)
(about the 40th time step) the constant impedance interaction
(condition 2) might cause large contact force, which is basi-
cally consistent with the experimental findings in [27].

When humans interact with external environments,
we often trend to adapt our arm impedance rather than using
a rigid manner [34]. These results show that our method
enable robots to learn the features of movement trajectories,

FIGURE 8. The force profiles with respect to (a) position and (b) time step
in z axis. The red areas in (a) are the fitted Gaussian models.
(c) represents the measured potion trajectories of the robotic endpoint in
z axis during the task reproduction phase. The blue, red and black lines
correspond to the first, second and the third experimental conditions,
respectively. The sudden changes (black line) are due to the unstable
interaction under the third test condition.

stiffness and force profiles from human demonstration. By
encoding multiple sensing signals to extract the correlations
between position and the other variables with the combination
of HSMM and GMR, our method can generate decent control
commands from the demonstration data even the dynamics of
these trajectories are complex.

The stiffness and force profiles have demonstrated the
features as expected: keep low when getting close to the
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targets and then increase to push the objects. It should be
noted that the adaptation features of the stiffness and force
are directly extracted from human demonstration. Multiple
information data (movement, stiffness and force) are included
in the proposed teaching-by-demonstration system. In this
way, a more complete skill transfer process can be achieved
than only considering one or two signals.

Compared with previous studies (e.g., [15]), our model
does not directly encode the ‘‘strong’’ correlation between
stiffness and force by separately training the three HSMM
models, leaving room for the individually optimizing of
impedance and feedforward force, as suggested by the find-
ings in human arm motor learning [20], [34].

One drawback of our approach is that sometimes the mod-
els are different to train when the demonstrated profiles have
a large variance (see Fig. 6 and Fig. 7(b) 40-80 time steps).
It may potentially require more demonstration data or larger
number of Gaussian models to learn a perfect profile, which
would increase the computational cost.

V. CONCLUSION
In this paper, we propose a teaching-by-demonstration
approach considering multiple sensor signals for robots to
learn skill features from humans, including movement trajec-
tories, stiffness profiles and force data. The stiffness profiles
are obtained by the estimation of the human tutor’s arm
impedance based on the collection of the EMG signals, and
the force data are collected from the force sensor rigidly
mounted onto the robotic endpoint. These three types of
signals are integrated together by encoding the three Gaussian
distributions, i.e., between position and velocity, stiffness and
force, using the HSMM model. Then, GMR is used to gen-
erate the control variables to fit the robotic impedance con-
troller, based on the learned parameters of HSMM. Finally,
we demonstrate the validity of the proposed method by a
real-word experiment based on the Baxter robot. The exper-
iment suggests compared with the constant stiffness control
with only force-sensing involved, the proposed multimodal
approach can enable the robot to both successfully and stably
perform the pushing task. Our method has potential applica-
tions in a number of tasks that need both stiffness adaptation
and force control.

Future work will be focused on the fusion of the mul-
tiple signals in a higher level by integrating some cross-
modal learning techniques (see, e.g., [35]) into the proposed
teaching-by-demonstration system, in order to improve the
robotic capabilities of learning high-level action strategies.
Furthermore, optimization techniques may be utilized to
online refine the stiffness and the force profiles once they are
learned from the demonstration data.
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